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Abstract

Recently, there has been a growing interest in tensor data analysis, where tensor re-
gression is the cornerstone of statistical modeling for tensor data. The R package TRES
provides the standard least squares estimators and the more efficient envelope estima-
tors for the tensor response regression (TRR) and the tensor predictor regression (TPR)
models. Envelope methodology provides a relatively new class of dimension reduction
techniques that jointly models the regression mean and covariance parameters. Three
types of widely applicable envelope estimation algorithms are implemented and applied
to both TRR and TPR models.
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1. Introduction

Tensor data, in the form of multidimensional arrays, arise from various applications. Statis-
tical analysis of tensor data has been motivated by many areas of research, including genetics
(e.g., Hore, Viñuela, Buil, Knight, McCarthy, Small, and Marchini 2016), signal processing
(e.g., Cichocki, Mandic, De Lathauwer, Zhou, Zhao, Caiafa, and Phan 2015), neuroimaging
(e.g., Zhou, Li, and Zhu 2013), and relational and networks data analysis (e.g., Hoff 2015).
Among these applications, a common statistical analysis task is the study of the relationship
between the tensor variable and other (multivariate) variables. This is usually formulated as
a tensor regression problem. In particular, this package is developed for two complementary
tensor regression models. On one hand, the tensor predictor regression (TPR) model (e.g.,
Zhou et al. 2013; Zhang and Li 2017; Li, Xu, Zhou, and Li 2018b) uses the tensor data along
with other additional covariates to predict an outcome of interest. It also includes the scalar-
on-image regression (Wang, Zhu, and ADNI 2017) as an important special case. On the other
hand, the tensor response regression (TRR) model (Li and Zhang 2017) is aiming to study
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how the tensor response (e.g., 3D brain images) is affected by a multivariate predictor (e.g., a
vector consisting of age, sex, and medical information). However, tensor data often have high
dimensionality and complex structures that bring challenges to the estimation procedure. To
improve estimation efficiency and to reduce variability in tensor data, Li and Zhang (2017)
and Zhang and Li (2017) developed the parsimonious TRR and TPR models by adopting the
envelope methodology.
Envelope methodology is a recent research area in multivariate statistical modeling, where
the goal is to achieve dimension reduction and efficient parameter estimation simultaneously.
The idea is to eliminate variability in the data that is immaterial to the analysis while re-
taining the material variability by projecting the data onto the latent subspace known as the
“envelope”. Because of the dimension reduction, more efficient estimators can be derived.
The first envelope model was introduced by Cook, Li, and Chiaromonte (2010) for multi-
variate response reduction in classical multivariate linear regression. The tensor response
envelope model (Li and Zhang 2017), which will be discussed in Section 2.3, generalizes the
envelope model from multivariate response to tensor response. While Li and Zhang (2017)
developed likelihood-based tensor envelope estimators, Zhang and Li (2017) proposed a fast
moment-based tensor envelope estimator from the tensor partial least squares algorithm per-
spective. In this package, we implement both the likelihood-based algorithm and the partial
least squares algorithm for model-free and model-based envelope estimation.
The envelope methodology can be viewed as a special type of sufficient dimension reduction
(SDR) methods (see Li 2018, for background). There have been several packages for suffi-
cient dimension reduction and the envelope models in the literature. The R (R Core Team
2021) package dr (Weisberg 2002) implements several non-parametric methods, including
SIR (Li 1991), SAVE (Cook and Weisberg 1991), PHD (Li 1992) and IRE (Cook and Ni
2005). The MATLAB (The MathWorks Inc. 2018) package LDR (Cook, Forzani, and Tomassi
2011) focuses more on the likelihood-based methods such as LAD (Cook and Forzani 2009).
The R package ldr (Adragni and Raim 2014) is the counterpart of the MATLAB package
LDR. Recently, the R package orthoDr (Zhu, Zhang, Zhao, Xu, Zhou, and Zhang 2019) im-
plements the semi-parametric SDR method utilizing the techniques developed by Wen and
Yin (2013) to efficiently search for solutions in the Stiefel manifold. The MATLAB package
envlp (Cook, Su, and Yang 2015) implements several envelope estimators under the frame-
work of multivariate linear regression, while its R version is Renvlp (Lee and Su 2020). The
MATLAB toolbox TensorReg (Zhou 2013) implements the tensor predictor regression models
with tensor decompositions. Since many of our envelope estimation problems require solving
Grassmannian optimizations, we included two of the state-of-the-art manifold optimization
algorithms in our package. The first is our implementation of the algorithms in Wen and
Yin (2013), which was previously provided in the MATLAB package OptM (Wen and Yin
2013). The second one is directly from the R package ManifoldOptim (Martin, Raim, Huang,
and Adragni 2020). Our package TRES (Wang, Zeng, and Zhang 2021) provides options to
choose from the various algorithms in Wen and Yin (2013) and Martin et al. (2020). More-
over, this package can be easily combined with other general purpose manifold optimization
packages, and indeed provides a comprehensive library of tensor regression and envelope esti-
mation problems. The package freely is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=TRES.
To the best of our knowledge, there is no existing R package implementing the tensor regres-
sion models or tensor envelope models described in this paper. Our R package TRES provides
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both the least squares and the envelope estimation under the framework of tensor regression
models. It also implements the general model-free envelope algorithms that are widely ap-
plicable. The three types of envelope algorithms covered are: (1) full Grassmannian (FG)
algorithm, which solves a likelihood-based general manifold optimization; (2) 1D algorithm
(Cook and Zhang 2016) and envelope coordinate descent algorithm (ECD, Cook and Zhang
2018), which are tailored to likelihood-based envelope estimation and solve one-dimensional
manifold optimization problems sequentially; (3) moment-based sequential algorithm, which
is motivated from the partial least squares algorithm (De Jong 1993). Many envelope models
were further proposed in multivariate linear regression (e.g., Su and Cook 2011; Cook, Hel-
land, and Su 2013; Cook and Zhang 2015b). Beyond linear models, envelope methodology
can be also applied in generalized linear model (GLM), Cox model (Cook and Zhang 2015a),
discriminant analysis (Zhang and Mai 2019) and tensor regression problems (Zhang and Li
2017; Li and Zhang 2017). See Cook (2018) for an overview of envelope methods. The three
generic envelope algorithms implemented in this package can be applied to essentially all of
these methods by properly incorporating the core estimation functions which will be discussed
in Section 4.
The rest of this paper is organized as follows. Section 2 introduces the TRR and the TPR
models, and the envelope structured TRR and TPR models. Section 3 demonstrates two
main functions for fitting the TRR and TPR models and two dimension selection functions
for selecting the envelope dimension. Both simulated and real data examples are included in
Section 3. Section 4 presents the envelope algorithms implemented in the TRES package and
illustrates the core estimation functions via simulation studies. Finally, a brief discussion is
given in Section 5.

2. Models

2.1. Notation

We review some matrix, subspace and tensor notations that will be used throughout this arti-
cle. For more background and a thorough review of tensor related definitions, decompositions
and operations, see Kolda and Bader (2009).

• higher-order tensor : A multidimensional array A ∈ Rr1×···×rm is anm-way ormth-order
tensor for an integer m ≥ 1. For example, vectors are first-order tensors, and matrices
are second-order tensors. A higher-order tensor is an m-way tensor with m ≥ 3.

• vectorization: The vectorization of mth-order tensor A, denoted by vec(A), stacks the
entries of A into a column vector. The entry ai1,··· ,im of A is mapped to the jth entry
of vec(A), in which j = 1 +

∑m
k=1(ik − 1)

∏k−1
k′=1 rk′ .

• mode-n fiber : The vector obtained by fixing all indices of a tensor except for the nth
one. For a matrix (second-order tensor), the column vector is its mode-1 fiber and the
row vector is its mode-2 fiber.

