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Abstract

Gene expression data provide an abundant resource for inferring connections in gene
regulatory networks. While methodologies developed for this task have shown success, a
challenge remains in comparing the performance among methods. Gold-standard datasets
are scarce and limited in use. And while tools for simulating expression data are available,
they are not designed to resemble the data obtained from RNA-seq experiments. SeqNet is
an R package that provides tools for generating a rich variety of gene network structures
and simulating RNA-seq data from them. This produces in silico RNA-seq data for
benchmarking and assessing gene network inference methods. The package is available
from the Comprehensive R Archive Network at https://CRAN.R-project.org/package=
SeqNet and on GitHub at https://github.com/tgrimes/SeqNet.

Keywords: gene regulatory networks, co-expression methods, differential network analysis,
Gaussian graphical model.

1. Introduction
Gene regulatory networks (GRN) describe systems of gene-gene interactions that regulate gene
expression. Using high-throughput technologies to measure simultaneous gene expression is
an effective avenue for inferring these networks (Sanguinetti and Huynh-Thu 2019). Over the
past two decades, a vast collection of methods have been developed for reverse engineering
the network structure from gene expression data (Featherstone and Broadie 2002; Pihur et al.
2008; Pesonen et al. 2018). Many of these have been successful in identifying well-known
regulatory interactions and identifying new interactions that were later validated (Modi et al.
2011).
There are many excellent review articles on GRN inference methods. Barbosa et al. (2018)
summarizes modern methods from various frameworks, such as Bayesian networks, regression-
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based models, and information-theoretic approaches. Other reviews focus less on methods
and more on other aspects, such as the application of GRNs (Emmert-Streib et al. 2014),
the analysis workflow (Dong et al. 2015), the underlying principles and limitations (He et al.
2009), or their plausibility from a biological perspective (Wu and Chan 2011). Delagado and
Gómez-Vela (2019) provides a broad overview that covers many of these topics.
A major challenge remains in evaluating the strengths, weaknesses, and relative performance
of GRN inference methods. Assessing network inference is difficult because the true underlying
network of real expression data is unknown, and validating GRNs experimentally is not a
simple task (Walhout 2011; Emmert-Streib and Dehmer 2018). An early, organized effort
to address this problem was the Dialogue for Reverse Engineering Assessment and Methods
(DREAM; Stolovitzky et al. 2007; Marbach et al. 2010; Prill et al. 2010).
Two components are required for comparing methods: the network structure of a GRN,
and expression data generated from that network. The first can be obtained from well-
studied regulatory interactions, such as those in E. coli (Santos-Zavaleta et al. 2018) or
S. cerevisiae (yeast; MacIsaac et al. 2006). One resource for this is RegulonDB (Santos-
Zavaleta et al. 2018), a manually curated database of regulatory interactions obtained from
the literature for E. coli. In the DREAM3 challenge, subgraphs containing 10, 50, and 100
genes were extracted (Marbach et al. 2009) from accepted E. coli and S. cerevisiae GRNs
and used for sub-challenges (Prill et al. 2010). To obtain gene expression data, we can use
real, in vivo, experiments or run simulated, in silico, experiments. The DREAM5 challenge
took both approaches (Marbach et al. 2012). Real expression data were curated from the
Gene Expression Omnibus (GEO) database (Barrett et al. 2010) for E. coli, S. aureus, and
S. cerevisiae; the datasets were uniformly normalized and made publicly available through
the Many Microbe Microarray Database (Faith et al. 2007). In addition, simulated data for
E. coli were generated based on dynamic models of gene expression (de Jong 2002) using
GeneNetWeaver (Schaffter et al. 2011).
There are a variety of simulators for gene expression, including GeneNetWeaver (Schaffter
et al. 2011), SynTReN (Van den Bulcke et al. 2006), Netsim (Di Camillo et al. 2009), and
GeNGe (Hache et al. 2009). All of these generators use directed graphical models to represent
the gene regulatory network structure and a set of ordinary differential equations to model
the dynamics of gene expression, which produces continuous values that resemble microarray
experiments.
An alternative approach is to use probabilistic-based simulators. In statistical methodology
papers, the performance of proposed methods is often assessed using a Gaussian model for
generating expression data (Danaher et al. 2014; Rahmatallah et al. 2013; Ha et al. 2015;
Wang et al. 2017; Zhang et al. 2017; Ou-Yang et al. 2018; Xu et al. 2018). Probabilistic-based
generators de-emphasize the underlying dynamics of gene expression in favor of modeling
the distribution of expression directly. One advantage of this approach is the ability to
set the strength of each gene-gene connection; this allows the comparison of GRN inference
methods based on their ability to detect weaker signals. To simulate raw RNA-seq count data,
a discrete probability model is more appropriate over the Gaussian model. There are many
simulators for RNA-seq data, including Polyester (Frazee et al. 2015), FluxSimulator (Griebel
et al. 2012), Grinder (Angly et al. 2012), and SimSeq (Benidt and Nettleton 2015). A review
of these and other next-generation sequence simulators is available in Zhao et al. (2017).
However, none of these RNA-seq generators address the problem of simulating expression
data from conditionally dependent gene-gene networks.
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The SeqNet package (Grimes and Datta 2021) is implemented in R (R Core Team 2021)
and provides tools for (1) creating random networks that have a topology similar to real
transcription networks without the need of a reference network and (2) generating RNA-seq
data with conditional gene-gene dependencies defined by the network structure. SeqNet does
not require a reference GRN like existing simulators, but it allows users to provide a reference
gene expression dataset. This removes any dependence on a reference GRN, which is only
available for few well-studied organisms, and enables the simulation of RNA-seq expression
profiles. Alternatively, a zero-inflated negative-binomial distribution can be used to model
raw RNA-seq counts (see the details given in Appendix A). However, in real datasets the raw
counts will contain artifacts that introduce artificial associations among genes, so data are
typically normalized before estimating the co-expression network structure (Chowdhury et al.
2019). In this case simulated data should resemble normalized values, not raw counts, and
SeqNet will generate the appropriate data when given a normalized dataset as its reference.
We demonstrate that the generated networks are similar to real transcriptional networks by
comparing the topology of simulated networks to the E. coli transcription network obtained
fromRegulonDB. The topology is also compared to networks generated fromGeneNetWeaver,
SynTReN, and Rogers (Rogers and Girolami 2005), all of which are obtained from the GRN-
data R package (Bellot et al. 2021). When generating RNA-seq data, we show that SeqNet
produces expression profiles that resemble the reference dataset, and that co-expression meth-
ods produce a similar distribution of gene-gene associations on the simulated data as they do
on the reference dataset. In an application, SeqNet simulates data from three different un-
derlying network topologies and three different distributions of gene expression to determine
how these factors affect the performance of several co-expression methods.
The paper is organized as follows. In Section 2 we present the algorithms for generating net-
work structures, creating weights for the network, and simulating RNA-seq data. Section 3
provides a validation study of the generated network topologies and the characteristics of the
simulated RNA-seq data. In Section 4 the main package functions are illustrated in usage
examples. An application of SeqNet is shown in Section 5, which compares the relative per-
formance of 12 co-expression methods across different network topologies. Section 6 concludes
with a discussion.

2. Algorithms
The SeqNet simulator consists of three main components: the network generator, the Gaus-
sian graphical model (GGM), and a converter from GGM values to RNA-seq expression data.
The network structure is decomposed into individual gene modules that specify local connec-
tivity among subsets of genes. Weights for these local connections are generated under the
framework of a GGM. The GGM is used to generate values with dependencies that resemble
the global structure obtained when aggregating all the individual local structures. These
Gaussian values are finally converted to RNA-seq data such that the dependence structure is
maintained. Details for these three components are provided in the following sections.

2.1. Network structures

The first step of the simulator is to create a network structure. This structure is represented
as an undirected graph whose nodes correspond to genes and edges correspond to nonzero
gene-gene associations. The meaning of association is discussed in Section 2.2.
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Algorithm 1 Creating a random unweighted network.

Input: p, the number of genes in the network; m, (optional) the number of modules in the
network.
Output: An unweighted network object.

1: Let G = {1, . . . , p} denote the set of indices for all genes in the network. Set i = 1.
2: Generate a random module size, ni.
3: Sample a subset of ni unique genes, G(i) ⊆ G.
4: Generate a local network structure for the genes in G(i), and store it as an adjacency

matrix, A(i).
5: Save the resulting module asM(i) = (G(i), A(i))
6: Repeat steps 2–4 until all genes have been selected at least once, or until m modules are

created (if m is provided).
7: Return the unweighted network N = (G, {M(i)}mi=1), where m is the total number of

modules created.

The idea behind the SeqNet algorithm is to decompose the global network into a collection of
smaller, overlapping modules. The modules are meant to resemble individual gene regulatory
pathways. Pathways are sets of genes that interact with each other to control the production
of mRNA and proteins. These are biological processes that are activated in response to
internal or external stimulus. Each pathway corresponds to a specific process, but they can
be organized into a hierarchical structure. For example, the pathway for a general function
like metabolism can be broken down into smaller pathways representing each of its individual
sub-processes. Some genes may be involved in multiple processes, so there is often overlap
among pathways. Individual pathways can be represented mathematically using a graph,
where nodes represent genes and edges represent gene-gene interactions.
The SeqNet algorithm generates a (global) network from the ground up by iteratively con-
structing the overlapping modules. The resulting network is denoted by N = (G, {M(i)}mi=1),
which contains the set of p genes, G = {1, . . . , p}, and a collection of modules, {M(i)}mi=1,
whereM(i) = (G(i), A(i)) is the ith module containing genes G(i) ⊂ G and an adjacency ma-
trix, A(i) ∈ {0, 1}|G(i)|×|G(i)|, representing the local network structure. The algorithm consists
of three main steps: (1) generate a random module size, (2) sample genes to populate the
module, and (3) generate the local network structure for the module. These steps are iterated
until all p genes have been sampled. Algorithm 1 outlines this process, and details for the
three key steps are provided after.
Note that the resulting network, N , is unweighted because only the structure of the gene-gene
connections is specified (through the adjacency matrices A(i)). At the global level, two genes
i, j ∈ G are connected if and only if they are connected in at least one of the modules.

