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Abstract

The investigation of subgroups is an integral part of randomized clinical trials. Ex-
ploration of treatment effect heterogeneity is typically performed by covariate-adjusted
analyses including treatment-by-covariate interactions. Several statistical techniques, such
as model averaging and bagging, were proposed recently to address the problem of se-
lection bias in treatment effect estimates for subgroups. In this paper, we describe the
subtee R package for subgroup treatment effect estimation. The package can be used for
all commonly encountered type of outcomes in clinical trials (continuous, binary, survival,
count). We also provide additional functions to build the subgroup variables to be used
and to plot the results using forest plots. The functions are demonstrated using data from
a clinical trial investigating a treatment for prostate cancer with a survival endpoint.
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1. Introduction
Different patients may respond differently to the same treatment or drug. When developing
new interventions, it is therefore crucial to evaluate the consistency of the treatment effects
across relevant subgroups. On the other hand, exploratory subgroup analyses may help to
identify subpopulations with a differential treatment effect.
The European Medicines Agency (EMA) guideline (European Medicines Agency 2019) sug-
gests to identify and discuss a priori which subgroups of patients are expected to have an
improved efficacy or improved risk-benefit. In this case, a small to a moderate number of sci-
entifically interesting subgroups (around 5–20) is specified in a prospective data-independent
manner. Still, since multiple subgroups are considered, a multiplicity problem arises increas-
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ing the possibility of false-positive findings (Lipkovich, Dmitrienko, Muysers, and Ratitch
2018).
A great variety of approaches for exploratory subgroup analyses have been proposed in the
literature, and interest in this problem continues to increase with the advent of personalized
medicine. Some examples include Bayesian regression methods (Dixon and Simon 1991),
recursive partitioning (Lipkovich, Dmitrienko, Denne, and Enas 2011), regression trees (Sei-
bold, Zeileis, and Hothorn 2016), virtual twins (Foster, Taylor, and Ruberg 2011), standard-
ization (Varadhan and Wang 2016). In particular, model averaging and bootstrap estimation
techniques were proposed to mitigate the selection bias when estimating treatment effects in
subpopulations (Bornkamp, Ohlssen, Magnusson, and Schmidli 2017; Thomas and Bornkamp
2017; Rosenkranz 2014, 2016, 2020). Both approaches look at the subgroup selection prob-
lem as a model selection problem. In model averaging, the predicted treatment effect of the
selected subgroup is weighted across all considered models using the models’ posterior proba-
bilities. In the bootstrap approach, the estimates and the percentage of times the subgroups
are selected in the bootstrap samples are used to adjust for possible selection bias.
In terms of software, a number of packages for subgroup analyses in clinical trials are avail-
able for the R statistical software (R Core Team 2021). We performed a search across the
Comprehensive R Archive Network (CRAN) for packages that include either “subgroup” or
“treatment effect” in their titles or description and detail here other packages for treatment
effect estimation in presence of subgroups. The beanz package (Wang, Louis, Henderson,
Weiss, and Varadhan 2018) provides functions for Bayesian hierarchical models, and the DS-
Bayes package (Varadhan and Yao 2014) implements the (Bayesian) Dixon-Simon model for
subgroup analysis with binary covariates. The SIDES package (Riviere 2021) implements
subgroup identification based on differential effect search, and the FindIt package adapts the
support vector machine classifier for estimation of treatment effects in subgroups (Egami,
Ratkovic, and Imai 2019). Techniques for subgroup analyses using trees are implemented
in the model4you package (Seibold, Zeileis, and Hothorn 2019), the TSDT package (Bat-
tioui, Denton, and Shen 2018) and the quint package (Dusseldorp, Doove, van de Put, Van
Mechelen, and Claramunt Gonzalez 2020). The SubgrpID package implements four algo-
rithms for developing threshold-based multivariate (prognostic/predictive) biomarker signa-
tures (Huang, Sun, Trow, Chatterjee, Chakravartty, Tian, and Devanarayan 2017; Duong
2021). There are also several packages implementing methods to model regression scores
for forming subgroups, such as the MMMS (Li, Guennel, Marshall, and Cheung 2014), per-
sonalized (Chen, Tian, Cai, and Yu 2017), sparsereg (Ratkovic and Tingley 2016), cred-
subs (Schnell, Fiecas, and Carlin 2020) and subgroup (Schou 2014) packages. The Strat-
ifiedMedicine package (Jemielita 2021) provides analytic and visualization tools to aid in
stratified and personalized medicine. Additionally, there are two packages, SubgrPlots (Bal-
larini and Chiu 2020) and subscreen (Kirsch, Jeske, Lippert, Schmelter, Muysers, and Kul-
mann 2021), that are designed to provide graphical displays of treatment effects in subgroups.
The graphics in these two packages are built using naive estimates, and do not take into ac-
count the fact that many subgroups might have been investigated. Finally, a curated list
of software for subgroup analysis is maintained on the Biopharmaceutical Network website
(http://biopharmnet.com/subgroup-analysis-software/).
In this manuscript we present the R package subtee (Ballarini, Bornkamp, Thomas, and
Magnusson 2021) that implements model averaging and bootstrapping for obtaining treatment
effect estimates in subgroups. Our aim is to provide a flexible user-friendly set of tools for
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subgroup analyses, that can be used for a wide range of clinical trials. The package can be
applied to any situation where a generalized linear model is applicable, as well as with models
with survival endpoints or count data. Results can be displayed as tables or using forest plots,
for which we provide dedicated functions.
This manuscript is organized as follow: In Section 2, we introduce the statistical methodology
framework for subtee, in Section 3 we briefly present the functions in the package and their
usage, and in Section 4 we present an example using a data set from a clinical trial investigating
a treatment for prostate cancer. We end with a discussion in Section 5.

