
JSS Journal of Statistical Software
June 2021, Volume 98, Issue 11. doi: 10.18637/jss.v098.i11

cutpointr: Improved Estimation and Validation of
Optimal Cutpoints in R

Christian Thiele
University of Applied
Sciences Bielefeld

Gerrit Hirschfeld
University of Applied
Sciences Bielefeld

Abstract

“Optimal cutpoints” for binary classification tasks are often established by testing
which cutpoint yields the best discrimination, for example the Youden index, in a specific
sample. This results in “optimal” cutpoints that are highly variable and systematically
overestimate the out-of-sample performance. To address these concerns, the cutpointr
package offers robust methods for estimating optimal cutpoints and the out-of-sample
performance. The robust methods include bootstrapping and smoothing based on kernel
estimation, generalized additive models, smoothing splines, and local regression. These
methods can be applied to a wide range of binary-classification and cost-based metrics.
cutpointr also provides mechanisms to utilize user-defined metrics and estimation meth-
ods. The package has capabilities for parallelization of the bootstrapping, including re-
producible random number generation. Furthermore, it is pipe-friendly, for example for
compatibility with functions from tidyverse. Various functions for plotting receiver op-
erating characteristic curves, precision recall graphs, bootstrap results and other repre-
sentations of the data are included. The package contains example data from a study on
psychological characteristics and suicide attempts suitable for applying binary classifica-
tion algorithms.

Keywords: optimal cutpoint, ROC curve, bootstrap, R.

1. Introduction

In many applied fields “optimal cutpoints” are used to aid the interpretation of continuous
test results or measurements. In medicine, optimal cutpoints are used to determine the level
of a laboratory marker at which specific interventions should be triggered. In psychology,
optimal cutpoints are used to screen for disorders, for example for depression or suicidality.
Given the importance of cutpoints, a lot of research is focused on empirically determining

https://doi.org/10.18637/jss.v098.i11
https://orcid.org/0000-0002-1156-5117
https://orcid.org/0000-0003-2143-4564

2 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

“optimal cutpoints”. Usually, applied researchers collect data both on the continuous measure
for which a cutpoint is being developed and on a reference test (gold standard). An optimal
cutpoint is then determined by computing a measure of discriminative ability at all cutpoints
and choosing the cutpoint as “optimal” that optimizes this measure in the sample.
Unfortunately, cutpoints that are determined this way are highly sample-specific and over-
estimate the diagnostic utility of the measure. Altman, Lausen, Sauerbrei, and Schumacher
(1994) observed more than twenty years ago that different studies which empirically de-
termined optimal cutpoints for prognostic markers in breast cancer yield highly conflicting
optimal cutpoints. Furthermore, the post-hoc choice of optimal cutpoints introduces a posi-
tive bias to the estimated discriminative ability (Ewald 2006; Hirschfeld and do Brasil 2014).
To overcome the former problem, more robust methods to estimate optimal cutpoints have
been developed (Fluss, Faraggi, and Reiser 2005; Leeflang, Moons, Reitsma, and Zwinderman
2008). In parallel, methods to estimate the out-of-sample performance of predictive models
have been developed but have not been applied to the estimation of cutpoint performance.
cutpointr is an R (R Core Team 2021) package that was developed to make robust estimation
procedures for optimal cutpoints and their out-of-sample performance more accessible (see
Section 2 and Section 3). Package cutpointr (Thiele 2021) is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=cutpointr.
Furthermore, cutpointr was developed with three design goals in mind. First, to make com-
putationally demanding methods such as bootstrapping feasible, we wanted to improve the
performance and scalability of optimal cutpoint procedures. With larger data (say, more
than 1 million observations) some of the existing solutions and packages are prohibitively
slow or not memory-efficient enough. The cutpointr package aims at better performance
with larger data. The included bootstrapping routine can easily be run in parallel by set-
ting the allowParallel parameter to TRUE and registering a parallel backend before running
cutpointr. Second, for convenient integration into workflows that employ functions from the
“tidyverse” cutpointr is pipe-friendly by making data the first argument and providing the
output as a data frame which can be easily piped to further functions. The output is tidy
(Wickham 2014) in the sense that every column represents a variable and every observation
is a row. It may on the other hand be untidy in the sense that it contains some columns
that are observations on the level of the model or data set and thus constant over subgroups
(e.g., AUC), if subgroups are specified. The original data, the receiver operating characteristic
(ROC) curve and, if desired, the results of the bootstrapping are returned in nested tibbles.
Third, cutpointr tries to offer an intuitive interface. For example, it allows for control over
the positive and negative classes as well as the direction that defines whether higher or lower
values of the predictor stand for the positive class. If these are left out, cutpointr will at-
tempt to determine these parameters automatically and use sensible defaults. The package
should be applicable in a wide variety of tasks and tries to avoid focusing on a specific field
of study, for example by a wording of the documentation and function arguments that is as
general as possible.
At present, several other packages for the R environment for statistical computing and graph-
ics exist that calculate optimal cutpoints or ROC curves. Most notably, OptimalCutpoints
(López-Ratón, Rodríguez-Álvarez, Cadarso-Suárez, and Gude-Sampedro 2014) was specifi-
cally designed to calculate cutpoints. While this package implements a wide range of metrics
for diagnostic utility, it lacks the ability for robust cutpoint estimation and out-of-sample
validation. Additionally, GsymPoint (López-Ratón, Molanes-López, Letón, and Cadarso-

https://CRAN.R-project.org/package=cutpointr

Journal of Statistical Software 3

Cutpoint Robust Direction ReturnsPackage optimization cutpoints Settings Behavior Automatic midpointsavailable

cutpointr yes yes >= >= yes selectable<= <=

OptimalCutpoints yes no > > no no< <

pROC yes no > > yes yes< <

ROCR no no none > no no

ThresholdROC yes yes none >= yes no<=

Table 1: Features, settings and actual behavior regarding direction and midpoints of relevant
packages for ROC curve analysis or cutpoint optimization.

Suárez 2017) provides alternative estimation procedures for the generalized symmetry point
and ThresholdROC (Perez-Jaume, Skaltsa, Pallarès, and Carrasco 2017) offers several opti-
mization methods for application on two- and three-class problems. ROCR (Sing, Sander,
Beerenwinkel, and Lengauer 2005), that was developed for ROC curve analysis, can also be
used to calculate optimal cutpoints after writing short functions that search for the optimal
metric value and return the corresponding cutpoint. pROC (Robin, Turck, Hainard, Tib-
erti, Lisacek, Sanchez, and Müller 2011) offers cutpoint estimation in terms of two metrics
including weighting of false positives and false negatives. Most of these packages do not offer
functions that perform robust estimation of optimal cutpoints or provide procedures to assess
the variability and out-of-sample performance of the optimal cutpoints.
Furthermore, the packages differ widely in their choice of and control over the specifics of the
cutpoint calculation, such as the direction and the use of midpoints (Table 1). Only some
packages offer the choice of the direction, that is whether higher or lower values of the predictor
stand for the positive or negative class, or in other words the direction of the ROC curve. Some
packages allow for the automatic detection of a plausible direction. All of the packages except
for cutpointr make the choice of whether or not to use midpoints implicitly. These seemingly
minute choices become relevant when small datasets are analyzed (simulation results can be
found in the package vignette, see vignette("cutpointr")). cutpointr supports either
choosing the direction of the ROC curve manually or detecting it automatically. Whether or
not midpoints are returned can be specified. The rest of the article is structured as follows.
In Section 2 we describe the different methods to determine optimal cutpoints, focusing on
both the metrics used to determine cutpoints, for example the Youden index or cost based
methods, as well as the methods to select a cutpoint, for example LOESS-based smoothing
or bootstrapping. In Section 3 we describe the bootstrapping method to estimate the out-
of sample performance and the variability of the cutpoints. In Section 4 we compare the
performance of different estimation methods on simulated data. In Section 5 we show how
these methods are implemented in cutpointr. In Section 6 we show how these can be used

4 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

to analyze an example dataset on optimal cutpoints for suicide. In Section 7 we offer some
concluding remarks.

2. Estimating optimal cutpoints
Optimal cutpoints are estimated by choosing a specific metric that is being used to quantify
the discriminatory ability and a specific method to select a cutpoint as optimal based on
this metric. The most widely-used combination of these two is to use the Youden index as
a metric and to select the cutpoint as optimal that empirically maximizes the Youden index
in-sample. In the following, we discuss several alternative metrics and methods. While the
choice of metrics has received ample attention, the methods to determine optimal cutpoints
have been largely neglected.