Random module size

A random module size is generated by n = nmin +x, where x ∼ NB(navg−nmin, σ
2 = σ2) has

a negative-binomial (NB) distribution parameterized to have mean navg − nmin and variance
σ2. The NB distribution provides the flexibility to model the overdispersion of module sizes
found in real pathways. The modules have a default minimum size of nmin = 10, with a
mean and standard deviation of navg = 50 and σ = 50, respectively. These parameters can
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be adjusted by the user. In addition, a maximum module size (optional) can be set, and any
generated size above this value will be reduced to it. This may be useful for smaller networks
to avoid any one module containing a majority of nodes. By default, the maximum module
size is set to 200.

Sampling a subset of genes
The sampling procedure used to select genes for each module is designed to achieve two goals:
(1) the modules may be overlapping, i.e., genes may be sampled for multiple modules, and (2)
every new module is connected to at least one existing module. The second goal ensures that
the global network is a single, giant component similar to those found in real transcription
networks (Dobrin et al. 2004; Ma et al. 2004).
The first module is a special case: after generating a random module size, n1, a subset of
genes, G(1) ⊆ G, is sampled with uniform probability, where G = {1, . . . , p} denotes the global
set of genes and |G(1)| = n1.
For each additional module, after generating a random module size ni, first a “link node” is
sampled with probability dependent on the connectivity of each gene. Then, the remaining
ni − 1 genes are sampled with reduced probability given to genes that already belong to a
module.
Link nodes are motivated by transcription factors found in real regulatory network, which
regulate genes across multiple pathways. The link node is sampled from the existing modules,⋃i−1
j=1G

(j), so that it links the new module to the rest of the network. This process helps to
generate networks with the desired topological characteristics, but it is not meant to mimic
the evolutionary process that forms real biological networks – that process is largely unknown.
However, the mechanism of selecting a link node achieves goal (2) of ensuring that the global
network is a single component. In addition, and perhaps more importantly, link nodes provide
a way of building up very large hub genes. Rather than sampling link nodes with uniform
probability they are sampled with probability πk, which is defined by Equation 1 below.
This sampling probability places greater weight on highly connected genes. Through this
mechanism, hubs can continually grow their connections by being included in newly created
modules.
The remaining ni− 1 genes are sampled with reduced probability given to genes that already
belong to a module. Let G̃ =

⋃i−1
j=1G

(j) denote the set of genes selected for all previous
modules, and let ` ∈ G̃ denote the link node that was sampled for the current module. Then,
the remaining genes are sampled with probability

P(k) ∝


ν if k ∈ G̃ \ `,
1 if k ∈ G \ G̃,
0 if k = `,

where ν ∈ [0, 1] is a parameter that controls the amount of overlap among modules. This
probability simply reweights the genes that were selected for a previous module by a factor
of ν; the normalization factor for this probability is 1/(|G| − (1− ν)|G̃| − ν). The parameter
ν has a significant influence on the topology of generated networks. Adjusting ν provides a
way of exploring a rich distribution of networks. For example, increasing ν will increase the
amount of overlap among modules, which will result in more modules being created (assuming
the total number of modules is not fixed). The end result will be more connections in the
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network, i.e., less sparsity and higher average degree, and a decrease in the average distance
between nodes.

Generating a local network structure

The network structure generator is influenced by the Watts-Strogatz algorithm (Watts and
Strogatz 1998) and the Barabasi-Albert model (Barabási and Albert 1999). In the Watts-
Strogatz algorithm, a network of p nodes is initialized by a ring lattice, with each node having
initial degree 2K. For each node, edges are rewired to a new neighbor with probability π. If
π = 0, then the ring lattice structure is retained; if π = 1, then the network is a random graph.
With intermediate values for π, small-world (but not scale-free) networks are created. The
Barabasi-Albert model is a generative algorithm whereby p nodes are added to the network
one at a time. Each time a node is added, it is connected to M other nodes. The probability
that the new node will be connected to an existing node i is πi = di/

∑
i di, where di is the

degree of node i; that is, the wiring probability is proportional to the degree of the node.
This contrasts with the Watts-Strogatz algorithm where the rewiring probability is constant.
The preferential wiring to high-degree nodes results in a scale-free network structure.
A scale-free structure is a common assumption when analyzing gene expression data, from
normalization (Parsana et al. 2019) to network estimators (Zhang and Horvath 2005). How-
ever, there is evidence to suggest that biological networks are not so scale-free (Stumpf and
Ingram 2005); this is particularly evident when observing, for example, the E. coli transcrip-
tion network. One characteristic that stands out is the presence of nodes with exceedingly
large degrees, higher than expected under a power-law distribution.
The SeqNet network generator is designed to sample from a diverse range of topologies beyond
scale-free networks. The generator for local network structures uses ideas from both the
Watts-Strogatz and Barabasi-Albert models. It starts with an initial network structure, then
performs a rewiring step, followed by a edge removal step, and it finalizes by reconnecting
any disconnected components. Each of these steps is detailed next.
The algorithm initializes the module structure as a ring lattice, which can be visualized by
arranging the nodes in circular layout and connecting nodes to their nearest neighbors to
form a ring. The initial degree of each node is 2K. The algorithm proceeds in three stages:
node rewiring, connection removal, and connecting disconnected components.
The algorithm initializes the module structure as a ring lattice with neighborhood size K.
Each connection is then rewired with a constant probability. When a connection is rewired, a
new node is selected with a probability that depends on the node degree. Once the rewiring
step is completed, an edge removal step is used to delete edges from the network with constant
probability; this allows for finer control of the network’s sparsity. At this point, the network
may contain disconnected components either due to the rewiring or removal of edges, so a
final step is added to connect these disconnected components.
In the rewiring step, each of the p nodes are traversed one at a time. On node i, each of
its connections may be rewired with a constant probability πrewire. Suppose the connection
to node j is to be rewired. Then, a new neighbor, k, is sampled with probability πk from
among the remaining nodes, i.e., from {1, . . . , p}\{i, j}. (The construction of πk is discussed
next.) In the edge removal step, uniform sampling is used – each edge in the module may be
removed with probability πremove. The default values are πrewire = 1 and πremove = 0.5.
Whenever rewiring is performed in a module, the rewiring probability, πk, will depend on the
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degree of gene k. However, rather than rewiring with probability proportional to the node
degree, as in the Barabasi-Albert model, we instead consider the percentile of the degree. The
goal here is to devise a strategy that builds hub genes more quickly than in the Barabasi-
Albert model. The idea behind our strategy is to strongly favor the highest degree nodes,
even if they have a small number of connections. This is where percentiles come in: they
translate degrees into rankings. The percentile is taken with respect to all the genes that can
be rewired to – in a module with p nodes, there will be p− 2 candidates. The percentile for
gene k is defined by pk = FD(dk), where FD(x) =

∑
d∈D(d ≤ x)/p is the empirical cumulative

distribution function (CDF) of the candidate node degrees, and D = {d1, . . . , dp}\{di, dj} are
the degrees for all candidate genes. (Recall that modules are considered as local networks; the
degree of a gene is calculated from the global network, i.e., by the total number of connections
to it in all modules that currently contain it.) Note that, in the case of all ties, pk = 1 for
each k, and in any case at least one pk will be equal to one.
Now, candidate genes could be sampled with probability proportional to pk. However, using
pk alone would only slightly favor genes with the highest degree. To increase the preference
towards the most connected genes, the pk’s need to be adjusted so that smaller values are
decreased. This can be accomplished by exponentiating pk. For example, using p2

k will leave
the top rank gene(s) with pk = 1 unchanged, while reducing any lower ranking genes with
pk < 1. In general, using probabilities proportional to pαk , where α > 1, can dramatically
favor genes with the highest degree. As it turns out, this approach will allow us to generate
networks that contain exceedingly large hub nodes, similar to those found in the E. coli
network.
Note that the CDF of the Beta distribution achieves the same effect as exponentiating pk:
with the Beta distribution, Fα,β, parameterized by α and β such that its mean and variance
are α

α+β and αβ
(α+β)2(α+β+1) , respectively, we have pα0

k = Fα=α0,β=1(pk). Using this setup, the
parameters α and β provide a more flexible way of controlling the rewiring preferences. This
is the approach used by SeqNet. A small term, ε, is added to guarantee that all nodes have
a nonzero chance of being selected. Thus, the final probability of rewiring to node k is

πk ∝ Fα,β(pk) + ε, (1)

with default values set to α = 100, β = 1, ε = 10−5.
In the edge removal step, each connection in the module has a constant probability, πremove, of
being removed. Node degrees do not have any influence on whether a connection is removed.
In the final step, disconnected components in the module are connected. The largest compo-
nent is identified, then each of the smaller components are wired to it one by one. A single
gene is sampled from the smaller component uniformly, and it is wired to a gene k in the
large component with probability πk as defined above.
This procedure for generating a random module structure is summarized in Algorithm 2.