2. Subgroup analyses in clinical trials
Consider a clinical trial in which n subjects are investigated and a response yi for each
individual i = 1, . . . , n is observed after being randomized to either an experimental treatment
(zi = 1) or control (zi = 0). Further consider P subgroups that are defined by covariates
or factors observed at baseline. We denote a subgroup as Sp = {i ∈ {1, . . . , n}|spi = 1},
p = 1, . . . , P ; where spi is defined as the patient-level membership variable for patient i in
subgroup p that takes values 0 or 1. Then, P generalized linear models are fitted such that

Mp : h (µpi) = αp + βpzi + (γp + δpzi) spi +
K∑
k=1

τkxik, (1)

where h is the link function, µpi = Ep[Yi] is the expectation of the response under model Mp

and xik are additional covariates we control for. For survival data, a proportional hazards
model can be used:

Mp : λpi(t) = λp0(t) exp
{
βpzi + (γp + δpzi)spi +

P∑
k=1

τkxik

}
. (2)

In both models, γp represents a prognostic effect (modifying the response independent of
treatment) and δp a predictive effect (modifying the response to treatment) of a subgroup.
It is of interest to identify a subgroup with a differential treatment effect. In other words, we
want to search for a subgroup in which the treatment effect is different than in its complement.
Different rules to select such a subgroup may be adopted. For example, one may want to select
the subgroup for which the p value for the interaction term δp is the minimum. Another rule
may be to select the subgroup for which the model Mp gives the smaller Bayes information
criterion (BIC) or Akaike information criterion (AIC) value. No matter what selection rule is
adopted, it is well known that a data driven selection of a subgroup will lead to overestimating
the treatment effect (Ruberg and Shen 2015; Thomas and Bornkamp 2017).

