
JSS Journal of Statistical Software
September 2021, Volume 99, Issue 9. doi: 10.18637/jss.v099.i09

IncDTW: An R Package for Incremental Calculation
of Dynamic Time Warping

Maximilian Leodolter
Austrian Institute
of Technology

Claudia Plant
University of Vienna

Norbert Brändle
Austrian Institute
of Technology

Abstract

Dynamic time warping (DTW) is a popular distance measure for time series analysis
and has been applied in many research domains. This paper proposes the R package
IncDTW for the incremental calculation of DTW, and based on this principle IncDTW
also helps to classify or cluster time series, or perform subsequence matching and k-nearest
neighbor search. DTW can measure dissimilarity between two temporal sequences which
may vary in speed, with a major downside of high computational costs. Especially for
analyzing live data streams, subsequence matching or calculating pairwise distance ma-
trices, runtime intensive computations are unfavorable or can even make the analysis
intractable. IncDTW tackles this problem by a vector-based implementation of the DTW
algorithm to reduce the space complexity from a quadratic to a linear level in number
of observations, and an incremental calculation of DTW for updating interim results to
reduce the runtime complexity for online applications.

We discuss the fundamental functionalities of IncDTW and apply the package to
classify multivariate live stream accelerometer time series for activity recognition. Finally,
comparative runtime experiments with various R and Python packages for various data
analysis tasks emphasize the broad applicability of IncDTW.

Keywords: dynamic time warping, time series, k-NN, subsequence matching, distance measure,
clustering, classification.

1. Introduction

Time series are sets of observations that follow a consecutive temporal relation. Many time se-
ries data analysis tasks such as clustering, classification, outlier detection or pattern matching
require the definition of a distance measure. Many distance measures such as the Euclidean
distance are rather ill-suited whenever two time series are shifted in time, locally recorded with
different sampling rates, warped, or have different lengths. Dynamic time warping (DTW)

https://doi.org/10.18637/jss.v099.i09
https://orcid.org/0000-0003-4531-7012
https://orcid.org/0000-0001-5274-8123
https://orcid.org/0000-0002-2976-3138

2 IncDTW: Incremental Calculation of DTW in R

was originally proposed by Sakoe and Chiba (1978), and has since been the distance mea-
sure of choice in many works for time series analysis (Berndt and Clifford 1994; Keogh 2002;
Ding, Trajcevski, Scheuermann, Wang, and Keogh 2008; Kwankhoom and Muneesawang 2017;
Oregi, Pérez, Del Ser, and Lozano 2017; Giorgino et al. 2009). DTW is capable of dealing
with deformed time series by identifying the best alignment of two time series in a dynamic
way.
The major downside of DTW are its expensive computational costs, which are particularly
unfavorable for online algorithms processing continuous data streams, where time series anal-
ysis must be faster than the elapsed time between consecutive observations. One solution
to reduce the runtime for online processing is to incrementally calculate DTW by recycling
interim results of previous calculations for every new observation. Without any loss of accu-
racy, such an incremental processing allows reducing computation time complexity towards
linear level in number of observations. Section 2.1 and 3.2 give a detailed discussion about
the runtime and space complexity of the DTW algorithm.
The groundwork for the incremental calculation of DTW was done by Rabiner, Rosenberg,
and Levinson (1978), who proposed adjustments to the DTW algorithm - open alignments.
Since then the principle of the incremental DTW computation has been applied in multiple
works, as e.g.: Dixon (2005) applied it for an online algorithm to track musical performances,
Mori, Uchida, Kurazume, Taniguchi, Hasegawa, and Sakoe (2006) for an algorithm to early
recognize gestures, Tormene, Giorgino, Quaglini, and Stefanelli (2008) to analyze multivariate
sensor readings to support neurological patients with real-time information while undergoing
motor rehabilitation, Kwankhoom and Muneesawang (2017) for online algorithms which re-
identify movement trajectories of persons captured with a 3D depth sensing camera, where
time series matching is updated as soon as new video frames are recorded, and Oregi et al.
(2017) for proposing the Online-DTW (ODTW) algorithm.
Dynamic time warping has already been applied in many research domains and also pub-
lished in different software packages and programming languages. Table 1 gives an overview
of R (R Core Team 2021) packages for DTW computation available at the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/, and Python (Van Rossum
et al. 2011) packages available at the Python Package Index (PyPI) at https://pypi.org/.
The package dtw (Giorgino et al. 2009) offers functions for DTW calculation with different
step patterns (see (2) and (3)), warping path restrictions and plotting functions, also for a
profound visual analysis of warping alignments of two time series. dtwclust (Sarda-Espinosa
2019) puts emphasis on clustering time series based on DTW distances. The functions for
DTW calculations are wrappers for those of the dtw package. The package dtwSat (Maus et al.
2019) provides with the time-weighted dynamic time warping a distance method customized
to analyzing satellite image time series. rucrdtw (Boersch-Supan 2016) is the R version of
UCR Suite (Rakthanmanon, Campana, Mueen, Batista, Westover, Zhu, Zakaria, and Keogh
2012) which is a nearest neighbor search algorithm accelerated by lower bounding and prun-
ing methods. It detects the closest fit to a query time series in either one long time series
or many of the same length. To the best of our knowledge rucrdtw is – besides IncDTW –
the only R package with a vector-based implementation of the DTW algorithm, thus avoid-
ing memory allocation of matrices. However, the package does neither support multivariate
time series nor full alignments for time series of different lengths (i.e., from begin to end
for both time series). The package parallelDist (Eckert 2018) is the parallel implementa-
tion of the function dist() – of the package stats (R Core Team 2021) – by incorporating

https://CRAN.R-project.org/
https://pypi.org/

Journal of Statistical Software 3

Package First Incre- Vector- Diff. Multi-
k-NN Description / Focus& Repo. release mental based lengths variate

IncDTW
CRAN

2017 Yes Yes Yes Yes Yes Incremental and fast
vector-based DTW
calculations, described
in this paper.

dtw
CRAN

2007 No No Yes Yes No Highly functional im-
plementation of DTW
(Giorgino et al. 2009).

dtwclust
CRAN

2015 No No Yes Yes No Time series cluster-
ing with DTW (Sarda-
Espinosa 2019).

dtwSat
CRAN

2015 No No Yes Yes No Time-Weighted DTW
for satellite images
(Maus, Câmara, Ap-
pel, and Pebesma
2019).

rucrdtw
CRAN

2016 No Yes No No No 1NN-search via DTW
(Boersch-Supan 2016).

parallelDist
CRAN

2017 No No Yes Yes No Parallel distance cal-
culation (Eckert 2018).

dtw
PyPI

2014 No No Yes Yes No Highly forked and
starred (Rouanet
2014).

dtaidistance
PyPI

2017 No Yes Yes No No Functional and fast
(Meert 2017).

cydtw
PyPI

2017 No No Yes Yes No Simple and fast (Tave-
nard 2017).

Table 1: Overview of various R and Python packages with different emphasis on calculating
and applying the DTW distance.