• mode-n matricization: The process mapping the tensor A into a matrix A(n) ∈ Rrn×
∏

j 6=n
rj ,

so that the (i1, · · · , im) element of A maps to the (in, j) element of the matrix A(n),
where j = 1 +

∑
n′ 6=n(in′ − 1)

∏
n′′<n′,n′′ 6=n rn′′ .
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• n-mode product: The n-mode product of a tensor A and a matrix G ∈ Rs×rn results in
an mth-order tensor denoted as B = A ×n G ∈ Rr1×···×rn−1×s×rn+1×···×rm , where each
element is the product of the mode-n fiber of A and G. The definition is closely related
to the mode-n matricization: B = A×n G⇔ B(n) = GA(n).

• n-mode vector product: The n-mode vector product of a tensor A and a vector c ∈ Rrn

results in an (m−1)th-order tensor, denoted as A×̄nc ∈ Rr1×···×rn−1×rn+1×···×rm , where
each element is the inner product of each mode-n fiber of A and vector c.

• inner product: The inner product of two tensors A,B ∈ Rr1×···×rm is the sum of the
products of corresponding entries, denoted as 〈A,B〉.

• column subspace: The column subspace of matrix Γ ∈ Rp×u, denoted as span(Γ) or SΓ,
consists of all linear combinations of the column vectors of Γ.

• projection: For the orthogonal basis (Γ,Γ0) ∈ Rp×p, we use PΓ = ΓΓ> to denote the
projection onto the subspace SΓ and use QΓ = I−PΓ = Γ0Γ>0 to denote the projection
onto the orthogonal complement subspace SΓ0 .

• subspace distance: Let SΓ1 and SΓ2 be u-dimensional subspaces of Rp, the subspace
distance between the two subspaces is defined as D(SΓ1 ,SΓ2) = ‖PΓ1 − PΓ2‖F /

√
2u,

where ‖ · ‖F is Frobenius norm.

• Tucker decomposition: The Tucker decomposition is used to represent a tensor A by a
small number of components at each mode, which are collected into each factor matrix
Ck ∈ Rrk×pk , k = 1, . . . ,m. And the components in each factor matrix are linked by a
dimension reduced core tensor D ∈ Rp1×···×pm with pk ≤ rk. Then, the Tucker decompo-
sition of A is defined as A = D×1 C1×2 · · ·×m Cm with the notation JD; C1, . . . ,CmK.

• tensor normal distribution: The tensor X ∈ Rr1×···×rm is from a m-way tensor normal
distribution TN (M; Σ1, . . . ,Σm) if and only if vec(X) ∼ N(vec(M),Σm ⊗ . . . ⊗ Σ1),
where ⊗ is the Kronecker product.

• stacked tensor data: For n independent and identically distributed (i.i.d.) m-way tensor
random variables Xi ∈ Rr1×···×rm , i = 1, . . . , n, we use X ∈ Rr1×···×rm×n to represent the
(m+ 1)-way tensor dataset constructed by stacking n observations along the (m+ 1)th
mode. Similarly, Y is the stacked tensor dataset constructed from Yi, i = 1, . . . , n.

2.2. Tensor response regression model

The tensor response regression (TRR) model studies the regression problem with a tensor
response and a vector predictor (Li and Zhang 2017). More specifically, for an mth-order
tensor response Y ∈ Rr1×···×rm and a vector of predictors X ∈ Rp, the tensor response linear
regression model is of the form,

Y = B×̄(m+1)X + ε, ε ∼ TN (0; Σ1, . . . ,Σm). (1)

The data (Xi,Yi)n
i=1 are i.i.d. copies of (X,Y) in (1). Without loss of generality, we assume

that E(Y) = 0, E(X) = 0 and that data are centered, i.e.,
∑n

i=1 Yi = 0 and
∑n

i=1 Xi = 0.
The coefficient B ∈ Rr1×···×rm×p is an (m+ 1)th-order tensor, which is the target parameter.
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The error ε is an mth-order tensor that is independent of X and follows the tensor normal
distribution with mean zero and covariance satisfying cov{vec(ε)} = Σm ⊗ · · · ⊗ Σ1, where
Σk ∈ Rrk×rk is positive definite, k = 1, . . . ,m. This tensor normal assumption can effectively
reduce the number of free parameters in the covariance Σk.
The standard ordinary least squares (OLS) estimator of B, denoted as B̂OLS, is defined as
the minimizer of ‖Y − B×̄(m+1)X‖F . This estimator is the maximum likelihood estimator
under the tensor normal assumption on ε, and has the following easy-to-compute form,

B̂OLS = Y×(m+1) (XX>)−1X, (2)

where X ∈ Rp×n and Y ∈ Rr1×...×rm×n are the stacked predictor matrix and response tensor.
When p ≤ n − 1, the above OLS estimator is always well-defined, regardless of the high
dimensionality of tensor response.

2.3. TRR model with envelope structure

The tensor response envelope model (Li and Zhang 2017) generalizes the response enve-
lope model (Cook et al. 2010) from multivariate response to tensor response. The key
idea is that by utilizing the envelope structure, we decompose the tensor response into
two parts, Y = P(Y) + Q(Y), so that the material part of the tensor response, P(Y) =
JY; PΓ1 , . . .PΓmK, is affected by the predictor X, but the immaterial part of the response,
Q(Y) = JY; QΓ1 , . . .QΓmK, does not vary by the predictor and is also independent of the ma-
terial part of response. Then the regression analysis can be efficiently performed by focusing
only on the material part.
For the material part P(Y), each subspace span(Γk), k = 1. . . . ,m, retains the relevant infor-
mation in the regression of Y on X and is called the envelope at mode k. The tensor envelope
model implies the following re-parameterization of the TRR model, where Γ0k ∈ Rrk×(rk−uk)

is the orthogonal completion of the envelope basis Γk ∈ Rrk×uk , uk ≤ rk,

B = JΘ; Γ1, . . . ,Γm, IpK, for some Θ ∈ Ru1×···×um×p,

Σk = ΓkΩkΓ>k + Γ0kΩ0kΓ>0k, for some Ωk,Ω0k, k = 1, . . . ,m.

The total number of free parameters in the TRR model is reduced significantly by introducing
this tensor envelope structure. If we know the estimated envelope basis Γ̂k, k = 1, . . . ,m,
then the maximum likelihood estimator for B has the explicit form

B̂Env = JB̂OLS; PΓ̂1
, · · · ,PΓ̂m

, IpK. (3)

The main computational cost of envelope models comes from the non-convex optimization
for obtaining an estimator of Γk, k = 1, . . . ,m. The algorithms estimating the estimated Γk

will be discussed in Section 4.

2.4. Tensor predictor regression model

The tensor predictor regression (TPR) model studies the regression problem with a vector
response and a tensor predictor (see Zhang and Li 2017). For a vector response Y ∈ Rr, and
an mth-order tensor predictor X ∈ Rp1×···×pm , the tensor predictor regression model is of the
form,

Y = B(m+1)vec(X) + ε ⇐⇒ Yj = 〈Bj ,X〉+ εj , j = 1, . . . , r, (4)
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where the (m + 1)th-order tensor B ∈ Rp1×···×pm×r is obtained by stacking r tensors Bj ∈
Rp1×···×pm along the (m + 1)th mode. The jth error term εj ∈ R corresponds to the jth
response variable Yj , and is independent of X. The standard OLS estimator involves the
inverse of the covariance matrix ΣX = cov{vec(X)} with extremely large dimension Πm

k=1pk×
Πm

k=1pk. Such matrix inversion is computationally intractable or even not well-defined when
the tensor dimension is not small. Therefore, Zhang and Li (2017) proposed a modified OLS
estimator under the separable structure of the covariance of X, i.e., ΣX = cov{vec(X)} =
∆m ⊗ · · · ⊗∆1, where ∆k ∈ Rpk×pk is positive definite, k = 1, . . . ,m.
Given the i.i.d. copies (Xi,Yi)n

i=1 from (4), the modified OLS estimator of B is obtained as
a plug-in estimator as follows,

B̂OLS = JĈ; ∆̂−1
1 , . . . , ∆̂

−1
m , IrK, (5)

where Ĉ = ĉov(X,Y) ∈ Rp1×···pm×r is the sample cross covariance tensor between X and Y,
and ∆̂k is the sample estimator of ∆k. In our implementation, we use the iterative maximum
likelihood estimator of ∆k under tensor normality assumption (Manceur and Dutilleul 2013).