2.1. Unadjusted estimates for treatment effects
Assume we are interested in estimating the treatment effect in the selected subgroup and its
complement. Consider S the set of indexes {1, . . . , n} corresponding to the subjects in the
selected subgroup. An estimate for ∆(S), the treatment effect in S, may be obtained by
predicting the individual treatment effects and averaging over the patients in the subgroup.
We predict the treatment effect for patient i under model Mp as

µpi|zi=1 − µpi|zi=0 = βp + spiδp.
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Then the treatment effect for subgroup S is given by

∆p(S) = βp + wδp, (3)

where w = |S ∩ Sp|/|S|. Note that the treatment effect simplifies to βp + δp if S = S(p), and
βp if S is the complement of S(p).
For the unadjusted or naive estimates, we simply estimate the treatment effect as in Equation 3
from the model that corresponds to the selected subgroup. The unadjusted treatment effect
estimator for an identified subgroup S defined by model Mp is therefore simply

∆̂unadj := ∆̂p(S).

Additionally, it may be of interest to look only at the differences between the treatment effect
in the subgroup and in the complement. Under this model, this is simply the interaction of
the subgroup-defining covariate and treatment, δp.

2.2. Model averaging for treatment effect estimation

Model averaging (MA) in the subgroup analysis framework was introduced to address the
problem of selection bias (Bornkamp et al. 2017; Thomas and Bornkamp 2017). The main
idea behind MA is that subgroup selection can be viewed as a model selection procedure since
each subgroup defines a statistical model M1, . . . ,MP . By averaging over all models we can
better represent the uncertainty in the selection process.
In a fully Bayesian formulation, we would use prior distributions for all the parameters in each
model Mp, p = 1, . . . , P . Prior information might be available for some of these parameters
(e.g., we might have prior information of the response under the control treatment), but
usually little information exists on the other parameters, so that weakly informative priors
would be used for all models. In addition, prior probabilities for the models M1, . . . ,MP are
required, based on the plausibility of the different subgroups.
The approach implemented in the subtee package, however, performs approximate inference
using MA based on the BIC. This approach uses maximum likelihood estimation instead
of defining prior distributions for the model parameters. While this approach is not fully
Bayesian it is computationally very efficient and yields similar results as if one assumes weakly
informative priors (see Bornkamp et al. 2017 for a comparison of the methods).
The prior model weights P (Mp) still need to be specified in this approach, and often equal
prior weights for all models might be plausible so that P (Mp) = 1/P (this is the default in
the package implementation). Additionally, one can also add a prior weight for the model
without any treatment by subgroup interaction. Posterior model weights are then obtained
by Bayes’ theorem:

P (Mp|y) = P (y|Mp)P (Mp)∑P
p=1 P (y|Mp)P (Mp)

.

where y = (yi)i=1,...,n.
For the implementation in the package, we use the BIC approximations for the model weights
as is proposed in Raftery (1995):

P (Mp|y) ≈ exp (−0.5BIC (Mp))P (Mp)∑P
p=1 exp

(
−0.5BIC (Mp′)

)
P (Mp)

.
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The overall posterior distribution of the treatment effect in subgroup S, ∆ma(S), is then a
mixture of all the posterior distributions under each model:

f (∆ma(S)|y) =
P∑
p=1

P (Mp|y)f (∆ma(S)|Mp,y). (4)

The median of the posterior distribution can be used as a point estimate, while quantiles can
be used to derive credible intervals. For the models we implement in the package, the posterior
distributions under each model f(∆ma(S)|Mp,y) are approximately normally distributed and,
therefore, the overall posterior f(∆ma(S)|y) is a mixture of normal distributions.
Note that it is also straightforward to obtain an estimate of the difference in treatment effect
between a subgroup and its complement, δma(S) = ∆ma(S)−∆ma(S), using:

f (δma(S)|y) =
P∑
p=1

P (Mp|y)f (δma(S)|Mp,y).

