
JSS Journal of Statistical Software
June 2021, Volume 98, Issue 9. doi: 10.18637/jss.v098.i09

The adoptr Package: Adaptive Optimal Designs for
Clinical Trials in R

Kevin Kunzmann
Cambridge University

Maximilian Pilz
University of Heidelberg

Carolin Herrmann
Charité and BIH

Geraldine Rauch
Charité and BIH

Meinhard Kieser
University of Heidelberg

Abstract

Even though adaptive two-stage designs with unblinded interim analyses are becoming
increasingly popular in clinical trial designs, there is a lack of statistical software to make
their application more straightforward. The package adoptr fills this gap for the com-
mon case of two-stage one- or two-arm trials with (approximately) normally distributed
outcomes. In contrast to previous approaches, adoptr optimizes the entire design upfront
which allows maximal efficiency. To facilitate experimentation with different objective
functions, adoptr supports a flexible way of specifying both (composite) objective scores
and (conditional) constraints by the user. Special emphasis was put on providing mea-
sures to aid practitioners with the validation process of the package.

Keywords: optimal design, clinical trials, R.

1. Background

Confirmatory clinical trials are conducted in a strictly regulated environment. A key quality
criterion put forward by the relevant agencies (US Food and Drug Administration et al. 2019;
Committee for Medicinal Products for Human Use 2007) for a study that is supposed to
provide evidence for the regulatory acceptance of a new drug or treatment is strict type one
error rate control. This requirement was often seen as conflicting with the perceived need to
make trials more flexible by, e.g., early stopping for futility, group-sequential enrollment, or
even adaptive sample size recalculation. An excellent historical review of the development of
the field of adaptive clinical trial designs and the struggles along the way is given in Bauer,

https://doi.org/10.18637/jss.v098.i09
https://orcid.org/0000-0002-1140-7143
https://orcid.org/0000-0002-9685-1613
https://orcid.org/0000-0003-2384-7303
https://orcid.org/0000-0002-2451-1660
https://orcid.org/0000-0003-2402-4333

2 adoptr: Adaptive Optimal Clincial Trial Designs in R

Bretz, Dragalin, König, and Wassmer (2015). In this manuscript, the focus lies exclusively
on adaptive two-stage designs with one unblinded interim analysis. Both early stopping for
futility and efficacy are allowed and the final sample size as well as the critical value to
reject the null hypothesis is chosen in a data-driven way. There is a plethora of methods
for modifying the design of an ongoing trial based on interim results without compromising
type one error rate control (Bauer et al. 2015) but the criteria for deciding which adaptation
should be performed during an interim analysis and when to perform the interim analysis are
still widely based on heuristics. Bauer et al. (2015) mention this issue of guiding adaptive
decisions at interim in a principled (i.e., “optimal”) way by stating that “[t]he question might
arise if potential decisions made at interim stages might not be better placed to the upfront
planning stage.” Following Mehta and Pocock (2011), Jennison and Turnbull (2015) developed
a principled approach to optimal interim sample size modifications, i.e., to conduct the interim
decision (conditional on interim results) such that it optimizes an unconditional performance
score. Their approach, however, was still restricted unnecessarily. Recently, Pilz, Kunzmann,
Herrmann, Rauch, and Kieser (2019) extended the work to a fully general variational problem
where the optimization problem for any given performance score (optionally under further
constraints) is solved over both the sample size adaptation function and the critical value
function and the time point of the interim decision simultaneously. This approach is an
application of ideas which have been put forward in single-arm trials with binary endpoint for
several years (Englert and Kieser 2013; Kunzmann and Kieser 2016, 2020) to a setting with
continuous test statistics. Clearly, by relaxing the problem to continuous sample sizes and
test statistics, the theory becomes much more tractable, and important connections between
conditional and unconditional optimality can be discussed much easier (Pilz et al. 2019).

A key insight from this recent development is the fact that the true challenge in designing
an adaptive trial is less the technical methodology for controlling the type one error rate but
rather the choice of the optimality criterion. This issue is much less pressing in single-stage
designs since most sensible criteria will be equivalent to minimizing the overall sample size.
Thus, in this case, a “design” is often completely specified by given power and type one
error rate constraints. For the more complex adaptive designs, however, there are much more
sensible criteria (minimize maximal sample size, expected sample size, expected costs, etc.)
and the balance between conditional and unconditional properties must be explicitly specified
(cf. Section 6). This added complexity might be seen as daunting by practitioners, but it is
also a chance for tailoring adaptive designs more specifically to a particular situation. The
package adoptr (Kunzmann and Pilz 2021) for the R environment for statistical computing
and graphics (R Core Team 2021) aims at providing a simple yet customizable interface to
specifying a broad class of objective functions and constraints for single- or two-arm, one- or
two-stage designs with approximately normally distributed endpoints. The goal of adoptr is
to enable relatively easy experimentation with different notions of optimality to shift the focus
from how to optimize to what to optimize. The package is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=adoptr.

In the following, we first give a definition of the problem setting addressed in adoptr and
the technicalities of translating the underlying variational problem to a simple multivariate
optimization problem before motivating the need for an R package. We then present the core
functionality of adoptr before addressing the issue of facilitating validation of open-source
software in a regulated environment and discussing potential future work on adoptr.

https://CRAN.R-project.org/package=adoptr

Journal of Statistical Software 3

2. Setting
We consider the problem of a two-stage, two-arm design to establish superiority of treatment
over placebo with respect to the mean difference. Assume that to that end data Y g,i

j is
observed for the jth individual of the trial in stage i ∈ {1, 2} under treatment (g = T) or
placebo (g = C). Let ni be the per-group sample size in stage i and consider the stage-wise
test statistics

Xi :=
∑ni
j=1 Y

T,i
j −

∑ni
j=1 Y

C,i
j

σ
√

2ni

for i = 1, 2. Under the assumption that Y g,i
j

iid∼ Fg with E[FT] − E[FC] = θ and common
variance σ2, by the central limit theorem, the asymptotic distribution of X1 is N (

√
n1/2 θ, 1).

Formally, the null hypothesis for the superiority test is thus H0 : θ ≤ 0. Based on the interim
outcome X1, a decision can be made whether to either stop the trial early for futility if
X1 < cf1 , to stop the trial early for efficacy (early rejection of the null hypothesis) if X1 > ce1,
or to enter stage two if X1 ∈ [cf1 , ce1]. Conditional on proceeding to a second stage, it holds
that X2 |X1 ∈ [cf1 , ce1] ∼ N (

√
n2/2 θ, 1). In the second stage, the null hypothesis is rejected if

and only if X2 > c2(X1) for a stage-two critical value function c2 : x1 7→ c2(x1). To test H0 at
a significance level of α, the stage-one critical values cf1 and ce1 as well as c2(·) must be chosen
in a way that protects the overall maximal type one error rate α. Note that it is convenient
to define c2(x1) = ∞ if x1 < cf1 and c2(x1) = −∞ if x1 > ce1 since the power curve of the
design is then given by θ 7→ Pθ

[
X2 > c2(X1)