2.5. TPR model with envelope structure

The tensor predictor envelope model (Zhang and Li 2017) generalizes the predictor envelope
model (Cook et al. 2013) from multivariate predictor to tensor predictor. Analogous to the
tensor response reduction in TRR model, by using the envelope structure we decompose the
tensor predictor into two parts: X = P(X) +Q(X) where P(X) = JX; PΨ1 , . . .PΨmK is the
material part of X and Q(X) = JX; QΨ1 , . . .QΨmK is the immaterial part of X. And we keep
the material part P(X) while eliminating the immaterial part Q(X) which is irrelevant to the
response and does not intertwine with Q(X) in regression.
Each subspace span(Ψk), k = 1, . . . ,m, in the material part P(X) retains the relevant informa-
tion in the regression of Y on X and is called the envelope at mode k. The envelope structure
implies the following re-parameterization of the TPR model, where Ψ0k ∈ Rpk×(pk−uk) is the
orthogonal completion of the envelope basis Ψk ∈ Rpk×uk , uk < pk,

B = JΘ; Ψ1, . . . ,Ψm, IrK, for some Θ ∈ Ru1×···×um×r,

∆k = ΨkΦkΨ>k + Ψ0kΦ0kΨ>0k, for some Φk,Φ0k, k = 1, . . . ,m.

If we know the estimated envelope basis Ψ̂k, k = 1, . . . ,m, then the partial least squares
(PLS) estimation of B is of the form (Zhang and Li 2017),

B̂Env = JB̂OLS; PΨ̂1(∆̂1), · · · ,PΨ̂m(∆̂m), IpK, (6)

where PΨ̂k(∆̂k) is the projection matrix onto subspace span(Ψ̂k) with regard to the ∆̂k-inner

product, i.e., PΨ̂k(∆̂k) = Ψ̂k(Ψ̂>k ∆̂kΨ̂k)−1Ψ̂>∆̂k. To estimate Ψk, Zhang and Li (2017)
proposed a tensor PLS algorithm, which will be reviewed in Section 4.
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3. Functions for fitting the TRR and TPR models
In this section, we illustrate the two main functions, TRR.fit() and TPR.fit(), along with
the two dimension selection functions, TRRdim() and TPRdim(), in the R package TRES. In
addition to the standard and modified OLS estimators, envelope estimators based on different
estimation algorithms are also implemented in TRR.fit() and TPR.fit(). Specifically, we
included the full Grassmannian (FG), the 1D, the envelope coordinate descend (ECD), and
the partial least squares (PLS) algorithms. The details of algorithms will be discussed in
Section 4. The results based on FG, 1D and ECD algorithms in the following examples are
almost identical for both TRR.fit() and TPR.fit() functions, because they are all based
on the same likelihood-based objective functions. In contrast, the PLS type algorithm is not
based on the likelihood and can often lead to very different results. As illustrations, we only
include the OLS estimator and the envelope estimators based on 1D and PLS algorithms.
The package TRES depends on the R package ManifoldOptim (Martin et al. 2020), which
includes the Grassmannian optimization algorithms for estimating the envelope basis. An-
other important imported package is rTensor (Li, Bien, and Wells 2018a), which is needed
for the tensor operation. Some functions and their usage are presented in Table 1. For
more details of each function, see the online manual of the package also available at https:
//CRAN.R-project.org/package=TRES.
We start with installing and loading the package:

R> install.packages("TRES")
R> library("TRES")

Loading required package: ManifoldOptim
Loading required package: Rcpp

3.1. Example 1: TRR model with envelope structure

In this part, we use the example from Li and Zhang (2017) to demonstrate the main functions
under the TRR model (1). The model studies the association between a two-way tensor
(matrix) response Yi ∈ R64×64 and a binary predictor Xi ∈ {0, 1}, which follows the TRR
model (1): Yi = BXi+εi, i = 1, . . . , 20. Each observation of response Yi is a two-dimensional
image, and each binary predictor Xi indicates two different groups by taking value 0 or 1.
The regression coefficient B ∈ R64×64 is a given image with rank 14, representing the mean

Function name Usage Section
TRR.fit() The estimation of tensor response regression. 3.1
TPR.fit() The estimation of tensor predictor regression. 3.2
TRRdim() Envelope dimension selection for tensor response

3.3regression by 1D-BIC criterion.
TPRdim() Envelope dimension selection for tensor predictor

3.3regression by cross-validation.

Table 1: Some functions in package TRES for the TRR and TPR models.

https://CRAN.R-project.org/package=TRES
https://CRAN.R-project.org/package=TRES


8 TRES: Tensor Regression with Envelope Structure in R

Component Details
x A binary vector with dimension 1× 20.
y A continuous three-way tensor with dimension 64× 64× 20.
coefficients A continuous three-way tensor with dimension 64× 64× 1.
Gamma A list of two basis matrices, Gamma1 and Gamma2, with dimension 64× 14.

Table 2: The data and parameters in our simulated example bat.

difference of the response Y between two groups. The envelope basis given by Γ1,Γ2 ∈ R64×14

is generated from the singular value decomposition of B, namely B = Γ1ΛΓ>2 , where Λ ∈
R14×14 consists of 14 non-zero singular values. The error term εi follows a two-way tensor
(matrix) normal distribution. To provide users an off-the-shelf dataset, we save the stacked
predictor X ∈ R1×20, stacked response Y ∈ R64×64×20, coefficient B and the envelope basis
Γ1,Γ2 into the dataset bat with names x, y, coefficients and Gamma. The dataset can be
loaded into the R environment directly using data("bat", package = "TRES"). Note that
the coefficient B is converted to a 64× 64× 1 tensor in the dataset bat. The components of
bat are summarized in Table 2.
The function TRR.fit() in the package TRES estimates the coefficient tensor and error
covariance matrices and provides other important statistics under the TRR model (1):

TRR.fit(x, y, u, method = c("standard", "FG", "1D", "ECD", "PLS"),
Gamma_init = NULL)

The arguments are described as follows:

• x: A matrix with each column being a predictor observation or a vector with each entry
being a predictor observation.

• y: A tensor object representing the response data, which can be constructed by passing
an array, a matrix or a vector to the function rTensor::as.tensor(). An array or a
matrix with appropriate dimensions are also acceptable.

• u: A vector representing the envelope dimension at each mode. Note that u is not
required for method = "standard".

• method: A string specifying the implemented method. With "standard", the standard
OLS method for the TRR model is used without envelope assumptions. With "FG",
"1D", "ECD" or "PLS", different envelope estimation algorithms are implemented. By
default, the standard OLS is implemented.

• Gamma_init: The initial value of envelope basis is only required by the FG algorithm,
i.e., method = "FG". By default, the estimated envelope basis from the 1D algorithm
is passed as the initial value.

In this example, we assume that the envelope dimension u is known, and we will discuss how
to choose it using dimension selection function in Section 3.3. We load the dataset bat from
the TRES package and call the function TRR.fit() with different methods:
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Function name Usage Section
print() Simple display (call and coefficients). 3.1, 3.2
summary() Return an object of class ‘summary.Tenv’ containing 3.1

the call, method, coefficient, sample size, dimensions
of data, mean squared error (and p value, standard
error for the object returned by the function
TRR.fit()); the return object has a print() method.

coef() The estimated coefficients. 3.1, 3.2
fitted() The fitted response. 3.1, 3.2
residuals() The residuals. 3.1, 3.2
predict() The predictions for new data. 3.1
plot() The coefficient plot (and p value plot for the object 3.1, 3.2

returned by the function TRR.fit()).