2.3. Bagged estimates for treatment effect

We also implement the methods in Rosenkranz (2016, 2014) which use bootstrapping to
account for model selection uncertainty and estimation bias after selection. The methods
were originally proposed to estimate the interaction between subgroups and treatment, but
we extended the implementation to the treatment effects in subgroup and complement as
well. We give details here on the estimation of the interaction term, δp.
The idea behind the bagged estimate is that when using the original data, a subgroup Sp
will be selected if the model fit of Mp is better (measured in terms of the BIC or AIC)
than the model fit of Mp′ (where p′ 6= p) and of a model with zero interaction, otherwise
no selection takes place. The same process is then replicated for each bootstrap sample b,
where a subgroup Sp will be selected if the model fit of Mbp is better than the model fit of
Mbp′ (where p′ 6= p) and of a model with zero interaction. Then the proportion of times the
subgroup Sp is selected in the bootstrap samples is used to adjust for the selection bias.
Consider B bootstrap samples from the original data. For b = 1, . . . , B, let (Y ∗b1, . . . , Y ∗bN ) be
a bootstrap sample from the original data. Let (z∗b1, . . . , z∗bN ), (s∗bp1, . . . , s

∗
bpN ), and (x∗b1k, . . .,

x∗bNk) be the corresponding treatment indicators, group indicators, and covariates in the boot-
strap samples, respectively. Note that the bootstrap samples can be stratified on treatment
(the default in the package implementation), so that independent samples are drawn from
each treatment group.
For each subgroup p = 1, . . . , P and bootstrap sample b = 1, . . . , B we fit the model in
Equation 1 using the bootstrapped data:

Mbp : h (Ep[Y ∗bi]) = α∗bp + β∗bpz
∗
bi + (γ∗bp + δ∗bpz

∗
bi)s∗bpi +

K∑
k=1

τ∗bkx
∗
bik. (5)

Rosenkranz (2016) provides a bias-reduced estimator with decreased variability as:

δ̃∗p = 2δ̂∗p − δ
∗
p, (6)
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where δ̂∗p is the average of the maximum likelihood estimators δ̂∗bp of δ∗bp across all bootstrap
samples b:

δ̂∗p = 1
B

B∑
b=1

δ̂∗bp

and δ∗p is an estimator of δp given that subgroup Sp provided the best fit, which is calculated
as the average of the δ̂∗bp estimates in the bootstrap samples b where Sp was selected:

δ
∗
p =

∑B
b=1 ubpδ̂

∗
bp∑B

b=1 ubp
.

where ubp is an indicator variable that takes 1 if Sp was selected in the bootstrap sample b
and 0 otherwise.
The estimates in Equation 6 are displayed as main results in the package’s function. The
variance of δ̃∗p is calculated by applying a bias-corrected infinitesimal jackknife estimator
(Efron 2014; Wager, Hastie, and Efron 2014) and is also provided in Rosenkranz (2016).
We construct approximate confidence intervals using estimate ±zα/2 standard deviation,
where zα/2 is the α/2 percentile point of a standard normal distribution.
To obtain the adjusted estimates for the treatment effect in subgroup and complement, we
simply replace the target δp with βp or βp + δp accordingly.
Although it is technically possible to obtain an estimate for each subgroup Sp, p = 1, . . . , P ,
the bootstrap corrects for the fact that a subgroup was selected based on the original data and
is therefore more appropriate to report the corrected estimate only for the selected subgroup.

3. R implementation
The subtee package is available from CRAN at http://CRAN.R-project.org/package=
subtee. Each of the methods described in the previous section has its respective fitting
function. However, they share most of the function arguments. The main functions in the
package are:

unadj(resp, trt, subgr, covars = NULL, data,
fitfunc = c("lm", "glm", "glm.nb", "survreg", "coxph", "rlm"),
event, exposure, level = 0.1, ...)

modav(resp, trt, subgr, covars = NULL, data,
fitfunc = c("lm", "glm", "glm.nb", "survreg", "coxph", "rlm"),
event, exposure, level = 0.1, prior = 1, nullprior = 0, ...)

bagged(resp, trt, subgr, covars = NULL, data,
fitfunc = c("lm", "glm", "glm.nb", "survreg", "coxph"),
event, exposure, level = 0.1, B = 100, mc.cores = 1,
stratified = TRUE, select.by = c("BIC", "AIC"), ...)

The arguments are specified as:

http://CRAN.R-project.org/package=subtee
http://CRAN.R-project.org/package=subtee
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• resp: Character giving the name of the response variable. The variable can be either
defined in the global environment or in the data set data specified below. For interac-
tive use it is also possible to use unquoted names (i.e., unadj(resp, ...) instead of
unadj("resp", ...)), avoid this for non-interactive use of the function.