2.1. Metrics to quantify discriminatory ability

Most of the metrics to assess the discriminatory ability of a cutpoint rely on the elements of
the 2 × 2 confusion matrix, that is true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). Sensitivity is defined as (TP) divided by the total number of
positives Se = TP

TP+FN . Specificity is defined as TN divided by the total number of negatives
Sp = TN

TN+FP . When searching over different cutpoints, there is a trade-off between Se and
Sp and thus the researcher often tries to optimize both of these measures simultaneously.
This can, for example, be achieved by maximizing the Youden- or J-Index (available in the
function youden), that is Se+Sp− 1. Alternatively, Se+Sp can be maximized (available in
the function sum_sens_spec) which leads to the selection of the same cutpoint. As a way to
balance Se and Sp the absolute difference |Se−Sp| can be minimized (available in the function
abs_d_sens_spec). An alternative to Se and Sp are the positive and negative predictive
values. The positive predictive value is defined as PPV = TP

TP+FP and the negative predictive
value as NPV = TN

TN+FN . Again, metrics such as the sum of PPV and NPV (available in the
function sum_ppv_npv) and the absolute difference between the two (available in the function
abs_d_ppv_npv) can be optimized.
Sometimes it may be useful to optimize Se for a desired minimum value of Sp or the other
way around. For example, to restrict misclassification of negative cases in a clinical setting,
the cutpoint of a test may be expected to satisfy Sp > 0.9 while maximizing Se. This
type of metric is implemented in sens_constrain and, more general and applicable for all
metric functions, in metric_constrain. These functions will return 0 at cutpoints where the
constraint is not met. In a similar vein, different costs can be assigned to FP and FN via
misclassification_cost.
Furthermore, cutpointr includes some metrics that are common in document retrieval and
some utility metrics, for example tp for the number of true positives, that are mainly useful
in plotting. See Table 2 for a complete overview of included metrics.
Since many metrics rely on Se and Sp, it can be informative to inspect the ROC curve,
which is defined as the plot of 1− Sp on the x-axis and Se on the y-axis or analogously the
false positive rate on the x-axis and the true positive rate on the y-axis. Usually, this plot
is displayed on the unit square. All points on the ROC curve correspond to a combination
of Se and Sp and thus to a combination of TP, FP, TN and FN depending on a cutpoint.

Journal of Statistical Software 5

Metric Description
tp True Positives: TP
fp False Positives: FP
tn True Negatives: TN
fn False Negatives: FN
tpr True Positive Rate: TPR
fpr False Positive Rate: FPR
tnr True Negative Rate: TNR
fnr False Negative Rate: FNR
plr Positive Likelihood Ratio: PLR = TPR/FPR
nlr Negative Likelihood Ratio: NLR = FNR/TNR
accuracy Fraction correctly classified: TP+TN

TP+FP+TN+FN
sensitivity or recall Sensitivity: Se = TP/(TP + FN)
specificity Specificity: Sp = TN/(TN + FP)
sum_sens_spec Sum of sensitivity and specificity: Se+ Sp
youden Youden- or J-Index: Se+ Sp− 1
abs_d_sens_spec Absolute difference between sensitivity and specificity:

|Se− Sp|
prod_sens_spec Product of sensitivity and specificity: Se · Sp
ppv or precision Positive Predictive Value: PPV = TP/(TP + FP)
npv Negative Predictive Value: NPV = TN/(TN + FN)
sum_ppv_npv Sum of Positive Predictive Value and Negative Predictive

Value: PPV + NPV
abs_d_ppv_npv Absolute difference between PPV and NPV: |PPV −NPV |
prod_ppv_npv Product of PPV and NPV: PPV ·NPV
metric_constrain Value of a selected metric when constrained by another

metric, i.e., main_metric = 0 if constrain_metric <
min_constrain

sens_constrain Sensitivity constrained by specificity:
Se = 0 if Sp < min_constrain

spec_constrain Specificity constrained by sensitivity:
Sp = 0 if Se < min_constrain

acc_constrain Accuracy constrained by sensitivity:
Acc = 0 if Se < min_constrain

roc01 Distance of the ROC curve to the point of perfect discrimina-
tion (0, 1):

√
(1− Se)2 + (1− Sp)2

F1_score F1-Score: (2 · TP)/(2 · TP + FP + FN)
cohens_kappa Cohen’s Kappa
p_chisquared p value of a χ2-test on the confusion matrix
odds_ratio Odds Ratio: TP/FP

FN/TN
risk_ratio Risk Ratio: TP

TP+FN /
FP

FP+TN
misclassification_cost Misclassification Cost: costFP · FP + costFN · FN
total_utility Total Utility:

utilityTP · TP + utilityTN · TN − costFP · FP − costFN · FN
false_omission_rate False Omission Rate: FN/(TN + FN)
false_discovery_rate False Discovery Rate: FP/(TP + FP)

Table 2: Metrics in cutpointr.

6 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

That way, any metric that is calculated from these values can be calculated for all points on
the ROC curve and it is straightforward to display the chosen cutpoint on the ROC curve.
Since the ROC curve is the visualization of a binary classification depending on possible cutoff
values to achieve that classification, it only depends on the ranking of the predictions and is
insensitive to monotone transformations of those values.

2.2. Methods to select optimal cutpoints
Most of the methods to estimate optimal cutpoints have been developed using the Youden
index as metric (Fluss et al. 2005; Hirschfeld and do Brasil 2014; Leeflang et al. 2008).
Regarding these methods and the ones that are included in cutpointr, the nonparametric
empirical method, local regression (LOESS) smoothing, spline smoothing, generalized additive
model (GAM) smoothing and bootstrapping can be applied to other metrics as well, while
the normal method and kernel-based smoothing are specific to the estimation of the Youden
index. The former methods rely on optimizing the function of metric value per cutpoint,
denote that function by m(c). The nonparametric empirical method picks the cutpoint that
yields the optimal metric value in-sample, the smoothing methods (LOESS, spline smoothing
and GAM) do so after smoothing m(c).
Since some of the methods do not simply select a cutpoint from the observed predictor
values by optimizing m(c), it is questionable which values for Se and Sp should be reported.
However, since there exist several methods that do not select cutpoints from the available
observations and in order to unify the reporting of metrics for these methods, cutpointr reports
all standard metrics, for example Se and Sp, based on the unsmoothed ROC curve. The main
metric is reported after smoothing and prefixed according to the applied method function.
For example, a method may smooth m(c) using a GAM and select a cutpoint that leads to a
metric value of Se+Sp = 1.7 after smoothing, which will be returned in gam_sum_sens_spec.
When looking up the corresponding point on the unsmoothed ROC curve, that cutpoint may
lead to Se = 0.8 and Sp = 0.75. The latter values will be returned in sensitivity and
specificity. Additional metrics based on the unsmoothed ROC curve can be added with
add_metric. If estimates of the variability of the metrics are sought, the user is referred to
the available bootstrapping routine that will be introduced later. If a method is superior, this
should lead to a better in- and out-of-sample performance in the bootstrap validation.

Nonparametric empirical method
The most simple method to optimize a metric is the search over all cutpoints and picking the
cutpoint that yields the optimal metric value in-sample, optimizing m(c). This is equivalent
to selecting a cutpoint based on analysis of the (unsmoothed) ROC curve. When applied
to the Youden index, this kind of empirical optimization has been shown to lead to highly
variable results as it is sensitive to randomness in the sample (Ewald 2006; Fluss et al. 2005;
Hirschfeld and do Brasil 2014; Leeflang et al. 2008).

Bootstrapping for cutpoint estimation
Aggregating bootstrapped results of multiple models (“bagging”) can substantially improve
performance of a wide range of models in regression as well as in classification tasks. In
the context of generating a numerical output, a number of bootstrap samples is drawn and
the final result is the average of all models that were fit to the bootstrap samples (Breiman

Journal of Statistical Software 7

1996). This principle is available for cutpoint estimation via the maximize_boot_metric and
minimize_boot_metric functions. If one of these functions is used as method, boot_cut
bootstrap samples are drawn and the nonparametric empirical method is carried out in each
one of them. Finally, a summary function, by default the mean, is applied to the optimal
cutpoints that were obtained in the bootstrap samples and returned as the optimal cutpoint.
If bootstrap validation is run, i.e., if boot_runs is larger zero, an outer bootstrap will be exe-
cuted, so that boot_runs bootstrap samples are generated and each one is again bootstrapped
boot_cut times for the cutpoint estimation. This may lead to long run times, so activating
the built-in parallelization may be advisable. The advantages of the bootstrap method are
that it doesn’t have tuneable parameters, unlike for example the LOESS smoothing, that it
doesn’t rely on assumptions, unlike for example the normal method, and that it is applicable
to every metric that can be used with minimize_metric or maximize_metric, unlike the
kernel and normal methods. Furthermore, the bootstrapped cutpoints cannot be overfit by
running an excessive amount of repetitions (Breiman 2001).