]
. This results in a classical group-sequential

design and several methods were proposed in the literature for choosing the early-stopping
boundaries cf1 and ce1 (O’Brien and Fleming 1979; Pocock 1977) and for defining the stage-two
rejection boundary function c2(·) (Bauer and Köhne 1994; Hedges and Olkin 1985). Often,
the inverse-normal combination test (Lehmacher and Wassmer 1999) is applied and c2(·) is
defined as a linear function of the stage-one test-statistic

c2(x1) = c− w1x1
w2

(1)

for a critical value c and predefined weights w1 and w2. Most commonly, the stage-wise test
statistics are weighted in terms of their respective sample sizes, i.e., w1 =

√
n1/(n1 + n2) and

w2 =
√
n2/(n1 + n2). This choice of the weights is optimal in the sense that it minimizes

the variance of the final test statistic if the assumed sample sizes are indeed realized (Zaykin
2011). Note, however, that such prespecified weights become inefficient if the sample size
deviates strongly from the anticipated value (cf. Wassmer and Brannath 2016, Chapter 6.2.5).
A natural extension of this group-sequential framework is to allow the second stage sample
size to also depend on the observed interim outcome, i.e., to consider a function n2 : x1 7→
n2(x1) instead of a fixed value n2. Such “adaptive” two-stage designs are thus completely
characterized by a five-tuple D :=

(
n1, c

f
1 , c

e
1, n2(·), c2(·)

)
.

While the required sample size and the critical value for a single-stage design are uniquely
defined by given type one error rate and power constraints, it is much less clear how the de-
sign parameters of a two-stage design should be selected. This is especially true since both n2
and c2 are functions and thus the parameter space is in fact infinite-dimensional. In order to
compare different choices of the design parameters, appropriate scoring criteria are essential.
A widely applied criterion is the expected sample size under the alternative hypothesis (see,
e.g., Jennison and Turnbull 2015). However, there is a variety of further scoring criteria that

4 adoptr: Adaptive Optimal Clincial Trial Designs in R

could be incorporated or even combined in order to rate a two-stage design. For instance, con-
ditional power is defined as the probability to reject the null hypothesis under the alternative
given the interim result X1 = x1:

CPθ(x1) := Pθ
[
X2 > c2(X1)

∣∣X1 = x1
]
.

Hence, conditional power is a conditional score given as the power conditioned on the first-
stage outcome X1 = x1. Vice versa, power can be seen as an unconditional score that is
obtained by integrating conditional power over all possible stage-one outcomes, i.e.,

Powerθ = Eθ
[
CPθ(X1)

]
. (2)

Intuitively, it makes sense to require a minimal conditional power upon continuation to the
second stage since one might otherwise continue a trial with little prospect of still rejecting
the null hypothesis. We demonstrate the consequences of this heuristic in Section 6.4. Once
the scoring criterion is selected, the design parameters may be chosen in order to optimize
this objective. The first ones to address this problem were Jennison and Turnbull (2015) who
minimized the expected sample size

ESSθ(D) := Eθ
[
n(X1)

]
:= Eθ

[
n1 + n2(X1)

]
(3)

of a two-stage design for given n1, c
f
1 , c

e
1 with respect to n2(·) for given power and type one

error rate constraints. The function c2(·), however, was not optimized. Instead, Jennison and
Turnbull (2015) used a combination test approach to derive c2 given n2(·) and n1 (cf. Equa-
tion 1). In Pilz et al. (2019), the authors demonstrated that this restriction is not necessary
and that the variational problem of deriving both functions n2(·) and c2(·) given n1, c

f
1 , c

e
1 to

minimize expected sample size can be solved by analyzing the corresponding Euler-Lagrange
equation. Nesting this step in a standard optimization over the stage-one parameters allows
identifying an optimal set of all design parameters without imposing parametric assumptions
on c2(·). As a result, a fully optimal design D∗ :=

(
n∗1, c

f,∗
1 , ce,∗1 , n∗2(·), c∗2(·)

)
for the following

general optimization problem was derived:

minimize ESSθ1(D)
subject to: Pθ0

[
X2 > c2(X1)

]
≤ α,

Pθ1

[
X2 > c2(X1)

]
≥ 1− β

where θ0 = 0.

3. Direct variational perspective
In adoptr, a simpler solution strategy than solving the Euler-Lagrange equation locally is
applied to the same problem class. We propose to embed the entire problem in a finite-
dimensional parameter space and solve the corresponding problem over both stage-one and
stage-two design parameters simultaneously using standard numerical libraries. I.e., we adopt
a direct approach to solving the variational problem. This is done by defining a discrete set of
pivot points x̃(i)

1 ∈ (cf1 , ce1), i = 1, . . . , k, and interpolating c2 and n2 between these pivots. We
use cubic Hermite splines (Fritsch and Carlson 1980) which are sufficiently flexible, even for
a moderate number of pivots, to approximate any realistic stage-two sample size and critical

Journal of Statistical Software 5

value functions. Since the optimal functions are generally very smooth (Pilz et al. 2019) they
are well suited to spline interpolation. Within the adoptr validation report (cf. Section 7)
we investigate empirically the shape of the approximated functions and that increasing the
number of pivots above a value of 5 to 7 does not improve the optimization results. The latter
implies that a relatively small number of pivot points appears to be sufficient to obtain valid
spline approximations of the optimal functions. Note that the pivots are only needed in the
continuation region since both functions are (piecewise) constant within the early stopping
regions. In adoptr, the pivots are defined as nodes of a Gaussian quadrature rule of degree
k. This choice allows fast and precise numerical integration of any conditional score over the
continuation region, e.g.,

ESSθ(D) =
∫
n(x1)fθ(x1) dx1 ≈ n1 +

k∑
i=1

ωi n2
(
x̃

(i)
1
)
fθ
(
x̃

(i)
1
)
,

where fθ is the probability density function of X1 | θ and ωi are the corresponding weights of
the integration rule. The weights only depend on k and the nodes just need to be scaled to
the integration interval. Consequentially, this objective function is smooth in the optimiza-
tion parameters and the resulting optimization problem is of dimension 2k + 3, where the
tuning parameters are

(
n1, c

f
1 , c

e
1, n2

(
x̃

(1)
1
)
, . . . , n2

(
x̃

(k)
1
)
, c2
(
x̃

(1)
1
)
, . . . , c2

(
x̃

(k)
1
))
. Standard nu-

merical solvers may then be employed to minimize it. Since adoptr enables generic objectives
(cf. Section 6.3), it uses the gradient-free optimizer COBYLA (Powell 1994) internally via the
R package nloptr (Johnson 2018; Ypma and Johnson 2020).
Most commonly used unconditional performance scores S(D) can be seen as expected values
over conditional scores S(D|X1) by S(D) = E

[
S(D|X1)

]
in a similar way as power (cf. Equa-

tion 2) and expected sample size (cf. Equation 3). Any such “integral score” can be computed
quickly and reliably in adoptr via the choice of pivots outlined above. The correctness of
numerically integrated scores is checked in the adoptr validation report by comparing the
numerical integrals to simulated results.
Note that we tacitly relaxed all sample sizes to be real numbers in the above argument while
they are in fact restricted to positive integers. Integer-valued n1 and n2 would, however, lead
to an NP-hard mixed-integer problem. In our experiments, we found that merely rounding
both n1 and n2 after the optimization works fine. The extensive validation suite (cf. Section 7)
evaluates by numerical integration and simulation whether the included constraints are ful-
filled for optimal designs with rounded sample sizes. Up to now, neither the constraints were
violated nor an efficiency loss with respect to the underlying objective function was observed.
In theory, one could re-adjust the decision boundaries for these rounded sample sizes, but we
failed to see any practical benefit from this, even for small trials where the rounding error is
largest (data not shown).