• trt: Character giving the name of the treatment variable. The variable can be either
defined in the global environment or in the data set data specified below. Note that the
treatment variable itself needs to be defined as a numeric variable, with control coded
as 0, and treatment coded as 1. For interactive use it is also possible to use unquoted
names (as for the resp argument, see above).

• subgr: Character vector giving the variable names in data to use as subgroup identifiers.
Note that the subgroup variables in data need to be numeric 0–1 variables.

• covars: Formula specifying additional covariates to be included in the models (need to
be available in data).

• data: Data frame containing the variables referenced in resp, trt, subgr and covars
(and possibly event and exposure).

• fitfunc: Model fitting functions. Currently one of "lm", "glm", "glm.nb", "survreg",
"coxph", "rlm".

• event: Character giving the name of the event variable. Has to be specified when using
fit functions "survreg" and "coxph". The variable can be either defined in the global
environment or in the data-set data.

• exposure: Character giving the name of the exposure variable, needed for negative
binomial regression, when using fit functions "glm.nb". This is typically the time
each patient is exposed to the drug. The fitted model uses the call glm.nb(. ~ .
+ offset(log(exposure))). The variable needs to be defined either in the global
environment or in the data-set data.

• level: Confidence level for confidence intervals for treatment effect estimates.

• prior (only in modav): Vector of prior model/subgroup probabilities of the same length
as the number of columns in subgr. Probabilities can be specified up to proportionality.
If a vector of length 1 is specified automatically equal prior weights are assumed (equal
weights are the default).

• nullprior (only in modav): Numeric giving the prior model probability of the model
without any subgroup effect. This needs to be specified on the same scale as the
prior argument. E.g., if there are 2 subgroups, prior = c(1, 1) (or prior = 1) and
nullprior = 2 the prior probabilities will be 1/4 and 1/4 for the two subgroup models
and 1/2 for the null model. By default a prior probability of 0 is attached to this model.

• B (only in bagged): A numeric input. The number of bootstrap samples to perform.

• mc.cores (only in bagged): A numeric input. This argument is passed to the mclapply
function to perform computations in parallel. If mc.cores = 1, then lapply is used.
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• stratified (only in bagged): Should the bootstrap resampling be done stratifying by
treatment group? (default: TRUE).

• select.by (only in bagged): Should the model selection be done using BIC or AIC?
(default: "BIC").

• ...: Other arguments passed to the model fitting function.

Internally, these functions fit the model in Equation 1 using the specified fitfunc recursively
over the P subgroups subgr. The variables added in the covars argument are included in
the fitting formula as main effects for all subgroup models. Note that a main effect and
interaction term with treatment for subgroup p is added to the model Mp, p = 1, . . . , P . If
one subgroup specified in subgr needs to be added as prognostic in each Mp′ , p′ 6= p, then
this needs to be specified in the covars argument as well.
The three functions output a ‘subtee’ object that contains a table with the treatment effect
estimates in the subgroups, a table with the treatment-subgroup interaction estimates, and
complementary information from the model fits. Additionally, the package includes dedicated
methods for the generic functions print, summary, confint, and plot, which produces a forest
plot displaying the treatment effect estimates in the subgroups using the ggplot2 package
(Wickham 2009).
The package also includes another function that may be useful when performing subgroup
analysis: subbuild. The subbuild function takes categorical or continuous baseline covariate
vectors and builds a matrix of binary subgroup indicator variables in the columns. This matrix
of candidate subgroups can then be used as input for the estimation functions in the package,
but might also be of interest in general.
Finally, the package provides simulated data sets with normal (datnorm), survival (datsurv),
count (datcound) and binary (datbin) endpoints that are used in the documentation exam-
ples of the corresponding functions as well as a function get_prca_data that wraps the code
to download the prostate cancer data set that we use here as example (internet connection
required).

