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Abstract

This paper describes the R package EpiILMCT, which allows users to study the spread
of infectious disease using continuous time individual level models (ILMs). The pack-
age provides tools for simulation from continuous time ILMs that are based on either
spatial demographic, contact network, or a combination of both of them, and for the
graphical summarization of epidemics. Model fitting is carried out within a Bayesian
Markov Chain Monte Carlo framework. The continuous time ILMs can be implemented
within either susceptible-infected-removed (SIR) or susceptible-infected-notified-removed
(SINR) compartmental frameworks. As infectious disease data is often partially ob-
served, data uncertainties in the form of missing infection times – and in some situations
missing removal times – are accounted for using data augmentation techniques. The pack-
age is illustrated using both simulated and an experimental data set on the spread of the
tomato spotted wilt virus disease.

Keywords: EpiILMCT, infectious disease, individual level modeling, spatial models, contact
networks, R.

1. Introduction
Innovative mathematical and mechanistic approaches to the modeling of infectious diseases are
continuing to emerge in the literature. These can be used to understand the spread of disease
through a population – whether homogeneous or heterogeneous – and enable researchers to
construct predictive models to develop control strategies to disrupt disease transmission. For
example, Deardon et al. (2010) introduced a class of discrete time individual-level models
(ILMs) which incorporate population heterogeneities by modeling the transmission of disease
given various individual-level risk factors. The general framework of ILMs have already
been successfully applied to a broad range of epidemic data, e.g., the 2001 UK foot-and-
mouth outbreak (Deardon et al. 2010; Deeth and Deardon 2016; Malik, Deardon, and Kwong
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2016), tomato spotted wilt virus (TSWV) disease (Pokharel and Deardon 2014, 2016), the
spread of 1-18-4 genotype of the porcine reproductive and respiratory syndrome in Ontario
swine herds (Kwong, Poljak, Deardon, and Dewey 2013), and influenza transmission within
households in Hong Kong during 2008 to 2009 and 2009 to 2010 (Malik, Deardon, Kwong,
and Cowling 2014). Equivalent continuous time ILMs which capture the complex interactions
between susceptible and infected individuals through spatial and contact networks can also be
considered. The inference and fitting of such models is generally considered within a Bayesian
framework using Markov chain Monte Carlo (MCMC).
However, infectious disease epidemiologists have previously found it difficult to apply these
individual-level models to real life problems. This is due to a dearth of readily available
software products. The applicability of the aforesaid continuous time ILMs is implemented
in an R (R Core Team 2021) package, EpiILMCT (Almutiry, Deardon, and Warriyar K
V 2021) and is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=EpiILMCT. In this article, we describe the package Epi-
ILMCT which allows users to simulate and fit epidemic data using distance- and/or network-
based models (Bifolchi, Deardon, and Feng 2013; Deardon et al. 2010; Jewell, Kypraios, Neal,
and Roberts 2009), and can also incorporate risk factors associated with both susceptible
and infectious individuals. EpiILMCT also uses data augmentation techniques to carry out
inference when the infection and/or removal times are unknown or censored, as is usually the
case. To the extent of our knowledge, this feature is not available in any existing R packages
that permit epidemic data analysis and modeling. Tools for the graphical summarization of
epidemic data sets and outcomes are also provided. The statistical inferences made in Epi-
ILMCT are set in a Bayesian framework and are carried out using MCMC. The main aim
here is to provide a fast implementation of continuous time ILMs under different epidemic
modeling frameworks. Because of the computationally intensive nature of MCMC for such
models, we have coded functions, including the MCMC algorithm, in Fortran to speed up
computation.
There are several R packages that permit a range of different modeling tools that allow
for fitting spatial-temporal epidemic data. For example, the packages splancs (Rowlingson
and Diggle 2021), and lgcp (Taylor, Davies, Rowlingson, and Diggle 2013, 2015) provides
methods for analyzing epidemic data as spatial and space-time point patterns. Also, the
package surveillance (Meyer, Held, and Höhle 2017) implements a spatio-temporal point
process model for epidemic data through the function twinstim. Other packages fit a range
of autocorrelation regression spatio-temporal models, e.g., CARBayesST (Lee, Rushworth,
and Napier 2018), spdep (Bivand, Hauke, and Kossowski 2013; Bivand and Piras 2015), and
spTimer (Bakar and Sahu 2020, 2015). Further packages are mentioned in the CRAN Task
View “Handling and Analyzing Spatio-Temporal Data” (Pebesma 2021). The R Epidemics
Consortium (2018) provides further useful resources for disease outbreak analysis related R
software packages.
However, in each case, the functionality (e.g., models available) of the packages above is quite
different to that of EpiILMCT. The models of the EpiILMCT package are “mechanistic” in
that they attempt to more directly model the mechanisms of transmission between individuals.
Specifically, they take into account the spatial interactions between individuals with differing
disease status (e.g., susceptible, infected, notified, removed) at continuous time points of the
epidemic process. Those spatial interactions between susceptible and infectious individuals
are incorporated as distance-based effects on the infectivity rate of individuals through an
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infection kernel function (power-law or Cauchy). The infectivity rates can also depend upon
various susceptibility and transmissibility covariates at the individual level. Additionally, and
of key importance, none of the aforementioned packages account for uncertainty in the event
times using the Bayesian data augmentation MCMC method.

There are several R packages that provide for the visualization, simulation and modeling the
spread of epidemics through networks. The package EpiModel (Jenness, Goodreau, and Mor-
ris 2018) allows epidemic simulation from mathematical models of infectious disease through
stochastic contact networks based on exponential-family random graph models (ERGMs).
Some packages assume observed contact network or networks when fitting the specified model;
for example, ergm (Handcock, Hunter, Butts, Goodreau, Krivitsky, and Morris 2021; Hunter,
Handcock, Butts, Goodreau, and Morris 2008), Bergm (Caimo and Friel 2014), and hergm
(Schweinberger, Handcock, and Luna 2021). Those packages implement Bayesian methods
for fitting exponential-family transmission network models to observed contact network data.

A recently developed package, epinet (Groendyke and Welch 2018), allows users to infer
transmission networks from time-series epidemic data by modeling the contact network using
a generalization of the ERGMs. This package makes use of time-series epidemic data as the
input assuming unknown contact network in their functionality, and producing parameter
estimates of the epidemic model as well as the contact and transmission networks. The
transmission model can contain various covariates that captures important features (summary
statistics) of the contact network as well as epidemic transmission.

However, once again these packages have different approaches to that implemented in Epi-
ILMCT. We focus here on incorporating a contact network as a covariate in the implemented
ILMs in EpiILMCT. The response in the ILMs is the event (e.g., infection) time, rather than
the transmission network (the transmission network can be inferred later via posterior pre-
dictive simulation, of course, but we do not address this here). This is different to epinet,
for example, which models the transmission network directly. The EpiILMCT package allows
for any user pre-specified contact networks, including various special cases such as spatial or
random unweighted (binary) (un)directed contact networks or weighted contact networks.

As both spatio-temporal and contact network-based mechanisms can be key to understanding
the dynamics of infectious disease spread, the ILMs in EpiILMCT allow for the incorporation
of both contact network and distance-based effects jointly in the infectivity rate of individuals.
None of the aforementioned packages have this feature in their functionalities.

The use of individual level data in more mechanistic epidemic models has been implemented
in only a few other R packages. The most established of these is surveillance (Salmon,
Schumacher, and Höhle 2016; Meyer et al. 2017), a package for temporal and spatio-temporal
disease modeling. It provides tools for outbreak detection in routinely collected surveillance
data, as well as a range of models for infectious disease data. The most closely related model
in surveillance to those of EpiILMCT is the additive endemic-epidemic multivariate temporal
point process model. These models are implemented in the twinSIR function for modeling the
susceptible-infectious-recovered (SIR) event history of a fixed population in continuous time
using individual level data. However, not only is the underlying model framework different
to that considered in the EpiILMCT package, but the twinSIR function does not allow for
uncertainty in event times to be taken into account via data augmentation techniques. The
function does not allow for only the epidemic terms of the model to be considered, as can
be done in EpiILMCT; both endemic (e.g., seasonal) and epidemic terms must be included
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in the analysis. In addition, the distance kernel used in the epidemic part of the twinSIR
function is represented by a linear combination of non-negative basis functions and is thus
different from the distance kernels used in the EpiILMCT package.
The EpiILM package (Warriyar K V, Almutiry, and Deardon 2020) that has recently been
made available in R, provides similar utility to EpiILMCT, but for discrete-time ILMs. The
models it contains provide options to include susceptible individual covariate information,
as well as a choice to describe population heterogeneity. However, the package is limited
to discrete-time distance-based or network-based infection kernels and requires known event
histories (i.e., there is no data augmentation feature).
As stated previously, inference for the models of EpiILMCT is carried out in a Bayesian
MCMC framework. Although there are packages available in R to implement MCMC algo-
rithms such as MCMCpack (Martin, Quinn, and Park 2011) and adaptMCMC (Scheidegger
2021), all are based on the random walk Metropolis-Hastings (M-H) algorithm. The data aug-
mented MCMC algorithm used in the EpiILMCT package to fit various models uses random
walk and independence sampler (within Gibbs) steps within a M-H algorithm. The inde-
pendence sampler algorithm in our package appears to be essential for updating the missing
data efficiently (event times and infectious periods), given that the authors have not found
it possible to achieve well-mixing MCMC chains if purely random walk M-H algorithms are
used (even if tuned adaptedly).
Our main purpose of developing this package is to make the use of continuous time ILMs
available to epidemiologists and statisticians, through R, one of the most commonly used sta-
tistical software packages. Overall, EpiILMCT offers greatly increased flexibility for analyzing
complex disease data. The remainder of this paper is laid out as follows. In the next section,
we describe the general continuous individual-level model implemented in EpiILMCT. We
also discuss the different infection kernel functions implemented in the package. Sections 3
and 4 discuss the functions contained within the package and the underlying Bayesian infer-
ence, respectively. Section 5 illustrates the application of EpiILMCT to simulated and real
data, while Section 6 concludes the paper with a short summary of the software package and
its implications.