Smoothing via generalized additive models

The function m(c) can be smoothed using generalized additive models (GAM) with smooth
terms. This is akin to robust ROC curve fitting in which a nonparametric curve is fit over
the empirical ROC curve. Subsequently, an estimate of the maximally obtainable sum of
Se and Sp can be obtained from that curve. Internally, gam from the mgcv package carries
out the smoothing which can be customized via the arguments formula and optimizer, see
help("gam", package = "mgcv"). Most importantly, the GAM can be specified by altering
the default formula, for example the smoothing function s can be configured to utilize cubic
regression splines ("cr") as the smooth term. The default GAM is of the form

mi ∼ f(ci) + εi

where m are the metric values per cutpoint c, f is a thin plate regression spline and ε is i.i.d.
N(0, σ2) (Wood 2006). An attractive feature of the GAM smoothing is that the default values
tend to work quite well, see Section 4, and usually require no tuning, eliminating researcher
degrees of freedom.

Spline smoothing

In the same fashionm(c) can be smoothed using smoothing splines which is implemented using
smooth.spline from the stats package in maximize_spline_metric and
minimize_spline_metric. The function to calculate the number of knots is by default equiv-
alent to the function from stats but alternatively the number of knots can be set manually
and also the other smoothing parameters of stats::smooth.spline can be set as desired.
For details see ?maximize_spline_metric. Spline smoothing finds a cubic spline g that
minimizes

n∑
1

(yi − g(xi))2 + λ

∫ +∞

−∞
[g′′(z)]2dz

where the smoothing parameter λ is a fixed tuning constant (Buja, Hastie, and Tibshirani
1989). That makes spline smoothing intuitively appealing, especially for data with a large
number of unique cutpoints, as the true m(c) should usually be expected to be quite smooth
in that case and large second derivatives can be directly penalized via λ. However, based on

8 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

our experience, there is no value of λ that can be generally recommended and thus it may
have to be tuned, preferably via a validation routine such as cross-validation or bootstrapping.
We assume that smoothing is most attractive for the aforementioned case of many unique
cutpoints in which a large smoothing parameter can be chosen, which is why in cutpointr
the smoothing parameter spar is by default set to 1. In our simulations, spline smoothing
represents an improvement over the nonparametric empirical method but seems to be inferior
to GAM smoothing or bootstrapping, see Section 4.

LOESS method

Additionally, LOESS can be used to smooth m(c). In simulation studies this procedure per-
formed favorably in comparison to the nonparametric empirical method when an automatic
LOESS smoothing was used (Leeflang et al. 2008) which is available in the loess.as func-
tion from the fANCOVA package (Wang 2020). Here, the smoothing parameter (span) is
automatically determined using a corrected Akaike information criterion (AICc). This is at-
tractive in the case of cutpoint selection since it is less susceptible to undersmoothing than
other methods (Hurvich, Simonoff, and Tsai 1998). However, based on our simulations, the
LOESS method for cutpoint selection with smoothing parameter selection based on AICc
still tends to undersmooth m(c). Importantly, the automatic smoothing is sensitive to the
number of unique cutpoints. Sparse data with a low number of possible cutpoints is often
smoothed appropriately while for example large samples from a normal distribution are of-
ten undersmoothed. In that scenario the automatically smoothed function tends to follow
m(c) quite closely which defies the purpose of the smoothing. Since there is no other rule
to apply for the selection of the optimal smoothing parameters, for example the degree of
the function, this has to be done by hand or by grid search and cross-validation if the au-
tomatic procedure leads to undesirable results. In cutpointr m(c) can be smoothed using
LOESS and automatic smoothing parameter selection via the minimize_loess_metric and
maximize_loess_metric method functions.

Parametric method assuming normality

In addition to these general methods, two methods to specifically estimate the Youden index
are included, the parametric normal method and a method based on kernel smoothing. The
normal method in oc_youden_normal is a parametric method for maximizing the Youden
index or analogously Se+Sp (Fluss et al. 2005). It relies on the assumption that the predictor
for both the negative and positive observations is normally distributed. In that case it can
be shown that

c∗ =
(µPσ2

N − µNσ2
P)− σNσP

√
(µN − µP)2 + (σ2

N − σ2
P) log(σ2

N/σ
2
P)

σ2
N − σ2

P

where the negative class is normally distributed with ∼ N(µN , σ2
N) and the positive class

independently normally distributed with ∼ N(µP , σ2
P) provides the optimal cutpoint c∗. If

σN and σP are equal, the expression can be simplified to c∗ = µN +µP
2 . The oc_youden_normal

method in cutpointr always assumes unequal standard deviations.

Journal of Statistical Software 9

Nonparametric kernel method

A nonparametric method to optimize the Youden index is the kernel method. Here, the
empirical distribution functions are smoothed using the Gaussian kernel functions

F̂N (t) = 1
n

n∑
i=1

Φ
(
t− yi
hy

)
and ĜP (t) = 1

m

m∑
i=1

Φ
(
t− xi
hx

)
for the negative and positive classes respectively. Following Silverman’s plug-in “rule of
thumb” the bandwidths are selected as hy = 0.9 ∗min{sy, iqry/1.34} ∗ n−0.2 and hx = 0.9 ∗
min{sx, iqrx/1.34} ∗ m−0.2 where s is the sample standard deviation and iqr is the inter
quartile range (Fluss et al. 2005).
It has been demonstrated that estimation of the area under the operating receiver charac-
teristic curve (AUC) is rather insensitive to the choice of the bandwidth procedure (Faraggi
and Reiser 2002). Indeed, as simulations have shown, the choices of the bandwidth and the
kernel function do not seem to exhibit a considerable influence on the variance or bias of the
estimated cutpoints (results not shown). Thus, the oc_youden_kernel function in cutpointr
uses a Gaussian kernel and the direct plug-in method for selecting the bandwidths. The kernel
smoothing is done via the bkde function from the KernSmooth package (Wand 2021).
Again, there is a way to calculate the Youden index from the results of this method (Fluss
et al. 2005) which is

Ĵ = maxc{F̂N (c)− ĜN (c)}

but as before we prefer to report all metrics based on applying the cutpoint that was estimated
using the kernel method to the unsmoothed ROC curve.

Manual, mean and median methods

Lastly, the functions oc_mean and oc_median pick the mean or median, respectively, as the
optimal cutpoint. These functions are mainly useful, if the performance of these methods
in the bootstrap validation is desired, perhaps as a benchmark. Via these functions, the
estimation of the mean or median can be carried out in every bootstrap sample to avoid
biasing the results by setting the cutpoint to the known values from the full sample. A fixed
cutpoint can be set via the oc_manual function.

3. Bootstrap estimates of performance
An important aspect to evaluating an optimal cutpoint is estimating its out-of-sample per-
formance. Popular validation methods include training/test splits, k-fold cross-validation,
and different variations of the bootstrap (Altman and Royston 2000; Arlot and Celisse 2010).
There have been numerous attempts at quantifying the bias and variance of validation meth-
ods and to improve existing methods. In general, most validation methods that rely on data
splitting and thus train a model on a subset of the original data are pessimistically biased,
e.g., underestimate accuracy or overestimate the root mean square error (RMSE) (Dougherty,
Sima, Hua, Hanczar, and Braga-Neto 2010). Some variants of the bootstrap try to allevi-
ate that bias, for example the .632 bootstrap that combines in- and out-of-bag estimations
of the performance (Efron and Tibshirani 1997). In general, the regular (or leave-one-out)
bootstrap is pessimistically biased. In comparison to k-fold cross-validation the bootstrap is