4. Example

We use the prostate cancer data set that was used in Rosenkranz (2016) to illustrate the usage
of the package. The data set consists of n = 475 subjects randomized to a placebo group
and three dose levels of diethylstilbestrol. The data is provided with the placebo and the
lowest dose level of diethylstilbestrol combined to give the control arm, and the higher doses
of diethylstilbestrol combined to give an active treatment arm. The considered endpoint is
survival time in months. There are six subgroup-defining variables to consider: existence of
bone metastasis (bm), disease stage (3 or 4), performance (pf), history of cardiovascular events
(hx), age, and weight. While age and weight are continuous covariates, they are dichotomized
(age ≤ 65, > 65 and weight ≤ 100, > 100) for obtaining subgroups as in Rosenkranz (2016).
As the considered endpoint is survival time in months, we fit Cox proportional hazards models
(Cox 1972).
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4.1. Data preparation

We first use the get_prca_data function that runs without any argument to download the
data set. Then, the subbuild function creates the desired candidate subgroups. This function
takes the data set as a first argument, and then a series of expressions to define the subgroup
indicator variables. Note that we also use the option dupl.rm = TRUE to remove duplicate
subgroups. The output of the subbuild function is a ‘data.frame’ that might then be
concatenated with the original data set to be used in the other functions.

R> library("subtee")
R> prca <- get_prca_data()
R> cand.groups <- subbuild(prca, BM == 1, PF == 1, HX == 1, STAGE == 4,
+ AGE > 65, WT > 100)
R> fitdat <- cbind(prca, cand.groups)

4.2. Unadjusted estimates for treatment effects

The unadjusted estimates for treatment effects are obtained via the unadj function. We fit
the models including the six covariates in the data set as prognostic factors as well, which are
added through the covars argument as a formula. Since we have a survival endpoint, we use
coxph from the survival package (Therneau and Grambsch 2000; Therneau 2021) as fitting
function. The function loops through all the variables specified in the subgr argument, fitting
the models in Equation 2. In this example, we make use of the ... argument to pass the
option ties = "breslow" to coxph.

R> subgr.names <- names(cand.groups)
R> prog <- paste0("`", subgr.names,"`", collapse = " + ")
R> prog <- as.formula(paste(" ~ ", prog))
R> res_unadj <- unadj(resp = "SURVTIME", trt = "RX", subgr = subgr.names,
+ data = fitdat, covars = prog, event = "CENS", fitfunc = "coxph",
+ ties = "breslow")
R> res_unadj

Trt. Effect Estimates
Group Subset LB trtEff UB

1 BM == 1 Subgroup -1.1949 -0.785335 -0.37579
2 BM == 1 Complement -0.2442 -0.040729 0.16273
3 PF == 1 Subgroup -0.3965 0.118040 0.63257
4 PF == 1 Complement -0.4212 -0.224282 -0.02734
5 HX == 1 Subgroup -0.2547 0.006503 0.26774
6 HX == 1 Complement -0.6199 -0.363698 -0.10754
7 STAGE == 4 Subgroup -0.6526 -0.376238 -0.09986
8 STAGE == 4 Complement -0.2748 -0.027431 0.21998
9 AGE > 65 Subgroup -0.2517 -0.052995 0.14568
10 AGE > 65 Complement -1.4451 -0.962738 -0.48037
11 WT > 100 Subgroup -0.5730 -0.274251 0.02451
12 WT > 100 Complement -0.3622 -0.126989 0.10819
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BM == 1
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Figure 1: Forest plot of unadjusted treatment effects for subgroups and complements (left)
and treatment-subgroup interactions (right). These graphics are the output of the plot
function applied to a ‘subtee’ object.

