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Abstract

Conformal predictors estimate the reliability of outcomes made by supervised machine
learning models. Instead of a point value, conformal prediction defines an outcome region
that meets a user-specified reliability threshold. Provided that the data are indepen-
dently and identically distributed, the user can control the level of the prediction errors
and adjust it following the requirements of a given application. The quality of conformal
predictions often depends on the choice of nonconformity estimate for a given machine
learning method. To promote the selection of a successful approach, we have developed
Orange3-Conformal, a Python library that provides a range of conformal prediction meth-
ods for classification and regression. The library also implements several nonconformity
scores. It has a modular design and can be extended to add new conformal prediction
methods and nonconformities.
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1. Introduction
The application of supervised machine learning tools is growing, and an increasing number
of decisions in a wide range of industries are based on computer-generated predictions. The
effects of prediction errors vary between different applications. For example, forecasts of
recommender systems that aim to increase sales in e-commerce are less critical than those
of diagnostic systems in the intensive care unit. In applications where the reliability of
individual predictions is crucial, quantification of the prediction confidence should complement
the output of a machine learning method.
A range of current prediction confidence or reliability methods employs sensitivity analysis,
inference of reliability from predictions of near neighbors, or explore properties of individual
machine learning algorithms, such as tree variance in a random forest (Bosnić and Kononenko
2009). Conformal predictions (Vovk et al. 2005) are conceptually different from other reliabil-
ity methods in predicting a range of values rather than reporting a confidence value. Provided
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that the data are independent and identically distributed (IID), the conformal prediction
framework assures that the true value lies within the predicted range at a given significance
level. Consequently, the user can control the level of prediction error and adjust it following
the requirements of a given application.
The inputs to conformal prediction are a set of labeled examples and a nonconformity function
that measures the strangeness of a labeled example. The output is a model that for a new
example predicts a set of labels with low nonconformity. The nonconformity threshold is
specified by the user through the desired significance level. For example, at significance
level 0.05, a conformal predictor produces a prediction region that contains the true label
with probability of at least 95%. Provided IID data sets, conformal prediction methods
guarantee the ratio of correct predictions under the given significance level. The approach
was introduced by Vovk et al. (2005) and presented through a tutorial published in the Journal
of Machine Learning Research (Shafer and Vovk 2008). It found its use in practical fields
such as chemoinformatics (Eklund et al. 2012) and molecular biology (Cortés-Ciriano et al.
2015).
The quality of conformal prediction depends on the choice of nonconformity function. For
example, for classification (Shafer and Vovk 2008), nonconformity can be estimated by the
predicted probability of the correct class, the difference of predicted probabilities of the two
most likely classes, or the distance to the closest neighbors with the same class label. For
regression (Papadopoulos et al. 2011), a common nonconformity measure is an absolute er-
ror of a point prediction. A nonconformity threshold for a given significance is estimated
from the distribution of nonconformity scores. A variety of sampling approaches, such as
inductive, transductive and cross-validation methods have been proposed to estimate this
distribution (Vovk 2015).
We present here Orange3-Conformal, a Python-based framework (van Rossum et al. 2011)
for conformal prediction that supports various combinations of conformal prediction ap-
proaches and nonconformity scores. The library is an add-on to the Orange data mining
framework (Demšar et al. 2013) and can also accommodate data and predictors from scikit-
learn (Pedregosa et al. 2011). Several implemented approaches are specifically tailored to
individual nonconformity scores, while others are general and can be used with any classifier
or regressor. The library is designed to support applications of conformal prediction and
facilitates research in novel calibration methods and nonconformities.

2. Conformal prediction
In this section we briefly introduce the theory of conformal predictions and describe the sam-
pling methods and nonconformity measures that are implemented in the Orange3-Conformal
library.

2.1. Conformal prediction theory

Conformal prediction theory is based on a nonconformal measure, which is a real-valued
function F (B, z) that measures the difference between an example z and the examples in the
bag B. The example z(x, y) consists of a feature vector x and an actual or assumed response
y. For regression the response is a scalar, while for classification y can take any of the values
in the set of n labels, such that y ∈ {l1, . . . , ln}. For classification, the nonconformal measure
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is computed for each possible class label. In the following, the nonconformal measures will
be defined for an example z and its class value y, denoted by F (B, z)y.
Evaluation of the nonconformity measure for a given example and response results in a scalar
nonconformity score (NCS). The p value over a set of NCSs estimates the probability that a
given label y for an example z is accurate. Given the law of large numbers this probability
is correct under the assumption of exchangeability (Vovk et al. 2005). In the application of a
conformal predictor, a significance level ε is specified, yielding a prediction set (Γε) including
the true label with the probability 1− ε.
For a binary classifier, the prediction set can include one label, both labels or no label,
while regression conformal prediction defines the highest and lowest value of the response by
identifying the y values that yield a NCS with a rank corresponding to the significance level
ε. Hence, for a set of m NCSs, {α1, . . . , αm}, a p value for label y (Equation 1) corresponds
to the fraction of NCSs greater than the NCS of the example being predicted (α∗). The label
y is included in the prediction set Γε if and only if the p value is greater than the significance
level (p valuey > ε; Shafer and Vovk 2008). This means that there is a significant amount of
“stranger” examples, therefore this label is not so unusual and we should include it.