10 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

usually more pessimistically biased but offers a lower variance (Molinaro, Simon, and Pfeiffer
2005). All in all, it is a legitimate alternative to cross-validation or other splitting schemes
and may even be regarded as the superior method for internal validation (Steyerberg, Harrell,
Borsboom, Eijkemans, Vergouwe, and Habbema 2001). In cutpointr we prefer to be conser-
vative by using the regular leave-one-out bootstrap instead of attempting to correct for the
bias. For calculation of confidence intervals between 1000 and 2000 repeats of the bootstrap
are recommended (Carpenter and Bithell 2000).
The bootstrap routine proceeds as follows: A sample from the original data with the same
size as the original data is drawn with replacement. This represents the bootstrap or “in-
bag” sample. On average, a bootstrap sample contains 63.2% of all observations of the full
data set as some observations are drawn multiple times (Efron and Tibshirani 1997). The
cutpoint estimation is carried out on the in-bag sample and the obtained cutpoint is applied
to the in- and out-of-bag observations and TP, FP, TN and FN are recorded to obtain in-
and out-of-bag estimates of various performance metrics. The results are returned in the
boot column of the cutpointr object and can be summarized for example via the summary
or plot_metric_boot functions. In some plotting functions cutpointr refers to “in-sample”
data which is the complete data set in data, not the in-bag data. Whether a metric was
calculated on the in-bag or out-of-bag data is indicated by the suffix _b or _oob in the data
frame of bootstrap results.
As the cutpoint that was identified as optimal depends on the sample at hand, a researcher
might be interested in a measure of the variability of this cutpoint (Altman et al. 1994;
Hirschfeld and Thielsch 2015). Additionally, as was pointed out, different estimation proce-
dures, which are in the context of cutpointr comprised of the cutpoint estimation method
and possibly also the chosen metric, are likely to exhibit different amounts of variability. For
example, maximizing the odds ratio is likely to suffer from a larger variance than maximizing
the sum of Se and Sp. During bootstrapping, the optimal cutpoints on the in-bag samples
are recorded, returned in the boot column of the cutpointr object and their distribution can
be inspected via the summary or plot_cut_boot functions.

4. Performance of different cutpoint estimation methods
In order to compare the performance of the different estimation methods, we performed a
simulation study similar to the one by Fluss et al. (2005). In the present study we used the
aforementioned seven different methods (excluding the mean, median and manual methods)
to determine the optimal cutpoint for the Youden index. Specifically, we drew samples from
three types of distributions (normal, log-normal, and gamma) and at four different levels of
separation (Youden index values of 0.2, 0.4, 0.6 and 0.8). In the case of normally distributed
data the target separation was achieved by keeping the mean of the control group constant
at 100 and manipulating the mean of the experimental group (105.05, 110.49, 116.83 and
125.63). The standard deviation for both groups was constant at 10. In the case of log-
normally distributed data the target separation was achieved by keeping the mean of the
control group constant at 2.5 and manipulating the mean of the experimental group (2.76,
3.02, 3.34 and 3.78). The standard deviation for both groups was constant at 2.5. In the case
of gamma distributed data the target separation was achieved by keeping the rate parameter
of the control group constant at 0.5 and manipulating the rate parameter of the experimental
group (0.344, 0.233, 0.143, 0.072). The shape parameter for both groups was constant at 2.

Journal of Statistical Software 11

normal lognormal gamma
0.2

0.4
0.6

0.8

30 50 75 10
0

15
0

25
0

50
0

75
0

10
00 30 50 75 10
0

15
0

25
0

50
0

75
0

10
00 30 50 75 10
0

15
0

25
0

50
0

75
0

10
00

0.25

0.50

1.00

2.00

4.00
6.00

0.25

0.50

1.00

2.00

4.00
6.00

0.25

0.50

1.00

2.00

4.00
6.00

0.25

0.50

1.00

2.00

4.00
6.00

Sample Size (log scale)

M
ed

ia
n

A
bs

ol
ut

e
E

rr
or

 (
lo

g
sc

al
e)

Method
Bootstrap

Empirical

GAM

Kernel

LOESS

Parametric Normal

Spline

Figure 1: Comparative performance of cutpoint estimation methods on normal, lognormal
and gamma data.

In all scenarios the prevalence was held constant at 50% without loss of generalizability
(Leeflang et al. 2008). The overall sample sizes were 30, 50, 75, 100, 150, 250, 500, 750 and
1,000, resulting in 108 different scenarios. For each scenario 10.000 samples were generated.
In each sample we compared the optimal cutpoint identified by the different methods to the
true optimal cutpoint according to the scenario parameters. To describe the performance, we
calculated the median absolute error within the scenarios. Figure 1 shows the performance
of the different methods.

12 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

Mirroring earlier results (Fluss et al. 2005; Leeflang et al. 2008), the most efficient method to
estimate optimal cutpoints depends on the underlying distribution, sample size and level of
separation. When the underlying distributions are normal, the normal method and for small
samples bootstrapping yield the best results. However, the normal method gives erroneous
optimal cutpoints with lognormal and gamma distributions. The empirical and LOESS meth-
ods show the highest levels of error when the data is normally distributed. In that scenario,
the level of error of the empirical method with 1,000 observations is about as high as the
error of the normal method with 30 observations. In scenarios with non-normal distributions
either bootstrapping or GAM give the best results. Bootstrapping is better for small levels of
separation and small sample sizes while GAM outperforms all other methods for larger levels
of separation combined with larger sample sizes. While more work is needed to tease apart
the different conditions under which the individual methods are optimal, it seems that more
advanced methods are preferable to the empirical method (Fluss et al. 2005; Leeflang et al.
2008; Hirschfeld and do Brasil 2014).

5. Software

5.1. Overview of functions, classes and data

The package consists of several main functions. Some of these functions may serve as inputs
to other functions or may also be used individually, for example the cutpoint estimation
methods and roc.

Main functions

The main function of the package is cutpointr. There are two ways to invoke cutpointr.
First, the data can be supplied as a data frame in the data argument and the predictor,
outcome, and grouping variables then must be given in x, class, and subgroup. This in-
terface uses nonstandard evaluation via the rlang package (Henry and Wickham 2021). For
programming purposes, supplied variables can be unquoted using !!. Second, the data ar-
gument can be left as NULL and the predictor, outcome, and grouping variables then have
to be supplied as raw vectors of any suitable type. Further arguments control the choice
of estimation method, which metric shall be optimized, if bootstrapping should be run and
more. Arguments to these downstream functions are passed to ... directly in cutpointr.
Some methods are prefixed with oc_ to make them distinguishable from metrics, the max-
imization and minimization methods are not. The functions for calculating metrics and for
finding cutpoints can easily be user-defined. For example, the function that is supplied as the
metric argument should return a numeric vector, a matrix, or a data frame with one column.
If the column is named, the name will be included in the output and plots. The inputs are
vectors of TP, FP, TN and FN . See vignette("cutpointr") for more details on how to
write functions that are suitable inputs for method or metric. For a complete overview of
metrics included in cutpointr see Table 2.
The multi_cutpointr function is a wrapper that by default runs cutpointr using all numeric
columns in data as predictors, except for the class column, or using the columns in the x
argument. All other arguments are simply passed to cutpointr. The rows of the resulting
data frame represent the output of cutpointr per predictor variable. There is a summary

Journal of Statistical Software 13

Figure 2: Interplay of functions and classes in cutpointr.

method for objects of class ‘multi_cutpointr’, however the plotting functions do not support
‘multi_cutpointr’ objects.
Both cutpointr and multi_cutpointr return ROC curves. If bootstrapping was run, also
ROC curves based on the in- and out-of-bag observations are returned within the boot column.
Internally, the roc function is used which is also exported so that it can be used on its own
if only a ROC curve is desired. It returns the ROC curve as a data.frame with all unique
cutpoints and the associated numbers of correct and false classifications, the associated rates
and the obtained metric value in the column m as calculated using the function in the metric
argument. The results can be inspected for example with summary, plot or plot_cutpointr.
The latter function allows for flexibly plotting metrics per cutpoint or against each other,
including confidence intervals if bootstrapping was run.

Classes

The object returned by cutpointr is an object of the classes ‘cutpointr’, ‘tbl_df’, ‘tbl’,
and ‘data.frame’. It is returned and printed unaltered as a ‘tbl_df’ to make sure that the
output is comprehensible at a glance, clearly arranged, and also easy to pass to subsequent
functions. In addition to the model parameters and some metrics, the object also includes
data frames in list columns that contain the original data and the ROC curve. If a subgroup
was defined, the aforementioned data are split per subgroup and returned in the respective
rows. The ROC curve is returned as a nested data frame in the roc_curve column with

14 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

the metric at each cutpoint x.sorted in the m column. If bootstrapping was run, the boot
column contains a data frame with the bootstrap results. Each row represents one bootstrap
repetition. For each repetition, the AUC, the metric in metric, several other metrics, the
numbers of true or false classifications and the in- and out-of-bag ROC curves, again in nested
data frames, are returned. For all of these metrics cutpointr returns the in- and out-of-bag
value, as indicated by the suffix _b or _oob. The output of the summary method for cutpointr
objects is an object of the classes ‘summary_cutpointr’, ‘tbl_df’, ‘tbl’ and ‘data.frame’.
The object returned by multi_cutpointr is an object of the classes ‘multi_cutpointr’,
‘tbl_df’, ‘tbl’, and ‘data.frame’ that has a corresponding summary method, but no plotting
methods. The roc function also returns a ‘tbl_df’ that carries an additional ‘roc_cutpointr’
class.