2. Model

The EpiILMCT package allows for the implementation of continuous time equivalents, and
extensions, of the discrete-time individual-level models (ILMs) of Deardon et al. (2010).
The compartmental frameworks considered are the susceptible-infectious-removed (SIR) and
susceptible-infectious-notified-removed (SINR). In both frameworks, each individual is as-
sumed to be in one of these states at any point in time, t ∈ R+. In the SIR framework,
infected individuals transition between states, susceptible to infectious and from infectious to
removed. Individuals are assumed to be in the susceptible (S) state until they become infected
at which point they become immediately infectious (I), then being able to transmit the dis-
ease for the duration of their infectious periods before entering the removed (R) state. In the
SINR framework, infectious individuals are assumed to move from the infectious state (I)
to a notified (N ) state. The latter represents a state in which individuals have been identified
as having the disease, and may be subjected to various restrictions (e.g., government-imposed
movement constraints in the 2001 UK FMD outbreak). The N -state infectivity rate is often
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assumed to be lower than that of I-state. As infectious individuals enter the R-state, they
are removed from the infectious population (e.g., because of recovery and acquired immunity,
death or quarantine) and from thereon play no role in transmitting the disease.
A full epidemic history consists of all transition event times for all individuals, and defines
the state of all n individuals at each point in time. For example for the SINR framework,
S(t), I(t), N (t) and R(t) at time t for t ∈ [0, tobs] are defined by all infection, notification and
removal times. Here, tobs is the maximum removal time i.e., the time that the last notified
individual enters the removed state. We assume that each susceptible individual j at time t
has an infectivity rate1 with a given infectious individual i:

λij(t) =
{
λ−ij(t) i ∈ I(t), j ∈ S(t)
λ+
ij(t) i ∈ N (t), j ∈ S(t) ,

where
λ−ij(t) = ΩS(j)ΩT (i)κ(i, j)

λ+
ij(t) = γΩS(j)ΩT (i)κ(i, j), γ > 0,

where ΩS(j) and ΩT (i) are the susceptibility and transmissibility functions, respectively.
They are defined as:

ΩS(j) = SXφ
.j and ΩT (i) = TZξ.i, φ, ξ > 0,

where S and T are the (coefficient) parameter vectors of the susceptibility and transmissibility
covariates with sizes equal to the number of susceptibility (pS) and transmissibility (pT )
covariates, respectively; Xφ

.j and Zξ.i are the jth and ith columns of the susceptibility and
transmissibility risk factor matrices Xφ ∈ R+

pS×n and Zξ ∈ R+
pT×n, respectively; and φ and ξ

are vectors of the power parameters of the susceptibility and transmissibility functions with
sizes equal to pS and pT , respectively. Note that, Xφ and Zξ are constrained to be positive.
These power parameters allow for non-linearity between the susceptibility and transmissibility
risk factors and the infection rate (Deardon et al. 2010). The notification effect parameter
γ is used to measure the risk of infection after notification that can be reduced or increased
depending on the disease type. For example, the transmissibility has been observed to increase
after symptoms in SARS (Pitzer, Leung, and Lipsitch 2007), whereas, it can be lower for the
2001 UK FMD (Jewell et al. 2009). The latter stated this effect parameter in their general
model as a control measure parameter that accounts only the reduction in the risk of infection.
In the case of γ = 1, notification has no effect on infectivity.
So, the total rate of infectivity of each susceptible individual j at time t is given by:

λj(t) =

 ∑
i∈N−(t)

λ−ij(t) +
∑

i∈N+(t)
λ+
ij(t)

+ ε(j, t), (1)

where N−(t) is the set of infectious individuals at time t who have been infected but have not
reached the notified state; and N+(t) is the corresponding set for notified individuals (Jewell
et al. 2009).

1Note that, technically the infectivity rates are conditioned upon the past epidemic history, so might be
written λij(t|Ht) where Ht is the epidemic history up to time t. However, for the sake of brevity and simplicity
we have dropped the conditioning from the notation.
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Model Kernel type Kernel function

Distance-based ILMs Power-law κ(i, j) = d−β
ij , β > 0

Cauchy κ(i, j) = β
d2

ij
+β2 , β > 0

Network-based ILMs Unweighted, undirected κ(i, j) = cij , cij = 0 or 1
Weighted κ(i, j) = wij , wij ∈ [0,∞)

Power-law κ(i, j) = d−β1
ij + β2cij

Combined distance and κ(i, j) = d−β1
ij + β2wij

network-based ILMs Cauchy κ(i, j) = β1
(d2

ij
+β2

1 ) + β2cij

κ(i, j) = β1
(d2

ij
+β2

1 ) + β2wij , β1, β2 > 0

Table 1: Types of kernel functions that are applied in the EpiILMCT package for fitting
continuous time ILMs.

The nomenclature is the same for the SIR framework, but without the N (t) state, there
is not need to compartmentalize infectious individuals into pre- and post-notification sets.
Therefore, the total rate of infectivity of each susceptible individual j at time t is given by:

λj(t) =

 ∑
i∈I(t)

λ−ij(t)

+ ε(j, t), (2)

where I(t) is the set of infectious individuals at time t (i.e., they have been infected, but not
yet removed).
The infectivity rate λj(t) also contains a spark function that is denoted by ε(j, t) which allows
for random infections otherwise unexplained by the model. This might represent, for example,
the infection of a susceptible individual from a source outside of the observed population. In
this model, we fix the spark term ε(j, t) such that ε(j, t) = ε; ε ≥ 0.
The infection kernel κ(i, j) represents shared risk factors between pairs of infected and suscep-
tible individuals. In the EpiILMCT package we consider three kernel types: distance-based,
network-based, and combined distance and network-based. Two sub-types of distance-based
kernel are also considered: Cauchy and power-law. The infection kernel functions are given in
Table 1. In the distance-based ILMs, the kernel function is based on the distances dij between
individuals generally, but not always, spatial Euclidean distance. In the network-based ILMs,
the kernel function is based on the connections between individuals in a contact network that
are represented by binary connections cij = 0 or 1, or weighted connections wij ∈ [0,∞). In
the combined ILMs the kernel consists of a linear function of both.

2.1. Likelihood function

We label the m infected individuals i = 1, 2, . . . ,m with corresponding infection (Ii) and
removal (Ri) times such that I1 ≤ I2 ≤ · · · ≤ Im. The N − m individuals who remain
uninfected after tobs are labeled i = m + 1,m + 2, . . . , N with Ii = Ri = ∞. We then
denote infection and removal time vectors for the population as I = {I1, . . . , Im} and R =
{R1, . . . , Rm}, respectively. We assume that infectious periods follow a gamma distribution
with a fixed shape δa and rate δb, δ = (δa, δb) (Jewell et al. 2009). The likelihood function can
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be divided into two independent components: the infectious and the removed components. As
we assumed earlier that each susceptible individual j has a total infectivity rate λj(Ij) (their
total specific infectious pressure) at the time of being infected (Ij) from infectious individuals
i ∈ I(Ij), the infectious component under the SIR continuous time ILMs can be written as:

L1 =
m∏
j=2

ε+
∑

i:Ii<Ij≤Ri
λ−ij(Ij)

× exp

−
∫ tobs

I1

 ∑
i∈S(u)

ε+
∑
i∈I(u)

∑
j∈S(u)

λ−ij(u− Ii)

 du


where the product term represents the total specific infectious pressure that each infected
individual receives from infectious individuals at the time of being infected, and the exponen-
tial integral represents the total person-to-person infectious pressure during the course of the
epidemic.
The removed component then contains the contribution of the infectious periods to the
likelihood function via their densities. As the infectious period of an infected individual i
(Di = Ri − Ii) is independent of others, the removed component is simply:

L2 =
m∏
i=1

f(Di; δ)

The likelihood function of the general SIR continuous time ILMs can then be formed by
combining the infectious and removal parts given as follows:

L(I,R|θ) = L1 × L2

=
m∏
j=2

ε+
∑

i:Ii<Ij≤Ri
λ−ij(Ij)

 exp

−
m∑
i=1

 N∑
j=1

((Ri ∧ Ij)− (Ii ∧ Ij))λ−ij(Ij)


× exp

(
−ε

N∑
i=1

[(tobs ∧ Ii)− I1]
)

m∏
i=1

f(Di; δ), δ > 0,

where the wedge symbol ∧ denotes the minimum operator; θ is the vector of unknown parame-
ters; f(·; δ) indicates the density of the infectious period distribution; and Di is the infectious
period of infected individual i defined as Di = Ri − Ii. The integral in Equation 3, which
represents the total person-to-person infectious pressure through the course of the epidemic,
can be written as the double sum in the lower equation (Britton and O’Neill 2002; Jewell et al.
2009). The integral is transformed by discretizing it into a sum over the successive events of
the epidemic and is substituted by the double sum. The likelihood function of the general
SINR continuous time ILMs can be formed in a very similar manner (see Appendix A).

3. Contents of the EpiILMCT package
The EpiILMCT package can be used to simulate and graphically summarize epidemics, and,
for a given model, carry out Bayesian inference and calculate the log-likelihood. Most of
the main package functions are written in Fortran 95 (called from within the R wrapper),
since they are computationally intensive tasks. The functions contained in the package are
reviewed in Table 2.
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Function Usage

contactnet Generates undirected unweighted (binary) contact network ma-
trices from spatial (powerlaw, or Cauchy), or random, network
models.

plot.contactnet Provides plot of a contact network of class ‘contactnet’.
datagen Generates epidemics from distance/network-based individual

level models.
as.epidat Generates objects of class ‘datagen’ that contain the individual

event history of an epidemic along with other individual level
information.

plot.datagen Provides different plots summarizing an epidemic of class
‘datagen’.

epictmcmc Runs a Bayesian data augmented MCMC algorithm for fitting
specified models (SIR or SINR).

print.epictmcmc Prints the contents of ‘epictmcmc’ object to the console.
summary.epictmcmc Summary method for ‘epictmcmc’ objects.
plot.epictmcmc Plots the output of ‘epictmcmc’ object.
loglikelihoodepiILM Calculates the log likelihood for a given compartmental frame-

work and kernel type of the continuous time ILMs.