2.2. Gaussian graphical model
Once a network structure is created, the next step is to weigh each connection. Since the
network is composed of individual modules, each having a local network structure, the process
of adding weights is performed at the module level.
The connections within a module identify the associations among its genes. An association
will be defined as conditional dependence; that is, a nonzero gene-gene association will imply
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Algorithm 2 Generating a random module structure.

Input: N , the number of genes in the module; d∗, a vector containing the external degree of
each gene; πrewire = 1, the probability of rewiring an edge; πremove = 0.5, the probability of
removing an edge; K = 3, the neighborhood size of the ring lattice; α = 100 and β = 1, the
parameters for the Beta distribution; and ε = 10−5, a small constant.
Output: A random network.

1: Let G = {1, . . . , N} denote the set of indices for each gene in the module. Initialize a ring
lattice, A, of size N such that node i ∈ G has degree di = 2K.

2: (Rewiring step) For i in G, rewire each connection to node i with probability πrewire.
If a connection between nodes i and j are to be rewired, choose a new node, k, from
G = G\{i, j} with probability proportional to Fα,β(FdG+d∗

G
(dk + d∗k)) + ε, where the

subscript G denotes subsetting the vector onto the nodes contained in G. After rewiring,
update d to reflect the changes in degree distribution.

3: (Removal step) For each connection in A, remove the connection with probability πremove.
4: (Component step) Identify the disconnected components in A. If there are more than

two, let A1 denote the largest component and Ac denote the remaining components for
c = 2, . . . , C.

5: For each c in {2, . . . , C}, sample a node i from Ac with uniform probability, and sample
a node j from A1 with probability proportional to Fα,β(FdA1 +d∗

A1
(dj + d∗j )) + ε. Add a

connection between nodes i and j in A.
6: Return A.

that the expression of two genes are conditionally dependent given the other genes in the
module. If an association is zero, meaning there is no edge between the two genes in the
module’s network, then those two genes are conditionally independent. Using this definition
of association, we can translate the network structure into a probabilistic model through the
multivariate normal distribution, also referred to as the Gaussian graphical model (Koller and
Friedman 2009). In this model, the expression X ∈ Rp of the p genes in the module has the
joint distribution

P(X = X) = (2π)−p/2 det(Ω)1/2 exp(−(X − µ)>Ω(X − µ)/2),

where µ ∈ Rp is a mean vector and Ω ∈ Rp×p is a positive definite matrix called the precision
matrix. Note, the precision matrix is simply the inverse of the covariance matrix commonly
used to parameterize the normal distribution. However, working with the precision matrix
is preferable because the partial correlation, ρij , between genes i and j can be calculated
directly from Ω by,

ρij = −Ωij/
√

ΩiiΩjj .

Furthermore, partial correlation is related to conditional dependence in the GGM, whereby
two genes have zero partial correlation if and only if they are conditionally independent
given the other genes. Therefore, the off-diagonal elements in Ω determine the conditional
dependencies among genes. Since conditional dependence is our definition of association in
the network, this means that each gene-gene association can be represented through nonzero
entries in Ω. So, generating weights for the associations in a module is equivalent to generating
a random precision matrix that has the same sparsity structure as the module’s adjacency
matrix.
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In the following sections we outline a procedure for generating a precision matrix and discuss
a concern when dealing with multiple networks.

Generating a precision matrix
Given a module M = (G,A) containing p = |G| genes, the task is to generate a positive
definite matrix Ω ∈ Rp×p that has the same structure as A, meaning Aj,k = I(Ωj,k 6= 0) for
every j 6= k, where I(·) is the indicator function. This task is carried out in three steps.
First, a random symmetric matrix W ∈ Rp×p of weights is generated. By default, the entries
in the lower triangle of W are sampled uniformly from (−1,−0.5) ∪ (0.5, 1), and the upper-
triangular values are updated to ensure symmetry. The support of this uniform distribution
can be modified by the user. An initial matrix is constructed by mapping these weights to
the module structure by Ω̃(i) = W •A(i), where (A •B)ij = AijBij denotes the element-wise
product.
The initial matrix Ω̃ will not be positive definite, so an adjustment must be made. Let
λmax(Ω̃) and λmin(Ω̃) denote the maximum and minimum eigenvalues of Ω̃, respectively. The
precision matrix is obtained by Ω = Ω̃ + cIp, where c is

c = (λmax(Ω̃)10−k − λmin(Ω̃)).

Note that c is nonnegative since the diagonal elements of the adjacency matrix A are zero
(a gene cannot be associated with itself), hence the trace of Ω̃ is zero. This means that all
eigenvalues are zero and c = 0, or they are a mix of positive and negative values and c > 0.
But Ω̃ is symmetric, so the only case in which all of its eigenvalues are zero will be when it is
the zero matrix (i.e. there are no edges in the network). Hence, c = 0 is handled as a special
case in which data are generated using independent distributions.
In any non-empty network, c > 0, and this adjustment ensures that the smallest eigenvalue
of Ω is positive, so the matrix is positive definite. In addition, this choice of c increases the
smallest eigenvalue sufficiently above zero so that computing the inverse of Ω is numerically
stable. In particular, it guarantees that the condition number of Ω, defined as κ(Ω) =
|λmax(Ω)|/|λmin(Ω)|, is below 10k + 1 (Gentle 2007). The default value is k = 2.5. Decreasing
k will increase the numerical accuracy of the computed inverse (Gentle 2007), but will also
shrink the partial correlation values for the associations toward zero. Increasing k will have
the opposite effect.

Generating precision matrices for multiple networks
If multiple networks are being constructed, it should be considered whether or not common
gene-gene associations across networks should be given the same weight. By giving common
edges the same weight, the only difference between networks will be the network structure
itself; some edges may be missing or added within a network, but any edge present in multiple
networks will have the same association strength. In order to accomplish this, the weight
matrixW generated for a given module must be the same across networks, and the adjustment
c used to create the precision matrix module must also be constant.
Algorithm 3 outlines the procedure for generating precision matrices for multiple networks.
To reiterate, the key attribute of this algorithm is that common edges across networks will
be given the same weight. If this property is not desired, then the individual networks can
be weighted by iteratively running the algorithm with a single network as the input.
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Algorithm 3 Generating precision matrices for multiple networks.

Input: A collection of unweighted networks, {Nj}nj=1, where Nj = (G, {M(i|j)}mi=1) and
M(i|j) = (G(i|j), A(i|j)); the networks have the same number of modules, and each module
contains the same genes across networks, G(i|1) = . . . = G(i|n), for i = 1, . . . ,m.
Output: A set of weighted networks with equal weights for common edges across networks.

1: Set i = 1.
2: Let p = |G(i|1)| denote the number of genes in module i. Generate a symmetric matrix of

random weights W ∈ Rp×p.
3: Initialize matrices for each network’s ith module by Ω̃(i|j) = W •A(i|j).
4: Set c = maxj(c(j)), where c(j) is the adjustment for each Ω̃(i|j), for j = 1, . . . , n.
5: Save Ω(i|j) = Ω̃(i|j) + cIp.
6: Repeat steps 2–5 for i = 1, . . . ,m.
7: The resulting set of weighted network is the collection {Nw

j }nj=1, where Nw
j =

(G, {M(i|j)
w }mi=1) andM(i|j)

w = (G(i|j), A(i|j),Ω(i|j)) are weighted networks.

2.3. Generating RNA-seq data

The final step of the simulator is to generate data from the GGM and convert those values
into expression data. There are two goals in creating these data: (1) The gene expression
has a dependence structure that reflects the global network structure, and (2) the marginal
distribution of expression for each gene resembles the reference RNA-seq data.
The generator is divided into two parts to tackle these goals. First, initial data are generated
and aggregated together from the local GGMs defined in each module; this imposes the module
dependence structures onto the gene expression. Then, the Gaussian values are transformed
into RNA-seq data by sampling from the empirical distribution of the reference dataset. These
two steps are detailed in the following sections.

Initializing values from local GGMs

Given a weighted network Nw = (G, {M(i)
w }mi=1), the first step is to generate a local expression

vector, X̃(j) ∈ R|G
(j)|, for each module j = 1, . . . ,m; the tilde here is used to distinguish

these initial Gaussian values from the eventual RNA-seq data. Based on the GGM of each
module, the local expression vector is generated from the multivariate normal distribution,
X̃(j) ∼ N(0, (Ω(j))−1), where the mean µ = 0 is the zero vector of appropriate length.
A sample can be obtained from this distribution by first generating independent standard
normal variables Zi ∼ N(0, 1), setting Z(j) = (Z1, . . . , Zp)>, and transforming them by
X̃(j) = µ+ Σ1/2Z(j), where Σ1/2(Σ1/2)> = (Ω(j))−1.
The global expression, X̃ ∈ R|G|, is calculated by aggregating the expression over all modules.
Consider gene i ∈ G, and letMi = {j : i ∈ G(j)} denote the set of module indices that contain
gene i. If the gene does not belong to any module (Mi = ∅), then its global expression,
X̃i, is generated directly from the standard normal distribution. Otherwise, its expression
is calculated by X̃i = |Mi|−1/2∑

j∈Mi
X̃

(j)
i , where X̃(j)

i denotes the generated expression of
this gene in the jth module. Rather than averaging, the weight |Mi|−1/2 is used so that the
variance of the aggregated expression remains constant; E(X̃i) = |Mi|−1/2∑

j∈Mi
E(X̃(j)

i ) = 0
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and VAR(X̃i) = |Mi|−1∑
j∈Mi

VAR(X̃(j)
i ) = 1.