Table 3: S3 methods for objects of class ‘Tenv’.

R> data("bat", package = "TRES")
R> fit_ols1 <- TRR.fit(bat$x, bat$y, method = "standard")
R> fit_1d1 <- TRR.fit(bat$x, bat$y, u = c(14, 14), method = "1D")
R> fit_pls1 <- TRR.fit(bat$x, bat$y, u = c(14, 14), method = "PLS")

The output of the function TRR.fit() is an object of class ‘Tenv’, which contains the orig-
inal dataset (x and y), the matched call (call), the implemented method (method), the
estimated coefficient (coefficients), a list of estimated envelope basis (Gamma), a list of
estimated covariance matrices (Sigma), the fitted response (fitted.values) and the resid-
uals (residuals). Since there is no estimated envelope basis for the OLS method, Gamma
in fit_ols1 is NULL. The details of the S3 methods for the object of class ‘Tenv’ are given
in Table 3. For demonstration purpose, we display the outputs of the S3 methods print(),
coef(), fitted() and residuals() using the object fit_1d1 in the following. Note that
the function print() is called internally when we type fit_1d1, and only the matched call
and estimated coefficient are printed out.

R> fit_1d1

Call:
TRR.fit(x = bat$x, y = bat$y, u = c(14, 14), method = "1D")

Coefficients:
Numeric Tensor of 3 Modes
Modes: 64 64 1
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.00897 -0.00008 0.00000 0.00276 0.00013 0.09285

R> coef(fit_1d1)
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Numeric Tensor of 3 Modes
Modes: 64 64 1
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.00897 -0.00008 0.00000 0.00276 0.00013 0.09285

R> fitted(fit_1d1)

Numeric Tensor of 3 Modes
Modes: 64 64 20
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.00897 0.00000 0.00000 0.00138 0.00000 0.09285

R> residuals(fit_1d1)

Numeric Tensor of 3 Modes
Modes: 64 64 20
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.4202 -0.0083 0.0003 0.0009 0.0095 0.6078

The S3 method summary() appends the prediction mean squared error, the p value and the
standard error of the estimated coefficient to the output of the function TRR.fit().

R> summary(fit_1d1)

Tensor response regression analysis

Call: TRR.fit(x = bat$x, y = bat$y, u = c(14, 14), method = "1D")
Dimensions: x:(1,20), y:(64,64,20)
Method: "1D", sample size: 20, mean squared error: 2.003

Coefficients:
Numeric Tensor of 3 Modes
Modes: 64 64 1
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.00897 -0.00008 0.00000 0.00276 0.00013 0.09285

p-value:
Numeric Tensor of 3 Modes
Modes: 64 64 1
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.916 0.987 0.912 0.998 1.000
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standard error:
Numeric Tensor of 3 Modes
Modes: 64 64 1
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0039 0.0170 0.0261 0.0325 0.0452 0.4975

After we fit the model with TRR.fit(), we can make the prediction on the new data or the
original data with the S3 method predict(). For example, we predict on the original data
bat$x using the fitted model fit_1d1:

R> predict(fit_1d1, bat$x)

Numeric Tensor of 3 Modes
Modes: 64 64 20
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.00897 0.00000 0.00000 0.00138 0.00000 0.09285

Moreover, if the coefficient returned from the function TRR.fit() is a matrix or a tensor
which can be squeezed into a matrix, we use the S3 method plot() to display the coefficient
plot and the associated p value plot. We compare the coefficient plots from different methods.
And the true coefficient B is also displayed as a reference.

R> plot(fit_ols1)
R> plot(fit_1d1)
R> plot(fit_pls1)

In Figure 1, it can be seen that compared to the OLS and PLS estimators, the 1D estimator
produces a better recovery of the true coefficient pattern. The PLS estimator identifies almost
nothing, because the PLS algorithm usually requires a larger number of components than
likelihood-based envelope estimators. Note that with the function plot(), the concomitant
p value plot is also displayed. To improve the readability, we defer the discussion of p value
plots to Section 3.4.
In addition to the visualization of the coefficient, we evaluate the performance of each method
by measuring the estimation error of coefficient, ‖B̂−B‖F , where B̂ and B are the estimated
and the true coefficient, respectively. We use the function fnorm() called from the package
rTensor to calculate the Frobenius norm of the tensor object. And for envelope estimation
algorithms, we also compare the estimation error of the envelope basis by measuring the total
subspace distance defined as

∑2
j=1D(SΓ̂j

,SΓj ) =
∑2

j=1 ‖PΓ̂j
− PΓj‖F /

√
2uj , where Γ̂j and

Γj are the estimated and the true envelope basis and uj is the envelope dimension. We use
the function subspace() in our TRES package to compute the subspace distance D(SΓ̂j

,SΓj )
at each mode. The function subspace() is used as follows:

subspace(A, B)
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Figure 1: Coefficient plots for the true B, OLS estimator, 1D estimator, and PLS estimator
on the bat dataset.

where the arguments A and B are two full column rank matrices of the same size. We compare
the estimation errors of coefficient among OLS, 1D and PLS methods, and compare the
estimation errors of envelope basis only between the envelope methods, 1D and PLS.

R> dist_ols1 <- rTensor::fnorm(coef(fit_ols1) - bat$coefficients)
R> dist_1d1 <- rTensor::fnorm(coef(fit_1d1) - bat$coefficient)
R> dist_pls1 <- rTensor::fnorm(coef(fit_pls1) - bat$coefficient)
R> Pdist_1d1 <- rep(NA_real_, 2)
R> Pdist_pls1 <- rep(NA_real_, 2)
R> for (i in 1:2) {
+ Pdist_1d1[i] <- subspace(bat$Gamma[[i]], fit_1d1$Gamma[[i]])
+ Pdist_pls1[i] <- subspace(bat$Gamma[[i]], fit_pls1$Gamma[[i]])
+ }
R> Pdist_1d1 <- sum(Pdist_1d1)
R> Pdist_pls1 <- sum(Pdist_pls1)
R> c(dist_ols1, dist_1d1, dist_pls1)

[1] 0.97204 0.04428 1.19191

R> c(Pdist_1d1, Pdist_pls1)

[1] 0.1143 1.4663
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Component Details
x A continuous three-way tensor with dimension 32× 32× 200.
y A vector with dimension 1× 200.
coefficients A three-way tensor with dimension 32× 32× 1.
Gamma A list of two basis matrices, Gamma1 and Gamma2, with dimension 32× 2.

Table 4: The details of the components in dataset square.

3.2. Example 2: TPR model with envelope structure

In this section, we follow the simulation setting from Zhang and Li (2017) to demonstrate
the main functions under the TPR model (4). The model has a scalar response Yi ∈ R and
a two-way tensor (matrix) predictor Xi ∈ R32×32, Yi = 〈B,Xi〉 + εi, i = 1, . . . , 200. The
coefficient matrix B ∈ R32×32 is a given image with rank 2. All the elements of the coefficient
matrix B are either 0.1 or 1. Similar to Example 1, the two envelope basis Γ1,Γ2 ∈ R32×2

are generated from the singular value decomposition of B. The error term εi is generated
from a standard normal distribution. We save the stacked predictor X ∈ R32×32×200, stacked
response Y ∈ R1×200, coefficient B and the envelope basis Γ1,Γ2 into the dataset square with
names x, y, coefficients and Gamma. And we convert the coefficient to the 32×32×1 tensor
in the dataset square. The details of the components of square are provided in Table 4.
The function TPR.fit() estimates the coefficient tensor, error covariance matrices and other
important statistics under the TPR model (4) with or without envelope structure assumption:

TPR.fit(x, y, u, method = c("standard", "FG", "1D", "ECD", "PLS"),
Gamma_init = NULL)

The meaning of arguments u and Gamma_init are the same as those of TRR.fit() explained
in Section 3.1. The rest of the arguments are described as follows:

• x: A tensor object representing the predictor data, which can be constructed by passing
an array, a matrix or a vector to the function rTensor::as.tensor(). An array or a
matrix with appropriate dimensions are also acceptable.