Table 2: Description of functions and their usages in the EpiILMCT package.

3.1. Contact network

Various types of contact network can be considered. First, we consider unweighted (binary)
contact networks which can be directed or undirected. In an undirected unweighted contact
network, each pair of individuals share the same symmetric connection such that cij = cji
for i 6= j; i, j = 1, . . . , N ; and each network is defined by

(N
2
)
elements where cij = 1 if

a connection exists between individuals i and j, and 0 otherwise. In a directed unweighted
contact network, it is not necessary for individuals to share the same symmetrical relationship
so that cij 6= cji for i 6= j; i, j = 1, . . . , N . This leads to a non-symmetric contact network
matrix. Weighted contact networks can also be considered in the EpiILMCT package in which
the connections between individuals are not described as present or absent but are weighted
according to their strength. These too can be directed or undirected.
A function (contactnet) is included to generate undirected unweighted contact networks.
It can simulate both spatial networks where connections are more likely to occur between
individuals closer in space (“spatial contact networks”), as well as random contact networks.
The function contactnet has three available options ("powerlaw", "Cauchy", and "random")
for the network model, where the first two options simulate spatial contact networks in which
the probability of connections between individuals are based on required XY coordinate input.
The inclusion of the two options "powerlaw" and "Cauchy" in the argument type is to allow
the user to choose between two commonly assumed spatial forms to describe the underlying
population. For example, the power-law network model is taken from Bifolchi et al. (2013)
who use this network to test how well purely spatial power-law ILMs can approximate disease
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spread through networks. The Cauchy model was used by Jewell et al. (2009) to model the
2001 UK foot-and-mouth outbreak in Cumbria; they found this kernel the most appropriate
for predicting transmission of those tested.
We now describe the three model options in detail. First, in the power-law contact network
model of Bifolchi et al. (2013) the probability of a connection between individual i and j is
given by:

p(cij = 1) = 1− e−ν(d−β
ij ), ν, β > 0,

where dij is the Euclidean distance between individuals i and j; β is the spatial parameter;
and ν is the scale parameter.
Under the Cauchy contact network model, as used in Jewell et al. (2009), the probability of
a connection between individual i and j is given by:

p(cij = 1) = 1− e−β/(d2
ij+β

2), β > 0,

where dij is the Euclidean distance between individuals i and j; and β is the spatial parameter.
Finally, under the random contact network model, the probability of a connection is simply
generated from a Bernoulli distribution with probability equal to β.
Let us now consider some examples. To create the above undirected unweighted contact
networks, the function requires the network model to be specified ("powerlaw", "Cauchy",
or "random") via the type argument. If "powerlaw" or "Cauchy" are selected, the XY
coordinates of individuals (location) have to be specified through the argument location.
The function contactnet produces a list which includes the contact network matrix in a
class, ‘contactnet’.
To obtain a plot of the contact network, we introduce an S3 plot method for ‘contactnet’
objects, which uses as its input an object of the class ‘contactnet’. The plot method for
‘contactnet’ objects uses code internal to EpiILMCT for the layout when plotting power-law
or Cauchy network models, but depends on the package igraph (Csardi and Nepusz 2006)
when plotting random network model.
The following code generates the three types of contact networks for a population of 50
individuals, with a uniformly distributed spatial layout for the spatial network models.

R> library("EpiILMCT")
R> set.seed(12345)
R> loc <- cbind(runif(50, 0, 10), runif(50, 0, 10))
R> net1 <- contactnet(type = "powerlaw", location = loc, beta = 1.5,
+ nu = 0.5)
R> net2 <- contactnet(type = "Cauchy", location = loc, beta = 0.5)
R> net3 <- contactnet(type = "random", num.id = 50, beta = 0.08)
R> par(mfrow = c(2, 2))
R> plot(net1)
R> plot(net2)
R> plot(net3, xlab = "(random)", vertex.color = "red", vertex.size = 20,
+ edge.color = "black", vertex.label.cex = 0.5,
+ vertex.label.color = "black")
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Figure 1: Examples of the three undirected unweighted (binary) contact network models
generated for the same population. Red dots represent nodes with size corresponding to their
degree (number of edges).

A realization of the three networks for a given population is shown in Figure 1. Note the
underlying spatial layout of the nodes is the same for both spatial network models.

3.2. Epidemic simulation

The function datagen allows the user to generate epidemics from the continuous time ILMs
under the SIR or SINR compartmental frameworks. Which framework is to be used is
specified through the type argument. Each infected individual in a simulated epidemic has
an infection life history defined by their time of infection and the length of time spent in the
infectious state. We assume the conditional intensity functions stay constant between events,
such that the time to the next infection, given that the last infection occurred at time t,
follows Wj ∼ Exp(λj(t)). Here, Wj represents the “waiting time” for susceptible individual j
becoming infected.
Under the SIR framework, and using the chosen distribution of the infectious period, an
epidemic is simulated starting with a randomly chosen initial infected individual k at time
I1 = 0, or with initial infected individual(s) specified via the argument initialepi. This
argument requires a vector or matrix containing the id number(s), removal time(s), infectious
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period(s) and infection time(s) of the infected individual(s). At time Is, the waiting time
until infection for susceptible individual j is then drawn from Wj ∼ Exp(λj(Is)).
The individual with the minimum W is taken as the next infected individual and assigned
an infection time Is+1 = Is + min(W ); an infection period Dj (generated from f(Dj ; δ)); and
a removal time Rs+1 = Is+1 + Dj . The process is repeated until no infectives remain in the
population or Is+1 > tmax, where tmax is the time at which the epidemic simulation is set to
end. tmax can be then specified via the argument tmax.
Under the SINR framework, each infected individual is considered to have an incubation
period comprising the time from infection to notification, and a delay period comprising the
time from notification to removal. Together the incubation and delay periods constitute the
infectious period. An epidemic is simulated in the same manner described above for the
SIR framework, except that the infection period is replaced by incubation and delay periods
D(inc) and D(delay) (generated from f(D(inc)

j ; δ(inc)) and f(D(delay)
j ; δ(delay)), respectively); and

notification and removal times are assigned as Ns+1 = Is+1 + D(inc)
j and Rs+1 = Ns+1 +

D(delay)
j , respectively.

In this function, the infectious, incubation and delay periods are assumed to follow either
exponential or gamma distributions. These distributions can be specified through the delta
argument. Under the SIR framework, delta is a vector containing the shape and rate
parameters of a gamma distribution, whereas under the SINR framework it is a 2×2 matrix
where each row represents the parameters of the incubation and delay period distributions.
Note that – as is often done – an exponential distribution can be assigned to any of these
distributions by setting the shape parameter equal to one.
The epidemic data structure output of the datagen function is used throughout the Epi-
ILMCT package. Under an SIR ILM, it returns a matrix with four columns representing:
the id numbers of the individuals, removal times, infectious periods, and infection times. Un-
der an SINR ILM, it returns a matrix with six columns: the id numbers of the individuals,
removal times, delay periods, notification times, incubation periods, and infection times. Un-
infected individuals are assigned infinity values (Inf) for both their removal and infection
times. Epidemic data from other modeling packages can be extracted and modified to be
used in EpiILMCT. For example, we show how this can be done using the individual level
models from the surveillance package in Appendix B.
The choice of the kernel function κ(i, j) is specified using the kerneltype argument. This
takes one of three options: "distance" for distance-based, "network" for network-based, or
"both" for distance and network-based. The appropriate kernel matrix must also be provided
via the kernelmatrix argument. If "distance" is chosen as the kerneltype, the user must
choose a spatial kernel ("powerlaw" or "Cauchy") through the distancekernel argument.
The distance matrix can be obtained from XY coordinate data using the dist function from
the stats package (R Core Team 2021). Otherwise the distance matrix can be specified by the
user. Other arguments in the datagen function require the data and coefficient parameters
for the susceptibility and transmissibility risk factors as explained in Section 2.
We define an object of class ‘datagen’ to take a list of values needed for the use of other
functions, such as, the plot method for ‘datagen’ objects and epictmcmc. This list contains:
type, kerneltype, epidat (event times), location (XY coordinates of individuals), and
network (contact network matrix). In the case of setting the kerneltype to "distance",
a NULL value will be assigned to the network option. The package has also a separate



12 EpiILMCT: Continuous Time ILMs of Infectious Disease

function as.epidat that generates an object of class ‘datagen’ for a given epidemic data
set (Appendix B contains a brief example of using this function).
The package also contains an S3 plot method for ‘datagen’ objects, which illustrates disease
spread through the epidemic timeline. This function can be used for either distance-based
or network-based ILMs. The first input of this function has to be of class ‘datagen’. If the
plottype argument is set to "history", the function produces epidemic curves of infection
and removal times. Example plots are shown in Figure 3. Conversely, setting this argument to
"propagation" produces plots of the epidemic propagation over time. With the latter option,
exactly which plots are output varies by kernel. With the network kernel, the function plots
all the connections between individuals and overlays these with the epidemic pathway direc-
tion over time. This path direction consists of directed edges from all infectious individuals
connected to a given newly infected individual i with infection time Ii (one per plot). Thus,
this produces directed networks showing possible pathways of the disease propagation. With
the distance kernel, the function plots the spatial epidemic dispersion over time. It shows the
changes in the individual status that related to the chosen compartmental framework. To
avoid displaying too many plots, the time.index argument allows user to obtain propagation
plots at specific infection time points rather than at every infection time.