Data
The data set suicide which is suitable for running binary classification tasks is included
in cutpointr. Various personality and clinical psychological characteristics of 532 partici-
pants were assessed as part of an online-study determining optimal cutpoints (Glischinski,
Teismann, Prinz, Gebauer, and Hirschfeld 2016). To identify persons at risk for attempting
suicide, various demographic and clinical characteristics were assessed. Depressive Symptom
Inventory - Suicidality Subscale (DSI-SS) sum scores and whether the subject had previously
attempted suicide were recorded. Two additional demographic variables (age and gender) are
also included to test estimation of different cutpoints per subgroup.

6. Example: Suicide dataset
To showcase the functionality, we’ll use the included suicide data set and calculate possible
cutpoints for the DSI-SS. To estimate a cutpoint maximizing Se + Sp, various in-sample
metrics, and the ROC curve cutpointr can be run with minimal inputs.

R> library("cutpointr")
R> opt_cut <- cutpointr(suicide, dsi, suicide, silent = TRUE)
R> opt_cut

A tibble: 1 x 16
direction optimal_cutpoint method sum_sens_spec acc sensitivity
<chr> <dbl> <chr> <dbl> <dbl> <dbl>

1 >= 2 maximize_metric 1.75179 0.864662 0.888889
specificity AUC pos_class neg_class prevalence outcome predictor

<dbl> <dbl> <fct> <fct> <dbl> <chr> <chr>
1 0.862903 0.923779 yes no 0.0676692 suicide dsi

data roc_curve boot
<list<df[,2]>> <list> <lgl>

1 [532 × 2] <tibble [13 × 10]> NA

The determined “optimal” cutpoint in this case is 2, thus all subjects with a score of at least 2
would be classified as positives, indicating a history of at least one suicide attempt. Based on
this sample, this leads to a sum of Se and Sp of 1.75. Furthermore, we receive outputs that

Journal of Statistical Software 15

are independent of the determined cutpoint such as the AUC, the prevalence, or the ROC
curve.
cutpointr makes assumptions about the direction of the dependency between class and x
based on the median, if direction and/or pos_class and neg_class are not specified. Thus,
the same result can be achieved by manually defining direction and the positive/negative
classes which is slightly faster:

R> cutpointr(suicide, dsi, suicide, direction = ">=", pos_class = "yes",
+ neg_class = "no", method = maximize_metric, metric = sum_sens_spec)

To receive additional descriptive statistics, summary can be run on the cutpointr object
(output omitted).

Reproducible bootstrapping and parallelization

If boot_runs is larger than zero, cutpointr will carry out the usual cutpoint calculation
on the full sample, just as before, and additionally on boot_runs bootstrap samples. The
bootstrapping can be parallelized by setting allowParallel = TRUE and starting a parallel
backend. Internally, the parallelization is carried out using foreach (Microsoft and Weston
2020; Kane, Emerson, and Weston 2013) and doRNG (Gaujoux 2020) for reproducible parallel
loops. An example of a suitable parallel backend is a SOCK cluster that can be started using
the snow package (Tierney, Rossini, and Li 2009). Reproducibility can be achieved by setting
a seed using set.seed, both in the case of sequential or parallel execution.

R> library("doSNOW")
R> library("tidyverse")
R> cl <- makeCluster(2)
R> registerDoSNOW(cl)
R> set.seed(100)
R> opt_cut_b <- cutpointr(suicide, dsi, suicide, boot_runs = 1000,
+ silent = TRUE, allowParallel = TRUE)
R> stopCluster(cl)
R> opt_cut_b %>% select(optimal_cutpoint, data, boot)

A tibble: 1 x 3
optimal_cutpoint data boot

<dbl> <list<df[,2]>> <list>
1 2 [532 × 2] <tibble [1,000 × 23]>

The returned object includes a nested data frame in the column boot that contains the optimal
cutpoint per bootstrap sample along with the metric calculated using the function in metric
and various additional metrics. The metrics are suffixed by _b to indicate in-bag results or
_oob to indicate out-of-bag results. Now we receive a larger summary and additional plots
upon applying summary and plot (see Figure 3).

R> summary(opt_cut_b)

16 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

Method: maximize_metric
Predictor: dsi
Outcome: suicide
Direction: >=
Nr. of bootstraps: 1000

AUC n n_pos n_neg
0.9238 532 36 496

optimal_cutpoint sum_sens_spec acc sensitivity specificity tp fn fp tn
2 1.7518 0.8647 0.8889 0.8629 32 4 68 428

Predictor summary:
Data Min. 5% 1st Qu. Median Mean 3rd Qu. 95% Max. SD NAs

Overall 0 0.00 0 0 0.9210526 1 5.00 11 1.852714 0
no 0 0.00 0 0 0.6330645 0 4.00 10 1.412225 0

yes 0 0.75 4 5 4.8888889 6 9.25 11 2.549821 0

Bootstrap summary:
Variable Min. 5% 1st Qu. Median Mean 3rd Qu. 95% Max. SD NAs

optimal_cutpoint 1.00 1.00 2.00 2.00 2.08 2.00 4.00 4.00 0.67 0
AUC_b 0.83 0.88 0.91 0.93 0.92 0.94 0.96 0.98 0.02 0

AUC_oob 0.80 0.87 0.90 0.92 0.92 0.95 0.97 0.99 0.03 0
sum_sens_spec_b 1.55 1.66 1.72 1.76 1.76 1.79 1.84 1.92 0.05 0

sum_sens_spec_oob 1.39 1.57 1.67 1.72 1.72 1.78 1.87 1.91 0.09 0
acc_b 0.72 0.78 0.85 0.87 0.86 0.88 0.90 0.94 0.03 0

acc_oob 0.70 0.76 0.85 0.86 0.85 0.88 0.90 0.93 0.04 0
sensitivity_b 0.66 0.81 0.86 0.90 0.90 0.94 0.97 1.00 0.05 0

sensitivity_oob 0.50 0.69 0.82 0.88 0.87 0.93 1.00 1.00 0.10 0
specificity_b 0.71 0.76 0.85 0.86 0.86 0.88 0.91 0.95 0.04 0

specificity_oob 0.69 0.75 0.84 0.86 0.85 0.88 0.91 0.95 0.04 0
cohens_kappa_b 0.17 0.28 0.37 0.41 0.41 0.46 0.52 0.64 0.07 0

cohens_kappa_oob 0.13 0.25 0.34 0.39 0.39 0.44 0.52 0.64 0.08 0

R> plot(opt_cut_b)

This allows us to form expectations about the performance on unseen data and to compare
these expectations to the in-sample performance. First, the cutpoints that are obtained via
the chosen method - maximizing the sum of sensitivity and specificity - are quite stable here.
In the majority of bootstrap samples (777 out of 1000 times) the chosen cutpoint is 2 as can
be estimated from the plot or simply by inspecting the results, for example using opt_cut_b
%>% select(boot) %>% unnest(boot) %>% count(optimal_cutpoint). 2 is also the cut-
point that was determined on the full sample. Second, the distribution of the out-of-bag
performance, namely Se + Sp, can be assessed from the plot. Summary statistics for the
in- and out-of-bag metrics are returned by the summary function, for example the first and
third quartiles of the out-of-bag values of Se+Sp are 1.67 and 1.78, respectively, which could
also be calculated with boot_ci(opt_cut_b, sum_sens_spec, in_bag = FALSE, alpha =

Journal of Statistical Software 17

no yes

0 3 6 9 12 0 3 6 9 12

0.0

2.5

5.0

7.5

0

100

200

300

value

co
un

t

optimal cutpoint and distribution by class

Independent variable

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

S
en

si
tiv

ity

ROC curve

0.0

0.5

1.0

1.5

2.0

1 2 3 4
optimal cutpoint

de
ns

ity

distribution of optimal cutpoints

Bootstrap

0

1

2

3

4

1.4 1.5 1.6 1.7 1.8 1.9
sum_sens_spec_oob

de
ns

ity
out−of−bag estimates

Bootstrap

Figure 3: Main plotting function of cutpointr, the top left showing the distribution of the
predictor values per class, the top right showing the ROC curve, the bottom left showing
the bootstrapped cutpoint variability, and the bottom right showing the distribution of the
out-of-bag metric values.