• y: A matrix with each column being a response observation or a vector with each entry
being a response observation.

• method: A string specifying the implemented method. With "standard", the modified
OLS method for the TPR model is used. With "FG", "1D", "ECD" or "PLS", different
envelope estimation algorithms are implemented. If not specified, the modified OLS
method is implemented by default.

The standard OLS estimator for the TPR model is unavailable due to the ultra-high dimen-
sionality of X. However, to keep the names of the arguments of two main functions TRR.fit()
and TPR.fit() consistent, we still use the name "standard" while the modified OLS estima-
tor under the Kronecker separable covariance assumption is returned. Note that the p value
and the standard error of estimated coefficient are not provided in the summary output of
TPR.fit() since they depend on ĉov−1{vec(X)} which is unavailable in most cases since the
dimension of vec(X) is ultra-high. Also, the p value plot is not provided for the TPR model.
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Figure 2: Coefficient plots for the true B, OLS estimator, 1D estimator, and PLS estimator
on the square dataset.

We load the dataset square from the TRES package and call the function TPR.fit() with
different methods.

R> data("square", package = "TRES")
R> fit_ols2 <- TPR.fit(square$x, square$y, method = "standard")
R> fit_1d2 <- TPR.fit(square$x, square$y, u = c(2, 2), method = "1D")
R> fit_pls2 <- TPR.fit(square$x, square$y, u = c(2, 2), method = "PLS")

The output of the function TPR.fit() is also an object of class ‘Tenv’. And all the S3 methods
in Table 3 are applicable here. We use the ‘Tenv’ object fit_1d2 as an example:

R> fit_1d2

Call:
TPR.fit(x = square$x, y = square$y, u = c(2, 2), method = "1D")

Coefficients:
Numeric Tensor of 3 Modes
Modes: 32 32 1
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0052 0.0064 0.0420 0.0724 0.0607 0.4838
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R> coef(fit_1d2)

Numeric Tensor of 3 Modes
Modes: 32 32 1
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0052 0.0064 0.0420 0.0724 0.0607 0.4838

R> dim(fitted(fit_1d2))

[1] 1 200

R> dim(residuals(fit_1d2))

[1] 1 200

We also visualize the coefficients from the OLS method and other envelope estimation algo-
rithms in Figure 2, along with the true coefficient B.

R> plot(fit_ols2)
R> plot(fit_1d2)
R> plot(fit_pls2)

In Figure 2, the envelope-based estimators, namely the 1D and PLS estimators, identify
the center black square successfully, while the OLS estimator fails to identify any pattern.
Moreover, the PLS estimator outperforms the 1D estimator in the sense that the background
around the center black square is equally recognized, while the 1D estimator incorrectly
highlights four gray squares around the center black square, which results in a different
pattern from the true coefficient B.
The estimation errors ‖B̂ − B‖F and

∑m
j=1D(SΓ̂j

,SΓj ) are produced in the same way as
in Section 3.1 using the functions fnorm() from rTensor and subspace() from our package
TRES. We thus omit the code and just present the results here.

R> c(dist_ols2, dist_1d2, dist_pls2)

[1] 2225.638 5.798 5.591

R> c(Pdist_1d2, Pdist_pls2)

[1] 1.4143 0.1563

3.3. Envelope dimension selection

The envelope dimension selection is important in the applications of envelope models since
the estimation relies on the knowledge of the envelope dimension. In the TRR model we are
more interested in envelope estimation, so an accurate envelope dimension selection method is
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in demand. Fortunately, Zhang and Mai (2018) proposed a BIC-type criterion called 1D-BIC,
which is based on the 1D objective functions, to select the envelope dimension in a model-free
context. We use the 1D-BIC criterion to select the dimension under the TRR model. As
for the TPR model the prediction is more important, an accurate envelope dimension is not
necessary. Therefore, under the TPR model, we use cross-validation to select dimension based
on the prediction mean squared error.
The functions TRRdim() and TPRdim() in the package TRES select envelope dimension under
the TRR and TPR models respectively:

TRRdim(x, y, C = NULL, maxdim = 10, ...)
TPRdim(x, y, maxdim = 10, nfolds = 5)

where the arguments are described as follows:

• x, y: The predictor and the response.

• maxdim: An integer specifying the maximum envelope dimension to be considered. The
default value is 10.

• C: The constant passed to the internal function oneD_bic(). The default value is the
dimension of the predictor.

• ...: Additional user-defined arguments passed to the internal function oneD_bic(),
which will be discussed in Section 4.4.

• nfolds: An integer specifying the number of folds for cross-validation in the function
TPRdim(). The default value is 5.

The arguments x and y in TRRdim() and TPRdim() are of the same data types as those in
TRR.fit() and TPR.fit(). The output of the function TRRdim() consists of the minimal 1D-
BIC values bicval for each mode, the estimated envelope dimensions u at which the bicval
values are obtained, and the prediction mean square error mse between the predicted and the
original responses. The discussion of the 1D-BIC criterion is deferred to Section 4.4 where
the function oneD_bic() is introduced. The output of TPRdim() is similar. It consists of the
minimal cross-validation mean squared error mincv and the estimated envelope dimension u.
The cross-validation mean squared error is the average of mean squared errors between the
predicted and the original responses over nfolds folds. According to Zhang and Li (2017),
the dimensions of envelopes at each mode are assumed to be equal, so the u returned by
TPRdim() is a single value representing the equal dimension.
We illustrate these two functions using the aforementioned examples. For a more exhausted
search, we set maxdim to the half of the maximum dimension of the tensor, but in practice it
should be decided by users’ own discretion.

R> uhat1 <- TRRdim(bat$x, bat$y, maxdim = 32)
R> uhat1

$bicval
[1] -1262 -1183
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$u
[1] 14 14

$mse
[1] 1.922

R> uhat2 <- TPRdim(square$x, square$y, maxdim = 16)
R> uhat2

$mincv
[1] 1.105

$u
[1] 2

We can see that the functions TRRdim() and TPRdim() correctly identify the envelope dimen-
sions in both examples.

3.4. p values in the TRR model

In some cases, the coefficient B in the TRR model is sparse, which means that most of the
elements are zero. For example, the true coefficient B in the TRR model in Section 3.1 is
sparse since just the elements in the bat shape area are non-zero. The sparsity pattern of
coefficient B can be detected by the corresponding p value tensor at some significance level.
With the S3 method summary(), we can extract the p value tensor from the ‘Tenv’ object
returned from the function TRR.fit(). In this section, we use the ‘Tenv’ objects fit_ols1,
fit_1d1 and fit_pls1 in Section 3.1 as an example.

R> summary(fit_ols1)$p_val

Numeric Tensor of 3 Modes
Modes: 64 64 1
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0523 0.3791 0.4164 0.7406 0.9997

R> summary(fit_1d1)$p_val

Numeric Tensor of 3 Modes
Modes: 64 64 1
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.916 0.987 0.912 0.998 1.000

R> summary(fit_pls1)$p_val
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Figure 3: Comparisons of p value plots at significance level 0.05 for OLS, 1D and PLS esti-
mators on the bat dataset.

Numeric Tensor of 3 Modes
Modes: 64 64 1
Data:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0624 0.3538 0.4110 0.7431 1.0000

If the estimated coefficient returned from the function TRR.fit() is a matrix or a tensor that
can be squeezed into a matrix, the p value plot can be generated by the S3 method plot().
The significance level is set by specifying the argument level. We present the p value plots
at significance level 0.05 for each estimator in Figure 3 using the following code:

R> plot(fit_ols1, level = 0.05)
R> plot(fit_1d1, level = 0.05)
R> plot(fit_pls1, level = 0.05)

The black pixel represents the significant element of coefficient at level 0.05. It can be seen
that the pattern detected by the p values approximately complies with the coefficient plots
in Figure 1. And the 1D estimator again outperforms the other two estimators.