4. Bayesian inference

Prior distributions of the model parameters are selected from one of three options: gamma,
positive half normal or uniform distribution. Then, Metropolis-Hastings MCMC is performed
to estimate the joint posterior of the model parameters and latent variables (the latter if
various event times are assumed unknown). This is achieved using the function epictmcmc.
The parameters of the susceptibility and transmissibility functions, infection kernel and spark
term (collectively denoted θ) are updated using the random-walk proposals. The user is
required to tune the proposal variances to achieve good mixing properties. Thus, the user must
provide a vector of initial values, a prior distribution ("gamma", "uniform", or "halfnormal"),
the prior parameters, and the variance of the normal proposal distribution for each parameter
as shown in Figure 2. In case of running multiple MCMC chains, the user should provide a
vector of initial values of the model parameters. Note that, setting the variance of the normal
proposal distribution to zero fixes a parameter at its initial value. This option allows the
user to fix such a parameter in the model while updating others (i.e., conditioning on the
parameters).
Using the datatype argument, the epictmcmc function allows for three scenarios in terms
of event time uncertainty: "known epidemic" can be used to model a fully observed epi-
demic with known infection and removal times; "known removal" can be used to model a
partially observed epidemic where the infection times are unknown; and "unknown removal"
can be used to model a partially observed epidemic where removal and infection times are
unknown. The latter option is only available for the SINR continuous time ILMs where no-
tification times are assumed correctly known. When the datatype argument is set to "known
epidemic", the infectious periods are fixed by default.
When infection times are unknown, the rate(s) of the infectious, incubation and/or delay
period distributions are assigned gamma prior distributions with shape a and rate b. Thus,
the rate parameters have conditional distributions with a standard form following the gamma
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Figure 2: A diagram of the input structure for the arguments control.sus, control.trans,
kernel.par, spark.par, gamma.par and delta in the function epictmcmc.

distribution. For the SIR continuous time ILMs, this is as follows:

δ|θ, I,R ∼ Γ(m+ aδ,M + bδ),

where δ is the rate of the infectious period distribution; M =
∑m
i=1 (Ri − Ii); and aδ and bδ

are the prior parameters of the infectious period rate. For the SINR continuous time ILMs,
the distribution of the incubation rate and delay parameters are as follows:

δ(inc)|θ, I,N ,R ∼ Γ(m+ aδ(inc) ,Minc + bδ(inc)),

where δ(inc) is the rate of the incubation period distribution; Minc =
∑m
i=1 (Ni − Ii); and

aδ(inc) and bδ(inc) are the prior parameters of incubation period rate; and

δ(delay)|θ, I,N ,R ∼ Γ(m+ aδ(delay) ,Mdelay + bδ(delay)),

where δ(delay) is the rate of the delay period distribution; Mdelay =
∑m
i=1 (Ri −Ni); and

aδ(delay) and bδ(delay) are the prior parameters of delay period rate.
A Gibbs update (i.e., sampling from the conditional posterior distribution) is used for the
infectious period rate (for the SIR continuous time ILMs) or the incubation and/or delay
period rates (for the SINR continuous time ILMs). The required information for each
period distribution are entered via the delta argument. We assume each period type follows
a gamma distribution with fixed shape and unknown rate. Thus, to update the rate parameter
of each period we specify delta, a list containing a vector of the fixed shape value(s), a vector
(matrix) of the initial values of the rate(s), and a vector (matrix) for the parameters of the
prior distribution of the rate parameter(s). In the case of incubation and delay periods being
estimated, the input of the initial values is a 2×nchains matrix, and the prior parameters is
a 2× 2 matrix where each row contains the required information for each period rate.
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An independence sampler is then used to update the infection times/infectious periods (for
the SIR continuous time ILMs), or the infection times/incubation periods and/or the re-
moval times/delay periods (for the SINR continuous time ILMs). For the SIR continuous
time ILMs, the ith infection time Ii is updated by generating an infectious period D∗i from
a gamma proposal distribution such that D∗i ∼ Γ(a, b). Then, the new infection time is the
difference between the observed removal time and the new infectious period of the ith indi-
vidual. The same procedure is used for updating the missing event times, infectious periods
and corresponding parameters for the SINR continuous time ILMs. The parameter values of
the gamma proposal distribution could be provided through the periodproposal argument.
If they are not provided, the parameters of the gamma proposal distribution are then based
on the fixed shape and updated rate values from the argument delta. Computationally, it
may be more efficient to apply a block update for the periods and event times. This can
be implemented using the blockupdate argument, which requires that the user specifies m
(assuming removal and infection times are known for the first m individuals), and the size of
each block.

The epictmcmc function allows for sampling from multiple MCMC chains. This is done by
providing the number of chains to be run via the option nchains. Additionally, multiple chains
can be run in parallel by setting parallel = TRUE. This implies the use of the parLapply
function from the parallel package (R Core Team 2021). The number of cores to be used is set
to the minimum of the number of chains and the available cores on the user’s computer. Note
that, if parallel is set to FALSE and nchains is greater than one, multiple MCMC chains are
run sequentially. When parallel is set to TRUE, the clusterSetRNGStream function from
the parallel package (R Core Team 2021) is used to distribute the setting seed value by the
set.seed function to each core to reproduce the same results, otherwise each core sets its
seed value from the current seed of the master process.

The output of this function is an object of class ‘epictmcmc’. There are S3 methods: print,
summary and plot that depend on the coda package (Plummer, Best, Cowles, and Vines
2006). The latter function has a plottype argument to specify which samples need to be
plotted. This argument has three options: "parameter" to produce trace plots of the posterior
distributions of the model parameters, and "inf.times" ("rem.times") to produce plots of
the average posterior and 95% CI of the unobserved infection (removal) times when datatype
set to "known removal" ("unknown removal"). The S3 plot method for ‘epictmcmc’ objects
has the same options as the method for ‘mcmc’ objects in the coda package, for example, start,
thin, and density.

The class ‘epictmcmc’ contains the MCMC samples of the model parameters and the missing
information (if datatype is not set to "known epidemic") as an mcmc matrix, and other
useful information to be used in other functions, such as the above S3 methods. So standard
summary methods from coda, such as summary and plot methods for ‘mcmc’ objects, can be
employed using these MCMC samples as inputs.

Posterior predictive checks of the fitted model can be performed using the datagen function.
This requires that the user supplies the model parameter values with a combined sample of
the MCMC model parameter outputs. If desired, the simulation can be constrained to the
first m infected individuals and their event times. This can be achieved by appending this
information to the initialepi option.
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5. Examples

5.1. Simulated network-based epidemic

In this section, we illustrate the EpiILMCT package by fitting a simple SIR network-based
continuous time ILM to a simulated epidemic. We consider an isolated population of 50 indi-
viduals distributed uniformly in an area of 10×10 units. We also consider a binary suscepti-
bility covariate z which can be thought as being, say, an individual’s treatment or vaccination
status. Thus, the infectivity rate given in Equation 2 becomes:

λj(t) = (α0 + α1zj)
∑
i∈I(t)

cij , α0, α1 > 0,

where the susceptibility function ΩS(j) = α0 + α1zj ; there are no transmissibility covariates
ΩT (i) = 1; and ε = 0. First, let us simulate the XY coordinates of individuals and the binary
covariate z as follows:

R> set.seed(91938)
R> loc <- cbind(runif(50, 0, 10), runif(50, 0, 10))
R> cov <- cbind(rep(1, 50), rbinom(50, 1, 0.5))

To simulate the epidemic, we generate a contact network using the contactnet function.
Here, we use the power-law contact network model with β = 1.8 and ν = 1, as illustrated in
the following code:

R> net <- contactnet(type = "powerlaw", location = loc, beta = 1.8, nu = 1)

Figure 4 shows the contact network (grey lines). The epidemic is then generated using the
datagen function. Here, the epidemic is initialized with a randomly chosen infectious individ-
ual; then generated by providing the function with the contact network matrix, the suscepti-
bility covariate and the following parameter values: α0 = 0.08, α1 = 0.5, and Di ∼ Γ(4, δ = 2).
This is coded as follows:

R> epi <- datagen(type = "SIR", kerneltype = "network",
+ kernelmatrix = net, suspar = c(0.08, 0.5), delta = c(4, 2),
+ suscov = cov)

The object epi is stored in the data file NetworkData as a class ‘datagen’, along with the
susceptibility covariate (cov), available in the EpiILMCT package.

R> data("NetworkData", package = "EpiILMCT")
R> class(NetworkData[[1]])

[1] "datagen"

R> names(NetworkData[[1]])

[1] "type" "kerneltype" "epidat" "location" "network"
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R> head(NetworkData[[1]]$epidat)

id.individual rem.time inf.period inf.time
[1,] 50 1.526078 1.5260782 0.0000000
[2,] 16 2.612491 1.9933013 0.6191893
[3,] 5 2.394094 1.6567882 0.7373061
[4,] 45 3.169602 2.2370141 0.9325876
[5,] 44 1.805656 0.5661341 1.2395222
[6,] 19 1.737867 0.4576725 1.2801945

To illustrate the propagation of the epidemic, we set the argument plottype to "propagation".
To limit the number of plots, we assign the time.index option to be a vector containing time
points for plots to be generated as shown in the following code:

R> plot(NetworkData[[1]], plottype = "propagation",
+ time.index = seq_len(6))

We can also produce density plots of the infection and removal times, and a plot of the infec-
tious periods, by specifying the argument plottype to "history" as shown in the following
code:

R> plot(NetworkData[[1]], plottype = "history")

Figure 3 shows the densities of the infection and removal times, and the infectious periods;
while Figure 4 shows the epidemic propagation plot.
To illustrate fitting continuous time ILMs to data, we analyze the epidemic using the function
epictmcmc. This is done under two observation scenarios: "known epidemic" and "known
removal". For the former analysis, we assign Γ(1, 0.1) gamma prior distributions to the model
parameters α0 and α1 and use normal MCMC proposals with variances equal to 0.5 and 1,
respectively. As we have two susceptibility parameters, the argument control.sus is then
a list that contains: 1) a list of a vector of initial values of α0 and α1, and a 2 × 4 matrix
in which each row represents the required information for updating each parameter; and 2)
a 50× 2 matrix of the covariates representing the unity intercept and the binary covariate z.
Now, we run the MCMC using the epictmcmc function for sampling a single chain of 150,000
iterations using the following code:

R> set.seed(91938)
R> suscov <- list(NULL)
R> suscov[[1]] <- list(c(0.01, 0.1), matrix(c("gamma", "gamma",
+ 1, 1, 0.1, 0.1, 0.5, 1), ncol = 4, nrow = 2))
R> suscov[[2]] <- NetworkData[[2]]
R> mcmc1 <- epictmcmc(object = NetworkData[[1]],
+ datatype = "known epidemic", nsim = 150000, control.sus = suscov)

The estimates of the model parameters can be obtained through the S3 summary method for
‘epictmcmc’ objects. The posterior means and 95% credible intervals of these parameters can
be obtained via the following command:
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Figure 3: The epidemic curves of the infection and removal times for the epidemic that was
generated using the simple network-based continuous time ILM. The red shaded area in the
third plot represents the infectious periods.