p valuey = #{1, . . . ,m|αi ≥ α∗}
m

(1)

The quality of a conformal predictor model is quantified by its validity and efficiency. A
conformal predictor is valid if the true label is within the prediction range for a fraction of
at least 1− ε of the examples in the validation set. For regression, the efficiency is described
by the tightness of the prediction ranges. The tighter the interval the more efficient the
conformal predictor. For classification, an individual prediction set can be empty, it can
consist of a single label (singleton) or multiple labels. In an ideal case we would expect most
of the predictions to be singletons. Therefore, the fraction of singletons is a feasible efficiency
measure. A too low significance level ε or a too hard prediction problem will lead to more
multiple predictions. Conversely, a too high significance level, which allows a low accuracy of
the conformal predictor, can lead to empty predictions.

2.2. Sampling methods

NCSs are computed on a set of examples that are sampled by one of the three conceptu-
ally different approaches, denoted as transductive, inductive and cross conformal predictions.
A transductive conformal predictor recalculates NCSs for all examples upon every predic-
tion. Conversely, an inductive conformal predictor reuses a static set of NCSs for examples
constituting a so-called calibration set, left outside of the training set. In cross conformal pre-
diction, cross validation sampling is used to select multiple calibration sets, thereby increasing
the number of available NCSs in comparison with the inductive approach. We provide some
guidelines on the choice of the sampling method in Section 3.5.

2.3. Nonconformity measures

Table 1 lists different nonconformity measures for classification and regression implemented
in Orange3-Conformal. Many of the measures are analogous between regression and classi-
fication, replacing the response in regression (y) with the predicted probability of the class
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Name Response Type
Inverse probability Classification Prediction error
Probability margin Classification Prediction error
SVM distance Classification Algorithm specific
Leave-one-out classification Classification Normalized prediction error
KNN distance Classification Distance to NN
KNN fraction Classification NN responses
Absolute error Regression Prediction error
Absolute error RF Regression Prediction error
Absolute error normalized Regression Normalized prediction error
Leave-one-out regression Regression Normalized prediction error
Error model Regression Normalized prediction error
Absolute error KNN Regression NN responses
Average error KNN Regression NN responses

Table 1: Summary of nonconformity measures.

label (py) in classification. For a detailed description of individual nonconformities please
refer to the documentation of our software.

Inverse probability (InverseProbability) uses an underlying classification model and
the probability (py) the model assigns to the class label (y). Hence, the nonconformity
score for label y is defined as F (B, z)y = 1− py.

Probability margin (ProbabilityMargin) is similar to InverseProbability but uses a
normalized difference between the probability of the label (py) and the maximal prob-
ability of any other class.

SVM distance (SVMDistance) uses the distance in the space of the SVM model from the
predicted example to the SVM’s decision boundary.

KNN distance (KNNDistance) is only defined for binary classification problems and is ex-
pressed as the ratio between the sum of distances to the set of k nearest neighbors
(Nk(z)y) that belong to the same class as the example z and the sum of distances to
the set of neighbors in the opposite class (Nk(z)label 6=y).

KNN fraction (KNNFraction) identifies k nearest neighbors of the target data instance for
which the NCS is calculated (Nk(z)) and is expressed as a fraction of k nearest neighbors
that share the class label y with the target data instance. Alternatively, the neighbors
can be weighted by their distances to the target data instance.

Leave-one-out classification (LOOClassNC) measures the predictability of an instance from
a set of its nearest neighbors. The value is normalized by the predictability of nearest
neighbors. This is an experimental nonconformity score based on the study by Toplak
et al. (2014).

Absolute error (AbsError) for regression models uses the difference between the predicted
value ŷ and the response y of the example for which the NCS is calculated: F (B, z)y =
|ŷ − y|.
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Absolute error RF (AbsErrorRF) uses the standard deviation of the predictions of all con-
stituting trees, σRF , of an underlying random forest model. The standard deviation,
together with a scaling factor, β, is used to normalize the absolute prediction error.

Error model (ErrorModelNC) is based on two underlying regressors. The first one is trained
to predict the value of the example for which the NCS is calculated, while the second
is used for predicting logarithms of the errors made by the first model, as described by
Papadopoulos and Haralambous (2011).

Absolute error normalized (AbsErrorNormalized) uses an underlying regression model
to predict the response of the target example, which is then normalized by distances
and variances of the nearest neighbors as described by Papadopoulos et al. (2011).

Leave-one-out regression (LOORegrNC) is analogous to the classification version. However,
instead of using the predicted probability of the correct class, it relies on the absolute
error of the prediction.

Absolute error KNN (AbsErrorKNN) computes the difference between the average response
of the k nearest neighbors, ȳ, and the response of the example for which the NCS is
calculated: F (B, z)y = |ȳ − y|. It is implemented with an average- and/or variance-
normalization option based on the nearest neighbors.

Average error KNN (AvgErrorKNN) calculates an average absolute difference in responses
between the example for which the NCS is calculated and the nearest neighbors: F (B, z)y =
1/k∑

zi∈Nk(z) |y − yi|.

3. The Orange3-Conformal package
We propose a Python-based implementation of conformal prediction. In the following sections,
we compare it with related software packages, describe the architecture of Orange3-Conformal
and provide an example of its use.