4. The need for an R package
Bauer et al. (2015) state that adequate statistical software for adaptive designs “is increasingly
needed to evaluate the adaptations and to find reasonable strategies”.
Commercial software packages such as JMP (SAS Institute Inc. 2020a) or Minitab (Minitab,
Inc. 2020) allow planning and analyzing a wide range of experimental setups. Amongst others,
they provide tools for randomization, stratification, block-building, or D-optimal designs.
These general purpose statistical software packages do not, however, allow planning of more

6 adoptr: Adaptive Optimal Clincial Trial Designs in R

specialized multi-stage designs encountered in clinical trials. For group-sequential designs,
some planning capabilities are available in the SAS procedure SEQDESIGN (SAS Institute Inc.
2020b), PASS (NCSS 2019), or ADDPLAN (ICON plc 2020). East (Cytel 2020) also supports
design, simulation and analysis of experiments with interim analyses. The East ADAPT
and the East SURVADAPT modules support sample size recalculation. Furthermore, there
are various open-source R packages for the analysis of multi-stage designs. The package
adaptTest (Vandemeulebroecke 2009) implements combination tests for adaptive two-stage
designs. AGSDest (Hack, Brannath, and Brueckner 2019) allows estimation and computation
of confidence intervals in adaptive group-sequential designs. More detailed overviews on
software for adaptive clinical trial designs can be found in Bauer et al. (2015, Chapter 6)
or in Tymofyeyev (2014). The choice of software for optimally designing two- or multi-stage
designs, however, is much more limited. Current R packages concerned with optimal clinical
trial designs are OptGS (Wason and Burkardt 2015; Wason 2015) and rpact (Wassmer and
Pahlke 2021). These are, however, exclusively focused on group-sequential designs and lack
the ability to specify custom objective functions and constraints.
The lack of flexibility in formulating the objective function and constraints might lead to off-
the-shelf solutions not entirely reflecting the needs of a particular trial consequentially result-
ing in inefficient designs. The R package adoptr aims at providing a simple and interactive yet
flexible interface for addressing a range of optimization problems encountered with two-stage
one- or two-arm clinical trials. In particular, adoptr allows to model a priori uncertainty over
θ via prior distributions and thus supports optimization under uncertainty (cf. Section 6.2).
adoptr also supports the combination of conditional (on X1) and unconditional scores and
constraints to address concerns such as type-one-error-rate control (unconditional score) and,
e.g., a minimal conditional power (conditional score) simultaneously (cf. Section 6.3). To
facilitate the adoption of these advanced trial designs in the clinical trials community, adoptr
also features an extensive test and validation suite (cf. Section 7).
In the following, we outline the key design principles for adoptr.

1. Interactivity: Amajor advantage of the R programming language is its powerful metapro-
gramming capabilities and flexible class system. With a combination of non-standard
evaluation and S4 classes, we hope to achieve a structured and modular way of express-
ing optimization problems in clinical trials that integrates nicely with an interactive
workflow. We feel that a step-wise problem formulation via the creation of modular
intermediate objects, which can be explored and modified separately, encourages explo-
ration of different options.

2. Reliability: A crux in open-source software development for clinical trials is achieving
demonstrable validation. Potential users need to be convinced of the software quality
and need to be able to comply with their respective validation requirements which often
require the ability to produce a validation report. This burden typically results in
innovative software not being used at all – simply because the validation effort cannot
be stemmed. We address this issue with an extensive unit test suite and a companion
validation report (cf. Section 7).

3. Extensibility: We do not want to impose a particular choice of scores or constraints or
promote a particular notion of optimality for clinical trial designs. In cases where the
composition of existing scores is not sufficient, the object-oriented approach of adoptr
facilitates the definition of custom scores and constraints that seamlessly integrate with
the remainder of the package.

Journal of Statistical Software 7

5. adoptr’s structure
The package adoptr is based on R’s S4 class system (Chambers 1998). This allows to use
multiple dispatch on the classes of multiple arguments to a method. In this section, the
central components of adoptr are described briefly. Figure 1 gives a structural overview of
the main classes in adoptr.
To compute optimal designs, an object of class ‘UnconditionalScore’ must be defined as
objective criterion. adoptr distinguishes between objects of classes ‘ConditionalScore’s and
‘UnconditionalScore’s (cf. Section 2). All ‘Score’s can be evaluated using the method
evaluate. For unconditional scores, this method only requires a ‘Score’ object and a
‘TwoStageDesign’ object; for conditional scores (like conditional power), it also requires
the interim outcome x1. Note that any ‘ConditionalScore’ S(D|X1 = x1) can be con-
verted to an ‘UnconditionalScore’ S(D) = E

[
S(D|X1)

]
using the method expected. The

two most widely used conditional scores are pre-implemented as ‘ConditionalPower’ and
‘ConditionalSampleSize’. Their unconditional counterparts are implemented as Power and
ExpectedSampleSize.
Further predefined unconditional scores are ‘MaximumSampleSize’, evaluating the maximum
sample size, ‘N1’, measuring the first-stage sample size, and ‘AverageN2’, evaluating the aver-
age of the stage-two sample size (improper prior). These scores may be used for regularization
if variable stage-two sample sizes or a high stage-one sample size are to be penalized. Users
are free to define their own ‘Score’s (cf. the vignette “Defining New Scores”; Kunzmann and
Pilz 2020). Moreover, different ‘Score’s can be composed to a single one by the function

Score
evaluate
composite

UnconditionalScore ConditionalScore
expected

MaximumSampleSize

N1

AverageN2

ConditionalPower

ConditionalSampleSize

TwoStageDesign
make_fixed

make_tunable

GroupSequentialDesign

OneStageDesign

Prior
condition

ContinuousPrior

PointMassPrior

DataDistribution

Normal

Binomial

Student

Figure 1: Overview of the most important classes and methods (in italic) in the R package
adoptr. A subclassing relationship is indicated by a connecting line to the corresponding super
class above it. The most important methods for each class are listed under the respective
class name in italic font.