RcppParallel (Allaire, François, Ushey, Vandenbrouck, Geelnard, and Intel 2021) to speed
up computations. Apart from R packages for DTW computation, in the following we discuss
Python software, since, – similar to R – Python is probably one of the most taught and ap-
plied programming languages for time series analysis, and data mining tasks as clustering,
classification and pattern recognition applied on time series data. The dtw package (Rouanet
2014) is one of the highest forked and starred packages for DTW computation on the Python
Package Index (https://pypi.org/). To compute the DTW distance for multivariate time
series the package cydtw (Tavenard 2017) offers a solution, and the main computation part of
the algorithm is implemented in C via Cython (Behnel, Bradshaw, Citro, Dalcin, Seljebotn,
and Smith 2011). The package dtaidistance (Meert 2017) offers a more comprehensive set
of functions and also a vector based implementation in C via Cython, but does not support
multivariate time series. Next to the R packages, Table 1 also lists the Python packages and
Section 4.2 details a runtime experiment which compares the Python packages with IncDTW.
The main contributions of this paper and the R package IncDTW are:

https://pypi.org/

4 IncDTW: Incremental Calculation of DTW in R

• the principle of the incremental DTW calculation ready to use in R functions,

• vector-based implementation of the DTW algorithm – also for multivariate time series
– to decrease the computation time,

• the demonstration of applying IncDTW for an online time series classification task,

• and comparative runtime experiments with other R and Python packages.

This paper is organized as follows: Section 2 gives an introduction to DTW in general and
explains the incremental calculation. Section 3 describes the R package IncDTW, discusses
the vector-based functions and how to apply the incremental calculation. Section 4 discusses
the advantages of IncDTW by hand of a typical time series classification experiment, and
shows runtime comparisons. Section 5 concludes this paper and gives an outlook of future
developments.

2. Dynamic time warping
In the following we recapitulate the classic dynamic time warping algorithm from Sakoe
and Chiba (1978) which calculates the distance measure between a query time series q and
a candidate time series c, and their alignment – the so-called warping path – providing
information which observations of q are best matched to the respective observations of c.
The distance measure DTW is defined as the minimal cumulative costs of the shortest non-
linear alignment of two time series q and c. This alignment has the following properties:

1. Boundary conditions: The first element of q is aligned to the first element of c, and
the last element of q is aligned to the last element of c. Relaxing these conditions
allows to find an open alignment, i.e., a partial alignment of two time series with lowest
DTW distance (normalized for the lengths). For a more detailed discussion on open
alignments (open-end, open-begin and open increment) we refer to the package vignette
of IncDTW (Leodolter 2021).

2. Monotonicity: Consecutive elements of q and c must not be aligned out of time order.
The DTW algorithm also returns vectors of indices of q and c defining the ordering
of the best aligned observations. These vectors must be monotonically increasing, such
that ik ≤ ik+1, where 1 ≤ ik ≤ n = |q|, and ik defines which elements of q are aligned
to c at the k-th point of time. The same applies to the indices jk ≤ jk+1 defining which
elements of c are aligned to q at the k-th point of time.

3. Non-linear alignment: In contrast to the Euclidean distance, one observation of q can
be aligned to more than one observation of c, and vice versa. Hence it is possible that
ik = ik+1 or jk = jk+1.

4. Restrictions: Global or local warping path restrictions can be applied to reduce the
space of possible alignments. The most known is the Sakoe Chiba warping window
(Sakoe and Chiba 1978), where the time difference of two aligned observations must not
exceed the window size parameter, ω: |ik − jk| ≤ ω ∀k.

Journal of Statistical Software 5

5. Local distance measure: The distance of two (possibly multivariate) observations of the
time series q and c can be defined by any distance metric. The standard metrics are
the 1-norm and 2-norm. The package vignette of IncDTW elaborates how to customize
the local distance functions.

6. Step Pattern: The step pattern defines how the local distances are accumulated to
calculate the global cost matrix and the walking path. The two popular step patterns
(2) and (3) are implemented in IncDTW. Sakoe and Chiba (1978), Rabiner and Juang
(1993) or Giorgino et al. (2009) give a more detailed discussion on step patterns.

It is worth noting that the DTW distance measure is not a metric, since it does not fulfill
the triangle inequality. Consequently, lower bounding with the help of the reverse triangle
inequality is not possible, which is a method applied for fast nearest neighbor search (Wang
2011).
For the two time series q of length n and c of length m, we define C ∈ Rn×m as the local
cost matrix, where

Ci,j
..= d(qi, cj), (1)

with d(·, ·) as a local distance function for univariate or multivariate time series as described
above. The global cost matrix G ∈ Rn×m is determined in an iterative fashion, where each
element depends on its predecessors. The step pattern defines these dependencies by weighting
and selecting the predecessors. Giorgino et al. (2009) and Rabiner and Juang (1993) present a
more detailed discussion on step patterns, here we concentrate on two of the most popular and
start with the naive step pattern that regards the direct neighboring elements in G equally
weighted:

Gi,j =

∑

k≤i Ck,1 j = 1∑
l≤j C1,l i = 1

Ci,j + min(Gi−1,j , Gi,j−1, Gi−1,j−1) i, j > 1.

(2)

The step pattern described by Algorithm 2 – “symmetric1” – was not part of the original
work about DTW of Sakoe and Chiba (1978) since it does not admit a normalization factor.
Nevertheless, it has been applied in several works (Fu 2011; Berndt and Clifford 1994; Sakurai,
Faloutsos, and Yamamuro 2007; Keogh 2002; Rath and Manmatha 2003b; Keogh and Pazzani
2000; Rakthanmanon et al. 2012) about time series clustering, classification, indexing and
pattern mining, and so gained popularity, possibly due to its simplicity to understand and
implement.
Another typical step pattern, that is also the default step pattern in the R package dtw, is
called “symmetric2”. Here the diagonal step is weighted with a weight of 2:

Gi,j =

∑

k≤i Ck,1 j = 1∑
l≤j C1,l i = 1

min(Ci,j + Gi−1,j , Ci,j + Gi,j−1, 2 ·Ci,j + Gi−1,j−1) i, j > 1.