R> summary(mcmc1, start = 10000, thin = 10)

*********************************************************
Model: SIR network-based continuous-time ILM
Method: Markov chain Monte Carlo (MCMC)
Data assumption: fully observed epidemic
number.chains : 1 chains
number.iteration : 140000 iterations
number.parameter : 2 parameters

*********************************************************
1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
Mean SD Naive SE Time-series SE

Alpha_s[1] 0.0850579 0.0268504 0.000226919 0.000298624
Alpha_s[2] 0.5082012 0.1290994 0.001091050 0.001179665
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Figure 4: The directed pathway network of the generated epidemic over its time-line using
the simple network-based ILMs.

2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%

Alpha_s[1] 0.0417253 0.0655198 0.0824374 0.101868 0.143758
Alpha_s[2] 0.2856068 0.4163682 0.4982712 0.587971 0.789077
3. Empirical mean, standard deviation, and quantiles for the log likelihood,

Mean SD Naive SE Time-series SE
-55.8040938 1.0188095 0.0086102 0.0104071

2.5% 25% 50% 75% 97.5%
-58.5949 -56.1864 -55.4943 -55.0810 -54.8118
4. acceptance.rate :

Alpha_s[1] Alpha_s[2]
0.112361 0.222748
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Figure 5: The MCMC chains of the posterior distributions of the model parameters fitting
the simulated epidemic using the network-based continuous time ILM assuming fully observed
epidemic.

The MCMC trace plots for the model parameters can be produced using the S3 plot method
for ‘epictmcmc’ objects.

R> plot(mcmc1, plottype = "parameter", start = 10000, thin = 10,
+ density = FALSE)

Figure 5 shows the MCMC trace plots for the model parameters α0 and α1. We observe a
posterior mean of α̂1 = 0.508 with 95% credible (percentile) interval (0.286, 0.789) and a
posterior mean of α̂0 = 0.085 with 95% credible interval (0.042, 0.144). We also observed
well-mixed MCMC chains for both model parameters. The computation time for running the
above MCMC code was 16 seconds on an Apple MacBook Pro with i5-core Intel 2.4 GHz
processors with 8 GB of RAM.
For the known removal times analysis, EpiILMCT uses data augmented MCMC to infer
infection times and the infectious period rate. Here, we assume that the infectious period
follows a gamma distribution with shape 4 and unknown rate parameter δ; so Di ∼ Γ(4, δ).
Here, we also include a spark term ε. This is not strictly necessary but tends to improve
MCMC mixing. We assigned gamma prior distribution Γ(4, 2) for δ and an exponential prior
distribution with rate 0.01 for ε.
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We can then run the MCMC using the epictmcmc function for sampling a single chain of
150,000 iterations using the following code:

R> set.seed(91938)
R> suscov <- list(NULL)
R> suscov[[1]] <- list(c(0.01, 0.1), matrix(c("gamma", "gamma", 1, 1, 0.1,
+ 0.1, 0.2, 0.8), ncol = 4, nrow = 2))
R> suscov[[2]] <- NetworkData[[2]]
R> spark <- list(0.01, c("gamma", 1, 0.01, 0.1))
R> mcmc11 <- epictmcmc(object = NetworkData[[1]],
+ datatype = "known removal", nsim = 150000, control.sus = suscov,
+ spark.par = spark, delta = list(4, 2, c(4, 2)))

The computation time for the above code on the aforementioned machine was 201 seconds.
Figure 6 shows typical MCMC trace plots for the model parameters α0, α1, ε, and δ. Well-
mixed MCMC chains are observed for all the model parameters.
As the posterior samples of the model parameters are stored in the ‘epictmcmc’ object as an
‘mcmc’ object of the type used in the coda package, the standard summary methods from coda
can be employed, inserting mcmc1$parameter.samples as the input of this function. This is
illustrated in the following command:

R> summary(window(mcmc11$parameter.samples, start = 10000, thin = 10))

Iterations = 10000:150000
Thinning interval = 10
Number of chains = 1
Sample size per chain = 14001
1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
Mean SD Naive SE Time-series SE

Alpha_s[1] 0.05717 0.03497 0.0002955 0.0004005
Alpha_s[2] 0.42976 0.14320 0.0012102 0.0015706
Spark 0.03742 0.02001 0.0001691 0.0002553
Infectious period rate 2.64673 0.49444 0.0041786 0.0074440
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
Alpha_s[1] 0.004402 0.03059 0.05322 0.07817 0.13770
Alpha_s[2] 0.189793 0.32899 0.41698 0.51633 0.75099
Spark 0.004977 0.02246 0.03548 0.04999 0.08208
Infectious period rate 1.821692 2.29301 2.59927 2.94168 3.73862

Thus, the posterior means and 95% credible intervals of the model parameters are as follows:
α̂0 = 0.057 (0.004, 0.138), α̂1 = 0.430 (0.190, 0.751), ε̂ = 0.037 (0.005, 0.082), and δ̂ = 2.647
(1.822,3.739). The infection times are also well-approximated (see Figure 7). Figures 6 and 7
are produced using the following code:

R> plot(mcmc11, plottype = "parameter", start = 10000, thin = 10,
+ density = FALSE)
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Figure 6: The MCMC chains of the posterior distributions of the model parameters for fitting
the simulated epidemic using the network-based continuous time ILM assuming partially
observed epidemic (unknown infection times).

R> plot(mcmc11, epi = NetworkData[[1]], plottype = "inf.times",
+ start = 10000, thin = 10)
R> lines(NetworkData[[1]]$epidat[,4], type = "l", col = "blue")

To check the fit of the model, we consider the posterior predictive distribution of four statistics.
Specifically, we consider: T1, the total number of infected individuals; T2, the average removal
time; T3, the variance of the removal times; and T4, the length of the epidemic. Here, we
simulate 10,000 epidemics based on random draws of the model parameters from the MCMC
output (excluding burnin) of the known removal times analysis (i.e., unknown infection times).
We condition our simulation on the first ten infected individuals, then calculated the four
statistics for each simulation. This simulation procedure is implemented in parallel using the
future_lapply function from the future.apply package (Bengtsson 2021) as follows:

R> set.seed(524837)
R> mb <- sample(seq(10000, 150000), 10000)
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Figure 7: The posterior means and 95% credible intervals of the infection times for fitting
the simulated epidemic using the network-based continuous time ILM assuming partially
observed epidemic (unknown infection times). The black line represent the observed removal
times, solid red line represent the posterior means, dotted red lines represent the 95% credible
interval, and the blue line represents the observed infection times.

R> posterior.pred <- function(x) {
+ epi <- datagen(type = "SIR", kerneltype = "network",
+ kernelmatrix = NetworkData[[1]]$network, initialepi =
+ matrix(NetworkData[[1]]$epidat[1:10, ], ncol = 4, nrow = 10),
+ suspar = c(mcmc11$parameter.samples[x, 1],
+ mcmc11$parameter.samples[x, 2]),
+ spark = mcmc11$parameter.samples[x, 3],
+ delta = c(4, mcmc11$parameter.samples[x, 4]),
+ suscov = NetworkData[[2]])$epidat
+ numinf <- sum(epi[, 2] != Inf)
+ muremtime <- mean(epi[1:numinf, 2])
+ varremtime <- var(epi[1:numinf, 2])
+ lengthepi <- max(epi[1:numinf, 2])
+ result <- c(numinf, muremtime, varremtime, lengthepi)
+ return(result)
+ }
R> library("future.apply")
R> plan(multiprocess, workers = 4)
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Figure 8: The posterior predictive distributions of four statistics: The number of infected
individuals, the average removal times, the variance of removal times, and the length of
epidemic for fitting partially observed epidemic (unknown infection times) using network-
based continuous time ILM. The red vertical lines represent the observed statistic values and
the solid and dotted blue vertical lines represents the posterior predictive means and 95%
credible intervals of the four statistics.

R> datmcmc <- future_lapply(mb, FUN = posterior.pred, future.seed = TRUE)
R> summary.results <- sapply(datmcmc, unlist, simplify = TRUE)

The posterior predictive distributions of the four statistics are shown in Figure 8. We can see
that each distribution captures the observed statistics well.