3.1. Related work

Several modular and extensible frameworks for conformal prediction have been proposed and
vary both in a breadth of implemented functionality and in development activity. A Python
library PyCP (Balasubramanian et al. 2013) implemented core techniques for classification,
but the package has recently become unavailable. More functionality is provided in an R
(R Core Team 2021) package conformal (Cortes 2016), which covers both classification and
regression and was published as a side product of an application in proteomics (Cortés-Ciriano
et al. 2015). The most extensive of the available libraries is the Python library nonconformist
(Linusson 2018) that implements a range of conformity prediction approaches, but couples
them with few nonconformity scores.
Table 2 provides a brief comparison of these three libraries. Orange3-Conformal is conceptu-
ally most similar to nonconformist, but includes a richer set of parameterized nonconformity
functions. Nonconformity functions should discriminate well between conformal and noncon-
formal data instances for a given outcome label (Shafer and Vovk 2008). Their implementation
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Library nonconformist PyCP conformal Orange3
Nonconformities 2 2 4 0 1 1 6 7
Transductive 7 7 3 7 7 7 3 7

Inductive 3 3 7 7 7 7 3 3

Cross/aggregated 3 3 7 7 3 3 3 3

Mondrian 3 3 3 3

Documentation 3 7 3 3

Availability PyPI1 7 CRAN2 PyPI3

Table 2: Comparison of functionalities implemented in existing conformal prediction libraries.
The first column for each library corresponds to classification and the second to regression. For
example, PyCP implements a transductive approach for classification, but not for regression.
In rows, we report on the number of nonconformity scores that are available. In the second
section, we indicate the availability of different approaches for the selection of calibration
sets for computation of nonconformity scores (see Section 2.2). The last section provides
information on documentation and availability of the software package. Notice that PyCP
is no longer available. A mondrian setting is not applicable to regression and hence the
corresponding entries are left blank.

is a critical component of conformal prediction. Their quality dictates the narrowness of the
prediction range and with that the utility of the approach. Orange3-Conformal aims to cover
a wide range of nonconformity approaches and to provide their implementation for further
research on their differences and utility.
In most cases, the frameworks implement conformal prediction methods through an additional
layer over underlying classification or regression models. With clearly defined approaches
to nonconformity scoring, the main distinguishing factor of specific implementation is its
usability. The nature of the overhead of the conformal prediction framework leaves very little
room for speed improvements, which is why comparing the packages by the response time
would rank them according to the speed of the employed package for machine learning.

3.2. Design

Orange3-Conformal wraps learners and classifiers from the Orange (Demšar et al. 2013) data
mining suite. Besides being a pure Python-based library, Orange is essentially a visual pro-
gramming toolbox that features a graphical user interface for the construction of interactive
data analysis workflows (Curk et al. 2004). Orange3-Conformal is thus also a stepping stone
towards interactive visualizations and exploratory analysis of conformal predictions.
Conformal predictions in Orange3-Conformal are obtained by selecting a combination of two
main components:

Conformal prediction method which can be transductive (TransductiveClassifier),
inductive (InductiveClassifier and InductiveRegressor) or cross (CrossClassifier
and CrossRegressor).

1https://pypi.python.org/pypi/nonconformist
2https://CRAN.R-project.org/package=conformal
3https://pypi.python.org/pypi/Orange3-Conformal

https://pypi.python.org/pypi/nonconformist
https://CRAN.R-project.org/package=conformal
https://pypi.python.org/pypi/Orange3-Conformal
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Nonconformity measure which is one of many provided measures of how unusual is a spe-
cific data instance. Orange3-Conformal includes general-purpose nonconformity mea-
sures like InverseProbability, ProbabilityMargin for classification, and AbsError,
AbsErrorNormalized for regression. These measures work in combination with any un-
derlying prediction model. There is also a set of measures that are predictor-specific and
include, among others, SVMDistance, KNNFraction, AbsErrorRF, and AvgErrorKNN.

The library is modular with a range of implemented nonconformity measures, which can also
serve as examples for those who wish to experiment and research other possible nonconformi-
ties. There are two core modules which implement methods for conformal classification (con-
formal.classification) and regression (conformal.regression). A separate module implements
the nonconformity scores (conformal.nonconformity). Several evaluation scores were proposed
to estimate the performance of conformal predictors (Lofstrom et al. 2013; Papadopoulos et al.
2011). For classification, these also include confidence, credibility, and confusion. Module
conformal.evaluation includes implementations of scoring functions for regression and classi-
fication, together with sampling-based evaluation procedures. The library is accompanied by
a tutorial and reference documentation (http://orange3-conformal.readthedocs.io/).

3.3. Example

Installation

Orange3-Conformal is an add-on for the Orange machine learning and data mining suite in
Python and requires installation of Orange:

• Use the installer from the official web page (http://orange.biolab.si/).

• With an existing Python installation and a C/C++ compiler (Windows users can get one
at http://landinghub.visualstudio.com/visual-cpp-build-tools) use the pip pack-
age manager to install Orange3 from PyPI (Python Package Index):

pip install Orange3

• Get the latest development version from the source code repository (https://github.
com/biolab/orange3) and follow the instructions there.