(3)

The step pattern (3) is also discussed as special case of the general formulation in Sakoe and
Chiba (1978). The direction matrix D ∈ Nn×m gives information about the alignment of

6 IncDTW: Incremental Calculation of DTW in R

Algorithm 1 Backtracking the direction matrix D delivers the warping path w.
1: procedure Backtracking(D)
2: i ← n . n = length of the time series q
3: j ← m . m = length of the time series c
4: w, ii, jj← empty vectors
5: repeat
6: step ← D(i, j);
7: if step == 1 then
8: i ← i - 1
9: j ← j - 1

10: else if step == 2 then
11: j ← j - 1
12: else
13: i ← i - 1
14: end if
15: ii ← append(i, ii)
16: jj ← append(j, jj)
17: w← append(step, w)
18: until i < 0 | j < 0 return w, ii and jj
19: end procedure

the two time series and is calculated simultaneously with the calculation of G. The following
equation defines D for the step pattern of (2):

Di,j =

1 if Gi,j = Ci,j + Gi−1,j−1

2 if Gi,j = Ci,j + Gi,j−1

3 if Gi,j = Ci,j + Gi−1,j .

(4)

The DTW distance measure is stored in the last column of the last row of G, Gnm, and
indicates the cheapest cumulative costs to align q and c. The warping path vector w is
an excerpt of the direction matrix D and achieved by backtracking D. Starting at the last
row and last column of D, backtracking (Algorithm 1) checks the cheapest next step (1 is
diagonal, 2 is horizontal, 3 is vertical) and stores this integer in a vector. The backtracking
algorithm also returns the vectors ii and jj, the vectors of indices of q and c for the best
alignment in the respective order.

2.1. Incremental DTW calculation

Calculating the DTW distance measure is computationally expensive, especially for long time
series without a warping window, due to the quadratic runtime complexity O(n ·m), where
n and m are the lengths of the time series q and c, respectively. If the DTW distance is
calculated with a Sakoe Chiba warping window of size ω, where |m − n| ≤ ω ≤ max(m, n),
the runtime complexity reduces to O(ω · min(m, n)). Consequently, if ω increases and ap-
proaches its maximum value, then the runtime complexity approximates the quadratic level,
and conversely if ω decreases, then it approximates a linear level. The space complexity is
discussed in Section 3.2.

Journal of Statistical Software 7

To update an alignment of two time series after recording new observations, it is possible
to reuse interim results instead of calculating DTW from scratch. So, if a time series c is
observed for i = 1 . . . m, calculating the DTW distance measure to q of length n has a runtime
complexity1 of O(n ·m). As soon as new observations of c are recorded for i = m+1 . . . m+k,
calculating the DTW distance measure from scratch has a runtime complexity of O(n·(m+k)).
Contrary the incremental approach is based on storing the necessary components of the results
of the initial DTW computation after observing c for i = 1 . . . m, and recycling these interim
results when new observations are recorded. This way the incremental update of the DTW
distance at time i = m + k has a runtime complexity of O(n · k). The examples in Section 3.3
and the experiment in Section 4.1 demonstrate this principle in more detail.
The input to incrementally calculate DTW of q[1 : n] and c[1 : m + k] is the output of the
former calculation DTW(q[1 : n], c[1 : m]). This output is composed of three matrices: the
global cost matrix G0, the local cost matrix C0 and the direction matrix D0. Additional
required input is the time series of new observations of c. To calculate the global cost matrix
G1 of DTW(q[1 : n], c[1 : m+k]), we append new costs and direction entries to the previously
calculated matrices and proceed analogously to (2):

1. First we build the local cost Matrix C1:

C1
ij

..=
{

C0ij i ≤ m

dist(qi, cj) m < i ≤ m + k.
(5)

2. Next the global cost matrix is appended to the former results and new entries are defined
analogously to (2):

G1
ij

..=

G0ij i ≤ m∑

k≤i Ck,1 j = 1
Ci,j + min(Gi−1,j , Gi,j−1, Gi−1,j−1) else

(6)

3. The direction matrix D1 is calculated simultaneously to G1.

4. Finally, the warping path needs to be calculated completely new from scratch, since in
general it can not be excluded that new observations may open up completely different
options to warp the two time series.

Equation 6 is the incremental version of (2). For (3) the definition of the new entries of G is
analogous, as for any other step pattern presented in Sakoe and Chiba (1978).
In fact, not the complete matrix G0 is required to update the DTW distance for new ob-
servations. Section 3.2 and 3.3 discuss an vector-based implementation for the incremental
calculation that only requires the very last column (and row) of G0.
Especially for live streaming data computation time is key. IncDTW (in particular the func-
tions increment(), idtw2vec() and idtw() as demonstrated in Section 2 and 4) facilitates
a fast update of time series distance measures when new observations arise. This can be of
interest for any system analyzing live data streams.

1For simplicity we reduce the following runtime complexity discussion for the general case of DTW calcula-
tion without a warping window. The derivation for DTW calculation with a warping window follows analogous
arguments.

8 IncDTW: Incremental Calculation of DTW in R

3. The R package IncDTW
This section describes the functions of the R package IncDTW and how to apply them to
calculate the DTW distance: (1) Matrix-based, (2) vector-based, and (3) from scratch or
incrementally. For details about further functionalities of IncDTW (e.g., an algorithm for
searching the k-nearest subsequences of a time series with DTW, or time series clustering
with DTW) we refer to the package documentation and vignette (Leodolter 2021). All results
presented in this paper are achieved with version 1.1.4.3 of IncDTW. The computationally
expensive parts of IncDTW are outsourced to C++ via the packages Rcpp (Eddelbuettel and
François 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014), and parallelized via
the packages parallel (R Core Team 2021) and RcppParallel (Allaire et al. 2021).

3.1. Matrix-based implementation

The classical DTW implementation relies on the local cost matrix C, the direction matrix D
and the global cost matrix G (see Section 2). C can be stored as matrix or calculated entry-
wise when G is calculated. Returning the matrices G and D facilitates a detailed analysis of
the alignment of two time series. Plotting Figure 2 for visual analysis is possible due to the
information provided by the warping path, which in turn is an excerpt of the direction matrix
D and is achieved by backtracking. The entry Cij is the distance between qi and cj and can
be described by any distance metric for univariate or multivariate time series dependent on
the dimension of q and c. In case of multivariate time series, they need to have the same
dimension, but still can vary in number of observations. In the univariate case the 1-norm is
equivalent to the 2-norm, which is the absolute value of the difference |qi − cj |.
The basic DTW algorithm for computing the global cost matrix G, according to (2), steps
through the local cost matrix C. The following parameters characterize in detail how the
algorithm defines G and finds the warping path:

• dist_method: The local distances are stored in C, where Cij = dist_method(qi, cj). So
the parameter dist_method defines how the local distance of observations are measured.
For O-dimensional time series the distances “norm1”, “norm2” and “norm2_square” are
defined as:

||qi, cj ||1 ..=
O∑

o=1
|qio − cjo|

||qi, cj ||2 ..=

√√√√ O∑
o=1

(qio − cjo)2

||qi, cj ||22 ..=
O∑

o=1
(qio − cjo)2.

(7)

Apart from these three predefined local distance functions IncDTW also allows to define
customized local distance functions.