8 adoptr: Adaptive Optimal Clincial Trial Designs in R

composite (cf. Section 6.3). Both conditional and unconditional scores can also be used to
define constraints – the most common case being constraints for power and maximal type
one error rate. The function minimize takes an unconditional score as objective and a set of
constraints and optimizes the design parameters.
In adoptr, different kinds of designs are implemented. The most frequently applied case is
a ‘TwoStageDesign’, i.e., a design with one interim analysis and a sample size function that
varies with the interim test statistic. Another option is the subclass ‘GroupSequentialDesign’
which restricts the sample size function on the continuation region to a single number,
i.e., n2(x1) = n2 ∀x1 ∈ [cf1 , ce1]. Additionally, adoptr supports the computation of optimal
‘OneStageDesign’s, i.e., designs without an interim analysis. Technically, one-stage designs
are implemented as subclasses of ‘TwoStageDesign’ since they can be viewed as the limiting
case for n2 ≡ 0 and cf1 = ce1. Hence, all methods that are implemented for ‘TwoStageDesign’s
also work for ‘GroupSequentialDesign’s and ‘OneStageDesign’s. Users can choose to keep
some elements of a design fixed during optimization using the methods make_fixed (cf. Sec-
tion 6.5).
The joint data distribution in adoptr consists of two elements. The distribution of the test
statistic is specified by an object of class ‘DataDistribution’. Currently, the three options
‘Normal’, ‘Binomial’, and ‘Student’ are implemented. The logical variable two_armed allows
the differentiation between one- and two-armed trials. Furthermore, adoptr supports prior
distributions on the effect size. These can be ‘PointMassPrior’s (cf. Section 6.1) as well as
‘ContinuousPrior’s (cf. Section 6.2).
In the following section, more hands on examples demonstrate the capabilities of adoptr and
its syntax.

6. Examples

6.1. Standard case

Consider the case of a randomized controlled clinical trial where efficacy is to be demonstrated
in terms of superiority of the treatment over placebo with respect to the population mean
difference θ of an outcome. Let the null hypothesis be H0 : θ ≤ 0. Assume that the maximal
type one error rate is to be controlled at a one-sided level α = 2.5% and a minimal power
of 90% at a point alternative of θ1 = 0.3 is deemed necessary. For simplicity’s sake, we
assume σ2 = 1 without loss of generality. The required sample size for a one-stage design
with analysis by the one-sided two-sample t-test would then be roughly 235 per group.
Using adoptr, the two-stage design minimizing the expected sample size under the alternative
hypothesis can be derived for the very same situation. First, the data distribution is specified
to be normal. The two_armed parameter allows to switch between single-armed and two-
armed trials.

R> datadist <- Normal(two_armed = TRUE)

In this example, we use simple point priors for both the null and alternative hypotheses. The
hypotheses and the corresponding scores (power values) can be specified as:

Journal of Statistical Software 9

R> null <- PointMassPrior(theta = 0.0, mass = 1.0)
R> alternative <- PointMassPrior(theta = 0.3, mass = 1.0)
R> power <- Power(dist = datadist, prior = alternative)
R> toer <- Power(dist = datadist, prior = null)

A Power score requires the data distribution and the prior to be specified. For this example,
we choose ‘PointMassPrior’s with the entire probability mass of 1 on a single point, the null
hypothesis θ = 0 to compute the type one error rate, and the alternative hypothesis θ = 0.3 to
compute the power. The objective function is the expected sample size under the alternative.

R> ess <- ExpectedSampleSize(dist = datadist, prior = alternative)

Since adoptr internally relies on the COBYLA (constrained optimization by linear approx-
imations) implementation of nloptr, an initial design is required. A heuristic initial choice
is provided by the function get_initial_design. It is based on a fixed design that fulfills
the constraints on type one error rate and power. The type of the design (two-stage, group-
sequential, or one-stage) and the data distribution have to be defined. For the Gaussian
quadrature used during optimization, one also has to specify the order of the integration rule,
i.e., the number of pivot points between early stopping for futility and early stopping for
efficacy. In practice, order 7 turned out to be sufficiently flexible to obtain valid results (data
not shown).

R> initial_design <- get_initial_design(theta = 0.3, alpha = 0.025,
+ beta = 0.1, type = "two-stage", dist = datadist, order = 7)

It is easy to check that the initial design does not fulfill any of the constraints (minimal power
of 90% and maximal type one error rate of 2.5%) with equality by evaluating the respective
scores:

R> evaluate(toer, initial_design)

[1] 0.0246875

R> evaluate(power, initial_design)

[1] 0.8130973

Alternatively, one might also evaluate a constraint object directly via

R> evaluate(toer <= 0.025, initial_design)

[1] -0.0003125

R> evaluate(power >= 0.9, initial_design)

[1] 0.08690272

10 adoptr: Adaptive Optimal Clincial Trial Designs in R

All constraint objects are normalized to the form h(D) ≤ 0 (unconditional) or h(D, x1) ≤ 0
(conditional on X1 = x1). Calling evaluate on a constraint object then simply returns the
left-hand side of the inequality. The actual optimization is started by invoking minimize.

R> opt1 <- minimize(ess, subject_to(power >= 0.9, toer <= 0.025),
+ initial_design)

The modular structure of the problem specification is intended to facilitate the inspection or
modification of individual components. The call to minimize() is designed to be as close as
possible to the mathematical formulation of the optimization problem and returns both the
optimized design (opt1$design) as well as the full nloptr return value with details on the
optimization procedure (opt1$nloptr_return).
A summary method for objects of the class ‘TwoStageDesign’ is available to quickly evaluate
a set of ‘ConditionalScore’s such as conditional power as well as ‘UnconditionalScore’s
such as power and expected sample size.

R> cp <- ConditionalPower(dist = datadist, prior = alternative)
R> summary(opt1$design, "Power" = power, "ESS" = ess, "CP" = cp)

TwoStageDesign: n1 = 120
futility | continue | efficacy

x1: 0.28 | 0.33 0.54 0.87 1.27 1.68 2.01 2.22 | 2.27
c2(x1): +Inf | +2.70 +2.53 +2.23 +1.82 +1.31 +0.74 +0.19 | -Inf
n2(x1): 0 | 229 214 188 154 116 79 51 | 0
CP(x1): 0.00 | 0.69 0.72 0.75 0.79 0.83 0.87 0.91 | 1.00
Power: 0.899

ESS: 176.126

adoptr also implements a default plot method for the overall sample size and the stage-two
critical value as functions of the first-stage test statistic x1. The plot method also accepts
additional ‘ConditionalScore’s such as conditional power. Calling the plot method produces
several plots with the interim test statistic x1 on the x-axis and the respective function on
the y-axis.

R> plot(opt1$design, `Conditional power` = cp)

Note the slightly bent shape of the c2(·) function (cf. Figure 2, second plot). For two-stage
designs based on the inverse-normal combination function, c2(·) would be linear by definition
(cf. Equation 1). Since the optimal shape of c2(·) is not linear (but almost), inverse-normal
combination methods are slightly less efficient (cf. Pilz et al. 2019 for a more detailed discus-
sion of this issue).

6.2. Optimization under uncertainty

adoptr is not limited to point priors but also supports arbitrary continuous prior distributions.
Consider the same situation as before but now assume that the prior over the effect size is

Journal of Statistical Software 11

0.0 0.5 1.0 1.5 2.0 2.5

0
10

0
20

0
30

0

Overall sample size

x1

0.0 0.5 1.0 1.5 2.0 2.5
0.

5
1.

0
1.

5
2.

0
2.