0.5). Furthermore, since both in- and out-of-bag results are returned, we can confirm the op-
timism of the in-sample performance estimation. The median of the in-bag metric is 1.76 while
the median of the out-of-bag metric is 1.72. The optimal cutpoint of 2 yields Se+ Sp = 1.75
on the full sample. The other metrics can be compared in a similar fashion. Third, to inspect
the in-sample fit, the chosen cutpoint is displayed on a histogram of the predictor per class
and on the ROC curve.
The individual plots can be reproduced using plot_x, plot_roc, plot_cut_boot and
plot_metric_boot. Another way of inspecting the selection of the optimal cutpoint is to
plot all possible cutpoints along with the corresponding metric values. This can be achieved
using the plot_metric function which also plots bootstrapped confidence intervals of the
in-sample metric at each cutpoint, if bootstrapping was run (see Figure 4).

18 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

1.0

1.2

1.4

1.6

1.8

0 3 6 9
Cutpoint

S
en

si
tiv

ity
 +

 S
pe

ci
fic

ity
in−sample results

Metric values by cutpoint value

Figure 4: Values of the metric function per cutpoint with 95% bootstrap confidence interval.

R> plot_metric(opt_cut_b, conf_lvl = 0.95) +
+ ylab("Sensitivity + Specificity") + theme_bw()

Subgroups

If the data contains a grouping variable that is assumed to play a role in determining the
cutpoint, the complete selection and validation procedure can be conveniently run on separate
subgroups by specifying the subgroup argument.

R> set.seed(100)
R> opt_cut_b_g <- cutpointr(suicide, dsi, suicide, gender, boot_runs = 1000,
+ boot_stratify = TRUE, pos_class = "yes", direction = ">=")
R> opt_cut_b_g %>% select(subgroup, optimal_cutpoint, sum_sens_spec, data)

A tibble: 2 x 4
subgroup optimal_cutpoint sum_sens_spec data
<chr> <dbl> <dbl> <list<df[,2]>>

1 female 2 1.80812 [392 × 2]
2 male 3 1.62511 [140 × 2]

This time the output contains one row per subgroup. In this case, we receive different optimal
cutpoints for the female and male group. As we can also see from the in-sample results, the
performance seems to be superior in the female group. To confirm this, we can again inspect
the summary, particularly the bootstrap results. Output that is omitted for saving space is
indicated by [...].

Journal of Statistical Software 19

R> summary(opt_cut_b_g)

Method: maximize_metric
Predictor: dsi
Outcome: suicide
Direction: >=
Subgroups: female, male
Nr. of bootstraps: 1000

Subgroup: female

[...]
Bootstrap summary:

Variable Min. 5% 1st Qu. Median Mean 3rd Qu. 95% Max. SD NAs
[...]
sum_sens_spec_oob 1.34 1.61 1.73 1.78 1.78 1.86 1.90 1.95 0.09 0

[...]

Subgroup: male

[...]
Bootstrap summary:

Variable Min. 5% 1st Qu. Median Mean 3rd Qu. 95% Max. SD NAs
[...]
sum_sens_spec_oob 0.79 0.98 1.33 1.50 1.48 1.66 1.86 2.00 0.25 0

[...]

The out-of-bag value of the mean of the sum of sensitivity and specificity in the female group is
0.3 larger than in the male group. Additionally, the selected cutpoints by simple maximization
are less variable in the female group (see also Figure 5).

R> plot(opt_cut_b_g)

The higher predictive performance of the predictor variable in the female group is furthermore
emphasized by the larger AUC. The summary of AUC_b summarizes the AUC in all bootstrap
samples which can be informative for comparing the general predictive ability of the predictor
variable in all subgroups.
The observed variability of the selected cutpoints showcases the need for methods that
estimate optimal cutpoints with less variability. cutpointr offers maximize_boot_metric,
minimize_boot_metric, maximize_gam_metric, minimize_gam_metric,
maximize_spline_metric, minimize_spline_metric, maximize_loess_metric,
minimize_loess_metric, oc_youden_normal and oc_youden_kernel for that purpose. Since
we can not assume the predictor in the positive and negative class to be normally distributed,
we will use the kernel method for determining optimal cutpoints to maximize the Youden
index. In our experience, the kernel method is more suitable for data with a small number of
unique predictor values than the smoothing methods. The function oc_youden_kernel does
not return a metric value at the estimated cutpoint on its own, but instead the estimated

20 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

no yes

0 3 6 9 12 0 3 6 9 12
0

2

4

6

8

0

100

200

300

value

co
un

t

optimal cutpoint and distribution by class

Independent variable

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

S
en

si
tiv

ity

ROC curve

0

200

400

600

800

3 6 9
optimal cutpoint

co
un

t

distribution of optimal cutpoints

Bootstrap

0

1

2

3

4

5

0.75 1.00 1.25 1.50 1.75 2.00
sum_sens_spec_oob

de
ns

ity
out−of−bag estimates

Bootstrap

Subgroup

female

male

Figure 5: Main plotting function of cutpointr with subgroups showing the distribution of
the predictor values per class, the ROC curve, the bootstrapped cutpoint variability, and the
distribution of the out-of-bag metric values.

cutpoint is applied to the ROC curve, see Section 2.2. The function in metric is only used
for validation purposes so that we can compare these results to the previous ones.

R> set.seed(100)
R> opt_cut_k_b_g <- cutpointr(suicide, dsi, suicide, gender,
+ method = oc_youden_kernel, metric = sum_sens_spec, boot_runs = 1000)
R> summary(opt_cut_k_b_g)

Method: oc_youden_kernel
Predictor: dsi
Outcome: suicide
Direction: >=
Subgroups: female, male
Nr. of bootstraps: 1000

Subgroup: female

Journal of Statistical Software 21

[...]
Bootstrap summary:

Variable Min. 5% 1st Qu. Median Mean 3rd Qu. 95% Max. SD NAs
[...]
sum_sens_spec_oob 1.34 1.59 1.74 1.79 1.79 1.87 1.91 1.95 0.10 0

[...]

Subgroup: male

[...]
Bootstrap summary:

Variable Min. 5% 1st Qu. Median Mean 3rd Qu. 95% Max. SD NAs
[...]
sum_sens_spec_oob 0.73 0.97 1.38 1.54 1.54 1.79 1.86 2.00 0.26 0

[...]

The plot of opt_cut_k_b_g (not shown) reveals that the determined cutpoints are again much
less variable in the female than in the male group. Since the kernel method should exhibit a
lower variability than the previously used maximization method, we expect better validation
results in the bootstrapping. Indeed, in both subgroups Se+Sp in the out-of-bag observations
is slightly larger than before with the nonparametric empirical method (for example, the mean
of Se+ Sp in the male group is 1.54 here instead of 1.48).

Alternative metric function

Various alternative metric functions are available and in the example dataset it is reason-
able to assign different costs to false positives and false negatives. A false positive may
lead to someone being treated without an urgent need to do so, while a false negative
may lead to someone not being treated who may attempt suicide or suffer from a consid-
erably lower quality of life. cutpointr offers the possibility to define these separate costs
using the misclassification_cost metric. Since we want to minimize the costs we use the
minimize_metric function as method. If also separate utilities for true positives and true
negatives should be defined, we could use the total_utility function. In practice, the ratio
of the costs or the actual costs may be known exactly but for the purpose of this example we
assume that a false negative is ten times more costly than a false positive. Incidentally, this
leads to cutpoints that are comparable to the previously obtained ones.