• ws: The space of all possible alignments of two time series can be constrained by warp-
ing windows. As Section 2 mentions, the most popular constraint is the Sakoe-Chiba
window (Sakoe and Chiba 1978), which adjusts the DTW algorithm by setting Gij =∞

Journal of Statistical Software 9

if |i− j| > ws. So ws defines the window size of allowed warping paths. If we set ws = 0
then only the diagonal of G is used for aligning q and c, which is identical to the Eu-
clidean distance. In this case the time series must have the same length. If the lengths
of the time series differ more than ws, then obviously no valid alignment can be found.

• step_pattern: The step pattern defines how the DTW algorithm finds the cheapest
path through the local cost matrix. In (2) the most basic and broadly applied step
pattern “symmetric1” is used, where the direct neighbors are considered and all are
weighted equally. In (3) the step pattern “symmetric2” is uses a weight of 2 for the
diagonal step and 1 for the vertical and horizontal to compensate the favor of diagonal
steps. The current version of IncDTW concentrates on these two patterns and we
consider other step patterns for future developments. For a more detailed discussion of
step patterns we refer to Giorgino et al. (2009) and Rabiner and Juang (1993).

The following commands install and load the package IncDTW:

R> install.packages("IncDTW")
R> library("IncDTW")

First we define the help function rw() (which we also use in the next sections) to simulate a
Gaussian random walk. Then a basic calculation of the DTW distance is done as follows:

R> rw <- function(n) cumsum(rnorm(n))
R> Q <- rw(100)
R> C <- rw(80)
R> result <- dtw(Q, C, ws = 30, step_pattern = "symmetric2")
R> result$distance

[1] 197.1266

3.2. Vector-based implementation

The matrix-based implementation is necessary for a detailed analysis of the alignment of two
time series since it allows to calculate and return the warping path. Tasks such as nearest
neighbor search, or the calculation of a matrix of pairwise distances to cluster or classify a
database of time series require many DTW computations, and so the computation time of
DTW is a major bottleneck.
The vector-based implementation offers a solution which is faster than the matrix based
implementation, since memory allocation for matrices is not required. The space complexity
for the matrix-based implementation is O(m · n) for calculating the local and global cost
matrix, and the direction matrix. The vector-based computation principle is the same as for
the matrix-based method, but instead of allocating matrices only two vectors are needed, and
so the space complexity is reduced to O(n). To obtain the DTW distance between the time
series q and c the calculation of the j-th column of the global cost matrix G.,j solely depends
on the values of the previous column G.,j−1 and the respective distances of the time series c
and the j-th entry of q. Since there is no dependence on the column G.,j−2, the algorithm
overwrites G.,j−2 with the newly calculated vector G.,j . Figure 1 demonstrates this principle

10 IncDTW: Incremental Calculation of DTW in R

a b

p1 p2

a b

p1 p2

a b

p1 p2

a b

p1 p2Pointers:

Storage vectors:

Global cost matrix G(., j):

Column j:
Iteration:

1 2
1

3 2
2

3 4
3

5 4
4

DTW distance

2
5
9
14

2
3
5
8

2
3
5
8

2
3
5
8

2
3
5
8

4
4
3
4

7
6
4
3

4
4
3
4

Figure 1: Iteratively overwriting vectors makes it obsolete to allocate matrices for DTW
distance calculation.

with a simple example, and the following lines of code perform the DTW calculation for the
same time series first via matrix based implementation (dtw) and second via vector based
implementation (dtw2vec). The global cost matrix G is also printed to compare it to the
vectors illustrated in Figure 1.

R> Q <- c(3,4,5,6)
R> C <- c(1,3,3,5,6)
R> result <- IncDTW::dtw(Q,C)
R> result$gcm

[,1] [,2] [,3] [,4] [,5]
[1,] 2 2 2 4 7
[2,] 5 3 3 4 6
[3,] 9 5 5 3 4
[4,] 14 8 8 4 3

R> dtw2vec(Q,C)$distance

[1] 3

In the first iteration step in Figure 1 the initial two vectors a and b are defined according to
the DTW step pattern and are identical to the first two columns of G. In the second iteration
the pointers p1 and p2 switch the address, so that the new entries of G.,3 overwrite a (where
p2 points to) and b (where p1 points to) stores the entries of G.,2 of the previous iteration.
Finally after four iterations the DTW distance measure (red encircled) is given in the last
row of the last vector, which is identical to the fifth column of G. Algorithm 2 formalizes this
principle for the general case.
Even though the information about the warping alignment is lost by applying the vector-
based method, the warping path still can be constrained by the parameter ws, defining the
Sakoe Chiba warping window size. To continue with the same time series we constrain the
warping path to allow a maximum deviation of the time index of q and c of 1, so |i− j| ≤ 1.
Since the warping path needs to adapt slightly the calculated distance changes from 3 to 4.

Journal of Statistical Software 11

Algorithm 2 Vector based implementation of DTW without allocating any matrices.
1: procedure Vector Based DTW(q∈ Rn×O, c∈ Rm×O)
2: p1 ← cumsum(dist(q1, c)) . initial column of G, G.,1
3: for j in 2:m do
4: p2[1] ← dist(q1, cj) + p1[1]
5: for i in 2:n do
6: p2[i] ← step

(
dist(qi, cj), min(p2[i− 1], p1[i], p1[i− 1])

)
7: end for
8: ptmp ← p1
9: p1 ← p2

10: p2 ← ptmp
11: end for
12: return p1[n]
13: end procedure

R> IncDTW::dtw2vec(Q, C, ws = 1)$distance

[1] 4

“Early abandoning” is a pruning method to break calculations if the cheapest possible align-
ment of two time series hits an upper bound (set by the user). This method helps to lower
the calculation runtime when comparing many time series. If the DTW algorithm hits this
threshold the for-loop breaks and returns NaN. We continue the example and set the threshold
to 2. Since no value in the fourth column of the global cost matrix is smaller or equal to 2,
so Gi,4 > 2 ∀i, the calculation stops here and NaN is returned.

R> IncDTW::dtw2vec(Q, C, threshold = 2)$distance

[1] NaN

3.3. IncDTW for incremental DTW calculation

For the incremental calculation of DTW we can choose between (1) the matrix based imple-
mentation to get more information about the alignment of the two time series and to facilitate
analyses of the warping paths and (2) the vector based implementation for a faster distance
calculation. For the latter the initial column in Algorithm 2 is defined as the last column of
the former calculated global cost matrix, the last pointer vector respectively. That is, instead
of passing matrices as input to the incremental DTW function, only the last column vector
of G is passed for the vector based implementation. Further the class ‘planedtw’ and its
methods deal as convenient wrapper functions around the vector based implementation. For
a better understanding the following examples first walk through the more basic matrix based
and vector based incremental update, and finally present the incremental update by hand of
the ‘planedtw’ class.
We demonstrate the principle of incrementally updating the DTW global distance matrix and
the distance measure by hand of the following example. We define the time series q and c,
and calculate the initial alignment with dtw().