5

Stage−two critical value

x1

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conditional power

x1

Figure 2: Optimal sample size, critical value, and conditional power plotted against the
interim test statistic (built-in plot method).

given by a much more realistic truncated normal distribution with mean 0.3 and standard
deviation 0.1, i.e., θ ∼ N[−1,1](0.3, 0.12). The order of integration is set to 25 to obtain precise
results.

R> prior <- ContinuousPrior(pdf = function(theta)
+ dnorm(theta, mean = 0.3, sd = 0.1), support = c(-1, 1), order = 25)

The objective function is the expected sample size under the prior

R> ess <- ExpectedSampleSize(dist = datadist, prior = prior)

and we replace power with expected power

E
[
Pθ
[
X2 > c2(X1)

] ∣∣∣ θ ≥ 0.1
]
, (4)

which is the expected power given a relevant effect (here we define the minimal relevant effect
as 0.1). This score can be defined in adoptr by first conditioning the prior.

R> epower <- Power(dist = datadist, prior = condition(prior, c(0.1, 1)))

The optimal design under the point prior only achieves an expected power of

R> evaluate(epower, opt1$design)

[1] 0.8143933

The optimal design under the truncated normal prior fulfilling the expected power constraint
is then given by

R> opt2 <- minimize(ess, subject_to(epower >= 0.9, toer <= 0.025),
+ initial_design, opts = list(algorithm = "NLOPT_LN_COBYLA",
+ xtol_rel = 1e-5, maxeval = 20000))

12 adoptr: Adaptive Optimal Clincial Trial Designs in R

Note that the increased complexity of the problem requires a larger maximal number of
iterations for the underlying optimization procedure. adoptr exposes the nloptr options via
the argument opts. In cases where the maximal number of iterations is exhausted, a warning
is thrown.
The expected sample size under the prior of the obtained optimal design equals 236.2. This
points out the increased uncertainty on θ by requiring larger sample sizes to fulfill the expected
power constraint since the expected sample size under the continuous prior of the optimal
design from Section 6.1 amounts to a lower value of 176.4.

6.3. Utility maximization and composite scores

adoptr also supports composite scores. This can be used to derive utility maximizing designs
by defining an objective function combining both expected power (cf. Equation 4) and ex-
pected sample size instead of imposing a hard constraint on expected power. For example, in
the above situation one could be interested in a utility maximizing design. Here, we consider
the utility function

u(D) := 200000 E
[
Pθ
[
X2 > c2(X1)

] ∣∣∣ θ ≥ 0.1
]
− E

[
n(X1)2

]
,

thus allowing a direct trade-off between power and sample size. Here, the expected squared
sample size is chosen because the practitioner might prefer flatter sample size curves. This
can be achieved with expected squared sample size by penalizing large sample sizes stronger
than low sample sizes. Furthermore, there is no longer a strict expected power constraint
but the expected power becomes part of the utility function which allows a direct trade-off
between the two quantities. This can be interpreted as a pricing mechanism (cf. Kunzmann
and Kieser 2020): Every additional percent point of expected power has a (positive) value of
$2′000 while an increase of E

[
n(X1)2] by 1 incurs costs of $1. The goal is then to compute

the design which is maximizing the overall utility defined by the utility function u(D) (or
equivalently minimize costs).
A composite score can be defined via any valid numerical R expression of score objects. We
start by defining a score for the expected quadratic sample size

R> `n(X_1)` <- ConditionalSampleSize()
R> `E[n(X_1)^2]` <- expected(composite({`n(X_1)`^2}),
+ data_distribution = datadist, prior = prior)

before minimizing the corresponding negative utility without a hard expected power con-
straint.

R> opt3 <- minimize(composite({`E[n(X_1)^2]` - 200000 * epower}),
+ subject_to(toer <= 0.025), initial_design)

The expected power of the design is

R> evaluate(epower, opt3$design)

[1] 0.7965527

Journal of Statistical Software 13

0

100

200

300

400

500

0 1 2 3
x1

n

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3
x1

c 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4
θ

P
ow

er

Continuous Prior Point Prior Utility Maximization

Figure 3: Comparison of optimal designs under a point prior, a continuous prior, and a utility
maximization approach.

The three optimal designs which have been computed so far are depicted in a joint plot
(cf. Figure 3). The design using the continuous prior requires higher sample sizes due to the
higher uncertainty about θ. The utility maximization approach results in similar shapes of
n(·) and c2(·) as the constraint optimization. However, the sample sizes are lower due to the
design’s lower power which is only possible by allowing a trade-off between expected power
and expected sample size. In particular, the maximal sample size of the utility-based design
equals 256 and is distinctly smaller than in the case of a hard power constraint under a point
prior (maximal sample size: 352) or a continuous prior (maximal sample size: 527).

6.4. Conditional power constraint

adoptr also allows the incorporation of hard constraints on conditional scores such as condi-
tional power. Conditional power constraints are intuitively sensible to make sure that a trial
which continues to the second stage maintains a high chance of rejecting the null hypothesis
at the end. For this example, we return to the case of a point prior on the effect size.

R> prior <- PointMassPrior(theta = 0.3, mass = 1.0)
R> ess <- ExpectedSampleSize(dist = datadist, prior = prior)
R> cp <- ConditionalPower(dist = datadist, prior = prior)
R> power <- expected(cp, data_distribution = datadist, prior = prior)

Here, power is derived as expected score of the corresponding conditional power (cf. Equa-
tion 2). A conditional power constraint is added in exactly the same way as unconditional
constraints.

R> opt4 <- minimize(ess, subject_to(toer <= 0.025, power >= 0.9, cp >= 0.8),
+ initial_design)

Comparing the optimal design that has been computed here with the same constraints but
without a conditional power constraint (cf. beginning of this section), the optimal design with
the additional constraint requires larger sample sizes in regions where the conditional power
would usually be below the given threshold (cf. Figure 4, first and third plot). Overall, the

14 adoptr: Adaptive Optimal Clincial Trial Designs in R

0

100

200

300

400

500

0 1 2 3
x1

n

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3
x1

c 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3
x1

C
on

di
tio

na
l P

ow
er

No CP constraint With CP constraint

Figure 4: Optimal designs with and without conditional power constraint.

additional constraint reduces the feasible solution space and consequently increases the ex-
pected sample size (176.6 with conditional power constraint vs. 176.1 without). This example
demonstrates, that any additional binding conditional constraints do come at costs for global
optimality. Whether or not the loss in unconditional performance is outweighed by more
appealing conditional properties must be decided on a case by case basis.

6.5. Keeping design parameters fixed

In clinical practice, non-statistical considerations may impose direct constraints on design
parameters. For instance, a sponsor might be subject to logistical constraints that render it
necessary to design a trial with a specific stage-one sample size. Returning to the standard
case discussed in Section 6.1, assume that a stage-one per-group sample size of exactly 80
individuals per group is required (n1 = 80) instead of the optimal value of n∗1 = 120. Fur-
thermore, assume that the sponsor wants to stop early for futility if and only if there is a
negative effect size at the interim analysis, i.e., cf1 = 0. adoptr supports such considerations
by allowing to fix specific values of a design:

R> initial_design@n1 <- 80
R> initial_design@c1f <- 0
R> initial_design <- make_fixed(initial_design, n1, c1f)

Any “fixed” parameter will be kept constant during optimization. Note that it is also possible
to “un-fix” parameters again using the make_tunable function.