5.2. Case study: Tomato spotted wilt virus (TSWV) data

We further illustrate the EpiILMCT package by analyzing the TSWV data as described in
Hughes, McRoberts, Madden, and Nelson (1997) and analyzed with spatial ILMs by Pokharel
and Deardon (2014, 2016). These data represent the results of an experiment designed to
study the spread of the disease amongst 520 pepper plants raised in a greenhouse. Plants
were evenly distributed across a 10×26 meter area as shown in Figure 9. The experiment
began on May 26, 1993 and finished on August 16, 1993. Plants were checked for the disease
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Figure 9: A grid plot of the XY coordinates of plants of TSWV data. The red points represent
infected plants at the end of the disease.

every 14 days, and ultimately 327 were infected. Following Pokharel and Deardon (2014,
2016) these observation points are recorded to t = 1, 2, . . . , 7. We set the initial infection time
to t = 2 in line with the original data set.
We here analyze the epidemic under two data availability scenarios. First, we assume that the
event times of the TSWV disease are fully observed. Here, the infectious period was fixed at
three time points (42 days) following Pokharel and Deardon (2014, 2016). Additionally, the
last observed time point was at t = 7. Second, we assume the epidemic is partially observed.
Specifically, we assume that the infection and removal times are unknown, and treat the
reported infection times as the notified time points. This entails considerable uncertainty and
makes the MCMC analysis much more time consuming (more than 13 times longer than the
computation time of the first analysis), because it is necessary to estimate both incubation
and delay periods along with the infection and removal times.
The data is stored in the data file tswv, available in the EpiILMCT package. It contains a list
of the TSWV epidemic data set for the two compartmental frameworks (SIR and SINR)
structured as a ‘datagen’ class.
The following code shows how the TSWV data set can be extracted and the associated
Euclidean distance matrix built.

R> data("tswv", package = "EpiILMCT")
R> names(tswv)

[1] "tswvsir" "tswvsinr"

R> plot(tswv$tswvsir$location, col = "gray", pch = 19)
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R> k1 <- sum(tswv$tswvsir$epidat[,2] != Inf)
R> points(tswv$tswvsir$location[tswv$tswvsir$epidat[1:k1, 1], ],
+ col = "red", pch = 19)

Following Pokharel and Deardon (2014, 2016), we implement the distance-based continuous
time ILM with power-law kernel and without susceptibility and transmissibility covariates.
For the first analysis, an SIR distance-based continuous time ILM is used where the infec-
tivity rate given in Equation 2 becomes:

λj(t) =

α ∑
i∈I(t)

d−βij

 , α, β > 0.

To perform the MCMC, the epictmcmc function should be used with datatype set to "known
epidemic". Here, we assume exponential prior distributions with rate 0.01 for the model
parameters α and β; and we request 150,000 MCMC samples. The code to achieve this is as
follows:

R> covsus <- list(NULL)
R> covsus[[1]] <- list(0.02, c("gamma", 1, 0.01, 0.01))
R> covsus[[2]] <- rep(1, length(tswv$tswvsir$epidat[,1]))
R> kernel1 <- list(2, c("gamma", 1, 0.01, 0.1))
R> set.seed(524837)
R> tswv.full.observed <- epictmcmc(object = tswv$tswvsir,
+ distancekernel = "powerlaw", datatype = "known epidemic", nsim = 150000,
+ control.sus = covsus, kernel.par = kernel1)
R> plot(tswv.full.observed, plottype = "parameter", start = 10000, thin = 10,
+ density = FALSE)

Figure 10 shows the resulting MCMC chains for the model parameters with a burn-in of
10,000 iterations and thinning interval of 10. The posterior mean of α and β were α̂ = 0.012
and β̂ = 1.306, with 95% credible intervals of (0.007, 0.017) and (0.973,1.592), respectively.
The estimates of α̂ and β̂ are consistent with those of Pokharel and Deardon (2014, 2016).
The above epictmcmc function had a run time of one hour on an Apple MacBook Pro with
i5-core Intel 2.4 GHz processors with 8 GB of RAM.
In the second analysis (i.e., where infection and removal times are treated as unknown), we
assume notified times were observed for all infected individuals. Consequently, an SINR
distance-based continuous time ILM is used where the infectivity rate given in Equation 1
becomes:

λj(t) =

α ∑
i∈N−(t)

d−βij

+ γ

α ∑
i∈N+(t)

d−βij

 .
We here assume the risk of infection does not reduce after notification, and set the notification
effect parameter to γ = 1. The infectious period here is divided into the incubation and
delay periods. We assume the total infectious period to be within three time points (42
days) following Pokharel and Deardon (2014, 2016); Brown et al. (2005). Thus, we assumed
the incubation periods to follow an exponential distribution such that D(inc)

i ∼ Exp(δ(inc))
with initial value of δ(inc) = 1, whereas the delay periods are assumed to follow a gamma
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Figure 10: The MCMC chains of the posterior distributions of the model parameter α and β
for fitting the fully observed TSWV data using the SIR distance-based continuous time ILM.

distribution such that D(delay)
i ∼ Γ(10, δ(delay)) with initial value of δ(delay) = 5. We assign

gamma prior distributions for both rates such that δ(inc) ∼ Γ(10, 10) and δ(delay) ∼ Γ(60, 12).
These choices are to cover the support of our assumptions about the infectious periods. For
simplicity, we assume the infection time of the first infected plant is known. We set its
incubation period to one time point.
We assign exponential prior distributions with rate 0.01 to the model parameters α and β.
To perform the MCMC, we use the epictmcmc function with type and datatype set to
"SINR" and "unknown removal", respectively. At each iteration, the infection and removal
times are updated in blocks of 10 randomly selected individuals (blockupdate). For faster
implementation, we run the epictmcmc function in parallel to obtain 50,000 samples from
four MCMC chains with four different sets of initial values of the model parameters and seed
values. To do so, we set the argument nchains = 4 and set parallel = TRUE. The number
of cores to be used depends on the minimum number of the available cores and the number
of chains (nchains). The following code was run using the four available cores of an Apple
iMac with i5-core Intel 2.4 GHz processors and 8 GB of RAM.

R> covsus <- list(NULL)
R> covsus[[1]] <- list(NULL)
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α β δ(inc) δ(delay)

Mean 0.043 2.037 2.992 9.139
95% CI (0.034, 0.051) (1.780, 2.275) (2.264, 3.874) (8.046, 10.292)

Table 3: The posterior means and 95% credible intervals (CIs) of the model parameters, with
a burn-in of 5,000 iterations and thinning interval of 10 for each of the four MCMC chains, for
fitting the TSWV using the SINR distance-based continuous time ILM under the assumption
of unknown removal and infection times.

R> covsus[[1]][[1]] <- c(0.02, 0.1, 1.5, 3)
R> covsus[[1]][[2]] <- c("gamma", 1, 0.01, 0.01)
R> covsus[[2]] <- rep(1, length(tswv$tswvsir$epidat[,1]))
R> kernel1 <- list(c(0.1, 5, 1, 10), c("gamma", 1, 0.01, 0.1))
R> delta1 <- list(NULL)
R> delta1[[1]] <- c(1,10)
R> delta1[[2]] <- matrix(c(10, 5, 1, 0.5, 15, 2, 1, 15), ncol = 4, nrow = 2)
R> delta1[[3]] <- matrix(c(10, 60, 10, 12), ncol = 2, nrow = 2)
R> set.seed(524837)
R> tswv.unknown.remov.infect1 <- epictmcmc(object = tswv$tswvsinr,
+ distancekernel = "powerlaw", datatype = "unknown removal",
+ blockupdate = c(1, 10), nsim = 50000, nchains = 4, parallel = TRUE,
+ control.sus = covsus, kernel.par = kernel1, delta = delta1)

Figure 11 shows the MCMC trace plots and Gelman-Rubin convergence diagnostic plots for
the model parameters α, β, δ(inc) and δ(delay) with a burn-in of 5,000 iterations removed and
a thinning interval of 10 for the four MCMC chains. Figure 11 can be produced using the
following code:

R> layout(matrix(c(5, 1, 6, 2, 7, 3, 8, 4), ncol = 2, byrow = TRUE))
R> m1 <- window(tswv.unknown.remov.infect1$parameter.samples[[1]],
+ start = 5000)
R> m2 <- window(tswv.unknown.remov.infect1$parameter.samples[[2]],
+ start = 5000)
R> m3 <- window(tswv.unknown.remov.infect1$parameter.samples[[3]],
+ start = 5000)
R> m4 <- window(tswv.unknown.remov.infect1$parameter.samples[[4]],
+ start = 5000)
R> gelman.plot(mcmc.list(m1, m2, m3, m4), auto.layout = FALSE)
R> plot(tswv.unknown.remov.infect1, plottype = "parameter", start = 5000,
+ thin = 10, density = FALSE, smooth = FALSE, auto.layout = FALSE)

The posterior means and 95% credible intervals of these parameters are given in Table 3.
The MCMC chains show good mixing with both trace and Gelman-Rubin plots suggesting
convergence.
Figures 12 and 13 show the posterior means and 95% credible intervals of the infection and
removal times. These figures can be produced using the following commands:
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Figure 11: The four MCMC chains (left) and Gelman-Rubin convergence diagnostic (right)
plots of the posterior distributions of the model parameters α, β, δ(inc) and δ(delay) for fitting
the partially observed TSWV data (unknown infection and removal times) using the SINR
distance-based continuous time ILM.

R> plot(tswv.unknown.remov.infect1, epi = tswv$tswvsinr,
+ plottype = "inf.times", start = 5000, thin = 10)
R> plot(tswv.unknown.remov.infect1, epi = tswv$tswvsinr,
+ plottype = "rem.times", start = 5000, thin = 10)

Using the summary function of the object tswv.unknown.remov.infect1, the posterior means
(95% CIs) of the incubation and delay periods were found to be 0.320 (0.242, 0.414) and 1.082
(0.957, 1.224) observation time points, respectively, indicating an average infectious period of
19.628 days (1.402 time points).
Note that, infection and removal times are updated here in blocks of 10 (via the blockupdate
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Figure 12: The posterior means (solid red line) and 95% credible intervals (dotted red lines)
of the infection times for fitting the partially observed TSWV data (unknown infection and
removal times) using the SINR distance-based continuous time ILM. The black line represents
the observed notification times.

argument) for reasons of computational efficiency. The epictmcmc function had a run time
of 9.51 hours using the parallel method with 4 cores, but this was computationally much
more efficient than if single updates were used (≈ 124 hours, calculated based on ten MCMC
iterations).