12 IncDTW: Incremental Calculation of DTW in R

(a) Initial time series (b) Initial warping path

(c) Updated time series (d) Updated warping path

Figure 2: Initially c and q are aligned. The warping path has 4 vertical steps before the
update of c. The alignment is updated with an update of c.

R> Q <- c(1:3, 4:1, 2:4)
R> C_initial <- c(1:3, 4, 4, 3:1) + 2
R> align_initial <- IncDTW::dtw(Q = Q, C = C_initial, return_wp = TRUE,
+ return_QC = TRUE, step_pattern = "symmetric1")

Figure 2a shows the time series and the aligned observations connected with dashed lines,
and Figure 2b contains the same information but focuses on the warping path (the main
plot). One can see that the last observation of c is matched to the final six observations of
q. We plotted the results with plot(align_initial, type = "warp") and type = "QC"
respectively.
With new observations of c we can easily update the global cost matrix and the warping path
by applying idtw() and compare the initial and updated versions of G.

R> C_newObs <- Q[8:10] + 2
R> C_update <- c(C_initial, C_newObs)
R> align_inc <- IncDTW::idtw(Q = Q, C = C_initial, newObs = C_newObs,
+ gcm = align_initial$gcm, dm = align_initial$dm, return_wp = TRUE,
+ return_QC = TRUE, step_pattern = "symmetric1")
R> identical(align_inc$gcm[, 1:8], align_initial$gcm)

[1] TRUE

Journal of Statistical Software 13

As expected the first eight columns of the updated G and the initial G are identical. Figure 2c
and 2d show the updated alignment and warping path. Finally, we compare the DTW distance
of the updated calculation with the one from scratch (again using the basic function dtw())
and see that they are equal:

R> align_scr <- IncDTW::dtw(Q = Q, C = C_update, return_wp = TRUE,
+ return_QC = TRUE, step_pattern = "symmetric1")
R> align_scr$distance - align_inc$distance

[1] 0

We continue with the former example and perform the incremental calculation with the
vector based implementation with idtw2vec(). This function distinguishes between an initial
calculation and the incremental by checking whether results of previous calculations are passed
or not, particularly the argument gcm_lc.

R> alignV_init <- IncDTW::idtw2vec(Q = Q, newObs = C_initial, gcm_lc = NULL)
R> alignV_inc <- IncDTW::idtw2vec(Q = Q, newObs = C_newObs,
+ gcm_lc = alignV_init$gcm_lc_new)

Finally we compare the DTW distances of the incremental calculation (idtw2vec()) with the
one from scratch (dtw2vec()) and their matrix based counterparts. As expected they are
identical:

R> C_update <- c(C_initial, C_newObs)
R> alignV_scr <- IncDTW::dtw2vec(Q = Q, C = C_update)
R> c(align_scr$distance, align_inc$distance,
+ alignV_scr$distance, alignV_inc$distance)

[1] 16 16 16 16

Section 4.2 gives runtime comparisons for these update functions.

New observations for both time series

With the knowledge of the basics and main modules for incremental calculation of DTW,
idtw() and idtw2vec(), we apply the functions initialize_plane() and increment()
which are convenient wrappers around idtw2vec(). The former function performs the ini-
tial calculation of idtw2vec() and returns an object of class ‘planedtw’, whereas the latter
function applies the incremental calculation of idtw2vec(). The package vignette (Leodolter
2021) discusses further methods for the S3 class ‘planedtw’ that support the navigation in
the plane of possible fits, which means to adjust incrementally the partial alignment of two
time series.
If new observations for both time series are available, the update of the DTW calculation
works in a consecutive fashion, similar to the case where only one time series is updated. The
initial step is to apply initialize_plane() on the initial observations of c and q. Next we
update the calculations for the first time series with increment():

14 IncDTW: Incremental Calculation of DTW in R

G+

q

qn

. . .

q2

q1

c c1 c2 · · · cm cm+1

(a) New observations for c.
G++

q

qn+1

qn

...

q2

q1

c c1 c2 · · · cm cm+1

(b) New observations for q.

(G++)>

c

cm+1

cm

...

c2

c1

q q1 q2 · · · qn qn+1

(c) Transposed, new observa-
tions for q.

Figure 3: Incremental update of G for new observations of c and q. The updated areas of
G are coloured in red and the areas storing the required input for the vector based update
calculation are coloured blue.

R> x <- initialize_plane(Q = Q, C = C_initial)
R> print(x)

control:
dist_method step_pattern nQ nC ws reverse

norm1 symmetric2 10 8 NULL FALSE

DTW distance:
14

Normalized DTW distance:
0.7777778

R> x <- increment(x, newObs = C_newObs)

Figure 3a visualizes relevant sections of the updated global cost matrix G. For a new ob-
servation of c the new area of G is colored red and the required column for the update in
blue. Next we update G for the new observations of q. Again the red and blue rows in
Figure 3b indicate the updated and required areas. So we switch places of q and c as in-
put for idtw2vec() and proceed analogously. Also we need to switch the last column with
the last row of the global cost matrix. Figure 3c illustrates that switching c and q and the
gcm_lr with gcm_lc is the same as transposing G. We could either switch the positions of
these elements by hand and apply idtw2vec() directly, or apply the more convenient function
increment() and set direction = "Q" to tell the function in which direction to update the
last row and column of the global cost matrix:

R> Q_newObs <- rw(10)
R> x <- increment(x, newObs = Q_newObs, direction = "Q")

Finally we compare the results with the results from scratch and see that the calculated
distance measures are equal:

Journal of Statistical Software 15

Figure 4: Typical accelerometer time series recorded while brushing teeth, drinking a glass,
or walking.

R> x$distance - dtw2vec(c(Q, Q_newObs), c(C_initial, C_newObs))$distance

[1] 0

4. Applying IncDTW
This section demonstrates the applicability of IncDTW by (1) discussing a time series clas-
sification task for live data streams solved by either the traditional DTW implementation
dtw2vec() or the incremental updating of DTW distances to speed up calculations with
idtw2vec(), and (2) discussing runtime experiments that compare IncDTW with other R and
Python packages.
In the following experiment we work with data sets (Bruno, Mastrogiovanni, Sgorbissa, Ver-
nazza, and Zaccaria 2013) downloaded from UCI machine learning repository (Dheeru and
Karra Taniskidou 2017). The data was collected by participants wearing a smart watch
recording a 3-dimensional accelerometer signal with a sampling rate of 32 Hz. Among other
actions the participants were asked to collect data during walking (walk), drinking a glass
(drink_glass) and brushing teeth (brush_teeth), Figure 4 depicts examples of the three
activities. The time series data of these experiments are included in the package IncDTW.
The package documentation and vignette (Leodolter 2021) also include further experiments
about time series clustering and scanning longer time series to detect similar representations
of a shorter query pattern.