Difference in Trt. Effect vs Complement
Group LB trtEffDiff UB

1 BM == 1 -1.201671 -0.7446 -0.28754
2 PF == 1 -0.203438 0.3423 0.88808
3 HX == 1 0.007603 0.3702 0.73280
4 STAGE == 4 -0.718343 -0.3488 0.02073
5 AGE > 65 0.394367 0.9097 1.42512
6 WT > 100 -0.524689 -0.1473 0.23016

Subgroup Models fitted with "coxph"
Effect estimates in terms of the log-hazard ratios

The output shows first the treatment effect estimates (trtEff) and the lower and upper
bounds of the confidence intervals (LB and UB respectively). A second table is displayed with
the information on the difference in treatment effects in subgroups vs. their complements.
Although the significance level for the confidence intervals needs to already be fixed in the
fitting functions, there is also the option to use the generic function confint to recalculate
them at a different level. For example, using confint(res_unadj, level = 0.80) generates
a new ‘subtee’ object identical to res_unadj except for the confidence intervals, which are
calculated using a 80% confidence level instead of the default 90%. Moreover, using the
summary method the user obtains further information such as the p values for the treatment-
by-covariate interactions and groups sizes.
The plot generic function can be used with ‘subtee’ objects to obtain a forest plot of the
treatment effects (type = "trtEff") or the interactions (type = "trtEffDiff") and their
confidence intervals (Figure 1). To ease the visual check for heterogeneity, the plot with
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the treatment effects in subgroups and complements also shows the overall treatment effect
under the model with no treatment-subgroup interactions with a dashed line, as well as its
confidence intervals in the gray shaded area. For the plot of the interactions, the dashed line is
at 0, which indicates no interaction between subgroup and treatment. Further modifications
or new elements can be added to the plots using ggplot2 functions.
For the prostate cancer example, we see that the new treatment leads to better outcomes
when compared to control, as the overall treatment effect is negative. However, its confidence
interval covers the no-effect value of 0. Using the unadjusted estimates for subgroups leads
to the conclusion that the subgroups defined by age and by existence of bone metastasis may
have a differential treatment effect.

R> plot(res_unadj, show.compl = TRUE)
R> plot(res_unadj, type = "trtEffDiff")

4.3. Model averaging for treatment effect estimation

We use the modav function to obtain the model averaging estimates. In this case, we use
the same options as in the unadj function. We use the default settings, so that all models
have equal prior weights and there is zero prior weight for the model without treatment by
subgroup interaction.

R> res_modav = modav(resp = "SURVTIME", trt = "RX", subgr = subgr.names,
+ data = fitdat, covars = prog, event = "CENS", fitfunc = "coxph",
+ ties = "breslow")
R> res_modav

Trt. Effect Estimates
Group Subset LB trtEff UB

1 BM == 1 Subgroup -1.0089 -0.3182 -0.082706
2 BM == 1 Complement -0.3633 -0.1577 0.080986
3 PF == 1 Subgroup -0.4800 -0.2247 -0.006514
4 PF == 1 Complement -0.3813 -0.1889 0.004497
5 HX == 1 Subgroup -0.3421 -0.1533 0.044871
6 HX == 1 Complement -0.4253 -0.2228 -0.029070
7 STAGE == 4 Subgroup -0.4663 -0.2493 -0.048809
8 STAGE == 4 Complement -0.3614 -0.1547 0.086863
9 AGE > 65 Subgroup -0.3016 -0.0915 0.121691
10 AGE > 65 Complement -1.3799 -0.7415 -0.086948
11 WT > 100 Subgroup -0.3732 -0.1769 0.021429
12 WT > 100 Complement -0.3909 -0.2040 -0.016736

Difference in Trt. Effect vs Complement
Group LB trtEffDiff UB

1 BM == 1 -0.994109 -0.08220 -0.02315
2 PF == 1 -0.291039 0.01613 0.03506
3 HX == 1 0.017764 0.06258 0.12345
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Figure 2: Forest plot of treatment effects for subgroups and complements (left) and treatment-
subgroup interactions (right). The plots compare the results using unadjusted estimates and
those obtained with model averaging. These graphics are the output of the plot function
using two ‘subtee’ objects resulting from the unadj and the modav functions.