This procedure results in a random expression X̃i ∼ N(0, 1) for each gene such that the
covariance between two genes i and j is

COV(X̃i, X̃j) =

 0 if Mi ∩Mj = ∅
|Mi|−1/2|Mj |−1/2 ∑

k∈Mi∩Mj

(Ω(k))−1
ij otherwise ,

where (Ω(k))−1
ij is the covariance between the two genes in the kth module.

Note that, although two genes will be uncorrelated if they are in distinct modules, their
partial correlation may be nonzero if the modules overlap. This means that in the presence of
overlapping modules, genes with no direct connection may have nonzero partial correlation.
Whether or not this property is appropriate depends on the user’s model of the data generating
process. In particular, we must decide if it is appropriate to model gene expression as the
aggregate of independent pathways (modules), or if expression is dependent on the global
dependencies alone (collapse the modules into a single, large module). The answer to this
question is not clear from a biological perspective, so SeqNet is designed to handle both cases.
The network can be coerced into a single module, which interprets all connections as global
connections (this is illustrated in Section 4). In this case, the initialized expression values,
X̃(1), provide the global values; no aggregation is needed since there is only one module.
These generated values have all of the usual properties of a GGM. In particular, the nonzero
partial correlations will correspond to direct connections (edges) in the network – this is the
main distinction between generating values from a single module compared to aggregating
over multiple overlapping modules.

Converting GGM values to RNA-seq data

Once the Gaussian values, X̃i ∼ N(0, 1) for i ∈ G, are obtained, the final step is to convert
these into RNA-seq data. The conversion is performed for each gene, one at a time, using the
empirical marginal distribution of expression from the reference RNA-seq data.
Let Y ∈ Rnref×|G| denote the reference dataset containing nref samples, and let Fi(x) =∑nref
j=1 I(Yji ≤ x)/nref denote the empirical CDF of the expression for the ith gene. Then,

the conversion follows by setting Xi = F−1
i (Φ(X̃i)), where Φ(x) is the CDF of the standard

normal distribution. The inverse of the empirical CDF is calculated in R using the quantile()
function with argument type set to 1, which defines the inverse CDF as F−1

i (p) = Yi(bpnrefc),
where Yi(k) is the kth order statistic of Yi. The procedure is summarized in Algorithm 4.
The expression values of a given gene in the reference are assumed to be identically dis-
tributed. However, raw RNA-seq counts will fail to satisfy this assumption due to differences
in library sizes, guanine-cytosine (GC) content, batch effects, and other sources of technical
and biological variation (Hitzemann et al. 2013; Chowdhury et al. 2019). Therefore, it is
assumed that the data have been appropriately normalized to allow for comparisons across
samples, for example, using trimmed mean of M values (TMM) normalization (Robinson and
Oshlack 2010), surrogate variable analysis (SVA) (Leek and Storey 2007; Parsana et al. 2019),
SVA by partial least squares (SVAPLS) (Chakraborty et al. 2012), or removal of unwanted
variation (RUV) (Freytag et al. 2015; Jacob et al. 2016).
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Algorithm 4 Generating RNA-seq data from a collections of local GGMs.

Input: A weighted network, Nw = (G, {M(i)
w }mi=1); a reference dataset Y ∈ Rnref×pref con-

taining the gene expression of pref genes from nref samples; and a desired sample size n.
Output: A matrix X ∈ Rn×p of RNA-seq expression data generated from the network.

1: Sample p = |G| columns from the reference dataset Y . If pref < p, then sample with
replacement.

2: Set r = 1. Initialize a n by p matrix X.
3: Generate Gaussian values X̃ ∈ Rp from the weighted network.
4: Convert the Gaussian values into Xi = F−1

i (Φ(X̃i)), where Fi is the empirical CDF of Yi.
5: Save the generated counts, (X1, . . . , Xp), in the rth row of X.
6: Repeat steps 3–5 for r = 1, . . . , n.

3. Validation
In this section, we assess the simulator in terms of the topological properties of the generated
networks and how well the generated data resemble the reference RNA-seq dataset.

3.1. Network topology

Three topological measures are commonly used to characterize networks; these include the
degree distribution, clustering coefficient, and average path length. These measures have been
used to describe the structure of various complex networks and to assess network generators
(Barabasi and Oltvai 2004; Di Camillo et al. 2009).
Let V denote a random node sampled from the nodes in a graph, v ∈ G. The properties of
a network are described on two levels: by the local characteristics with respect to V , and
by the global characteristics with respect to G. In this setup, V is a random variable with
P(V = v) = n−1 for v ∈ G and zero otherwise, where n = |G| is the number of nodes in
G. In general, local properties of a topological measure m(v) are expressed in terms of its
distribution P(m(V )), while global properties are viewed by its expectation E(m(V )).

Degree

The degree of a node, d(v), is the number of connections to v. The degree of network is said
to follow a power-law distribution if

P(d(V ) = k) ∝ k−γ .

Networks with a power-law degree distribution are called scale-free networks (Albert and
Barabási 2002). Such networks contain hub nodes that have many more connections than the
average node. In biological networks, the parameter γ is often between 2 and 3 (Milo et al.
2002). However, the degree distribution of transcription networks may not be so simple.
For example, the exponentially truncated power-law, which has the form P(d(V ) = k) ∝
k−γ exp(−αk), may be more suitable for some networks (Zhang and Horvath 2005; Csányi
and Szendröi 2004). In this study, the degree distribution for various networks are compared
visually rather than fitting any particular model.
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The average degree of the network,

d(G) = E(d(V )) = n−1 ∑
v∈G

d(v),

provides a global characterization of the graph.

Clustering coefficient

The local clustering coefficient, C(v), of a node is the probability that two of its neighbors
are connected. It is defined for nodes of degree d(v) ≥ 2 by,

C(v) = 2q(v)
d(v)(d(v)− 1) = # of v’s neighbors that are connected

# of possible connections among v’s neighbors ,

where q(v) is the number of connections among v’s neighbors. For nodes with one or fewer
neighbors, C(v) is undefined.
Visually, suppose nodes j and k are connected and are neighbors of i. Then, the three nodes
i–j–k form a triangle in the network. This is what the clustering coefficient measures –
the frequency of triangles in the network. As a function of node degree, the average local
clustering coefficient has been shown to follow a power-law distribution,

C(k) = E(C(V )|d(V ) = k) ∝ k−φ,

with φ = 1 for metabolic networks (Ravasz et al. 2002; Barabasi and Oltvai 2004); the power-
law scaling of C(k) is characteristic of a hierarchical organization that is not always found
in scale-free networks (Ravasz et al. 2002). As with the degree distribution, C(k) will be
compared visually for various networks rather than fitting any particular model.
The global clustering coefficient provides a measure of the entire network. It is defined by,

C(G) = # of triangles in G
# of connected triples in G.

Note, this is not equivalent to the average local clustering coefficient, n−1∑
v∈GC(v). The

global clustering coefficient is calculated using the transitivity() function from the igraph
R package (Csárdi and Nepusz 2006).

Average path length

The third measure is based on the shortest path between nodes. In particular, the average
path length, L(v), for node v is,

L(v) = 1
|G(v)| − 1

∑
w∈G(v)

Length of shortest path between v and w,

where G(v) denotes the largest connected component of G that contains v, and |G(v)| is the
number of nodes in G(v). This measure is calculated using the distances() function from
the igraph R package. As with the clustering coefficient, we consider the average path length
as a function of node degree,

L(k) = E(L(V )|d(V ) = k).
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The global measure is the average shortest path among all pairs of nodes,

L(G) = n−1 ∑
v∈G

L(v).

This measure is sometimes referred to as the characteristic path length. It is calculated using
the mean_distance() function from the igraph R package.
When studying a network generating model, it can be useful to study the global characteris-
tics as a function of network size N . For example, consider the characteristic path length as a
function of network size, L(N) = E(L(G) | |G| = N), where G is now a random network sam-
pled from the generating procedure. It has been shown that scale-free networks with exponent
2 < γ < 3 are ultrasmall (Cohen and Havlin 2003), having an average path length that scales
by L(N) ∼ log logN , compared to small-world networks whose average path length scales
by logN . Similar characterizations can be made with d(N), the expected average degree,
and C(N), the expected global clustering coefficient, of networks of size N . However, when
comparing a network generated by SeqNet to the E. coli transcription network, comparisons
of the global characteristics will be made at the fixed size N of the transcription network.

3.2. E. coli transcription network
In this section we compare the topology of a generated SeqNet network to the E. coli tran-
scription network obtained from RegulonDB (Santos-Zavaleta et al. 2018) and to networks
generated from GeneNetWeaver (Schaffter et al. 2011), SynTReN (Van den Bulcke et al.
2006), and Rogers (Rogers and Girolami 2005), obtained from the GRNdata R package (Bel-
lot et al. 2021). This demonstrates that SeqNet is able to generate a network with a topology
similar to a real GRN without using a reference network. Note that GeneNetWeaver and
SynTReN both use the E. coli network as a reference, whereas SeqNet and Rogers do not.
RegulonDB provides the strength of evidence for each regulatory interaction, coded as either
“strong” or “weak”. When constructing the E. coli transcription network, we must choose
whether to include only “strong” sources of evidence, or both “strong” and “weak” sources.
There are currently 2767 connections that have strong evidence and 1797 connections with
weak evidence. The network topology will change depending on whether or not the “weak”
connections are included, so we consider both scenarios.
The SeqNet generator has many parameters that can be adjusted. However, in this example
only ν will be adjusted, which controls the amount of overlap among modules; the remaining
parameters are set to default values. As we will see, the change that occurs in the E. coli
network topology when adding “weak” connections can be modeled by simply decreasing ν
to allow for more connections in the generated network.