6. Conclusion

This paper introduces the R software package EpiILMCT, which facilitates the use of a broad
range of continuous time ILMs under two compartmental frameworks (SIR and SINR).
It also allows for the analysis of partially observed infectious diseases data, achieved using
data augmented MCMC within a Bayesian framework. We illustrated the package by fitting
continuous time ILMs on simulated and real epidemic data. The paper did not cover all
functionality of the package. For instance, we did not illustrate incorporating both distance
and network in the kernel function, or allowing for nonlinearity between the susceptibility
and transmissibility risk factors and the infection rate. However, implementation of such
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Figure 13: The posterior means (solid red line) and 95% credible intervals (dotted red lines)
of the removal times for fitting the partially observed TSWV data (unknown infection and
removal times) using the SINR distance-based continuous time ILM. The black line represents
the observed notification times.

facets is simple. Additional functionality that was not covered in Sections 5 can be found via
help(package = "EpiILMCT").
Also, it is possible to use EpiILMCT to test the efficacy of disease control strategies (e.g.,
vaccination or culling) via simulation study. This can be done by simulating epidemics in
small time steps and then manipulating infection and/or removal times according to a given
control policy, before simulating the next step of the epidemic simulation conditional upon
the manipulated epidemic history just determined. We illustrate this via a simple ring-culling
strategy in Appendix C.
In terms of future developments, the authors intend to expand the modeling framework to
allow for latent periods i.e., susceptible-exposed-infectious-removed (SEIR) and susceptible-
exposed-infectious-notified-removed (SEINR). This would be useful for many disease sys-
tems in which the time between infection (exposure) and infectiousness cannot be reasonably
ignored. Additionally, expanding the compartmental frameworks to allow for reinfection
would also be useful for diseases such as influenza. That is, we could allow for frameworks:
susceptible-infectious-susceptible (SIS), susceptible-exposed-infectious-susceptible (SEIS),
etc.
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Incorporating more data uncertainty into the analyses, especially under the network-based
model, is an option for future development of this package EpiILMCT. For example, networks
are often only partially observed. However, the data augmentation could easily make the com-
putation time for data analyses prohibitive. Various strategies for mitigating this might be
available. For example, approximate forms of inference such as Gaussian process emula-
tion (Pokharel and Deardon 2016), approximate Bayesian computation (Beaumont, Cornuet,
Marin, and Robert 2009), machine learning based model classification (Pokharel and Deardon
2014), data-sampled likelihood approximation (Malik et al. 2016), or data-aggregation (Deeth
and Deardon 2016) could all prove useful for overcoming these computational issues. Finally,
it would be possible to extend our modeling framework to allow for multiple, interacting
disease strains or pathogens (Romanescu and Deardon 2016).
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A. The likelihood of the general SINR continuous time ILMs

L(I,N ,R|θ) =
m∏
j=2

ε+
∑

i:Ii<Ij≤Ni
λ−ij(Ij) +

∑
i:Ni<Ij≤Ri

λ+
ij(Ij)


× exp

−
∫ tobs

I1

 ∑
i∈S(u)

ε+
∑
i∈I(u)

∑
j∈S(u)

λ−ij(u− Ii) +
∑

i∈N (u)

∑
j∈S(u)

λ+
ij(u− Ii)

 du


×
m∏
i=1

f(D(inc)
i ; δ(inc))

m∏
i=1

f(D(delay)
i ; δ(delay))

=
m∏
j=2

ε+
∑

i:Ii<Ij≤Ni
λ−ij(Ij) +

∑
i:Ni<Ij≤Ri

λ+
ij(Ij)


× exp

−
m∑
i=1

 N∑
j=1

((tobs ∧Ni ∧ Ij)− (Ii ∧ Ij))λ−ij(Ij)


× exp

−
m∑
i=1

 N∑
j=1

((tobs ∧Ri ∧ Ij)− (Ii ∧ Ij))− ((tobs ∧Ni ∧ Ij)− (Ii ∧ Ij))λ+
ij(Ij)


× exp

(
−ε

N∑
i=1

[(tobs ∧ Ii)− I1]
)

×
m∏
i=1

f(D(inc)
i ; δ(inc))

m∏
i=1

f(D(delay)
i ; δ(delay)), δ(inc), δ(delay) > 0, (3)

where the wedge symbol ∧ denotes the minimum operator; and Dinci and Ddelayi are the
incubation and delay periods such that Dinci = Ni − Ii and Ddelayi = Ri −Ni, respectively.

B. R code to extract individual level data from surveillance
Here, we illustrate the extraction of individual level data from the surveillance package for
use in the EpiILMCT package. We consider the toy data set representing a population of 100
individuals that is used in the twinSIR examples of the surveillance package (Höhle, Meyer,
and Paul 2021).

R> library("surveillance")
R> data("fooepidata", package = "surveillance")
R> names(fooepidata)

[1] "BLOCK" "id" "start" "stop" "atRiskY" "event" "Revent"
[8] "x" "y" "z1" "z2" "B1" "B2"

The fooepidata event history consists of 178 time BLOCKs of 100 rows, where each row
describes the state of individual id during the corresponding time interval (start, stop).
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R> head(fooepidata, n = 5)

BLOCK id start stop atRiskY event Revent x y
1 1 1 0 0.6970682 1 0 0 1.262954285 0.7818592
246 1 2 0 0.6970682 1 0 0 -0.326233361 -0.7767766
369 1 3 0 0.6970682 1 0 0 1.329799263 -0.6159899
612 1 4 0 0.6970682 1 0 0 1.272429321 0.0465803
760 1 5 0 0.6970682 1 0 0 0.414641434 -1.1303858

z1 z2 B1 B2
1 0 0.0000000 0 0
246 1 0.6931472 0 0
369 0 1.0986123 0 0
612 1 1.3862944 0 0
760 1 1.6094379 0 0
[....]

The start and stop variables represent the start and end of interval time points (in continuous
time) that indicate the waiting time between consequence event times (infection and removal
times). The binary variables event and Revent are used to indicate the occurrence of newly
infected or removed individuals at the stop time of each time interval (BLOCK), respectively.
Thus, the stop time is taken to be the infection or removal times of the infected or removed
individuals in each time interval. The coordinates of individuals is represented in columns x
and y. The fooepidata data set contains also endemic and epidemic covariates. Endemic
covariates are represented by the columns named z1 and z2 (the exact interpretation of
these covariates is not given). Epidemic covariates are represented by the columns named
B1 and B2, and they indicate the count of currently infective individuals for each individual
within, and greater than one unit distance, respectively. See (help(epidata, package=
"surveillance")) for more details about the data structure. From this data set, we extract
only the event times and XY coordinates of each individual, ignoring the purely spatial
epidemic covariates which are directly modelled by the distance kernel in EpiILMCT.

R> epi <- summary(fooepidata)$byID
R> loc <- summary(fooepidata)$coordinates
R> epi[is.na(epi)] <- Inf
R> epi <- transform(epi, period = ifelse(is.infinite(time.I), 0,
+ time.R - time.I))
R> epi$id <- as.integer(as.character(epi$id))
R> epidat <- as.matrix(epi[c("id", "time.R", "period", "time.I")])
R> library("EpiILMCT")
R> epi <- as.epidat(type = "SIR", kerneltype = "distance",
+ inf.time = epidat[, 4], rem.time = epidat[, 2],
+ id.individual = epidat[, 1], location = loc)

The object epi of class ‘datagen’ can be now used in the EpiILMCT package using the model
given in Equation 2 without covariates through the following code:

R> set.seed(101)
R> sus.par <- list(NULL)
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R> sus.par[[1]] <- list(0.1, c("gamma", 1, 0.001, 0.005))
R> sus.par[[2]] <- matrix(rep(1, length(epi$epidat[, 1])), ncol = 1)
R> kernel <- list(0.1, c("gamma", 1, 0.001, 0.1))
R> spark <- list(0.1, c("gamma", 1, 0.001, 0.05))
R> mcmc1 <- epictmcmc(object = epi, distancekernel = "powerlaw",
+ datatype = "known epidemic", nsim = 50000, control.sus = sus.par,
+ kernel.par = kernel, spark.par = spark)

We include the spark term here to best model the endemic component used in the twinSIR
model. The inclusion of the spark term also allows for the fact that there are no infectious
individuals during times intervals (BLOCK) of the epidemic. The infection of individuals in
these periods is captured by the endemic part in twinSIR function.
Without incorporating the spark term in the epictmcmc function, a zero likelihood will result,
preventing the successful fitting of the model to the data. To get the output estimates of the
model parameters, we used the S3 summary method for ‘epictmcmc’ objects as follows:

R> summary(mcmc1, start = 1000)

*********************************************************
Model: SIR distance-based continuous-time ILM
Method: Markov chain Monte Carlo (MCMC)
Data assumption: fully observed epidemic
number.chains : 1 chains
number.iteration : 49000 iterations
number.parameter : 3 parameters
*********************************************************
1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
Mean SD Naive SE Time-series SE

Alpha_s[1] 0.00889042 0.00110553 4.99425e-06 1.54972e-05
Spark 0.00778819 0.00436839 1.97342e-05 6.85098e-05
Spatial parameter 0.94175614 0.18258926 8.24846e-04 3.82173e-03
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
Alpha_s[1] 0.00686125 0.00811098 0.00884201 0.00962789 0.0111386
Spark 0.00131269 0.00452088 0.00718377 0.01034424 0.0180864
Spatial parameter 0.54032375 0.82833931 0.95593444 1.07000331 1.2615483
3. Empirical mean, standard deviation, and quantiles for the log likelihood,

Mean SD Naive SE Time-series SE
-2.30176e+02 1.23456e+00 5.57714e-03 2.00104e-02

2.5% 25% 50% 75% 97.5%
-233.367 -230.757 -229.854 -229.263 -228.752
4. acceptance.rate :

Alpha_s[1] Spark Spatial parameter
0.253945 0.169543 0.810156

We also demonstrate the modeling of these data using twinSIR function with no endemic
covariates. However, a baseline term (baseline hazard rate) will be included in this case
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in the endemic component to represent the background rate of infection in the population,
as explained in the note Section in help("twinSIR", package = "surveillance"). The
following code illustrates the use of twinSIR in analyzing this data set.