R> opt5 <- minimize(ess, subject_to(toer <= 0.025, power >= 0.9),
+ initial_design)

Figure 5 visually compares the original design with the new, more restricted design. The
designs are qualitatively similar, but fixing n1 and cf1 does come at the price of slightly
increased expected sample size (187.7 compared to 176.1 in the less restricted case).

Journal of Statistical Software 15

0

100

200

300

400

500

0 1 2 3
x1

n

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3
x1

c 2

150

200

−0.2 0.0 0.2 0.4
θ

E
xp

ec
te

d
S

am
pl

e
S

iz
e

Optimal Optimal with fixed n1

Figure 5: Comparison of fully optimal design and optimal design with fixed first-stage sample
size.

7. Validation concept
The conduct and analysis of clinical trials is a highly regulated process. An essential require-
ment being put forward in Title 21 CRF (code of federal regulations) Part 11 is the need to
validate any software used to work with or produce records (US Food and Drug Administra-
tion et al. 2003). The exact scope of regulations such as CRF 11 is sometimes difficult to
assess, and it is not always clear which regulations apply to R packages used in a production
environment (The R Foundation for Statistical Computing 2018). Irrespective of the appli-
cability of the CRF 11 to adoptr, the design of a clinical trial is undoubtedly crucial and
package authors should provide extensive evidence of the correctness of the package function-
ality. Additionally, this evidence should be easily accessible and human-readable. The latter
requirement is a consequence of the fact that, again following CRF 11 and the remarks in
The R Foundation for Statistical Computing (2018), a “validated R package” does not exist
since the validation process must always be implemented by the responsible user.
To facilitate the process of validation as much as possible, adoptr implements the following
measures:

1. Open-source development: The entire development of adoptr is organized around a
public GitHub repository (https://github.com/kkmann/adoptr). Anybody can freely
download the source code, browse the development history, raise issues, or contribute
to the code base by opening pull requests.

2. CRAN releases: Regular CRAN releases of updated versions maximize visibility and
add an additional layer of testing and quality control. New features can be implemented
and tested in the (public) development version on GitHub before pushing new releases
to CRAN.

3. Unit testing: adoptr implements an extensive test suite using the package testthat
(Wickham 2021, 2011) which allows spotting new errors early during development and
localizing them quickly. Together with continuous integration (cf. below), this helps to
improve quality and speeds up the development process.

4. Continuous integration / continuous deployment: adoptr makes extensive use of the
continuous integration and deployment service GitHub Actions (GitHub.com 2021).

https://github.com/kkmann/adoptr

16 adoptr: Adaptive Optimal Clincial Trial Designs in R

Each new commit on the public GitHub repository is immediately run through the
automated testing pipeline. Merges to the master branch are only possible after tests
were passed successfully and a contributor reviewed and approved the changes (“branch
protection system”). Continuous deployment also allows automatically updating of
code-coverage statistics (cf. below) and up-to-date online documentation (cf. below).

5. Coverage analyses: To document the extent to which the test suite covers the package
code, adoptr relies on the Codecov (Codecov LLC 2020) online service in conjunction
with the covr package (Hester 2020). It provides statistics on the proportion of lines
visited at least once during testing (currently 100%) and enables easy online publication
of the results.

6. Online documentation: Beyond the standard documentation generated using roxygen2
(Wickham, Danenberg, Csárdi, and Eugster 2020), we also make use of the pkgdown
(Wickham and Hesselberth 2020) package and the free GitHub pages service to publish
a static HTML version of the documentation online at https://kkmann.github.io/
adoptr/. This includes both the function reference and the vignettes in a consistent
and easily accessible format. The online documentation experience is further improved
by the integration of a full-text docsearch engine (https://www.algolia.com/ref/
docsearch).

7. Extended validation report: There are limits to what can be done in the standard
unit testing framework within a package itself (cf. https://CRAN.R-project.org/web/
packages/policies.html). Long-running test suites also hinder active development
with a strict continuous integration and continuous deployment (CI/CD) workflow since
changes to the master branch require passing the automated tests. We, therefore,
decided to restrict the internal unit tests to a bare minimum with a clear focus on
coverage and technical integrity of the package. To demonstrate correctness of our
results over a larger set of examples and in comparison with existing packages such
as rpact, we implemented an external “validation report” (sources: https://github.
com/kkmann/adoptr-validation-report, current report: https://kkmann.github.
io/adoptr-validation-report/) using the bookdown (Xie 2016, 2021) package. The
report itself again uses CI/CD and daily rebuilds to automatically deploy the report
corresponding to the most current CRAN-hosted version of the package. Within the
report, we still use testthat to conduct formal tests. In case any of these tests fails, the
build of the report will fail, the maintainers will get notified, and the status indicator
in the repository changes.

Validating the software employed may well be as much work as developing it in the first
place. The opaque requirements and the lack of adequate tools to automate validation tasks
are a major hurdle for academic developers to address validation issues. The additional work,
however, is worth it since it not only improves quality but also facilitates collaboration and
makes it easier to promote packages for real-world use.

8. Future work
The main motivation of implementing adoptr in R is the fact that this is by far the most
common programming language used by the target audience. Note, however, that using R for
generic nonlinear constraint optimization problems leads to a performance bottleneck since
there is currently no stable and efficient way of obtaining gradient information for generic,

https://kkmann.github.io/adoptr/
https://kkmann.github.io/adoptr/
https://www.algolia.com/ref/docsearch
https://www.algolia.com/ref/docsearch
https://CRAN.R-project.org/web/packages/policies.html
https://CRAN.R-project.org/web/packages/policies.html
https://github.com/kkmann/adoptr-validation-report
https://github.com/kkmann/adoptr-validation-report
https://kkmann.github.io/adoptr-validation-report/
https://kkmann.github.io/adoptr-validation-report/

Journal of Statistical Software 17

user-defined functions. Since one of the design principles of adoptr is extensibility, the ability
to support custom objective functions is central. In R, this implies that one has to resort to ei-
ther a finite differences approximation of first- and second-order derivatives or to a completely
gradient-free optimizer such as COBYLA. In our experiments, we found that COBYLA was
far more stable than a finite-differences augmented Lagrangian method (data not shown).
Still, for some problems, convergence using COBYLA is rather slow. An interesting alter-
native to R and nloptr would therefore be Julia (Bezanson, Edelman, Karpinski, and Shah
2017) and the JuMP framework for numerical programming (Lubin and Dunning 2015). This
framework allows interfacing generic nonlinear solvers via a common interface and, leverag-
ing Julia’s excellent automatic-differentiation capabilities, is able to provide fast and precise
(second-order) gradient information for user-defined objective functions.

Acknowledgments
The first two authors contributed equally to this manuscript.
This work was partly supported by the Deutsche Forschungsgemeinschaft under Grant number
KI 708/4-1.