Strong evidence only
In the first case, only connections with strong evidence are included in the E. coli network.
The SeqNet generator is set with ν = 10−3 and default values for all other parameters. All
five networks are shown in Figure 1. The main feature visible from this view is the presence
of very large hub genes. Notably, the network generated by Rogers does not contain any large
hubs.
The local topology for each network is summarized in Figure 2. The first column provides
the degree distribution of each network. In a scale-free network, the points will follow a linear
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Network visualization

Figure 1: From left to right: the E. coli transcription network using only “strong” evi-
dence connections; a network generated from SeqNet with ν = 10−3; a network generated
by GeneNetWeaver; a network generated by SynTReN; and a network generated by Rogers.
Nodes are scaled by their degree.

E. coli SeqNet GeneNetWeaver SynTReN Rogers
Num. nodes 1254 1254 1477 1000 1000
Num. edges 2351 2254 3565 2319 1347
Sparsity 0.00299 0.00287 0.00327 0.00465 0.00270
Avg. degree 3.75 3.59 4.83 4.64 2.69
Clustering coef. 0.019 0.036 0.016 0.026 0.004
Avg. path length 4.24 4.70 3.58 3.70 7.68

Table 1: Global network characteristics.

trend. But each distribution, aside from Rogers, has a longer tail than expected in a power-
law distribution; this tail indicates the presence of very large hub genes. These results are
consistent with previous findings that suggest biological networks deviate from a scale-free
topology (Stumpf and Ingram 2005; Stumpf et al. 2005; Khanin and Wit 2006). However, we
are not particularly interested in whether the networks are scale-free, but rather, whether the
topology of the generated networks are similar to that of the E. coli transcription network.
The second and third columns of Figure 2 show the clustering coefficient and average path
length, respectively, as a function of node degree. These tend to follow the linear trend more
closely. The power-law distribution for the clustering coefficient, C(k), has been previously
identified in biological networks (Ravasz et al. 2002). However, to our knowledge the distribu-
tion of L(k) has not been previously characterized. These results from the E. coli transcription
network suggests that L(k) may also follow a power-law distribution in biological networks.
Focusing on the SeqNet network (row B), the degree distribution and average path length (first
and third columns) have very similar patterns compared to the E. coli network (row A). The
main difference is found with the clustering coefficient, in which the E. coli network contains
more variability in the clustering coefficient among genes of the same degree compared to the
SeqNet network.
The global topology for each network is summarized in Table 1. The sparsity, average degree,
and average path length of the SeqNet generated network are all similar to the E. coli network.
The average degree for the GeneNetWeaver and SynTReN networks are much larger than
the E. coli network, and similarly, their average path length is smaller. The GeneNetWeaver
network most closely matches the E. coli network in terms of clustering coefficient.
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Comparison of local topologies for various networks

Figure 2: The local topologies P(k) (first column), C(k) (second column), and L(k) (third
column) for A. the E. coli transcription network and generated networks from B. SeqNet, C.
GeneNetWeaver, D. SynTReN, and E. Rogers. The x- and y-axes are shown on a log scale.

Strong and weak connection

Next, we consider including the connections with weak evidence into the E. coli network.
By including more edges, the network will become more dense. To reflect this change, the
SeqNet generator is re-run with ν decreased from 10−3 to 10−2 to allow for more overlap
among modules which will increase density. The new E. coli and SeqNet networks are shown
in Figure 3.
The topology of the E. coli network remains relatively unchanged at the local level (see Fig-
ure 4) compared to the network with only “strong” connections, but the global characteristics
change (see Table 2); as we might expect after including additional connections, the average
degree increases and the average path length decreases. Similar changes are found in the
SeqNet network after decreasing ν from 10−3 to 10−2.
The sparsity, average degree, and average path length of the SeqNet generated network are
again very similar to the E. coli network. The average degree and average path length for the
GeneNetWeaver and SynTReN networks now agree with the updated values for the E. coli
network. The clustering coefficient is unchanged when adding the weak connections, and the
SeqNet clustering coefficient remains larger, as before.
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Network visualization

Figure 3: E. coli transcription network with both “weak” and “strong” evidence connections
(left) and a generated SeqNet network with ν = 10−2 (right).

Comparison of local topologies for E. coli and SeqNet

Figure 4: The local topologies of P(k), C(k), and L(k) forA. the E. coli transcription network
and generated networks from B. SeqNet. The x- and y-axes are shown on a log scale.

E. coli SeqNet GeneNetWeaver SynTReN Rogers
Num. nodes 1780 1780 1477 1000 1000
Num. edges 4144 3805 3565 2319 1347
Sparsity 0.00262 0.00240 0.00327 0.00465 0.00270
Avg. degree 4.66 4.28 4.83 4.64 2.69
Clustering coef. 0.015 0.035 0.016 0.026 0.004
Avg. path length 3.60 3.63 3.58 3.70 7.68

Table 2: Global network characteristics.

3.3. Comparing generated data to reference data

SeqNet is able to simulate expression data that resemble a reference dataset. This is validated
in two ways. First, the mean and variance of gene expression profiles are compared between
the reference data and the simulated data. Second, since the main use of SeqNet is to assess
the performance of co-expression methods, we compare the behavior of several such methods
on the reference data compared to the simulated data. Details are provided in the following
sections.
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Reference RNA-seq datasets

Four RNA-seq datasets were downloaded from LinkedOmics (Vasaikar et al. 2017), a portal
to multi-omics data generated by The Cancer Genome Atlas (TCGA). Data were obtained
for four cancers: breast invasive carcinoma, glioma, head and heck squamous cell carcinoma,
and prostate adenocarcinoma. The downloaded datasets contain reads per kilobase million
(RPKM) normalized, log2(x + 1) transformed expression levels for transcripts annotated at
the gene level. Since RPKM normalization does not align gene expression across samples
(Lin et al. 2016), we applied the trimmed mean of M-values (TMM) normalization (Robinson
and Oshlack 2010) to the untransformed RPKM data. The TMM-normalized values for each
cancer were then used as four reference RNA-seq datasets (without the log transformation).
Due to computational restrictions of some co-expression methods used later, only a subset
of genes in each reference dataset is used. However, since we are interested in analyzing co-
expression, a random selection of genes would not be ideal because the sampled genes may be
unrelated. A better strategy is to randomly sample a set of gene regulatory pathways, and
subset the data onto the genes contained in those pathways. This way, the reference data will
likely retain some true co-expression patterns among the sampled genes. In this study, 20
pathways are randomly sampled from the Reactome database (Fabregat et al. 2015). Note,
the main results in this section are robust to different sets of sampled pathways (results not
shown).
Results for the breast cancer reference dataset are reviewed in the following sections. Sim-
ilar results are obtained for the other three reference data; those details are provided in
Appendix B. The breast cancer dataset contains 1093 RNA-seq samples and 15034 genes.
Subsetting the data on 20 random pathways resulted in 621 unique genes.

Mean and variance of expression profiles

The first experiment verifies that the simulated expression profiles are similar to those in the
reference data. A key feature of RNA-seq data is the presence of overdispersion; the gene
expression profiles tend to have much larger variance compared to their mean. This motivates
the use of a mean-variance plot to summarize the distribution of expression profiles. That
is, the columns of each dataset will be summarized by their mean and variance, and the
distribution of mean-variance pairs will be compared across datasets.
In Figure 5, a reference dataset is compared to simulated data using SeqNet and simulated
data from a zero-inflated negative-binomial (ZINB) model; details for the ZINB model are
provided in Appendix A. A smoothed kernel density estimate is displayed to highlight the
shape of each distribution. The outlying points are expression profiles with a density estimate
below 0.05. We find that the overall mean-variance relationship is similar across datasets,
but the outlying profiles – particularly those with excess variance – show up with the SeqNet
generator but are missed by the ZINB model.

Values from co-expression methods

In the second experiment, we verify that co-expression methods produce similar association
values on simulated data as they do on the reference dataset; references for these methods are
provided in Section 5.1. Each co-expression method produces an association score for each
gene-gene pair. For p genes, this results in p(p − 1)/2 different values. In this assessment,
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Mean-variance plots

Figure 5: Mean-variance plots on a log scale for the reference dataset (left) and simulated
data using SeqNet (middle) and a ZINB model (right). The heatmap shows a smoothed
kernel density estimate. Outlying points are expression profiles with a density estimate below
0.05.