R> set.seed(100)
R> opt_cut_c_g_b <- cutpointr(suicide, dsi, suicide, gender,
+ method = minimize_metric, metric = misclassification_cost, cost_fp = 1,
+ cost_fn = 10, pos_class = "yes", direction = ">=", boot_runs = 1000)
R> opt_cut_c_g_b %>%
+ select(subgroup, optimal_cutpoint, misclassification_cost)

A tibble: 2 x 3
subgroup optimal_cutpoint misclassification_cost

22 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

<chr> <dbl> <dbl>
1 female 2 63
2 male 3 40

6.1. Midpoints as optimal cutpoints

So far – which is the default in cutpointr – we have considered all unique values of the
predictor as possible cutpoints. An alternative could be to use a sequence of equidistant values
instead, for example in the preceding application all integers in [0, 12] and the additional
cutpoint Inf to allow for classifying all observations as negative. However, in the case of
very sparse data and small intervals between the defined candidate cutpoints (i.e., a “dense”
sequence like seq(0, 12, by = 0.01)) this leads to the uninformative evaluation of large
ranges of cutpoints that all result in the same metric value. A more elegant alternative, not
only for the case of sparse data, that is supported by cutpointr is the use of a mean value
of the optimal cutpoint and the next highest (if direction = ">=") or the next lowest (if
direction = "<=") predictor value in the data. The result is an optimal cutpoint that is
equal to the cutpoint that would be obtained using an infinitely dense sequence of candidate
cutpoints and is thus more computationally efficient. This behavior can be activated by
setting use_midpoints = TRUE. If we use this setting, we obtain an optimal cutpoint of 1.5
for the complete sample on the suicide data instead of 2 when maximizing Se + Sp. In
practice, this would not make a difference here as the DSI-SS takes on only integer values.
Furthermore, not using midpoints but the values found in the data may lead to a positive
or negative bias of the estimation procedure, depending on direction. For example, if
direction = ">=" and use_midpoints = FALSE, the returned optimal cutpoint represents
the highest possible cutpoint that leads to the optimal metric, because all values that are
below the optimal cutpoint and are larger than the next lowest value in the data result in
the same metric value. This bias only applies to estimation methods that use the ROC
curve for selecting a cutpoint and are mainly relevant with small and sparse data. See
vignette("cutpointr") for more details and some simulation results regarding the bias
and its reduction using midpoints.

6.2. Benchmarks

To offer a comparison to established solutions, cutpointr 1.1.0 was benchmarked against
optimal.cutpoints from OptimalCutpoints 1.1-4 (López-Ratón et al. 2014), thres2 from
ThresholdROC 2.8.3 (Perez-Jaume et al. 2017), a custom function using the functions
prediction and performance from ROCR 1.0-11 (Sing et al. 2005) and a custom func-
tion using roc from pROC 1.17.0.1(Robin et al. 2011) with the setting algo = 2 which is
the fastest one in this application. As the results will be identical for empirical maximization
and more advanced methods are not included in most other packages, the benchmark focuses
on a timing comparison. By generating data sets of different sizes, the benchmarks offer a
comparison of the scalability of the different solutions and their performance on small and
larger data.
The benchmarking was carried out unparallelized on Windows 10 v10.0.17763 Build 17763
with a 6-Core AMD CPU at 4GHz and 32GB of memory running R 4.1.0. The runtime of the
functions was assessed using microbenchmark (Mersmann 2019). The values of the predictor

Journal of Statistical Software 23

Cutpoint Estimation ROC curve calculation

1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07

1

2
3
5

10

25

100

250

1000

5000

10000

Sample Size (log scale)

M
ed

ia
n

T
im

e
(m

ill
is

ec
on

ds
, l

og
 s

ca
le

)

Solution cutpointr OptimalCutpoints pROC ROCR ThresholdROC

Figure 6: Benchmark results.

variable were drawn from a normal distribution, leading to a number of possible cutpoints
that is close or equal to the sample size. Accordingly, the search for an optimal cutpoint is
relatively demanding.
Benchmarks are run for sample sizes of 100, 1000, 10000, 1e5, 1e6, and 1e7. In small samples
cutpointr is slower than the other packages. This disadvantage seems to be caused mainly by
certain functions from tidyr that are used to nest the input data and produce the compact
output. The C++ functions in cutpointr lead to a sizable speedup with larger data, but some
are slightly slower with small data. While the speed disadvantage with small data should be
of low practical importance, since it usually amounts to only minimal delays, cutpointr scales
more favorably than the other solutions and is the fastest solution for sample sizes ≥ 1e5.
For data as large as 1e7 observations cutpointr takes about 50% of the runtime of ROCR
and pROC. This phenomenon is illustrated also by the performance in the task of ROC curve
calculation, in which roc from cutpointr has an advantage over ROCR and pROC again in
larger samples (see Figure 6), where it takes about 30% of the time that pROC and ROCR
need.
All of cutpointr, pROC and ROCR are generally faster than OptimalCutpoints and Thresh-
oldROC with the exception of small samples. OptimalCutpoints and ThresholdROC had to
be excluded from benchmarks with more than 10000 observations due to high memory re-
quirements. Upon inspection of the source code of the different packages, it seems that the
differences in speed and memory consumption are mainly due to the way the ROC curve is
built or whether a ROC curve is built at all. A search over the complete vector of predictor
values is obviously inefficient, so a search over the points on the ROC curve (which represent
combinations of Se and Sp for all unique predictor values) will offer a faster solution. For
building the ROC curve, a binary vector representing whether an observation is a TP can

24 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

be sorted according to the order of the predictor variable and cumulatively summed up. The
solutions by cutpointr and ROCR rely on this algorithm.

7. Conclusion
The aim in developing cutpointr was to make improved methods to estimate and validate
optimal cutpoints available. While there are already several packages that aid the calculation
of a wide range of metrics (López-Ratón et al. 2014, 2017; Perez-Jaume et al. 2017), some of
these rely on suboptimal procedures to estimate a cutpoint. Most use the empirical method,
which is prone to high variability an to overestimating the diagnostic utility of optimal cut-
points. cutpointr incorporates several methods to choose cutpoints that are not necessarily
optimal in the specific sample but perform relatively well in the population from which the
sample was drawn and are more stable.
It is beyond the scope of the present manuscript to determine the best estimation method,
since this will likely depend on characteristics of the study as well as the chosen metric.
However, we believe that cutpointr may prove useful for simulation studies because of its
scalability as well as applied research because of its ability to estimate the cutpoint variability
and out-of-sample performance.

Acknowledgments
The study was supported by the German Federal Ministry for Education and Research to
GH (BMBF #01EK1501).

References

Altman DG, Lausen B, Sauerbrei W, Schumacher M (1994). “Dangers of Using ‘Optimal’
Cutpoints in the Evaluation of Prognostic Factors.” JNCI: Journal of the National Cancer
Institute, 86(11), 829–835. doi:10.1093/jnci/86.11.829.

Altman DG, Royston P (2000). “What Do We Mean by Validating a Prognostic Model?”
Statistics in Medicine, 19(4), 453–473. doi:10.1002/(sici)1097-0258(20000229)19:
4<453::aid-sim350>3.0.co;2-5.

Arlot S, Celisse A (2010). “A Survey of Cross-Validation Procedures for Model Selection.”
Statistics Surveys, 4, 40–79. doi:10.1214/09-ss054.

Breiman L (1996). “Bagging Predictors.” Machine Learning, 24(2), 123–140. doi:10.1007/
bf00058655.

Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5–32. doi:10.1023/a:
1010933404324.

Buja A, Hastie T, Tibshirani R (1989). “Linear Smoothers and Additive Models.” The Annals
of Statistics, 17(2), 453–510. doi:10.1214/aos/1176347115.

https://doi.org/10.1093/jnci/86.11.829
https://doi.org/10.1002/(sici)1097-0258(20000229)19:4<453::aid-sim350>3.0.co;2-5
https://doi.org/10.1002/(sici)1097-0258(20000229)19:4<453::aid-sim350>3.0.co;2-5
https://doi.org/10.1214/09-ss054
https://doi.org/10.1007/bf00058655
https://doi.org/10.1007/bf00058655
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1214/aos/1176347115

Journal of Statistical Software 25

Carpenter J, Bithell J (2000). “Bootstrap Confidence Intervals: When, Which, What? A
Practical Guide for Medical Statisticians.” Statistics in Medicine, 19(9), 1141–1164. doi:
10.1002/(sici)1097-0258(20000515)19:9<1141::aid-sim479>3.0.co;2-f.

Dougherty ER, Sima C, Hua J, Hanczar B, Braga-Neto UM (2010). “Performance of Er-
ror Estimators for Classification.” Current Bioinformatics, 5(1), 53–67. doi:10.2174/
157489310790596385.

Efron B, Tibshirani R (1997). “Improvements on Cross-Validation: The .632+ Bootstrap
Method.” Journal of the American Statistical Association, 92(438), 548–560. doi:10.
2307/2965703.

Ewald B (2006). “Post Hoc Choice of Cut Points Introduced Bias to Diagnostic Research.”
Journal of Clinical Epidemiology, 59(8), 798–801. doi:10.1016/j.jclinepi.2005.11.
025.

Faraggi D, Reiser B (2002). “Estimation of the Area under the ROC Curve.” Statistics in
Medicine, 21(20), 3093–3106. doi:10.1002/sim.1228.

Fluss R, Faraggi D, Reiser B (2005). “Estimation of the Youden Index and Its Associated
Cutoff Point.” Biometrical Journal, 47(4), 458–472. doi:10.1002/bimj.200410135.