R> fit1 <- twinSIR( ~ B1 + B2, data = fooepidata)
R> summary(fit1)

Call:
twinSIR(formula = ~B1 + B2, data = fooepidata)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
B1 0.023960 0.004208 5.693 1.25e-08 ***
B2 0.003395 0.001119 3.034 0.00241 **
cox(logbaseline) -6.010580 0.659257 -9.117 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total number of infections: 88
One-sided AIC: 474.05
Log-likelihood: -235.2
Number of log-likelihood evaluations: 26

The posterior means of the ILM parameters (α, β) are 0.009 and 0.945, respectively. Figure 14
shows the ILM power-law distance kernel function under the posterior mean, along with the
distance function suggested by the MLEs of the model parameters from the twinSIR analysis.
We can see broad agreement, although the step function assumption of the twinSIR seems
less reasonable than the continuous decay of the ILM kernel for short distances (less than one
distance unit).

C. R code to implement ring-based control strategy
Here, we illustrate the use of the EpiILMCT package in testing the efficacy of a ring-based
control strategy for mitigating the spread of disease. We consider an example in which an
infectious disease is transmitted between 625 individuals located in a square area of 50×50
units. These individuals could be thought to represent farms or trees, say. We implement
control measures upon all individuals within a circle of r radius of newly infected individuals.
This control strategy essentially places these individuals in the removed set. These measures
could be thought to represent vaccination or quarantine, but here we assume it is a culling
strategy.
To illustrate we first simulate the XY coordinates of individuals from a uniform distribution.
This is done as follows:

R> library("EpiILMCT")
R> set.seed(101)
R> n <- 625
R> loc <- cbind(runif(n, 0, 50), runif(n, 0, 50))
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Figure 14: The marginal posterior distribution of the distance kernels. Black line represents
the spatial terms of the surveillance package, and red line represents the distance kernel
function of the EpiILMCT package.

We assume that the epidemic starts with an initial infected individual k = 386, who has an
infection time I1 = 0 and an infectious period of 3 days. We then implement the culling policy
within an epidemic simulation study using the datagen command to simulate epidemics in
a specified small time steps (e.g., a day at a time). This is done by setting the argument
tmax, and starting each new simulation step with initially infected and removed individuals
set according to the epidemic history, and the culling policy implemented at the current time
step. This is done using the initialepi option. We build a control.strategy function to
implement the above culling policy using an SIR distance-based continuous time ILM with
power-law kernel and no covariates, in which the infectivity rate given in Equation 2 becomes:

λj(t) =

α ∑
i∈I(t)

d−βij

 , α, β > 0,

with infectious periods assumed to follow a gamma distribution such that γi ∼ Γ(6, δ).

R> control.strategy <- function(init.epi, location, inf.time, par.sus,
+ par.ker, delt, cov.sus = NULL, radius) {
+ n <- length(location[, 1])
+ tss <- init.epi
+ cov1 <- cov.sus
+ dis <- as.matrix(dist(location))
+ for (i in 2:length(inf.time)) {
+ mn <- sum(tss[, 4] <= inf.time[i-1])
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+ initial1 <- matrix(tss[1:mn,], ncol = 4, nrow = mn)
+ tss1 <- datagen(type = "SIR", kerneltype = "distance",
+ kernelmatrix = location, distancekernel = "powerlaw",
+ initialepi = initial1, tmax = inf.time[i], suspar = par.sus,
+ transpar = NULL, kernel.par = par.ker, delta = delt,
+ transcov = NULL, suscov = cov1)
+ tss <- tss1$epidat
+ newlyinfected <- tss[which(tss[, 4] > inf.time[i-1] &
+ tss[, 4] <= inf.time[i]), 1]
+ num.infected <- sum(tss[, 2] != Inf)
+ uninfected <- tss[(num.infected+1):n, 1]
+ for (j in 1:length(newlyinfected)) {
+ mk <- as.integer(which(dis[newlyinfected[j], uninfected] <
+ radius))
+ if (length(mk) > 0) {
+ cov1[uninfected[mk], ] = 0
+ }
+ }
+ }
+ list(tss1, cov1)
+ }

Let us assume we have estimates of the model parameters as α̂ = 1.5, β̂ = 4, and δ̂ = 2.
Using these estimates, we test the above function for eight values of the radius of the culling
policy, and obtain 32 replicated epidemics for each radius setting. The code to achieve this
is as follows:

R> id.init <- 386
R> inf.period.init <- 3
R> kl <- which(seq_len(625) != id.init)
R> init.epi <- rbind(c(386, inf.period.init, inf.period.init, 0),
+ cbind(kl, rep(Inf, 624), rep(0, 624), rep(Inf, 624)))
R> rr <- seq_len(8)
R> inf.time <- seq(0, 30, by = 1)
R> par.sus <- 1.5
R> par.ker <- 4.0
R> delt <- c(6, 2)
R> sus.cov <- matrix(rep(1, 625), ncol = 1)
R> ninfected <- matrix(0, ncol = 32, nrow = length(rr))
R> numb.culled <- matrix(0, ncol = 32, nrow = length(rr))
R> len.infection <- matrix(0, ncol = 32, nrow = length(rr))
R> for (i in 1:length(rr)) {
+ for (j in 1:32) {
+ epi.cont <- control.strategy(init.epi, location = loc, inf.time,
+ par.sus, par.ker, delt, cov.sus = sus.cov, radius = rr[i])
+ ninfected[i, j] <- sum(epi.cont[[1]]$epidat[, 2] != Inf)
+ numb.culled[i, j] <- n - apply(epi.cont[[2]], 2, sum)
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+ len.infection[i, j] <- max(epi.cont[[1]]$epidat[1:ninfected[i, j],
+ 2]) - min(epi.cont[[1]]$epidat[1:ninfected[i, j], 4])
+ }
+ }

The output of the above loops is an 8 × 32 matrices of the number of infected and culled
individuals and the length of epidemics for the radius set. We then use the function apply
from the base package (R Core Team 2021) to get the average of each summary at each radius,
and plot them versus radius using the following code:

R> plot(rr, apply(ninfected, 1, mean), type = "o", ylab = "Number of
+ individuals", xlab = "radius", ylim = c(0, n), pch = 19)
R> lines(rr, apply(numb.culled, 1, mean), type = "o", pch = 19, col = "red")
R> legend("topright", c("Average number of infected individuals", "Average
+ number of culled individuals"), col = c("black", "red"), lty = c(1, 1),
+ pch = c(19, 19))
R> plot(rr, apply(len.infection, 1, mean), type = "o", ylab = "Length of
+ epidemic", xlab = "radius", pch = 19)

Figure 15 shows the average number of infected and culled individuals at each radius. We can
see that the number of infected individuals tends to decrease dramatically as the radius of
the ring increases, levelling off once we have to get around r = 5 units. However, the number
of culled individuals also increases quite dramatically with increasing the radius of the ring,
also levelling off around r = 7 units. We can also see from Figure 16 increasing the radius r
tends to decrease the length of the epidemic.
Of course, the control.strategy function can be easily modified to impose other control
strategies. For example, instead of culling within a time step as in the case here, we could
allow for (stochastic) delays between infection and culling for surrounding individuals, or
allow for only a probability of failure regarding each cull or vaccination event.

D. Comparing computation times to run different models
Here, we compare the effect of population size and the number of infected individuals on
the computation time for running the epictmcmc function. We considered five population
sizes (50, 250, 450, 650 and 850 individuals), and generated three different epidemics using
SIR distance-based continuous time ILMs, via the datagen function, resulting in different
numbers of infected individuals. These epidemics are categorized into three levels as: small,
medium, large defined as epidemics in which the number of infected individuals are less than
25%, between 25% and 50%, or greater than 50% of the population, respectively. Then, we
run the epictmcmc three times assuming datatype = "known epidemic", "known removal"
with single chain, and "known removal" with three chains, updating the infection times in
blocks of size five.
Figure 17 shows the computation times in hours for running the epictmcmc function on the
above epidemics to obtain 150,000 MCMC samples. The computation times were approxi-
mated on the basis of running ten iterations, as our concern here is just to see to estimate
the effect of population size and number of infected individuals upon computation time. We
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Figure 15: The average number of infected (black) and culled (red) individuals at each radius.
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Figure 17: Approximate computation times of running the epictmcmc function for fitting
different epidemic data sets, with different population sizes and number of infected individ-
uals, using SIR distance-based continuous time ILMs under three scenarios: fully observed
epidemics, partially observed epidemics with a single MCMC chain, and three MCMC chains.

observed strong correlation between the population sizes and number of infected individuals
in all of the considered analysis scenarios.

We see that under the fully observed epidemic assumption (datatype = "known epidemic"),
the function epictmcmc can be performed in reasonable time for all scenarios. However,
computation time becomes an issue for partially observed epidemics (datatype= "known
removal") when updating the infection times in turn in a single chain. Larger epidemics
with larger population sizes were estimated to take more than four weeks to obtain 150,000
MCMC samples. Computation time is greatly reduced by running epictmcmc over multiple
chains and updating infection times in blocks of size five. For example, with an epidemic in a
population of size was 850 individuals, and almost all of individuals infected, the computation
time was reduced from approximately 1548 hours (≈65 days) to 157 hours (≈7 days).
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