References

Bauer P, Bretz F, Dragalin V, König F, Wassmer G (2015). “Twenty-Five Years of Confirma-
tory Adaptive Designs: Opportunities and Pitfalls.” Statistics in Medicine, 35(3), 325–347.
doi:10.1002/sim.6472.

Bauer P, Köhne K (1994). “Evaluation of Experiments with Adaptive Interim Analyses.”
Biometrics, 50(4), 1029–1041. doi:10.2307/2533441.

Bezanson J, Edelman A, Karpinski S, Shah V (2017). “Julia: A Fresh Approach to Numerical
Computing.” SIAM Review, 59(1), 65–98. doi:10.1137/141000671.

Chambers JM (1998). Programming with Data: A Guide to the S Language. Springer-Verlag,
New York.

Codecov LLC (2020). Codecov. URL https://codecov.io/.

Committee for Medicinal Products for Human Use (2007). Reflection Paper on Methodolog-
ical Issues in Confirmatory Clinical Trials Planned with an Adaptive Design. London.
EMEA, URL https://www.ema.europa.eu/en/documents/scientific-guideline/
reflection-paper-methodological-issues-confirmatory-clinical-trials-planned
-adaptive-design_en.pdf.

Cytel (2020). East 6. URL https://www.cytel.com/software/east.

Englert S, Kieser M (2013). “Optimal Adaptive Two-Stage Designs for Phase II Cancer
Clinical Trials.” Biometrical Journal, 55(6), 955–968. doi:10.1002/bimj.201200220.

Fritsch FN, Carlson RE (1980). “Monotone Piecewise Cubic Interpolation.” SIAM Journal
on Numerical Analysis, 17(2), 238–246. doi:10.1137/0717021.

https://doi.org/10.1002/sim.6472
https://doi.org/10.2307/2533441
https://doi.org/10.1137/141000671
https://codecov.io/
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-methodological-issues-confirmatory-clinical-trials-planned-adaptive-design_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-methodological-issues-confirmatory-clinical-trials-planned-adaptive-design_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-methodological-issues-confirmatory-clinical-trials-planned-adaptive-design_en.pdf
https://www.cytel.com/software/east
https://doi.org/10.1002/bimj.201200220
https://doi.org/10.1137/0717021

18 adoptr: Adaptive Optimal Clincial Trial Designs in R

GitHubcom (2021). GitHub Actions. URL https://docs.github.com/en/actions/.

Hack N, Brannath W, Brueckner M (2019). AGSDest: Estimation in Adaptive Group Se-
quential Trials. R package version 2.3.2, URL https://CRAN.R-project.org/package=
AGSDest.

Hedges L, Olkin I (1985). Statistical Methods in Meta-Analysis. Academic Press.

Hester J (2020). covr: Test Coverage for Packages. R package version 3.5.1, URL https:
//CRAN.R-project.org/package=covr.

ICON plc (2020). ADDPLAN. URL https://www.iconplc.com/innovation/addplan/.

Jennison C, Turnbull BW (2015). “Adaptive Sample Size Modification in Clinical Trials:
Start Small then Ask for More?” Statistics in Medicine, 34(29), 3793–3810. doi:10.1002/
sim.6575.

Johnson SG (2018). The NLopt Nonlinear-Optimization Package. URL http://ab-initio.
mit.edu/nlopt.

Kunzmann K, Kieser M (2016). “Optimal Adaptive Two-Stage Designs for Single-Arm Trial
with Binary Endpoint.” arXiv:1605.00249 [stat.AP], URL https://arxiv.org/abs/1605.
00249.

Kunzmann K, Kieser M (2020). “Optimal Adaptive Single-Arm Phase II Trials under
Quantified Uncertainty.” Journal of Biopharmaceutical Statistics, 30(1), 89–103. doi:
10.1080/10543406.2019.1609016.

Kunzmann K, Pilz M (2020). Defining New Scores. URL https://CRAN.R-project.org/
package=adoptr/vignettes/defining-new-scores.html.

Kunzmann K, Pilz M (2021). adoptr: Adaptive Optimal Two-Stage Designs in R. R package
version 1.0.0, URL https://CRAN.R-project.org/package=adoptr.

Lehmacher W, Wassmer G (1999). “Adaptive Sample Size Calculations in Group Sequential
Trials.” Biometrics, 55(4), 1286–1290. doi:10.1111/j.0006-341x.1999.01286.x.

Lubin M, Dunning I (2015). “Computing in Operations Research Using Julia.” INFORMS
Journal on Computing, 27(2), 238–248. doi:10.1287/ijoc.2014.0623.

Mehta CR, Pocock SJ (2011). “Adaptive Increase in Sample Size When Interim Results Are
Promising: A Practical Guide with Examples.” Statistics in Medicine, 30(28), 3267–3284.
doi:10.1002/sim.4102.

Minitab, Inc (2020). Minitab 19 Statistical Software. URL https://www.minitab.com/.

NCSS (2019). PASS Power Analysis & Sample Size 2019. URL https://www.ncss.com/
software/pass/.

O’Brien PC, Fleming TR (1979). “A Multiple Testing Procedure for Clinical Trials.” Bio-
metrics, 35(3), 549–556. doi:10.2307/2530245.

https://docs.github.com/en/actions/
https://CRAN.R-project.org/package=AGSDest
https://CRAN.R-project.org/package=AGSDest
https://CRAN.R-project.org/package=covr
https://CRAN.R-project.org/package=covr
https://www.iconplc.com/innovation/addplan/
https://doi.org/10.1002/sim.6575
https://doi.org/10.1002/sim.6575
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
https://arxiv.org/abs/1605.00249
https://arxiv.org/abs/1605.00249
https://doi.org/10.1080/10543406.2019.1609016
https://doi.org/10.1080/10543406.2019.1609016
https://CRAN.R-project.org/package=adoptr/vignettes/defining-new-scores.html
https://CRAN.R-project.org/package=adoptr/vignettes/defining-new-scores.html
https://CRAN.R-project.org/package=adoptr
https://doi.org/10.1111/j.0006-341x.1999.01286.x
https://doi.org/10.1287/ijoc.2014.0623
https://doi.org/10.1002/sim.4102
https://www.minitab.com/
https://www.ncss.com/software/pass/
https://www.ncss.com/software/pass/
https://doi.org/10.2307/2530245

Journal of Statistical Software 19

Pilz M, Kunzmann K, Herrmann C, Rauch G, Kieser M (2019). “A Variational Approach
to Optimal Two-Stage Designs.” Statistics in Medicine, 38(21), 4159–4171. doi:10.1002/
sim.8291.

Pocock SJ (1977). “Group Sequential Methods in the Design and Analysis of Clinical Trials.”
Biometrika, 64(2), 191–199. doi:10.2307/2335684.

Powell MJD (1994). “A Direct Search Optimization Method That Models the Objective and
Constraint Functions by Linear Interpolation.” In Advances in Optimization and Numerical
Analysis, pp. 51–67. Springer-Verlag, Dordrecht. doi:10.1007/978-94-015-8330-5_4.

R Core Team (2021). R: A Language and Environment for Statistical Computing. The R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.
org/.