4.1. Incremental DTW update for live data

When applying data mining methods on live streams of data, it is mandatory that the compu-
tation time of the analysis is smaller than the time in between two consecutive observations.
In this experiment we simulate the situation of dealing with data streams by iteratively in-
cluding more observations of the time series into analysis. As soon as new observations are
“recorded” we classify the time series streams by comparing their DTW distances to prototype
patterns, so we need to update the DTW calculation for each set of new observations.
We start this experiment with determining representative centroid patterns for each of the
recorded activities, stored in the accelerometer data sets walk, drink_glass and brush_teeth.

16 IncDTW: Incremental Calculation of DTW in R

C

Q

0 3 6 9 12 15 18 21 24

−2

0

2

4

−2

0

2

4

Time (sec)

A
cc

el
er

at
io

n

x

y

z

Figure 5: Iteratively increasing the observation window. As the dashed line moves to the
right, more data is included in analysis and the DTW alignment is updated for the new
observations.

We calculate these representatives with IncDTW::dba(), which is the DTW Barycenter Aver-
aging method by Petitjean, Ketterlin, and Gançarski (2011) for averaging multiple time series
that are non-linearly aligned by DTW.
Next we calculate the initial DTW distances for the first 100 observations (about 3 seconds) of
each time series of the three data sets to the three centroids. Then we simulate the continuous
recording of new observations and apply idtw2vec() to update the DTW distance measures,
which requires to store the last columns of G (see (2)) of the previous calculations. For
comparing the computation times we fulfill the same classification task with dtw2vec(), and
of course the classification results are identical. Figure 5 depicts this simulation of a data
stream c and the query time series q, both selected from the drink_glass data set. This
plot shows the situation after the initial step – the first three seconds are already observed
(vertical solid line) – when c has already been recorded for six seconds in total (the vertical
dashed line). As the data stream continuously updates the dashed line moves to the right
and more observations are included to the DTW alignment with q.
Figure 6a plots the classification accuracy against the “observed” (used) percentage of the time
series, and shows that the accuracy increases the more observations are recorded. Already
about 75% are enough to reach an F1-score of 90%. We used 4-fold cross validation, where
we calculated the representatives via dba() on one fold and classified the remaining 3 folds.
Figure 6a shows aggregated results.
Figure 6b compares the computation times of idtw2vec() (incremental) and dtw2vec() (from
scratch) to process one set of new observations, which we represent as the set of observa-
tions recorded within one second, so 3-dimensional time series with 32 rows (since originally
recorded with 32Hz). The collection of these three data sets consists of 212 time series of
different lengths. The calculation times depend on the length of the observation window and

Journal of Statistical Software 17

(a) Prediction Accuracy. (b) Runtime: Absolute (top) for all time series, and
relative (bottom) per time series.

Figure 6: Prediction accuracy and computation time comparison for classifying multivariate
time series of the data sets walk, drink_glass and brush_teeth by simulating to observe
these time series live and update the prediction once per second.

the number of time series that are at least as long as the observation window. Since the
time series are of different lengths, with increasing observation window, more and more time
series can not be processed further until the observation window is equal to the length of the
longest time series. For this reason the graph for “scratch” in Figure 6b (top) first rises and
then drops continuously. All time series are at least 187 observations long and beyond this
observation window length the shorter time series drop out of further analysis and so are not
relevant for the total computation time. For clarification we also plot the relative times per
time series in Figure 6b (bottom). It is worth mentioning that the y-axis are log-scaled.
We conclude that the incremental update can process about 7 to 108 times more time series
than the calculation from scratch, dependent on the length of the time series, the observation
window respectively. This exemplary data analysis task would not be solvable in time by
applying dtw2vec() (which is vector-based implemented in C++ via Rcpp) since the calcu-
lation of DTW distances and classification takes longer than one second, which is the time
in-between two sets of new observations. However, the incremental method with idtw2vec()
is capable. As expected this experiment demonstrates the calculation time for the incremental
step to be independent of the total length of the time series, see Figure 6b. We performed
this experiment applying a single core of a 2.8 GHz and 16GB RAM laptop. If we split the
work for this example across multiple cores dtw2vec() would manage the classification in
time as well, however the relation of 7 to 108 remains the same, so the incremental solution
is capable to deal with much more time series updates in less time.

4.2. Runtime comparisons

In the following we compare computation times for the 3 data analysis tasks: (1) the incre-
mental update for new observations, (2) single DTW computation for two time series, and
(3) computing the matrix of pairwise DTW distances for a set of time series. Further, we
also compare IncDTW with Python packages for the second task, since this is probably the
most generic and most applied use case. To compare the calculation times of R packages
we use the package microbenchmark (Mersmann 2019). For comparisons to Python pack-
ages we measure the wall clock time. To the best of our knowledge we set the parameters
of all functions so that a fair computation time comparisons is guaranteed. So we omit to

18 IncDTW: Incremental Calculation of DTW in R

return additional output objects (like the warping path) which obviously would cause higher
computation times. All runtime experiments were performed on a standard laptop computer
with 2.8 GHz and 16GB RAM. We applied the following versions of the respective packages
(please see Section 1 and Table 1 for more details about the packages):

• R: IncDTW (1.0.4), dtw (1.22-3), dtwclust (5.5.6), rucrdtw (0.1.4), parallelDist (0.2.4)

• Python: cydtw (0.1.4), dtaidistance (1.2.3), dtw (1.4.0).

Incremental update of DTW
This paper emphasizes methods for accelerating DTW calculations and demonstrates how to
apply the incremental DTW calculation for updating existing results for new observations
(Section 2.1 and 4.1). The following experiment underpins that this principle of recycling
former calculated results is a considerable faster approach to compute the DTW distance
measure. For this experiment we simulate the situation of continuously recording new obser-
vations and compare the runtime for the incremental calculation with a traditional calculation
from scratch. Figure 7a shows the results. Each red point is the median of 100 computations
of the DTW distance with dtw2vec() of two univariate time series, both of the respective
length given at the x-axis. The blue points visualize the median computation time for one
incremental step (via idtw2vec()), so one new observation of c, and q of length as given by
the x-axis. Both axes are in log scale.

Single computations
Figure 7b depicts the runtime comparison in a log-scale. The only two methods using a
vector-based implementations (as discussed in Section 3.2) are rucrdtw::ucrdtw_vv() and
IncDTW::dtw2vec(), and these are considerably faster than the remaining functions. To guar-
antee a fair comparison we set the step pattern to “symmetric1” (since rucrdtw::ucrdtw_vv()
only supports “symmetric1”) and the warping window size equal 10 for all functions.