Distribution of association scores

Figure 6: Distribution of association scores from the 12 network inference methods outlined
in Section 5.1. The underlying network is based on the estimated partial correlations in the
reference dataset.

each method is applied to the reference dataset, simulated data from the SeqNet generator,
and simulated data from the ZINB model; the results for each method are summarized by a
histogram of the values generated from each dataset.
To simulate data, an underlying network of gene-gene associations must be provided. Since
our goal is to show that the associations in simulated data can resemble those in real data, the
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underlying network is estimated directly from the reference dataset. This way, the associations
in the simulated data are close to those in the reference. Results are shown in Figure 6. We find
that for each method the values follow a similar distribution in each of the three datasets. The
SeqNet and ZINB datasets tend to generate substantial overlap and are indistinguishable for
most methods. There is some difference in the simulated and reference datasets, particularly
for the correlation methods and ARACNE, but these may be due to genuine differences in
the true underlying network and estimated network structures.
SeqNet can also be used to test the null case: what values do the co-expression methods
produce when there are no gene-gene associations in the simulated data? In this case the
reference dataset is not changed, but network structure is now empty; simulated data will
contain independent gene expression profiles. Results from this experiment are shown in
Appendix B. Most co-expression methods produce association values near zero, as expected.
However, the methods CLR and Silencer continue to produce association scores that are
relatively large.

4. Package usage
The main SeqNet functions are illustrated through a few working examples. A complete
reference manual is available from the Comprehensive R Archive Network (CRAN); it contains
additional examples, a description, and argument details for every function. The manual can
be accessed in R using the help() function. SeqNet can be installed directly from CRAN
and loaded using the following commands.

R> install.packages("SeqNet")
R> library("SeqNet")

A description of the main functions are provided in Table 3. The package manual contains
additional details for all SeqNet functions and their arguments. This documentation is con-
veniently accessible within R using the help() and the ? commands, e.g.,

R> help(package = "SeqNet")
R> ?random_network

The two main SeqNet functions are random_network() and gen_rnaseq(). These can be
used to quickly generate a random network of p genes and simulate an RNA-seq dataset of n
samples.

R> p <- 100
R> n <- 100
R> network <- random_network(p)
R> generated_data <- gen_rnaseq(n, network)

p indicates the number of nodes (genes) in the network and n the number of samples to
generate. random_network(p) generates a random network of size p and gen_rnaseq() is
used the generate the n samples.
The variable generated_data is a list containing the generated dataset (containing n rows
and p columns) and the reference dataset used to create them. Note that the network is not
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Function Description
random_network() Generate a random network containing p nodes (genes).

Additional tuning parameters for the network generating
algorithm can be used here, including nu, prob_rewire,
prob_remove, and alpha.

as_single_module() Used to coerce a ‘network’ into a single, large mod-
ule rather than a collection of overlapping modules.
This affects how data are generated when passed into
gen_rnaseq(), as discussed in Section 2.3. The decision
to use this function should be based on the user’s model
of the data generating process.

perturb_network() Rewires a ‘network’ to obtain a differential network.
By default, a hub node is randomly sampled from the
‘network’, and each of its connections are removed with
probability 0.5. Note, this function can be used iteratively
to turn off many hub nodes.

gen_partial_correlations() Generates weights for the connections in a ‘network’.
When multiple ‘network’ objects are provided, connec-
tions that are common across networks are given the same
weight.

print() Printing a ‘network’ displays the number of nodes, edges,
and modules, along with the average degree, clustering
coefficient, and average path length in the network.

plot() Generates a plot of the ‘network’. See also
plot_network().

plot_network_diff() Generates a plot of the differential network between two
‘network’ objects.

gen_rnaseq() Generate an RNA-seq dataset containing n samples (rows)
with a dependence structure defined by a given ‘network’.
A reference dataset can be provided. If the ‘network’ is
not weighted, then weights are automatically generated
with a warning message.

sample_reference_data() Helper function for sampling p genes (columns) from a ref-
erence dataset. The argument percent_ZI is useful when
the reference contains zero-inflated genes to control the
proportion of the p sampled genes that are zero-inflated.

get_adjacency_matrix() Creates an adjacency matrix from a ‘network’. If genes i
and j are connected in the ‘network’ (in any module), then
the ijth entry of the adjacency matrix is 1, and otherwise
is 0.

create_network_from_
adjacency_matrix()

Creates a ‘network’ from an adjacency matrix. This is
useful when the user has a prespecified network structure,
i.e., does not want to generate a random one, but does
want to generate RNA-seq data.

Table 3: Summary of the main SeqNet functions.
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weighted; when gen_rnaseq() is called, it automatically uses gen_partial_correlations()
to generate weights for the network. Additionally, no reference dataset is provided to
gen_rnaseq(); in this case, gen_rnaseq() uses the breast cancer dataset by default.
The above code is a minimal example to quickly generate RNA-seq data. However, bet-
ter practice is to explicitly code the intermediate steps. The weights are generated with
gen_partial_correlations() and SeqNet::reference$rnaseq accesses the reference data
set:

R> p <- 100
R> n <- 100
R> network <- random_network(p)
R> network <- gen_partial_correlations(network)
R> df_ref <- SeqNet::reference$rnaseq
R> generated_data <- gen_rnaseq(n, network, df_ref)

This code shows how the user can generate weights for the network object and access the
breast cancer reference data. Note that SeqNet::reference$rnaseq can be replaced by the
user’s preferred reference data. In addition, any normalization or transformations can be
applied to these data before passing it into gen_rnaseq().
The next example illustrates simulating two populations. This is useful, for example, to gener-
ate data for a differential network analysis. In most applications, the two networks should be
similar overall with only a few connections changed. To achieve this, the perturb_network()
function is used to introduce differential connections (perturbations) to the first network. In
addition, this example will demonstrate how to coerce a ‘network’ to a single module using
the as_single_module() function (refer to Section 2.3 for details). The networks are visu-
alized using plot(), and the layout of each display can be passed from one plot to the other
for easier comparison, as will be shown.

R> set.seed(1)
R> network_1 <- random_network(p)
R> network_2 <- as_single_module(network_1)
R> g <- plot(network_1)

Create the second network by rewiring 2 hub genes and 10 non-hub genes and plot it with
the same node layout as network_1:

R> network_2 <- perturb_network(network_1, n_hubs = 2, n_nodes = 10)
R> plot(network_2, g)

The resulting plots are shown in Figure 7.
At this stage, we have generated two random networks, network_1 and network_2. Both of
these networks have been plotted, but it is difficult to compare the two images. For easier
comparison, the plot_network_diff() function is used to plot the differential network. Here,
tan edges are connections only present in the first network, red edges are only present in the
second network, and black edges are common to both networks. In addition, the size of each
node is proportional to the number of differential connections (tan or red edges), which helps
identify differentially connected nodes. Note that saving the original plot, g, allows us to
maintain the same layout across different plots.
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Figure 7: Visualization of two random networks using the same node layout.

Figure 8: Differential network visualization.

One can also compare two networks by a differential network visualization (see Figure 8):

R> plot_network_diff(network_1, network_2, g)

To generate precision matricies for these two networks, the gen_partial_correlations()
function is used. When passing more than one network into this function, it returns a list of
weighted networks.

R> network_list <- gen_partial_correlations(network_1, network_2)
R> network_1 <- network_list[[1]]
R> network_2 <- network_list[[2]]

These weighted networks can then be used to generate RNA-seq data. The breast cancer
dataset is used, and it is subset onto p genes prior to passing it into the generator using the
sample_reference_data() function. Using the same p reference genes for both generated
datasets ensures that the marginal distribution of each gene is the same in both networks and
only the conditional dependences among the genes change. Alternatively, different references
can be used for the two populations, which would allow us to simulate differential expression
in addition to differential connectivity.
The breast cancer reference dataset is used as well as subset onto p genes:

R> df_ref <- SeqNet::reference$rnaseq
R> df_ref <- sample_reference_data(df_ref, p)
R> x_1 <- gen_rnaseq(n, network_1, df_ref)$x
R> x_2 <- gen_rnaseq(n, network_2, df_ref)$x
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Figure 9: Differential network visualization based on the adjacency matrix.

The generated datasets x_1 and x_2 can be used, for example, to assess the performance of a
differential network analysis procedure. In that case, the estimated differential network will
be compared to the true differential network, which can be obtained as an adjacency matrix
using the get_adjacency_matrix() function (see Figure 9):

R> adj_1 <- get_adjacency_matrix(network_1)
R> adj_2 <- get_adjacency_matrix(network_2)
R> adj_diff <- abs(adj_1 - adj_2)
R> plot_network(adj_diff, g)

The differential network is represented as an adjacency matrix and g is used to maintain the
same layout.
Here, adj_diff is the adjacency matrix for the differential network, and it can be visualized
just like a ‘network’ object using the plot_network() function. Any adjacency matrix can
also be used to create a ‘network’ object with create_network_from_adjacency_matrix():

R> network <- create_network_from_adjacency_matrix(adj_1)

This can be useful if the user wants to modify the structure generated by random_network()
or to use a pre-specified network structure to generate RNA-seq data. Note, however, that
the adjacency matrix only specifies the global connections (it does not contain information on
modules), so the created ‘network’ will consist of a single module containing all of those global
connections. (This is similar to applying the as_single_module() function to a ‘network’
object.)

5. Application
The SeqNet package provides a set of tools for creating gene-gene networks and simulating
gene expression data from them. These tools can be used in many applications: for example,
(1) to compare the performance of various co-expression methods in a particular setting; (2)
to explore how robust a method is to assumptions on network topology or distribution of gene
expression; (3) to determining whether different transformations of the data improve perfor-
mance; (4) to display the estimated network and visually compare it to the true underlying
network; (5) to determine if a method is able to identify certain motifs in the underlying net-
work; and (6) to assess the performance of differential network analysis methods (Gill et al.
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2010; Fukushima 2013; Ha et al. 2015; Ji et al. 2017; Siska and Kechris 2017; Grimes et al.
2019).
The range of applications is too broad to fully cover in this manuscript. Instead, a single
application is selected and covered in detail. In this application, SeqNet will be used to assess
the performance of 12 co-expression networks in various settings; these settings include three
different topologies for the underlying network and three different marginal distributions
for the expression data. The goal is to determine how these settings affect the relative
performance of each method. This application illustrates the two main utilities of SeqNet:
the ability to implement any network structure, and to generate expression data under various
distributions.
The R code for this application involves the use of external packages (methods for estimating
networks and assessing performance). Since the bulk of code is not specific to the SeqNet
package, those details are left as Supplements in the replication materials.