After installation try to import the Orange library in Python:

>>> import Orange
>>> print(Orange.__version__)

To install Orange3-Conformal, use pip that belongs to the Python instance used to run Orange:

pip install Orange3-Conformal

Finally, check that the installation was successful:

>>> import orangecontrib.conformal as cp
>>> print(cp.__version__)

http://orange3-conformal.readthedocs.io/
http://orange.biolab.si/
http://landinghub.visualstudio.com/visual-cpp-build-tools
https://github.com/biolab/orange3
https://github.com/biolab/orange3
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We will also set a random seed to make the demonstration replicable:

>>> import numpy as np
>>> np.random.seed(12345)

Classification

Here we demonstrate how to use an inductive conformal classifier with the nonconformity
score computed as the inverse probability of logistic regression. We illustrate its use on the
Iris data set from Anderson (1936). This classic data set describes 150 iris flowers with four
features (sepal length, sepal width, petal length, petal width) and their species (Iris Setosa,
Iris Versicolor, Iris Virginica), which is the class variable.
First, we need to import the libraries:

>>> import Orange
>>> import orangecontrib.conformal as cp

Next, we load the data set, split it into a train, calibration and test set, and extract a single
data instance for which we will make a conformal prediction:

>>> iris = Orange.data.Table('iris')
>>> train, test = next(cp.evaluation.RandomSampler(iris, 1, 1))
>>> train, calibrate = next(cp.evaluation.RandomSampler(train, 1, 1))
>>> test_instance = Orange.data.Instance(test[-1])
>>> print(test_instance)

[4.7, 3.2, 1.6, 0.2 | Iris-setosa]

We use a LogisticRegressionLearner and the inverse probability nonconformity score in
an inductive conformal prediction classifier:

>>> lr = Orange.classification.LogisticRegressionLearner()
>>> ip = cp.nonconformity.InverseProbability(lr)
>>> icp = cp.classification.InductiveClassifier(ip, train, calibrate)

Two prediction regions are obtained at the 0.1 and 0.02 significance levels:

>>> print(test_instance.get_class())
>>> print(icp(test_instance, 0.1))
>>> print(icp(test_instance, 0.02))

Iris-setosa
['Iris-setosa']
['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']

We can see that at the 0.1 significance level only the correct class of Iris-setosa was pre-
dicted (singleton prediction). By changing the significance level to 0.02, which implies a
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lower tolerance for errors, the model loosens its prediction to a multiple prediction with three
possible classes, Iris-setosa, Iris-versicolor, and Iris-virginica.
There are 16 multiple predictions at 0.05 significance from the test set consisting of 75 in-
stances. All these cases belong to the boundary region between the Iris-virginica and
Iris-versicolor classes, while the instances from the Iris-setosa class are assigned a
correct singleton prediction.

>>> multiple = []
>>> for instance in test:
>>> prediction = icp(instance, 0.05)
>>> if len(prediction) > 1:
>>> multiple.append((instance, prediction))
>>> print(len(multiple), len(test))
>>> for instance, prediction in multiple:
>>> print(instance, '->', prediction)

16 75
[6.1, 2.9, 4.7, 1.4 | Iris-versicolor] -> ['Iris-versicolor',

'Iris-virginica']
[7.4, 2.8, 6.1, 1.9 | Iris-virginica] -> ['Iris-versicolor',

'Iris-virginica']
...
[7.2, 3.0, 5.8, 1.6 | Iris-virginica] -> ['Iris-versicolor',

'Iris-virginica']

Evaluating the conformal predictor on a given train and test set confirms that the predicted
regions at 0.1 significance are indeed correct approximately 90% of the time. Besides, 95% of
the predictions consist of a single value, 5% are empty predictions and there are no multiple
predictions.

>>> res = cp.evaluation.run_train_test(icp, 0.1, train, test, calibrate)
>>> print(res.accuracy())
>>> print(res.singleton_criterion())
>>> print(res.empty_criterion())
>>> print(res.multiple_criterion())

0.93333
0.94667
0.05333
0.0

See Figure 1 for a visualization of predictions made by the conformal predictor on the test
set. As expected, the mistakes and non-singleton predictions appear on the boundary between
different class values.
Another interesting data set for demonstration purposes is the handwritten digits data set
(https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Figure 1: Visualization of conformal prediction on the test set. Examples are colored accord-
ing to their originally assigned class value. Filled circles indicate a correct singleton prediction,
crosses indicate wrong singleton predictions and empty circles indicate empty prediction sets.
There were no multiple predictions at the significance level of 0.1.

Figure 2: Examples of handwritten digits.

Digits) available from the UCI Machine Learning Repository (Dua and Graff 2017). The
data set consists of 8 × 8 images of handwritten digits with pixel values in the range [0, 16]
(Figure 2). For brevity, we omit the parts of the code that import libraries and draw visual-
izations. Please see the replication code supplement for a complete example.
A subset of the digits data set is available from scikit-learn. We load the data set, convert it
to Orange format and normalize the values to a [0, 1] range.