3.5. EEG data analysis

A variety of problems in neuroimaging can be formulated with the TRR or TPR model
with the image tensor being the response or the predictor. In this section, we analyze an
electroencephalography (EEG) dataset under the TRR model. The dataset arises from an al-
coholism study and can be downloaded from https://archive.ics.uci.edu/ml/datasets/
eeg+database. It was studied by Li and Zhang (2017). They focus on detecting the difference
of EEG images between the two groups, which helps expose the EEG correlates of genetic
predisposition to alcoholism. The original dataset contains 122 subjects, each representing a
256×64 EEG image data, which was collected from 64 electrodes placed on the subject’s scalp
sampled at 256 Hz for 1 second. As suggested by Li and Zhang (2017), we downsize the image
to 64×64 by averaging every four consecutive time points. And considering the package size,
we randomly select 61 subjects and save them as the dataset EEG into the package TRES.
There are 39 alcoholic individuals and 22 controls in EEG, which are coded by 1 and 0 in the
predictor vector x. The response y is a three-way tensor with dimension 64 × 64 × 61, and
each matrix obtained by fixing the third mode represents an EEG image for each subject. We

https://archive.ics.uci.edu/ml/datasets/eeg+database
https://archive.ics.uci.edu/ml/datasets/eeg+database
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Figure 4: Comparisons of p value plots at significance level 0.05 for OLS, 1D and PLS esti-
mators on the EEG dataset.

refer the readers to Li and Zhang (2017) for more details about the dataset and the problem
modeling.
We apply the OLS, 1D and PLS methods on this dataset. For envelope-based methods, we
first estimate the envelope dimension with the function TRRdim():

R> data("EEG", package = "TRES")
R> u_eeg <- TRRdim(EEG$x, EEG$y)
R> u_eeg

$bicval
[1] 1.867 1.608

$u
[1] 1 1

$mse
[1] 38256

With the estimated envelope dimension u1 = u2 = 1, we fit the dataset using the function
TRR.fit().

R> fit_eeg_ols <- TRR.fit(EEG$x, EEG$y, method = "standard")
R> fit_eeg_1D <- TRR.fit(EEG$x, EEG$y, u_eeg$u, method = "1D")
R> fit_eeg_pls <- TRR.fit(EEG$x, EEG$y, u_eeg$u, method = "PLS")

To compare the performances among the three methods in detecting the mean difference of
EEG images between the two groups, we present the p value plots with level 0.05 using the
following code:

R> plot(fit_eeg_ols, xlab = "Time", ylab = "Channels", cex.main = 2,
+ cex.axis = 2, cex.lab = 1.5)
R> plot(fit_eeg_1D, xlab = "Time", ylab = "Channels", cex.main = 2,
+ cex.axis = 2, cex.lab = 1.5)
R> plot(fit_eeg_pls, xlab = "Time", ylab = "Channels", cex.main = 2,
+ cex.axis = 2, cex.lab = 1.5)
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Figure 5: Density plots for the material and immaterial parts of the response. The dotted
line represents the alcoholic group (X = 1) and the solid line represents the control group
(X = 0).

From Figure 4, we observe that the 1D estimator identifies several clearly separated significant
areas, i.e., the channels between 0 and 15, and between 25 and 40, in the time period from 60
to 120, and from 200 to 240, in the original time scale. In comparison, the plot of the OLS
estimator is less clear and more variable. And for the PLS estimator, the significant areas
are not well separated, which makes it harder to interpret the plot. In addition, there are
fewer significant areas in the plot of the PLS estimator, thus less information about the EEG
correlates is contained.
The envelope structure in the TRR model (Section 2.3) identifies the material and immaterial
information in the tensor response Y. To illustrate this, we draw density plots of the material
part and the immaterial part in the EEG dataset in Figure 5. In these data, the material
part of the response is estimated to be one-dimensional: JY; Γ̂>1 , Γ̂

>
2 K, where Γ̂1, Γ̂2 ∈ R64×1.

By definition the material part of the response Y changes when we vary the values of the
predictor X. This is clearly demonstrated by the two separated density curves on the left
panel of Figure 5 corresponding to X = 0 or 1. In contrast, the immaterial part of Y
is massive in these data. For visualization purpose, we randomly sampled two immaterial
directions Γ̃01, Γ̃02 ∈ R64×1 that are orthogonal to the envelope. From the right panel of
Figure 5, the immaterial response has very close conditional distributions given X = 0 and
X = 1. Therefore, the corresponding regression coefficient is zero.

4. Envelope algorithms and dimension selection

4.1. Formal definitions

We first review the definitions of reducing subspace and envelope (Cook et al. 2010).

Definition 1 (Reducing subspace) A subspace R ⊆ Rp is said to be a reducing subspace
of M ∈ Rp×p if R decomposes M as M = PRMPR + QRMQR, where PR is the projection
matrix onto R and QR = Ip −PR is the projection onto R⊥.

Definition 2 (Envelope) Let M ∈ Rp×p and let span(U) ⊆ span(M). The M-envelope of
span(U), denoted by EM(U), is the intersection of all reducing subspaces of M that contain
span(U).
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Note that span(U) = span(UU>), we can always denote the envelope by EM(U) for some
positive semi-definite matrix U. The matrices U and M are then parameterized as (Cook
et al. 2010):

U = ΓΦΓ>, M = ΓΩΓ> + Γ0Ω0Γ>0 , (7)

where Φ ∈ Ru×u,Ω ∈ Ru×u,Ω0 ∈ R(p−u)×(p−u) are positive semi-definite matrices, and
Γ ∈ Rp×u denotes an orthogonal basis of the envelope EM(U). For the TRR model with
envelope structure in Section 2.3, the envelope at each mode can be represented using notation
EM(U) where M = Σk and U = B(k), i.e., span(Γk) = EΣk

(B(k)), k = 1, . . . ,m. And for
the TPR model with envelope structure in Section 2.5, the envelope at each mode can be
represented as span(Ψk) = E∆k

(B(k)), k = 1, . . . ,m, where M = ∆k and U = B(k).
The definitions above do not rely on the regression model and can be applied in any model-
free context. In the next section, we will show how to obtain a

√
n-consistent estimator for

envelope EM(U) in the model-free context via different algorithms, while the matrices M and
U are substituted by the

√
n-consistent estimators M̂ and Û. The corresponding algorithms

are incorporated into the package TRES. For more details about the estimators M̂ and Û in
TRR and TPR models with envelope structure, see Li and Zhang (2017) and Zhang and Li
(2017).

4.2. Three types of algorithms

Full Grassmannian (FG) optimization

To elaborate the full Grassmannian (FG) algorithm, we introduce an equivalent definition of
EM(U) by optimizing the generic population objective function F (Γ) as follows,

Γ̃ = arg min
Γ∈Gu,p

F (Γ), (8)

where F (Γ) = log |Γ>MΓ|+ log |Γ>(M + U)−1Γ|. (9)

In (8), Gu,p denotes a Grassmannian consisting of all u-dimensional subspaces of Rp. It follows
that span(Γ̃) = EM(U) in population. The gradient-based full Grassmannian optimization
relies on the following closed-form expression of the gradient,

∂

∂ΓF (Γ) = 2 MΓ(Γ>MΓ)−1 + 2(M + U)−1 Γ
(
Γ>(M + U)−1Γ

)−1
. (10)

The 1D algorithm and the ECD algorithm

Instead of optimizing F (Γ) over the u-dimensional manifold, which is usually intractable,
Cook and Zhang (2016) extracted one dimension in the envelope at a time and solved the
problem sequentially by breaking down the u-dimensional manifold optimization problem into
a series of one-dimensional manifold optimization problems.
The 1D algorithm starts with initializing g0 = G0 = 0. Let Gk = (g1, . . . ,gk) and (Gk,G0k)
be an orthogonal basis matrix for Rp. Then given the envelope dimension dim(EM(U)) = u,
repeat the following steps for k = 0, . . . , u− 1:
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(i) Calculate Uk = G>0kUG0k and Mk = G>0kMG0k, and construct the following stepwise
objective function for w ∈ Rp−k,

fk(w) = log(w>Mkw) + log(w>(Mk + Uk)−1w). (11)

(ii) Solve wk+1 = arg min fk(w), subject to w>w = 1.