5.1. Co-expression methods
Twelve co-expression methods are considered: ARACNE (Margolin et al. 2006), BC3NET
(de Matos Simoes and Emmert-Streib 2012), C3NET (Altay and Emmert-Streib 2010), CLR
(Faith et al. 2007), DWLasso (Sulaimanov et al. 2018), GENIE3 (Huynh-Thu et al. 2010),
glasso (Friedman et al. 2008), MRNET (Meyer et al. 2007), Pearson correlation, Shrinkage
(Schäfer and Strimmer 2005), Silencer (Barzel and Barabási 2013), and Spearman correlation.
Each of these methods take in steady-state expression data and produce gene-gene association
values to create an undirected network.
The minet R package (Meyer et al. 2008) is used to run ARACNE, CLR, and MRNET;
the default settings for these three methods were used, which includes using “Spearman” as
the entropy estimator. The bc3net R package (de Matos Simoes and Emmert-Streib 2012)
provides an implementation of BC3NET and C3NET; the default settings were used, ex-
cept the entropy estimator was changed from “Pearson” to “Spearman” so that all MI-based
methods use the same estimator. The degree weighted lasso, DWLasso, is implemented in
the DWLasso R package (Sulaimanov et al. 2018). GENIE3, which is a regression tree based
method, is implemented in the GENIE3 R package (Huynh-Thu et al. 2010); the default num-
ber of trees was decreased from 1000 to 100 due to computational restrictions. The graphical
lasso, glasso, is implemented using the glasso R package (Friedman et al. 2019); the regular-
ization parameter was set to 0.1 for all simulations. The shrinkage approach to covariance
estimation, Shrinkage, is implemented in the corpcor R package (Schafer et al. 2017). The
silencing of indirect correlations method, Silencer, was translated from existing MATLAB code
(Barzel and Barabási 2013) into R code. The Pearson and Spearman correlations were both
implemented using the base R function cor().

5.2. Performance measures
Inferring the connections in a gene-gene network can be viewed as a binary classification
problem, in which every gene-gene pair is classified as connected or not connected. The
co-expression methods produce values that correspond to the estimated strengths of each
gene-gene association. A network can be constructed from these values by setting a threshold
and connecting any gene-gene pair with an association strength above the threshold. With
a fixed threshold, the number of true positives (TP), false positives (FP), true negatives
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(TN), and false negatives (FN) can be calculated, and performance is evaluated using metrics
such as sensitivity (also called recall), specificity, and true discovery rate (TDR; also called
precision), which are defined by,

sensitivity = recall = TP/(TP + FN),
specificity = TN/(TN + FP),

TDR = precision = TP/(TP + FP).

However, this leaves the task of choosing an appropriate threshold for each method. In
practice, the best threshold will likely depend on the specific problem at hand, as raising or
lowering the threshold will adjust the trade-off between sensitivity and specificity. For some
problems, a higher threshold may be preferred in order to increase sensitivity at the potential
cost of precision, while in other settings having higher precision may be favorable.
To avoid the problem of choosing a threshold, the receiver operating characteristic (ROC)
and precision-recall (PR) curves can be used. This approach considers all possible thresholds
to explore the overall performance. The ROC curve plots 1 − specificity on the x-axis and
sensitivity on the y-axis, and the PR curve plots recall on the x-axis and precision on the
y-axis. In the context of classifying connections in the network, there is a large imbalance
between the two classes; since the networks are sparse, the number of true connections will
be much smaller than the number of possible connections. Because of this, using the ROC
alone can provide misleading results. The PR curve avoids these problems because it does not
incorporate TN, the number of true negatives, which is the term that will be inflated from
the sparsity of the network and can skew the results. In the DREAM3 challenge, both ROC
and PR were used to gain a full characterization of performance (Prill et al. 2010). Here, we
present results for PR and provide those for ROC in Appendix C.
If a method produces a PR (or ROC) curve that dominates all other curves, then that method
provides the best performance (Davis and Goadrich 2006). More often, however, the curves
for each method will intersect, making the selection of a best performer more ambiguous
(Bekkar et al. 2013). The area under the PR curve (AUC-PR) and area under the ROC curve
(AUC-ROC) provide convenient summary metrics for the overall performance. Selecting the
method with the highest AUC-PR makes the process less ambiguous, even if no single method
produces a dominating curve. However, the method with highest AUC-PR will not necessarily
be the same method with the highest AUC-ROC (Davis and Goadrich 2006).

5.3. Network structures

The SeqNet package provides a novel method for creating random networks. However, the
user is not limited to the built-in network generator; any network can be used to generate
gene expression data with SeqNet. In this application, three different network generating
algorithms are considered: the Watts-Strogatz algorithm for generating random small-world
networks (Watts and Strogatz 1998); the Barabasi-Albert method for generating scale-free
networks (Barabási and Albert 1999); and the SeqNet algorithm. Figure 10 provides a vi-
sualization of networks generated by these three procedures. The performances of each co-
expression method are compared across these three underlying network topologies.
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Example of simulated networks

Figure 10: Example networks generated from the Watts-Strogatz algorithm (left), Barabasi-
Albert method (middle) and SeqNet generator (right). Each network contains p = 400 genes.

Method performance on different network structures

Figure 11: AUC-PR values from 30 simulations using networks generated by the Watts-
Strogatz algorithm, the Barabasi-Albert method, and the SeqNet network generator. RNA-
seq expression profiles were generated with SeqNet using the breast cancer reference dataset.
In general, the performance of each method depends on the underlying network topology.

5.4. Distribution of gene expression

The SeqNet package is designed to incorporate a reference RNA-seq dataset and generate
expression profiles that have similar marginal distributions as the reference. In addition,
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Method performance on different distributions of expression

Figure 12: AUC-PR values from 30 simulations using Gaussian, RNA-seq, and ZINB data.
The underlying network is generated using the SeqNet generator. The NB and RNA-seq data
are log(x+1) transformed. Each method has similar performance across different data types.

the package can be used to generate data from a Gaussian graphical model, which produces
normally distributed expression profiles, or it can generate data from a zero-inflated negative-
binomial model, which produces expression profiles having a discrete distribution resembling
raw RNA-seq counts. In this application, each of these three approaches are considered. The
co-expression method are compared across the three distributions. For simulating RNA-seq
data, the reference used is the breast cancer dataset reviewed in Section 3.

5.5. Results

All results are from networks containing p = 400 genes and n = 200 samples. This resembles
the typical setting where n < p, and the network is moderately large. The main restriction of
p and n in this application were due to computational limitations of DWLasso and GENIE3.
The AUC-PR values of each method for different network topologies are shown in Figure 11.
Most methods have their best performance on the Watts-Strogatz small-world network (WS),
with a decrease in performance on the Barabasi-Albert scale-free networks (BA), and a fur-
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ther decrease on the SeqNet networks. Some exceptions are DWLasso, which attains its best
performance on SeqNet networks – this makes sense because SeqNet networks contain very
large hub genes, and DWLasso is designed to handle hubs; MRNET, which has similar per-
formance on both BA and SeqNet networks; and both Pearson and Spearman correlations
maintain similar AUC-PR across all three topologies.
The results from different marginal distributions of gene expression are shown in Figure 12.
Each method maintains similar performance across the three distributions, suggesting that
they are robust to the distribution of expression profiles.
In Figure 13, the relative performances of each method are compared based on AUC-PR, with
underlying networks generated by the Watts-Strogatz algorithm, the Barabasi-Albert method,
and the SeqNet generator. In each setting, RNA-seq expression data are generated with
SeqNet using the breast cancer reference dataset, and a log(x+ 1) transformation is applied.
These results show that the relative performance depends on the underlying network topology.
For example, on WS networks the five methods ARACNE, BC3Net, CLR, glasso, and Silencer
all have the best performance. But on BA networks, only ARACNE and BC3Net come out on
top. When considering SeqNet networks, DWLasso has a slight edge in performance, followed
closely by ARACNE, BC3Net, C3Net, and MRNET.
This application demonstrates the importance of the underlying topology when assessing the
relative performance of network estimation methods. With SeqNet, a wide range of topologies
can be generated by varying its tuning parameters. The default settings were used in this
demonstration, but a range of values should be considered in practice. For example, increasing
nu lowers the average path length and increases the average degree of generated networks,
while increasing alpha lowers the clustering coefficient and has minimal effect on average
degree and path length. The utility of SeqNet comes from exploring these tuning parameters
and evaluating the network estimation methods across a wide range of topologies.