>>> digits = sklearn.datasets.load_digits()
>>> domain = Domain([ContinuousVariable(f"A{i}") for i in range(64)],
... DiscreteVariable("digit", map(str, range(10))))
>>> tab = Table(domain, digits.data, digits.target)
>>> normalizer = Normalize(zero_based = True,
... norm_type = Normalize.NormalizeBySpan)
>>> tab = normalizer(tab)

Support vector machines (SVM) perform well on the handwritten digits recognition problem.
We will use an inductive conformal prediction with probabilities of a SVM model as noncon-
formity scores. The training and testing set consist of 1198 and 599 examples, respectively.
The run_train_test method reserves one third of the training set for calibration purposes.
Promised accuracy is close to the expected 0.97, and there are only 12 multiple predictions.

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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{5, 9} | 5 {3, 5} | 3 {1, 9} | 9

{8, 9} | 8 {3, 9} | 9 {4, 5} | 5

{6, 8} | 6 {8, 9} | 3 {8, 9} | 8

{1, 8} | 1 {1, 8} | 8 {8, 9} | 8

Figure 3: Digits where the conformal method predicted more than one class. In the annotation
of each image, the figure shows the set of predicted classes and the true class, separated by
‘|’.

>>> learner = SVMLearner(probability = True)
>>> nc = cp.nonconformity.InverseProbability(learner)
>>> ic = cp.classification.InductiveClassifier(nc)
>>> train, test = next(cp.evaluation.RandomSampler(tab, 2, 1))
>>> r = cp.evaluation.run_train_test(ic, 0.03, train, test)
>>> multi = []
>>> for example, pred, ref in zip(test, r.preds, r.refs):
... if len(pred.classes()) >= 2:
... multi.append((example, pred.classes(), ref))
>>> print(r.accuracy(), len(multi))

0.97329 12

The list multi contains the necessary data about the image, predicted classes, and the true
class from which we can visualize these uncertain examples as in Figure 3. By visual inspection
of these examples, it is easy to agree with the uncertainty of the conformal predictions as
all the proposed classes look likely. Interestingly, looking at the images from farther away,
humans can determine the right digit in most of these cases.
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Regression

Here we demonstrate the use of Orange3-Conformal on the regression problem of Boston house
prices (https://archive.ics.uci.edu/ml/machine-learning-databases/housing/, Har-
rison and Rubinfeld 1978) and show the interaction with the scikit-learn library. The Boston
house prices data set consists of 506 instances of Boston towns or suburbs each described
by 13 features such as the crime rate per capita, average number of rooms per dwelling and
pupil-teacher ratio by town. The target variable is the median value of owner-occupied homes
in thousands of dollars (values range from 5 to 50).
The data set is available in scikit-learn, which we split into the training and testing set. We
train a nearest neighbor regressor on the training set and evaluate it on the testing set.

>>> from sklearn import datasets
>>> from sklearn.metrics import mean_absolute_error
>>> boston = datasets.load_boston()
>>> mask = np.random.choice([False, True], len(boston.data))
>>> X_train, y_train = boston.data[mask], boston.target[mask]
>>> X_test, y_test = boston.data[~mask], boston.target[~mask]
>>> from sklearn.neighbors import KNeighborsRegressor
>>> neigh = KNeighborsRegressor(n_neighbors = 10)
>>> neigh.fit(X_train, y_train)
>>> pred = neigh.predict(X_test)
>>> print(mean_absolute_error(y_test, pred))

5.59316

To use a conformal prediction method on the Boston housing data, we have to convert the
scikit-learn’s data set to Orange format. For conversion we do not have to specify the domain
(use None) and let the library construct appropriate variables from the data and target arrays
of the scikit-learn’s data set. To use the constructed nearest neighbors regressor, we simply
reshape the Orange’s row instance to 2D and employ the previously constructed regressor
from scikit-learn.

>>> import Orange
>>> data = Orange.data.Table.from_numpy(None, boston.data, boston.target)
>>> train, test = data[mask], data[~mask]
>>> test_instance = test[-1]
>>> print(test_instance)
>>> print(neigh.predict(test_instance.x.reshape((1, -1))))

[0.04527, 0, 11.93, 0, 0.573, ..., 9.08 | 20.6]
[22.74]

Now we are ready to set up a conformal predictor. As a nonconformity measure, we will use a
non-normalized absolute error of 10 nearest neighbors determined by the Euclidean distance.
To demonstrate another method, we will use this nonconformity in a cross conformal setting
with 5 folds. Usually, we would employ a cross conformal instead of an inductive predictor

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
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in situations where the data set is too small for a fixed partition into separate training,
calibration and testing sets. Predicting the test instance with stronger (smaller) significance
levels results in wider prediction ranges. Note that, in this case, the ranges are centered on
the same value that was predicted by scikit-learn’s nearest neighbors regressor (22.74).

>>> import orangecontrib.conformal as cp
>>> from Orange.distance import Euclidean
>>> nc = cp.nonconformity.AbsErrorKNN(Euclidean(), 10)
>>> ccp = cp.regression.CrossRegressor(nc, 5, train)
>>> print(ccp(test_instance, 0.1))
>>> print(ccp(test_instance, 0.05))

(13.79, 31.69)
(10.66, 34.82)

To evaluate our conformal predictor at a 0.1 significance level more thoroughly, we will ran-
domly sample the training and testing set in ratio 3:2 and repeat the entire experiment three
times. The accuracy is close to 0.9, as expected, and the average width of the predicted range
is 21.6 (i.e., about ±11).