(iii) Set gk+1 = G0kwk+1 as the (k + 1)th direction of the envelope.

At termination, Gu = (g1, . . . ,gu) satisfies span(Gu) = EM(U) in population.
The gradient of fk(w) can also be explicitly expressed as

∂

∂wfk(w) = 2Mkw
w>Mkw + 2(Mk + Uk)−1w

w>(Mk + Uk)−1w , (12)

so the gradient-based algorithm can be adaptively applied in minimizing fk(w). Compared
to the FG algorithm, the 1D algorithm optimizes fk(w) over an one-dimensional manifold at
a time, which takes fewer parameters into consideration.
More recently, a faster algorithm called the envelope coordinate descent (ECD, Cook and
Zhang 2018) was proposed to minimize the objective function fk(w). The key idea of the
ECD algorithm is to separate the coordinates of w by transformation and iteratively updating
each coordinate of the transformed w by coordinate descent, which in fact speeds up the
algorithm and makes the optimization more accurate.
It is worth noting that the FG algorithm, the 1D algorithm and the ECD algorithm are all
proposed to minimize or approximately minimize the objective function F (Γ). But we prefer
the 1D algorithm since it is faster, more stable than the FG algorithm, and does not require
a carefully chosen initial value. Next, we introduce the PLS-type algorithm that is not based
on solving the objective function.

The PLS-type algorithm
The PLS-type algorithm is a sequential algorithm for envelope estimation motivated by the
SIMPLS (statistically inspired modification of the partial least squares; De Jong 1993) algo-
rithm in the partial least squares (PLS) literature, and can efficiently estimate the envelope
under the TPR model. To estimate the envelope EM(U), given dim(EM(U)) = u, the algo-
rithm starts with setting w0 = 0 and Γ0 = w0. Then for k = 0, . . . , u− 1,

Ek = span(MΓk),
wk+1 = vmax(QEk

UU>QEk
),

Γk+1 = (w0, . . . ,wk,wk+1),

where vmax(A) denotes the eigenvector that is associated with the largest eigenvalue of the
matrix A, and QEk

is the projection matrix onto the orthogonal complement of the subspace
Ek. At termination, we have EM(U) = span(Γu).

4.3. Illustrations of algorithms

In Section 3, we showed that by passing different options to the argument method, the func-
tions TRR.fit() and TPR.fit() implement different algorithms in tensor regression. In fact,
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Function name Usage Section
simplsMU() The SIMPLS-type moment-based algorithm. 4.3
ECD() The envelope coordinate descent (ECD) algorithm. 4.3
manifold1D() The 1D algorithm based on the R package ManifoldOptim. 4.3
OptM1D() The 1D algorithm based on the MATLAB package OptM. 4.3
manifoldFG() The FG algorithm based on the R package ManifoldOptim. 4.3
OptMFG() The FG algorithm based on the MATLAB package OptM. 4.3
oneD_bic() Selects the envelope dimension via 1D-BIC. 4.4
MenvU_sim() Generates matrices M and U for the generic envelope 4.3

estimation problem.

Table 5: Core and auxiliary functions in package TRES.

for envelope estimation algorithms, the functions TRR.fit() and TPR.fit() first construct
the matrices M̂ and Û from the data x and y, then invoke different core functions in the pack-
age TRES to implement the corresponding algorithms. We also demonstrate with examples
another auxiliary function MenvU_sim() which generates matrices M and U for the generic
envelope estimation problem. All the core and auxiliary functions are listed in Table 5.
In this section, we compare the performances of different core functions implementing the FG
algorithm, 1D algorithm, ECD algorithm and PLS algorithm with the simulated data. To be
more specific, we compare the core function of the ECD algorithm, ECD(), the core function
of the PLS algorithm, simplsMU(), the core functions of the FG algorithm, manifoldFG()
and OptMFG(), and the core functions of the 1D algorithm, manifold1D() and OptM1D().
Note that the functions manifoldFG() and manifold1D() are based on the R package Man-
ifoldOptim, while the functions OptMFG() and OptM1D() are based on the MATLAB package
OptM. The six core functions are used in a similar way as follows:

simplsMU(M, U, u)
ECD(M, U, u, ...)
manifold1D(M, U, u, ...)
OptM1D(M, U, u, ...)
manifoldFG(M, U, u, Gamma_init = NULL, ...)
OptMFG(M, U, u, Gamma_init = NULL, ...)

where the arguments are described below:

• M, U: The input matrices M and U for which the envelope EM(U) is estimated.

• u: An integer between 0 and p, representing the dimension of the envelope.

• Gamma_init: The initial envelope subspace basis for FG algorithms manifoldFG() and
OptMFG().

• ...: Additional user-specified arguments. The acceptable arguments are different for
different functions, while the common ones include the maximal number of iterations
maxiter and the tolerance of convergence tol. The default values of maxiter and tol
are 500 and 10−8.
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The FG algorithm functions manifoldFG() and OptMFG() require the initial envelope ba-
sis Gamma_init to start the iteration, as we already mentioned in Section 3.1. By de-
fault, the estimated envelope basis from 1D algorithms, manifold1D() and OptM1D(), are
passed to manifoldFG() and OptMFG() as initial values. For the functions manifold1D()
and manifoldFG(), the type of optimization method supported by package ManifoldOptim
can also be passed as an additional argument. And for the functions OptM1D() and OptMFG(),
the tolerances of different convergence criteria are acceptable as additional arguments. The
outputs of the six core functions above are the estimated envelope basis matrices.
The simulation settings are adopted from Cook and Zhang (2018). Under the envelope pa-
rameterization (7), the matrices M,U ∈ Rp×p in three models are given as

U = ΓΦΓ>, M =


ΓΩΓ> + Γ0Ω0Γ>0 , (M1)
ΓΓ> + 0.01Γ0Γ>0 , (M2)
0.01ΓΓ> + Γ0Γ>0 . (M3)

Note that Model (M2) and Model (M3) are special cases of Model (M1) by specifying
Ω = Iu,Ω0 = 0.01Ip−u and Ω = 0.01Iu,Ω0 = Ip−u, respectively. After the matrix M in
Model (M1) is generated, the matrix 0.00001Ip is added to M to guarantee its positive-
definiteness. We use the function MenvU_sim() to generate the matrices M, U and the
envelope basis Γ:

MenvU_sim(p, u, Omega = NULL, Omega0 = NULL, Phi = NULL, jitter = FALSE,
wishart = FALSE, n = NULL)

The arguments are described as follows:

• p: The dimension of the p-by-p matrix M.

• u: The envelope dimension.

• Omega, Omega0, Phi: The matrices Ω, Ω0, and Φ in parameterization (7). The default
for Omega is Ω = AA> where A ∈ Ru×u is a randomly generated matrix, elementwise
from the Uniform(0, 1) distribution. The matrices Ω0 and Φ are generated in the same
way as Ω with A matching the dimensions of Ω0 and Φ.

• jitter: A logical or numeric value. If it is numeric, a scalar matrix jitter * diag(1,
p, p) is added to matrix M to ensure its positive definiteness. If it is TRUE, jitter is
set as 1e-5. If it is FALSE, no jitter is added.

• wishart: A logical value. If it is TRUE, after M and U are constructed, two samples
from the Wishart distribution Wp(M/n, n) and Wp(U/n, n) are output as M and U.