Compute a distance matrix
Time series clustering is a typical task in time series analysis and data mining. Time series
clustering based on the DTW distance measure requires a distance matrix of pairwise DTW
distances. The function IncDTW::dtw_dismat() helps to get this matrix for a list of univariate
or multivariate time series of possibly different lengths. The calculations can be performed
single threaded (ncores = 1) or multithreaded.
We compare the runtimes for calculating distance matrices for a set of 500 time series of
varying lengths and also set the window size parameter to 10. Figure 7c depicts the run-
times, where dtw_dismat_1() is the standard function dis_mat() without parallelization.
dtw_dismat_3Rcpp() splits the work via RcppParallel and dtw_dismat_3R() uses the pack-
age parallel, both with three cores (ncores = 3). For short time series parDist_3() is up to
10 times faster than dtw_dismat_3Rcpp() and for long time series it’s the other way round
(about 17 times faster).

Comparison with Python
For many data analysis tasks R and Python are interchangeable and it is just a matter of

Journal of Statistical Software 19

(a) Incremental vs. from scratch. (b) Single DTW computations for two time series.

(c) Matrices of pairwise DTW distances for a list
of time series.

(d) Single DTW without warping window com-
pared with Python packages.

Figure 7: Runtime comparisons for different data analysis tasks.

taste which to prefer. So, we compare the runtimes for calculating the DTW distance across
these two platforms. For each of the time series lengths we measured the wall clock time for
100 DTW computations in the respective programming language environment2, and averaged
it. To guarantee a fair comparison we omit the warping window parameter since the func-
tion cydtw.dtw()3 does not support warping windows. Figure 7d shows the results in log
scale. The functions dtaidistance.distance_fast() and cydtw.dtw() both are functions

2We also performed the experiment by calling the Python functions inside of R via reticulate (Ushey, Allaire,
and Tang 2021), which caused a computation overhead.

3We notate R and Python functions according to their syntax: package::function() in R and
package.function() in Python.

20 IncDTW: Incremental Calculation of DTW in R

written in C, via Cython, but only the former is vector based and so it is comparable fast as
IncDTW::dtw2vec().

5. Conclusion
This paper discusses the incremental calculation of the widely applied DTW distance measure
(Fu 2011). We present the R package IncDTW (Leodolter 2021) – current version 1.1.4.3
available from the Comprehensive R Archive Network at https://CRAN.R-project.org/
package=IncDTW – that mainly focuses on fast R functions for vector based and incremental
DTW computation. IncDTW also offers functions for familiar time series analysis tasks, as
time series clustering and pattern recognition. Section 4.1 showcases how to apply IncDTW
to classify three dimensional time series in a simulated live stream setting, and why the
incremental calculation of DTW is capable to process 7 to 108 times more data.
Due to the intensive computational costs of DTW, we put a special emphasis on accelerating
our algorithms. Consequently, IncDTW transfers the most intensive computations to C++
via Rcpp and stresses on the one hand the vector based implementation, and on the other
hand the principle of the incremental calculation of DTW, by recycling previous calculation
results. Section 4.2 demonstrates the benefits of these acceleration methods using runtime
comparisons for various settings. Further accelerating methods as lower bounding (Keogh,
Wei, Xi, Lee, and Vlachos 2006; Rath and Manmatha 2003a) and early abandoning methods
are also applied and discussed in more detail in the package vignette (Leodolter 2021).
Apart from stream processing, computation time is also key whenever relatively short query
patterns must be detected in longer time series, which usually requires a large number of
comparisons between many segments of the longer time series and the query pattern. For
example, the Caterpillar algorithm presented by Leodolter, Brändle, and Plant (2018) scans
long time series to detect patterns which are possibly warped or of different lengths than a
query pattern, based on a combination of incremental DTW calculation and the Minimum
Description Length. The incremental calculation of DTW enables the Caterpillar algorithm
to search the space of possible fits runtime efficiently. So, the R package IncDTW and its
functions can serve as components for building pattern recognition algorithms.
Future developments for IncDTW will incorporate a parallelized implementation of dba() and
a user-friendly solution for applying lower bounding, which is currently only implemented as
part of rundtw().

References

Allaire JJ, François R, Ushey K, Vandenbrouck G, Geelnard M, Intel (2021). RcppPa-
rallel: Parallel Programming Tools for Rcpp. R package version 5.1.4, URL https:
//CRAN.R-project.org/package=RcppParallel.

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K (2011). “Cython: The Best
of Both Worlds.” Computing in Science Engineering, 13(2), 31 –39. doi:10.1109/mcse.
2010.118.

Berndt DJ, Clifford J (1994). “Using Dynamic Time Warping to Find Patterns in Time Se-

https://CRAN.R-project.org/package=IncDTW
https://CRAN.R-project.org/package=IncDTW
https://CRAN.R-project.org/package=RcppParallel
https://CRAN.R-project.org/package=RcppParallel
https://doi.org/10.1109/mcse.2010.118
https://doi.org/10.1109/mcse.2010.118

Journal of Statistical Software 21

ries.” In Proceedings of the 3rd International Conference on Knowledge Discovery and Data
Mining, AAAIWS’94, pp. 359–370. AAAI Press. URL http://dl.acm.org/citation.
cfm?id=3000850.3000887.

Boersch-Supan P (2016). “rucrdtw: Fast Time Series Subsequence Search in R.” The Journal
of Open Source Software, 1, 1–2. doi:10.21105/joss.00100.

Bruno B, Mastrogiovanni F, Sgorbissa A, Vernazza T, Zaccaria R (2013). “Analysis of Human
Behavior Recognition Algorithms Based on Acceleration Data.” In IEEE International
Conference on Robotics and Automation 2013, pp. 1602–1607. IEEE.

Dheeru D, Karra Taniskidou E (2017). “UCI Machine Learning Repository.” URL http:
//archive.ics.uci.edu/ml.

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008). “Querying and Mining of
Time Series Data: Experimental Comparison of Representations and Distance Measures.”
Proceedings of the VLDB Endowment, 1(2), 1542–1552. doi:10.14778/1454159.1454226.

Dixon S (2005). “An On-Line Time Warping Algorithm for Tracking Musical Performances.”
In IJCAI, pp. 1727–1728.

Eckert A (2018). parallelDist: Parallel Distance Matrix Computation Using Multiple Threads.
R package version 0.2.4, URL https://CRAN.R-project.org/package=parallelDist.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

Fu T (2011). “A Review on Time Series Data Mining.” Engineering Applications of Artificial
Intelligence, 24(1), 164–181. doi:10.1016/j.engappai.2010.09.007.

Giorgino T, et al. (2009). “Computing and Visualizing Dynamic Time Warping Alignments
in R: The dtw Package.” Journal of Statistical Software, 31(7), 1–24. doi:10.18637/jss.
v031.i07.

Keogh E (2002). “Exact Indexing of Dynamic Time Warping.” In VLDB’02: Proceedings of
the 28th International Conference on Very Large Databases, pp. 406–417. Elsevier.