>>> res = cp.evaluation.run(ccp, 0.1,
... cp.evaluation.RandomSampler(data, 3, 2), rep = 3)
>>> print(res.accuracy())
>>> print(res.median_range())

0.88834
21.6

3.4. Nonconformity scores

In this section we use an artificial data set proposed in Friedman (1991) to illustrate the
advantages of different nonconformity scores. The Friedman data set is available from the
KEEL repository (http://keel.es/datasets.php, Alcalá-Fdez et al. 2011).
It is defined by

y = sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε, (2)

with ε ∼ N (0, 1) and where y is the dependent variable and x1, . . . , x5 are the independent
variables drawn from a uniform distribution over [0.0, 1.0] (Figure 4). N (0, 1) indicates a
random noise from a zero-mean normal distribution with variance 1.
We experimented with six different nonconformity scores to demonstrate their differences.
Refer to Section 2.3 for their descriptions. Some of them depend on underlying regressors for
which we used a linear regression (LR) and a K-nearest neighbors (KNN) model (we used k =
20 in all such cases). We split the data set (1200 instances) into training (907 instances) and
testing set (293 instances) in a 3:1 ratio. Because we used an inductive conformal regressor, we
set aside one half (453 instances) of the training set for calibration. The output of conformal
regressors for every instance is a range of predicted values. We observed the median width

http://keel.es/datasets.php


14 Conformal Prediction with Orange

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

x1

0.0 0.2
0.4

0.6
0.8

1.0

x 2

0.0
0.2

0.4
0.6

0.8
1.0

x 3

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Scatter plot showing the distribution of the dependent variable with respect to the
first two or three independent variables (left and right image, respectively). Darker points
indicate larger values of the dependent variable.

ε = 0.1 Accuracy Median range Interdecile range
AbsError (LR) 0.860 8.429 0.000
AbsError (KNN) 0.887 7.403 0.000
AbsErrorNormalized (LR) 0.857 8.268 1.442
AvgErrorKNN 0.877 7.957 1.715
ErrorModelNC (LR, KNN) 0.853 7.771 4.389
LOORegrNC (LR) 0.881 5.161 3.948

Table 3: Differences among nonconformity scores.

of predicted ranges (median range) in the test set and an interdecile range, which is the
difference in widths of predicted ranges of the first and ninth decile.
To observe the interdecile range, we performed a single experiment, although the accuracy of
all nonconformities is slightly bellow 0.9, where we would expect it to be. Several repetitions
of the experiment should remedy that but would invalidate the interdecile range measure.
The AbsError method always outputs a range of the same width; therefore, the interdecile
range is zero. AbsError based on the K-nearest neighbors model outperforms LR in terms
of the median range. This is probably because the data set has a non-linear structure but
is locally homogeneous, which benefits the KNN model. Other nonconformity scores output
ranges of different widths to output wider ranges for difficult or unusual instances while
keeping the ranges narrow in the other (normal) cases. AbsErrorNormalized, AvgErrorKNN
and ErrorModelNC all use the nearest neighbors in some way and improve the median range
results of the AbsError with LR. The best performing method regarding the median range is
the new LOORegrNC nonconformity measure which is based on the predictability of an instance
from its neighborhood, in our case using an LR model. A possible interpretation is that the
method discovers non-homogeneous regions and successfully adapts the width of the predicted
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range. However, note that this comes at the cost of a larger interdecile range compared to
some other nonconformities.

3.5. Best practice guidelines

Here, we propose some guidelines for applying the conformal prediction framework and the
presented Orange3-Conformal package.
We first have to choose a conformal prediction method among transductive, inductive, and
cross approaches for a given data set. The transductive prediction has the strongest theoretical
foundation but is by far the most computationally demanding. In practice, we would use
transduction on small data sets that include, for example, at most few hundred instances.
The results of transductive conformal predictions are similar to the other two approaches
unless an addition of a single labeled data instance can have a substantial impact on the
trained model. On the other hand, the inductive method is the most practical due to its
efficiency. It should be applied where the data set is sufficiently large to be split into a
training and calibration set. In-between transductive and inductive approach is the cross
prediction method, which we can use when the data set is too big for transductive prediction
and too small for a sufficiently representative split into a training and calibration data set
required by inductive prediction. The cross method reuses the training set similarly as the
well-known cross validation approach in machine learning.
It is difficult to generalize about the success of various nonconformity scores, and instead –
given a specific data set – a range of nonconformity methods should be evaluated and scored.
For this reason, Orange3-Conformal implements many of the nonconformity methods from
the current literature. These methods are conceptually different, rely on various proper-
ties of the data and thereby complement each other. The NCSs based on prediction error
(AbsError) and model probabilities (InverseProbability) are the simplest and least com-
putationally demanding, therefore providing a good starting point. Many of the methods use
properties of the nearest neighbors such as responses, predicted values, and distances. Some
NCS approaches develop local leave-one-out models over a broader set of nearest neighbors,
increasing the computational time. The methods based on error models require an additional
model of the full data set predicting the prediction error. While we suggest comparing all
available nonconformity scores, the choice for inclusion may also depend on the available time
and computational resources.
Our library may aspire to provide broader access to conformal predictions and multiple NCSs
within the Python modeling community and its application might aid in future development of
generalized guidelines for the selection of NCS. The application of the outlined best practices
is illustrated by the case study in the following section, exploring the NCSs for classification.