• n: An integer value denoting the sample size, which is required if wishart = TRUE.

In all three models, Γ ∈ Rp×u is randomly generated elementwise from the Uniform(0, 1)
distribution and then transformed to a semi-orthogonal matrix. The matrix Γ0 ∈ Rp×(p−u) is
the orthogonal completion of Γ such that the basis (Γ,Γ0) is orthogonal. The outputs of the
function MenvU_dim consist of the matrices M, U and the true envelope basis Gamma.
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Models PLS ECD 1D (Mani.) 1D (OptM) FG (Mani.) FG (OptM)
M1 0.0033 0.0279 0.0705 0.1376 0.0762 0.1415
M2 0.0034 0.0214 0.0478 0.0372 0.0529 0.0393
M3 0.0033 0.0205 0.0463 0.0362 0.0592 0.0390

Table 6: Median of the execution time (in seconds) for each function on the simulated dataset.
The maximum standard errors of the execution time for the three models are 0.01, 0.001,
0.001. The median of the estimation error is less than 1e-7 for all methods at each of these
settings and is thus not reported in the table.

Then under each model, we fix p = 20, u = 5 and generate 50 pairs of population matrices M
and U using MenvU_sim() with the argument wishart set as FALSE. We record the median
execution time (in seconds) and the median estimation error D̄(SΓ̂,SΓ) over 50 replicates.
The median of the execution time is reported in Table 6. The median of the estimation error
is less than 1e-7 for all methods at each of these settings and is thus not reported in the
table. The six core functions for estimating the envelope EM(U) are used as follows:

R> p <- 20
R> u <- 5
R> data <- MenvU_sim(p, u, jitter = 1e-5)
R> Gamma <- data$Gamma
R> M <- data$M
R> U <- data$U
R> G <- vector("list", 8)
R> G[[1]] <- simplsMU(M, U, u)
R> G[[2]] <- ECD(M, U, u)
R> G[[3]] <- manifold1D(M, U, u)
R> G[[4]] <- OptM1D(M, U, u)
R> G[[5]] <- manifoldFG(M, U, u)
R> G[[6]] <- OptMFG(M, U, u)

We compare the estimation error of the envelope basis using the function subspace():

R> d <- rep(NA_real_, 8)
R> for (i in 1:6) {
+ d[i] <- subspace(G[[i]], Gamma)
+ }
R> d[1:6]

[1] 1.300e-08 5.650e-13 1.369e-07 2.574e-08 1.315e-07 2.434e-08

The results show that all functions estimate the envelope basis accurately and there is almost
no difference among the estimation errors.
We are also interested in how the initial value impacts the performance of the FG algorithm.
By passing a randomly generated p×u matrix A as initial value, we obtain another two results
from manifoldFG() and OptMFG(). We compare the estimation errors as follows.
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R> A <- matrix(runif(p * u), p, u)
R> G[[7]] <- manifoldFG(M, U, u, Gamma_init = A)
R> G[[8]] <- OptMFG(M, U, Gamma_init = A)
R> for (i in 7:8) {
+ d[i] <- subspace(G[[i]], Gamma)
+ }
R> d[5:8]

[1] 1.315e-07 2.434e-08 6.325e-01 7.216e-01

Obviously, with the random initial value, the FG algorithm produces a poor estimation of
ethe nvelope that is far from the true envelope. But with a good initial value, e.g., the 1D
estimator, the FG algorithm provides accurate estimation.

4.4. Dimension selection

We mentioned the 1D-BIC criterion for selecting envelope dimension under the TRR model
in Section 3.3. The function oneD_bic() in the TRES package applies the 1D-BIC criterion
and selects the envelope dimension. Specifically, the 1D-BIC criterion selects the envelope
dimension via minimizing the following function,

In(m) =
m∑

k=1
fk,n(ŵk) + C ·m · log(n)

n
, m = 1, . . . , p, (13)

where C > 0 is a constant, n is the sample size, and the function fk,n(w) is the sample version
of the objective function fk(w) in (11) by replacing M,U with

√
n-consistent estimators M̂, Û.

As suggested by Zhang and Mai (2018), the number C should be set as 1 when there is no
additional model assumption or prior information. However, if additional model assumption
or prior information are known, C should be set such that Cm best matches the degree-
of-freedom or total number of free parameters of the model or estimation procedure. For
example, in the TRR model, C should be set as the dimension of the predictor. We refer
readers to Zhang and Mai (2018) for the detailed discussion on the role of the constant C.
Then we select the envelope dimension as û = arg min0≤m≤p In(m). Note that the 1D-BIC
criterion does not rely on the regression model and can be applied in any model-free context.
The function oneD_bic() is used as:

oneD_bic(M, U, n, C = 1, maxdim = 10, ...)

where the arguments are:

• M, U, ...: The same as the ones in function OptM1D introduced in Section 4.3.

• n: The sample size.

• C: The constant used in the definition of 1D-BIC criterion (13).

• maxdim: The maximum dimension to be considered. The default value is 10.



Journal of Statistical Software 27

The output of oneD_bic() is a list consisting of a vector bicval which contains the BIC
values for different envelope dimensions, the selected dimension u which corresponds to the
smallest BIC, and the estimated envelope basis Gamma.
To mimic the finite sample behavior and investigate how the sample size influences the behav-
ior of the 1D-BIC criterion, we sample M̂ and Û from the Wishart distribution Wp(M/n, n)
and Wp(U/n, n) separately, which can be done by the function MenvU_sim() with the ar-
gument wishart set as TRUE. Here the matrices M ∈ Rp×p and U ∈ Rp×p are randomly
generated from model (M1) and n is the sample size. We fix p = 50, the envelope dimen-
sion u = 5, and vary the sample size n = 50, 70, 100, 200, 400, 800. We omit bicval and
Gamma from the output of the function oneD_bic since we are only interested in the selected
dimension.

R> p <- 50
R> u <- 5
R> n0 <- c(50, 70, 100, 200, 400, 800)
R> uhat3 <- rep(NA_integer_, length(n0))
R> for (i in seq_along(n0)) {
+ n <- n0[i]
+ data <- MenvU_sim(p, u, jitter = 1e-5, wishart = TRUE, n = n)
+ M <- data$M
+ U <- data$U
+ output <- oneD_bic(M, U, n, maxdim = p/2)
+ uhat3[i] <- output$u
+ }
R> uhat3

11 9 5 5 5 5

The results indicate that as n increases, the function oneD_bic() consistently selects the
correct dimension.

5. Discussion
The R package TRES implements several estimation procedures for the tensor regression
models. It also provides a general framework for both the model-based and model-free en-
velope estimation. Inferential tools such as the tensor regression coefficient p-value map and
envelope dimension selection are also provided. In this paper, we demonstrate the main func-
tions of the package for fitting two tensor regression models and various envelope estimation
algorithms.

Computational details
Computations were done on a macOS High Sierra 10.13.6 with Intel Core i5 CPU@1.6GHz
processor, 8GB memory (RAM). The results in this paper were obtained using R 3.6.3 with
Fortran library LAPACK 3.9.0 (Anderson et al. 1999) and R packages TRES 1.1.4, Mani-
foldOptim 1.0.0 (Martin et al. 2020), MASS 7.3.52 (Venables and Ripley 2002), methods 3.6.3,
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pracma 2.2.9 (Borchers 2019), Rcpp 1.0.5 (Eddelbuettel and François 2011), rTensor 1.4.1
(Li et al. 2018a), remotes 2.2.0 (Hester, Csárdi, Wickham, Chang, Morgan, and Tenenbaum
2020), stats 3.6.3. Slightly different results might be obtained, in particular also depending
on the linear algebra library used. The R packages are all available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/. The package TRES will
be updated on CRAN and the first author’s Github repository. One way to download from
Github is:

R> library("remotes")
R> install_github("leozeng15/TRES")
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