Gaujoux R (2020). doRNG: Generic Reproducible Parallel Backend for foreach Loops.
R package version 1.8.2, URL https://CRAN.R-project.org/package=doRNG.

Glischinski M, Teismann T, Prinz S, Gebauer JE, Hirschfeld G (2016). “Depressive Symptom
Inventory Suicidality Subscale: Optimal Cut Points for Clinical and Non-Clinical Samples.”
Clinical Psychology & Psychotherapy, 23(6), 543–549. doi:10.1002/cpp.2007.

Henry L, Wickham H (2021). rlang: Functions for Base Types and Core R and ‘Tidyverse’
Features. R package version 0.4.11, URL https://CRAN.R-project.org/package=rlang.

Hirschfeld G, do Brasil PEAA (2014). “A Simulation Study into the Performance of ‘Optimal’
Diagnostic Thresholds in the Population: ‘Large’ Effect Sizes Are Not Enough.” Journal
of Clinical Epidemiology, 67(4), 449–453. doi:10.1016/j.jclinepi.2013.07.018.

Hirschfeld G, Thielsch MT (2015). “Establishing Meaningful Cut Points for Online User
Ratings.” Ergonomics, 58(2), 310–320. doi:10.1080/00140139.2014.965228.

Hurvich CM, Simonoff JS, Tsai CL (1998). “Smoothing Parameter Selection in Nonpara-
metric Regression Using an Improved Akaike Information Criterion.” Journal of the Royal
Statistical Society B, 60(2), 271–293. doi:10.1111/1467-9868.00125.

Kane MJ, Emerson J, Weston S (2013). “Scalable Strategies for Computing with Massive
Data.” Journal of Statistical Software, 55(14), 1–19. doi:10.18637/jss.v055.i14.

Leeflang MMG, Moons KGM, Reitsma JB, Zwinderman AH (2008). “Bias in Sensitivity
and Specificity Caused by Data-Driven Selection of Optimal Cutoff Values: Mechanisms,
Magnitude, and Solutions.” Clinical Chemistry, 54(4), 729–738. doi:10.1373/clinchem.
2007.096032.

https://doi.org/10.1002/(sici)1097-0258(20000515)19:9<1141::aid-sim479>3.0.co;2-f
https://doi.org/10.1002/(sici)1097-0258(20000515)19:9<1141::aid-sim479>3.0.co;2-f
https://doi.org/10.2174/157489310790596385
https://doi.org/10.2174/157489310790596385
https://doi.org/10.2307/2965703
https://doi.org/10.2307/2965703
https://doi.org/10.1016/j.jclinepi.2005.11.025
https://doi.org/10.1016/j.jclinepi.2005.11.025
https://doi.org/10.1002/sim.1228
https://doi.org/10.1002/bimj.200410135
https://CRAN.R-project.org/package=doRNG
https://doi.org/10.1002/cpp.2007
https://CRAN.R-project.org/package=rlang
https://doi.org/10.1016/j.jclinepi.2013.07.018
https://doi.org/10.1080/00140139.2014.965228
https://doi.org/10.1111/1467-9868.00125
https://doi.org/10.18637/jss.v055.i14
https://doi.org/10.1373/clinchem.2007.096032
https://doi.org/10.1373/clinchem.2007.096032

26 cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R

López-Ratón M, Molanes-López EM, Letón E, Cadarso-Suárez C (2017). “GsymPoint: An
R Package to Estimate the Generalized Symmetry Point, an Optimal Cut-Off Point for
Binary Classification in Continuous Diagnostic Tests.” R Journal, 9(1), 262–283. doi:
10.32614/rj-2017-015.

López-Ratón M, Rodríguez-Álvarez MX, Cadarso-Suárez C, Gude-Sampedro F (2014). “Opti-
malCutpoints: An R Package for Selecting Optimal Cutpoints in Diagnostic Tests.” Journal
of Statistical Software, 61(8), 1–36. doi:10.18637/jss.v061.i08.

Mersmann O (2019). microbenchmark: Accurate Timing Functions. R package version 1.4-7,
URL https://CRAN.R-project.org/package=microbenchmark.

Microsoft, Weston S (2020). foreach: Provides Foreach Looping Construct. R package ver-
sion 1.5.1, URL https://CRAN.R-project.org/package=foreach.

Molinaro AM, Simon R, Pfeiffer RM (2005). “Prediction Error Estimation: A Com-
parison of Resampling Methods.” Bioinformatics, 21(15), 3301–3307. doi:10.1093/
bioinformatics/bti499.

Perez-Jaume S, Skaltsa K, Pallarès N, Carrasco JL (2017). “ThresholdROC: Optimum
Threshold Estimation Tools for Continuous Diagnostic Tests in R.” Journal of Statisti-
cal Software, 82(4), 1–21. doi:10.18637/jss.v082.i04.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011). “pROC:
An Open-Source Package for R and S+ to Analyze and Compare ROC Curves.” BMC
Bioinformatics, 12(1), 77. doi:10.1186/1471-2105-12-77.

Sing T, Sander O, Beerenwinkel N, Lengauer T (2005). “ROCR: Visualizing Classifier Perfor-
mance in R.” Bioinformatics, 21(20), 3940–3941. doi:10.1093/bioinformatics/bti623.

Steyerberg EW, Harrell FE, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF
(2001). “Internal Validation of Predictive Models: Efficiency of Some Procedures for
Logistic Regression Analysis.” Journal of Clinical Epidemiology, 54(8), 774–781. doi:
10.1016/s0895-4356(01)00341-9.

Thiele C (2021). cutpointr: Determine and Evaluate Optimal Cutpoints in Binary Classi-
fication Tasks. R package version 1.1.1, URL https://CRAN.R-project.org/package=
cutpointr.

Tierney L, Rossini AJ, Li N (2009). “snow: A Parallel Computing Framework for
the R System.” International Journal of Parallel Programming, 37(1), 78–90. doi:
10.1007/s10766-008-0077-2.

Wand MP (2021). KernSmooth: Functions for Kernel Smoothing Supporting Wand &
Jones (1995). R package version 2.23-20, URL https://CRAN.R-project.org/package=
KernSmooth.

Wang X (2020). fANCOVA: Nonparametric Analysis of Covariance. R package version 0.6-1,
URL https://CRAN.R-project.org/package=fANCOVA.

https://doi.org/10.32614/rj-2017-015
https://doi.org/10.32614/rj-2017-015
https://doi.org/10.18637/jss.v061.i08
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=foreach
https://doi.org/10.1093/bioinformatics/bti499
https://doi.org/10.1093/bioinformatics/bti499
https://doi.org/10.18637/jss.v082.i04
https://www.R-project.org/
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1093/bioinformatics/bti623
https://doi.org/10.1016/s0895-4356(01)00341-9
https://doi.org/10.1016/s0895-4356(01)00341-9
https://CRAN.R-project.org/package=cutpointr
https://CRAN.R-project.org/package=cutpointr
https://doi.org/10.1007/s10766-008-0077-2
https://doi.org/10.1007/s10766-008-0077-2
https://CRAN.R-project.org/package=KernSmooth
https://CRAN.R-project.org/package=KernSmooth
https://CRAN.R-project.org/package=fANCOVA

Journal of Statistical Software 27

Wickham H (2014). “Tidy Data.” Journal of Statistical Software, 59(10), 1–23. doi:10.
18637/jss.v059.i10.

Wood SN (2006). Generalized Additive Models: An Introduction with R. Chapman &
Hall/CRC, Boca Raton.

Affiliation:
Christian Thiele
University of Applied Sciences Bielefeld
Interaktion 1, 33619 Bielefeld, Germany
E-mail: christian.thiele@fh-bielefeld.de

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
June 2021, Volume 98, Issue 11 Submitted: 2018-04-19
doi:10.18637/jss.v098.i11 Accepted: 2020-01-10

https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
mailto:christian.thiele@fh-bielefeld.de
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v098.i11

	Introduction
	Estimating optimal cutpoints
	Metrics to quantify discriminatory ability
	Methods to select optimal cutpoints
	Nonparametric empirical method
	Bootstrapping for cutpoint estimation
	Smoothing via generalized additive models
	Spline smoothing
	LOESS method
	Parametric method assuming normality
	Nonparametric kernel method
	Manual, mean and median methods

	Bootstrap estimates of performance
	Performance of different cutpoint estimation methods
	Software
	Overview of functions, classes and data
	Main functions
	Classes
	Data

	Example: Suicide dataset
	Reproducible bootstrapping and parallelization
	Subgroups
	Alternative metric function

	Midpoints as optimal cutpoints
	Benchmarks

	Conclusion