4. Case study: AMES mutagenicity
Assessment of the carcinogenic potential of new molecular structures is vital in several in-
dustries, including those from chemistry, cosmetics, and pharmaceutics. Within the pharma-
ceutical industry, the tolerance for compounds with carcinogenic potential is very low, and
it is crucial to identify such compounds early within the drug discovery process to termi-
nate their development and reduce costs. For a long period of time, the AMES mutagenicity
test has been the first in vitro assay routinely used within the pharmaceutical industry to
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gauge carcinogenicity. For an extensive review of this method refer to Mortelmans and Zeiger
(2000). The widespread use of the AMES test has resulted in its standardization, promoted
by the Organization for Economic Co-operation and Development (OECD) and the Interna-
tional Commission on Harmonization. The standardization improves the uniformity of test
procedures between laboratories and enables a comparison of data originating from different
laboratories.

4.1. Preliminaries

The AMES assay uses several strains of Salmonella bacteria to detect a range of genetic
damage caused by chemical substances. The Salmonella strains included in the assay have
preexisting mutations that prevent these strains from producing the amino acid histidine
required for the bacteria to grow and form colonies. Chemicals with a tendency to cause
mutations might revert this inability to produce histidine, which would be indicated by a
promoted growth and colony formation compared to the negative controls. Prudent treatment
of mutagenicity requires a compound to be categorized as mutagenic if it promotes growth in
any of the Salmonella strains.
Because of the routine use of the AMES test within several industries across an extended
period, a substantial amount of AMES data has accumulated in the public domain. Also,
most larger pharmaceutical companies have AMES mutagenicity data sets from multiple
projects, supporting the inference of predictive models of the outcome of the AMES in vitro
assay.
A computational model that uses only the information about the molecular structure has
the potential to filter out the compounds with an increased risk for mutagenicity before they
are considered to be synthesized. The cost of synthesis and testing of drug candidates is
substantial, and a model predicting AMES mutagenicity could not only save time and money
but also increase the quality of the pursued compounds. However, false negative predictions
could result in investments in poor compounds, while an incorrect positive prediction might
rule out the next blockbuster drug. Because of the potential significant harm of wrong predic-
tions, methods assessing not only the average accuracy of the model but also the confidence
in individual predictions are highly valuable.
In drug discovery, new chemical entities are continuously explored, resulting in the violation
of the fundamental requirement of IID data. In the quantitative structure-activity relation-
ship (QSAR) literature, such compounds are considered outside of the so-called applicability
domain of the model, and for such compounds, the validation statistics do not apply nor do
model-based confidence prediction methods. Consequently, in drug discovery, a model-based
prediction confidence method should be complemented by an assessment of the IID assump-
tion between the training set and the test set. Once the IID assumption has been assessed,
application of the conformal prediction framework, reliant on the IID criterion, provides addi-
tional information about the extent of the “strangeness” of the example. Furthermore, using
the framework of conformal prediction assesses not only the prediction confidence but the
error of the model can be controlled, facilitating risk analysis and planning in drug discovery
projects.
Hansen et al. (2009) have compiled an AMES mutagenicity data set from several public data
sources, removing duplicates and compounds occurring in several data sets with contradictory
classification. This data set contains the molecular structure of about 6500 compounds,
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Classifier CA AUC Precision Recall F1
Logistic regression 0.748 0.819 0.773 0.752 0.762
Naive Bayes 0.669 0.721 0.706 0.658 0.681
Nearest neighbors 0.775 0.843 0.788 0.796 0.792
Random forest 0.765 0.839 0.813 0.731 0.770
Support vector machine 0.772 0.772 0.799 0.771 0.785

Table 4: Accuracy scores of classifiers on the AMES data set.

together with their AMES classification as positive or negative. The data set is reasonably
balanced containing about 3500 positive and 3000 negative compounds.
Developing an empirical model based solely on information about chemical structure to pre-
dict a molecular property is referred to as QSAR modeling. As the chemical structure cannot
be directly used for machine learning, it is instead represented numerically by a vector of
so-called molecular descriptors. For an example of conformal prediction application to QSAR
modeling, see Eklund et al. (2012). In our experiment, the set of 177 well established RD-
Kit descriptors (Landrum 2006, Release_2012_12_1) were used as features to represent the
molecular structure. This descriptor set contains the counts of various functional groups,
molecular indices and calculated bulk properties such as lipophilicity and charge.