SAS Institute Inc (2020a). JMP Clinical. Cary. URL https://www.jmp.com/en_gb/
software/clinical-data-analysis-software.html.

SAS Institute Inc (2020b). SAS: The SEQDESIGN Procedure. Cary. URL
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/
viewer.htm#seqdesign_toc.htm.

The R Foundation for Statistical Computing (2018). R: Regulatory Compliance and Validation
Issues – A Guidance Document for the Use of R in Regulated Clinical Trial Environments.
URL https://www.R-project.org/doc/R-FDA.pdf.

Tymofyeyev Y (2014). “A Review of Available Software and Capabilities for Adaptive De-
signs.” In Practical Considerations for Adaptive Trial Design and Implementation, pp.
139–155. Springer-Verlag, New York. doi:10.1007/978-1-4939-1100-4_8.

US Food and Drug Administration, et al. (2003). “Guidance for Industry Part 11, Electronic
Records; Electronic Signatures – Scope and Application.” US Food Drug Admin, Rockville.
URL https://www.fda.gov/media/75414/download.

US Food and Drug Administration, et al. (2019). Adaptive Designs for Clinical Trials of
Drugs and Biologics - Guidance for Industry. US Food Drug Admin, Rockville, URL
https://www.fda.gov/media/78495/download.

Vandemeulebroecke M (2009). adaptTest: Adaptive Two-Stage Tests. R package version 1.0,
URL https://CRAN.R-project.org/package=adaptTest.

Wason JMS (2015). “OptGS: An R Package for Finding Near-Optimal Group-Sequential
Designs.” Journal of Statistical Software, 66(2), 1–13. doi:10.18637/jss.v066.i02.

Wason JMS, Burkardt J (2015). OptGS: Near-Optimal and Balanced Group-Sequential
Designs for Clinical Trials with Continuous Outcomes. R package version 1.1.1, URL
https://CRAN.R-project.org/package=OptGS.

Wassmer G, Brannath W (2016). Group Sequential and Confirmatory Adaptive Designs in
Clinical Trials. Springer Series in Pharmaceutical Statistics. Springer-Verlag. doi:10.
1007/978-3-319-32562-0.

https://doi.org/10.1002/sim.8291
https://doi.org/10.1002/sim.8291
https://doi.org/10.2307/2335684
https://doi.org/10.1007/978-94-015-8330-5_4
https://www.R-project.org/
https://www.R-project.org/
https://www.jmp.com/en_gb/software/clinical-data-analysis-software.html
https://www.jmp.com/en_gb/software/clinical-data-analysis-software.html
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#seqdesign_toc.htm
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#seqdesign_toc.htm
https://www.R-project.org/doc/R-FDA.pdf
https://doi.org/10.1007/978-1-4939-1100-4_8
https://www.fda.gov/media/75414/download
https://www.fda.gov/media/78495/download
https://CRAN.R-project.org/package=adaptTest
https://doi.org/10.18637/jss.v066.i02
https://CRAN.R-project.org/package=OptGS
https://doi.org/10.1007/978-3-319-32562-0
https://doi.org/10.1007/978-3-319-32562-0

20 adoptr: Adaptive Optimal Clincial Trial Designs in R

Wassmer G, Pahlke F (2021). rpact: Confirmatory Adaptive Clinical Trial Design and Anal-
ysis. R package version 3.0.4, URL https://CRAN.R-project.org/package=rpact.

Wickham H (2011). “testthat: Get Started with Testing.” The R Journal, 3(1), 5–10. doi:
10.32614/rj-2011-002.

Wickham H (2021). testthat: Unit Testing for R. R package version 3.0.2, URL https:
//CRAN.R-project.org/package=testthat.

Wickham H, Danenberg P, Csárdi G, Eugster M (2020). roxygen2: In-Line Documentation
for R. R package version 7.1.1, URL https://CRAN.R-project.org/package=roxygen2.

Wickham H, Hesselberth J (2020). pkgdown: Make Static HTML Documentation for a
Package. R package version 1.6.1, URL https://CRAN.R-project.org/package=pkgdown.

Xie Y (2016). bookdown: Authoring Books and Technical Documents with R Markdown.
Chapman and Hall/CRC, Boca Raton. doi:10.1201/9781315204963.

Xie Y (2021). bookdown: Authoring Books and Technical Documents with R Markdown. R
package version 0.22, URL https://github.com/rstudio/bookdown.

Ypma J, Johnson SG (2020). nloptr: R Interface to NLopt. R package version 1.2.2.2, URL
https://CRAN.R-project.org/package=nloptr.

Zaykin DV (2011). “Optimally Weighted Z-Test Is a Powerful Method for Combining Prob-
abilities in Meta-Analysis.” Journal of Evolutionary Biology, 24(8), 1836–1841. doi:
10.1111/j.1420-9101.2011.02297.x.

Affiliation:
Kevin Kunzmann
MRC Biostatistics Unit
University of Cambridge
Cambridge Institute of Public Health
Forvie Site, Robinson Way
Cambridge Biomedical Campus
Cambridge CB2 0SR United Kingdom
E-mail: kevin.kunzmann@mrc-bsu.cam.ac.uk

Maximilian Pilz, Meinhard Kieser
Institute of Medical Biometry and Informatics
University of Heidelberg
Im Neuenheimer Feld 130.3
69120 Heidelberg, Germany
E-mail: pilz@imbi.uni-heidelberg.de, meinhard.kieser@imbi.uni-heidelberg.de

https://CRAN.R-project.org/package=rpact
https://doi.org/10.32614/rj-2011-002
https://doi.org/10.32614/rj-2011-002
https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=roxygen2
https://CRAN.R-project.org/package=pkgdown
https://doi.org/10.1201/9781315204963
https://github.com/rstudio/bookdown
https://CRAN.R-project.org/package=nloptr
https://doi.org/10.1111/j.1420-9101.2011.02297.x
https://doi.org/10.1111/j.1420-9101.2011.02297.x
mailto:kevin.kunzmann@mrc-bsu.cam.ac.uk
mailto:pilz@imbi.uni-heidelberg.de
mailto:meinhard.kieser@imbi.uni-heidelberg.de

Journal of Statistical Software 21

Carolin Herrmann, Geraldine Rauch
Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-
Universität zu Berlin, and Berlin Institute of Health
Institute of Biometry and Clinical Epidemiology
Charitéplatz 1
10117 Berlin, Germany
and
Berlin Institute of Health (BIH)
Anna-Louisa-Karsch-Straße 2
10178 Berlin Germany
E-mail: carolin.herrmann@charite.de, geraldine.rauch@charite.de

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

June 2021, Volume 98, Issue 9 Submitted: 2019-07-08
doi:10.18637/jss.v098.i09 Accepted: 2020-06-21

mailto:carolin.herrmann@charite.de
mailto:geraldine.rauch@charite.de
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v098.i09

	Background
	Setting
	Direct variational perspective
	The need for an R package
	adoptr's structure
	Examples
	Standard case
	Optimization under uncertainty
	Utility maximization and composite scores
	Conditional power constraint
	Keeping design parameters fixed

	Validation concept
	Future work