6. Discussion
The SeqNet package provides convenient tools for assessing the performance of co-expression
methods. The main feature of SeqNet is its ability to simulate RNA-seq expression data from
an underlying network of gene-gene associations, and we have demonstrated that the marginal
distributions of simulated data resemble those of a reference dataset. While any network can
be used with SeqNet, the package also provides a novel network generator that creates random
networks having a topology similar to real biological networks. The SeqNet network generator
can be adjusted through various tuning parameters to access a rich distribution of network
topologies – the exact relationship between these parameters and the generated topologies
will be studied in a future project.
The SeqNet package is implemented in R and freely available through CRAN. The imple-
mentation uses C++ code for efficient computation. The algorithm for generating random
networks runs in linear time, O(p), where p is the number of nodes in the network. On a
2.2 Ghz Intel Core i7 laptop computer, it takes on average 0.06s, 0.58s, and 7.4s to gener-
ate networks containing 102, 103, and 104 nodes, respectively. The algorithm for simulating
expression data also runs in linear time, O(n), where n is the number of samples generated.
On the same machine, it takes on average 0.73s, 5.5s, and 45s to simulate 102, 103, and 104

samples from a network containing 1000 nodes.
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Method performance on Watts-Strogatz (small-world) networks

Method performance on Barabasi-Albert (scale-free) networks

Method performance on SeqNet networks

Figure 13: AUC-PR values from 30 simulations with the underlying network generated using
the Watts-Strogatz algorithm, the Barabasi-Albert method, and the SeqNet generator. The
RNA-seq expression data are generated by SeqNet using the breast cancer dataset.
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SeqNet is most useful for evaluating the performance of unsupervised co-expression methods
that do not implement biological knowledge. It can be used to gain insight into how perfor-
mance may change depending on the topology of the underlying network, or depending on
the distribution of gene expression. SeqNet can use a reference RNA-seq dataset to simulate
realistic data, however only information on the marginal distributions of read counts in the
reference are used. Any additional information about the genes or samples are not taken
into account. Because of this, SeqNet may have limited utility in evaluating co-expression
methods that take advantage of existing domain knowledge, such as the known identity of
transcription factors.
A limitation of SeqNet is its reliance on the Gaussian graphical model (GGM). This model
allows us to generate data that have a particular conditional dependence structure, but the
gene-gene interactions are restricted to monotonic relationships. It is uncertain how well this
model is able to capture the true data generating process of gene expression. The dynamics of
gene regulation are often modeled using Michaelis-Menten and Hill kinetics, but it is unclear
how to simulate high-dimensional RNA-seq data from this model. Using a GGM provides
a tractable approach, and our validation study suggests that it does produce data that are
similar to the real datasets.
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A. Zero-inflated negative-binomial (ZINB) model
When the reference data contain read counts, then a zero-inflated negative-binomial (ZINB)
distribution can be used to model the marginal distribution of each individual gene’s expres-
sion. The probability mass function for the ZINB is defined by the mixture,

PZINB(X = x) = ρI(x = 0) + (1− ρ)PNB(x),

where ρ ∈ [0, 1] and PNB is the negative-binomial (NB) distribution,

PNB(X = x) = Γ(x+ s)
x!Γ(s)

(
s

m+ s

)s ( m

m+ s

)x
parameterized by its mean m > 0 and shape s > 0. The NB is a generalization of the
Poisson distribution and is often used to analyze RNA-seq data (Robinson et al. 2010; Love
et al. 2014; Wu et al. 2012). The NB can model the overdispersion that is characteristic of
RNA-seq data; that is, the variance of RNA-seq counts is often much larger than the mean.
Overdispersion can be caused by technical variation in measuring gene expression as well as
biological variation among and within samples. The ZINB extends the NB model through
the zero inflation component; this term can account for instances where heterogeneity in the
population results in a gene being unexpressed in a portion of the population.
The reference RNA-seq dataset is used to determine appropriate parameters θ = (m, s, ρ) for
the ZINB model. For each gene, i, in the network, a random gene from the reference dataset
is chosen, and the maximum likelihood estimate θ̂i is calculated from that gene’s expression
data.
The Gaussian data generated from the network structure are transformed into count data
using the inverse transformation method. Let F (x|θ) = PZINB(X ≤ x|θ) denote the CDF
for the ZINB distribution with parameters θ, Φ denote the CDF of the standard normal
distribution, and X̃i denote the generated Gaussian expression for gene i. The RNA-seq
counts are then obtained by,

Xi = F−1(Φ(X̃i)|θ̂i),

where y = F−1(x) satisfies PZINB(X < y) ≤ x ≤ PZINB(X ≤ y).

B. Additional results for validating generated profiles
In this section, results for the breast cancer, prostate cancer, head and neck cancer, and glioma
reference RNA-seq datasets are provided. The same mean-variance plots and distribution of
association scores that were utilized in Section 3.3 are used here.

B.1. Breast cancer

The breast cancer dataset contains 1093 RNA-seq samples and 15034 genes. Subsetting the
data on 20 random pathways resulted in 621 unique genes. The mean-variance plots and
distribution of association scores are provided in the manuscript. The association scores for
the null case are shown here.
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Null distribution of association scores

Figure 14: Distribution of association scores from 12 network inference methods. The SeqNet
and ZINB data contain independent gene expression profiles, i.e., the underlying network
contains no connections.

B.2. Prostate cancer

The prostate cancer dataset contains 497 samples. Subsetting the data on 20 random Reac-
tome pathways results in 673 unique genes.

Mean-variance plots

Figure 15: Mean-variance plots for the prostate cancer reference dataset and simulated data
using SeqNet and a ZINB model. The blue heatmap shows a smoothed kernel density esti-
mate, and the outlying points are expression profiles with a density estimate below 0.05. The
axes are drawn on a log scale.
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Figure 16: Distribution of association scores from various network inference methods. The
underlying network used by SeqNet is based on the estimated partial correlations in the
reference dataset.

Null distribution of association scores

Figure 17: Distribution of association scores from various network inference methods. The
SeqNet and ZINB data contain independent gene expression profiles, i.e., the underlying
network contains no connections.
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B.3. Head and neck cancer

The head and neck cancer dataset contains 520 samples. Subsetting the data on 20 random
Reactome pathways results in 726 unique genes.

Mean-variance plots

Figure 18: Mean-variance plots for the head and neck cancer reference dataset and simulated
data using SeqNet and a ZINB model. The blue heatmap shows a smoothed kernel density
estimate, and the outlying points are expression profiles with a density estimate below 0.05.
The axes are drawn on a log scale.

Distribution of association scores

Figure 19: Distribution of association scores from various network inference methods. The
underlying network used by SeqNet is based on the estimated partial correlations in the
reference dataset.



Journal of Statistical Software 43

Null distribution of association scores

Figure 20: Distribution of association scores from various network inference methods. The
SeqNet and ZINB data contain independent gene expression profiles, i.e., the underlying
network contains no connections.

B.4. Glioma

The Glioma dataset contains 667 samples. Subsetting the data on 20 random Reactome
pathways results in 538 unique genes.

Mean-variance plots

Figure 21: Mean-variance plots for the glioma reference dataset and simulated data using
SeqNet and a zero-inflated negative binomial model. The blue heatmap shows a smoothed
kernel density estimate, and the outlying points are expression profiles with a density estimate
below 0.05. The axes are drawn on a log scale.
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Distribution of association scores

Figure 22: Distribution of association scores from various network inference methods. The
underlying network used by SeqNet is based on the estimated partial correlations in the
reference dataset.

Null distribution of association scores

Figure 23: Distribution of association scores from various network inference methods. The
SeqNet and ZINB data contain independent gene expression profiles, i.e., the underlying
network contains no connections.
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C. Additional results from the application

This section provides results for the AUC-ROC metric, along with full PR and ROC curves.
The same general conclusions made in the manuscript for AUC-PR can be made for AUC-
ROC; the performance of each method depends on the topology of the underlying network
but is robust to different distributions of gene expression. However, there is less variability
in AUC-ROC when comparing methods on a fixed network topology; each method provides
similar performance in terms of AUC-ROC. This is in contrast to AUC-PR, which produced
more separation in performance among the methods.

Method performance on different network structures

Figure 24: AUC-ROC values from 30 simulations using networks generated by the Watts-
Strogatz algorithm, the Barabasi-Albert method, and the SeqNet network generator. RNA-
seq expression profiles were generated with SeqNet using the breast cancer reference dataset.
In general, the performance of each method depends on the underlying network topology.
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Method performance on different distributions of expression

Figure 25: AUC-ROC values from 30 simulations using Gaussian, RNA-seq, and ZINB data.
The underlying network is generated using the SeqNet generator. The RNA-seq and ZINB
data are log(x+ 1) transformed. Each method has similar performance across different data
types.
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Method performance on Watts-Strogatz (small-world) networks

Method performance on Barabasi-Albert (scale-free) networks

Method performance on SeqNet networks

Figure 26: AUC-ROC values from 30 simulations with the underlying network generated
using the Watts-Strogatz algorithm, the Barabasi-Albert method, and the SeqNet generator.
The RNA-seq expression data are generated by SeqNet using the breast cancer dataset.
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The full PR and ROC curves are shown in the following figures. The results are separated
based on the underlying network topology.

Method performance on Watts-Strogatz (small-world) networks

Figure 27: PR and ROC curves from 30 simulations with the underlying network generated
using the Watts-Strogatz algorithm. The RNA-seq expression data are generated by SeqNet
using the breast cancer dataset.

Method performance on Barabasi-Albert (scale-free) networks

Figure 28: PR and ROC curves from 30 simulations with the underlying network generated
using the Barabasi-Albert method. The RNA-seq expression data are generated by SeqNet
using the breast cancer dataset.
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Method performance on SeqNet networks

Figure 29: PR and ROC curves from 30 simulations with the underlying network generated
using the SeqNet generator. The RNA-seq expression data are generated by SeqNet using
the breast cancer dataset.
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