4.2. Experiments

We preprocessed the AMES data with QSAR features. We removed eleven features that were
the same for all instances and one that contained spurious values. The resulting data set
(available in the supplementary material) contains 6494 chemicals described by 165 features.
We used an arbitrarily selected 80% (5220) of the instances for the training and the remaining
20% (1274) for the testing set.
To estimate the difficulty of the classification problem that we are presented with, we first
evaluated several standard classification models (Table 4). We used the default parameters of
each method. The observed values for each classifier are its classification accuracy (CA), the
area under the ROC curve (AUC), precision, recall, and the F1 score. We can see that the
classifiers obtain comparable results except for Naive Bayes, which under-performs. It relies on
the independence of features, which does not seem to be the case in this problem. The obtained
AUC values are also similar to those previously reported (Hansen et al. 2009); we attribute
slight differences observed to different molecular descriptors and classifier parameters. From
here on, we use logistic regression as our choice of a classification model, also because of its
computational efficiency.
We will use the inductive conformal prediction approach, which requires a separate calibration
set. For this purpose, we further split the training set in half into an actual training set (2610
instances) and a calibration set (2610 instances).
To confirm that the conformal predictor performs as expected, we construct a validation
plot (Figure 5). We measure the predictor’s accuracy at several significance levels and check
whether the observed error rate equals the specified significance level. Ideally, we would get
a straight line with a slope of −1. For this purpose, we used an InductiveClassifier based
on the InverseProbability nonconformity score of the underlying logistic regression model.
Besides validity, we are mostly interested in the efficiency of conformal predictors (Vovk et al.
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Figure 5: A valid conformal classifier should exhibit observed accuracy equal to 1−eps, where
eps is the specified significance level.

ε = 0.05 Accuracy Singletons Correct
singletons

Multiple Empty

InverseProbability 0.941 0.405 0.855 0.595 0.000
ProbabilityMargin 0.941 0.405 0.855 0.595 0.000
SVMDistance 0.947 0.458 0.883 0.542 0.000
KNNDistance 0.960 0.389 0.897 0.611 0.000
KNNFraction 0.951 0.452 0.891 0.548 0.000
LOOClassNC 0.942 0.440 0.877 0.556 0.004

ε = 0.1 Accuracy Singletons Correct
singletons

Multiple Empty

InverseProbability 0.889 0.614 0.820 0.386 0.000
ProbabilityMargin 0.889 0.614 0.820 0.386 0.000
SVMDistance 0.903 0.641 0.849 0.359 0.000
KNNDistance 0.908 0.611 0.850 0.389 0.000
KNNFraction 0.904 0.627 0.847 0.373 0.000
LOOClassNC 0.905 0.597 0.851 0.397 0.006

ε = 0.2 Accuracy Singletons Correct
singletons

Multiple Empty

InverseProbability 0.792 0.884 0.765 0.116 0.000
ProbabilityMargin 0.792 0.884 0.765 0.116 0.000
SVMDistance 0.794 0.922 0.777 0.078 0.000
KNNDistance 0.808 0.883 0.783 0.117 0.000
KNNFraction 0.810 0.874 0.783 0.126 0.000
LOOClassNC 0.806 0.832 0.812 0.130 0.038

Table 5: Efficiency of conformal classifiers.

2016). In classification problems, we can measure this as the number of singleton predictions
(prediction sets of size one), the ratio of correct singleton predictions, number of multiple and
empty predictions (Table 5).
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Conformal classifier Confidence Credibility
InverseProbability 0.910 0.580
ProbabilityMargin 0.910 0.580
SVMDistance 0.918 0.572
KNNDistance 0.910 0.569
KNNFraction 0.911 0.591
LOOClassNC 0.907 0.583

Table 6: Confidence and credibility of conformal classifiers.

We can observe the same results for inverse probability and probability margin nonconfor-
mities. These two nonconformities are equivalent in binary classification problems. The
measured accuracy corresponds well to the specified significance level (error rate) ε. As we
increase ε, the number of singleton predictions grows, while the number of predictions con-
taining multiple classes declines. There are almost no cases with an empty set of predicted
classes, which would be assigned to instances too unusual for every possible class under the
given significance level. The purpose of nonconformity measures is to distinguish between
easy and difficult or unusual instances. The results for different nonconformity scores are
quite similar in this case with the SVMDistance standing out slightly.
Because of the importance of correct predictions in drug discovery projects, high confidence in
the predictions, at the expense of uninformative predictions, is often preferable. Selecting the
0.05 significance level and the KNNFraction method would result in 54.8% of the predictions
being uninformative. However, the accuracy of the singleton predictions would be 89.1%
compared to the classification accuracy of the logistic regression model that is 74.8%. Many
drug discovery projects consider an accuracy level of 90% as sufficient and could discard about
55% of the compounds from expensive experimental testing.
Table 6 presents conformal classifier’s average confidence and credibility, which are measures
that are independent of the specified significance level. Confidence of a single prediction is
equal to 1− ε1, where ε1 represents the minimum significance level that would still result in
a prediction of a single label. Hence, for KNNFraction nonconformity over the AMES test
data set, we can exclude the least probable class with an average certainty of 91%. Similarly,
the credibility of a prediction is the minimum ε that would result in an empty prediction set.
Small credibility indicates an unusual example. For a complete introduction to confidence
and credibility in conformal prediction refer to Saunders et al. (1999).

5. Conclusion
We have proposed a Python-based implementation of several conformal prediction methods.
Conformal prediction is an interesting formal statistical approach that addresses the reliability
problem in classification and regression, and has already been used in various applications in
natural sciences. Compared to other software packages, Orange3-Conformal covers a wider
range of nonconformity scores and is designed in a modular way to foster experimentation with
new approaches and scoring techniques. Our implementation has purposely been implemented
within the Orange data mining framework, opening a possibility of extending the implemented
functionality with a graphical user interface and incorporating it with Orange’s interactive
data analytics framework.
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