Keogh E, Wei L, Xi X, Lee SH, Vlachos M (2006). “LB_Keogh Supports Exact Indexing of
Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures.”
In Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 882–
893. VLDB Endowment.

Keogh EJ, Pazzani MJ (2000). “Scaling up Dynamic Time Warping for Datamining Ap-
plications.” In Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’00, pp. 285–289. ACM, New York. doi:
10.1145/347090.347153.

http://dl.acm.org/citation.cfm?id=3000850.3000887
http://dl.acm.org/citation.cfm?id=3000850.3000887
https://doi.org/10.21105/joss.00100
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.14778/1454159.1454226
https://CRAN.R-project.org/package=parallelDist
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.1145/347090.347153
https://doi.org/10.1145/347090.347153

22 IncDTW: Incremental Calculation of DTW in R

Kwankhoom W, Muneesawang P (2017). “An Incremental Dynamic Time Warping for Per-
son Re-Identification.” In 14th International Joint Conference on Computer Science and
Software Engineering 2017, pp. 1–5. IEEE.

Leodolter M (2021). IncDTW: Incremental Calculation of Dynamic Time Warping. R package
version 1.1.4.3, URL https://CRAN.R-project.org/package=IncDTW.

Leodolter M, Brändle N, Plant C (2018). “Automatic Detection of Warped Patterns in Time
Series: The Caterpillar Algorithm.” In IEEE International Conference on Big Knowledge
2018, pp. 423–431. doi:10.1109/icbk.2018.00063.

Maus V, Câmara G, Appel M, Pebesma E (2019). “dtwSat: Time-Weighted Dynamic Time
Warping for Satellite Image Time Series Analysis in R.” Journal of Statistical Software,
88(5), 1–31. doi:10.18637/jss.v088.i05.

Meert W (2017). dtaidistance. URL https://pypi.org/project/dtaidistance/.

Mersmann O (2019). microbenchmark: Accurate Timing Functions. R package version 1.4-7,
URL https://CRAN.R-project.org/package=microbenchmark.

Mori A, Uchida S, Kurazume R, Taniguchi R, Hasegawa T, Sakoe H (2006). “Early Recogni-
tion and Prediction of Gestures.” In 18th International Conference on Pattern Recognition
(ICPR’06), volume 3, pp. 560–563. doi:10.1109/icpr.2006.467.

Oregi I, Pérez A, Del Ser J, Lozano JA (2017). “On-Line Dynamic Time Warping for Stream-
ing Time Series.” In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 591–605. Springer-Verlag.

Petitjean F, Ketterlin A, Gançarski P (2011). “A Global Averaging Method for Dynamic
Time Warping, with Applications to Clustering.” Pattern Recognition, 44(3), 678–693.
doi:10.1016/j.patcog.2010.09.013.

Rabiner L, Juang BH (1993). Fundamentals of Speech Recognition. Prentice-Hall, Upper
Saddle River.

Rabiner L, Rosenberg A, Levinson S (1978). “Considerations in Dynamic Time Warping
Algorithms for Discrete Word Recognition.” IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(6), 575–582. doi:10.1109/tassp.1978.1163164.

Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E
(2012). “Searching and Mining Trillions of Time Series Subsequences under Dynamic Time
Warping.” In Proceedings of the 18th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 262–270. ACM. doi:10.1145/2339530.2339576.

Rath TM, Manmatha R (2003a). “Lower-Bounding of Dynamic Time Warping Distances for
Multivariate Time Series.” MM 40, University of Massachusetts Amherst.

Rath TM, Manmatha R (2003b). “Word Image Matching Using Dynamic Time Warping.”
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003,
volume 2, pp. II–II. IEEE. doi:10.1109/cvpr.2003.1211511.

https://CRAN.R-project.org/package=IncDTW
https://doi.org/10.1109/icbk.2018.00063
https://doi.org/10.18637/jss.v088.i05
https://pypi.org/project/dtaidistance/
https://CRAN.R-project.org/package=microbenchmark
https://doi.org/10.1109/icpr.2006.467
https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1109/tassp.1978.1163164
https://doi.org/10.1145/2339530.2339576
https://doi.org/10.1109/cvpr.2003.1211511

Journal of Statistical Software 23

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rouanet P (2014). dtw. URL https://pypi.org/project/dtw/.

Sakoe H, Chiba S (1978). “Dynamic Programming Algorithm Optimization for Spoken Word
Recognition.” IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43–
49. doi:10.1109/tassp.1978.1163055.

Sakurai Y, Faloutsos C, Yamamuro M (2007). “Stream Monitoring under the Time Warping
Distance.” In IEEE 23rd International Conference on Data Engineering 2007, pp. 1046–
1055. IEEE.

Sarda-Espinosa A (2019). dtwclust: Time Series Clustering Along with Optimizations for
the Dynamic Time Warping Distance. R package version 5.5.6, URL https://CRAN.
R-project.org/package=dtwclust.

Tavenard R (2017). cydtw. URL https://pypi.org/project/cydtw/.

Tormene P, Giorgino T, Quaglini S, Stefanelli M (2008). “Matching Incomplete Time Series
with Dynamic Time Warping: An Algorithm and an Application to Post-Stroke Rehabil-
itation.” Artificial Intelligence in Medicine, 45(1), 11–34. doi:10.1016/j.artmed.2008.
11.007.

Ushey K, Allaire JJ, Tang Y (2021). reticulate: Interface to Python. R package version 1.20,
URL https://CRAN.R-project.org/package=reticulate.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Wang X (2011). “A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search
Using k-Means Clustering and Triangle Inequality.” In The 2011 International Joint Con-
ference on Neural Networks, pp. 1293–1299. IEEE.

Affiliation:
Maximilian Leodolter
Austrian Institute of Technology
Center for Mobility Systems
1210 Wien, Austria
E-mail: maximilian.leodolter@gmail.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

September 2021, Volume 99, Issue 9 Submitted: 2019-04-08
doi:10.18637/jss.v099.i09 Accepted: 2020-03-23

https://www.R-project.org/
https://pypi.org/project/dtw/
https://doi.org/10.1109/tassp.1978.1163055
https://CRAN.R-project.org/package=dtwclust
https://CRAN.R-project.org/package=dtwclust
https://pypi.org/project/cydtw/
https://doi.org/10.1016/j.artmed.2008.11.007
https://doi.org/10.1016/j.artmed.2008.11.007
https://CRAN.R-project.org/package=reticulate
https://www.python.org/
https://www.python.org/
mailto:maximilian.leodolter@gmail.com
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v099.i09

	Introduction
	Dynamic time warping
	Incremental DTW calculation

	The R package IncDTW
	Matrix-based implementation
	Vector-based implementation
	IncDTW for incremental DTW calculation
	New observations for both time series

	Applying IncDTW
	Incremental DTW update for live data
	Runtime comparisons
	Incremental update of DTW
	Single computations
	Compute a distance matrix
	Comparison with Python

	Conclusion