4 STAGE == 4 -0.386656 -0.03536 -0.01087
5 AGE > 65 0.017744 0.67341 1.35540
6 WT > 100 -0.001293 0.01531 0.09971

Subgroup Models fitted with "coxph"
Effect estimates in terms of the log-hazard ratios

Using the plot function with the result of the modav function, we obtain a forest plot with
the estimates like the one in Figure 1. However, we can also provide both the results of the
unadj and modav functions and obtain a comparison of the estimates (Figure 2).

R> plot(res_unadj, res_modav, show.compl = TRUE)
R> plot(res_unadj, res_modav, type = "trtEffDiff")

For objects resulting from the modav function, the summary method displays the model pos-
terior probabilities rather than the p values for the treatment-by-covariate interactions.

4.4. Bagged estimates

Finally, we obtain the bagged estimates using the bagged function. In this function we
must also specify how the subgroup is selected (select.by = "BIC") and the number of
bootstrap samples to use (B = 2000). We also let the default option for the stratify function
parameter, so that the bootstrapping is stratified over treatment. Note that we use set.seed
to obtain reproducible results.
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Treatment effect differences

type

unadj

modav

bagged

Point estimates with 90%−CI

Figure 3: Forest plot of treatment effects for subgroups and complements (left) and treatment-
subgroup interactions (right) using unadjusted, model averaging and bagged estimates. These
graphics are the output of the plot function applied to three ‘subtee’ objects.

R> set.seed(46312)
R> res_bagged = bagged(resp = "SURVTIME", trt = "RX", subgr = subgr.names,
+ data = fitdat, covars = prog, event = "CENS", fitfunc = "coxph",
+ ties = "breslow", select.by = "BIC", B = 2000)
R> res_bagged

Trt. Effect Estimates
Group Subset LB trtEff UB

1 AGE > 65 Subgroup -0.3228 -0.07913 0.16458
2 AGE > 65 Complement -1.7162 -0.82958 0.05703

Difference in Trt. Effect vs Complement
Group LB trtEffDiff UB

1 AGE > 65 -0.02153 0.7504 1.522

AGE > 65 is the selected subgroup.
It was selected in 49.75% of 2000 bootstrap samples.

Subgroup Models fitted with "coxph"
Effect estimates in terms of the log-hazard ratios

The bootstrap method provides bias-adjusted estimates, which corrects for the bias that is
introduced when selecting a subgroup. Therefore, it only makes sense to display the results of
the selected subgroup. While the selection percentage for the selected subgroup is displayed
in the output of the function, the user may obtain the percent of selection for each subgroup
using the summary method. This is important so that the user can assess the reliability of the
results.
Finally, the plot function might take the results from the three methods to display a compar-
ison of the estimates.

R> plot(res_unadj, res_modav, res_bagged, show.compl = TRUE)
R> plot(res_unadj, res_modav, res_bagged, type = "trtEffDiff")
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5. Discussion
This article described the subtee R package for subgroup treatment effects estimation. The
functions that are provided are helpful for exploratory subgroup analysis in randomized clini-
cal trials where it is necessary to examine treatment effect heterogeneity. The package works
with widely used modeling functions and provides the flexibility to fit any generalized linear
model, Cox regression models, and parametric survival models.
Binary subgroup indicators can be supplied by the user or generated from baseline covariates.
The treatment effect of the experimental treatment vs. control is estimated for each subgroup,
or the treatment-subgroup interactions are investigated. Either case, the analysis may suffer
from overfitting/selection bias if naive estimates are used. It is well established that subgroup
analyses that lack pre-specification and use a large number of subgroups without adjusting
for multiple comparison may lead to finding spurious subgroup effects.
Two estimation techniques are available in the package to allow researchers to implement
recently proposed methods to address the issue of selection bias in the estimation: model
averaging and bagging. These techniques share the same philosophy that subgroup analysis
is a model selection problem, taking into account the uncertainty in subgroup selection. As
shown in the examples, in practice this usually results in having wider confidence intervals
and a shrinkage of the subgroup-specific treatment effects towards the overall effect, which
helps avoiding overoptimistic conclusions.
We focused on the case where subgroups of interest are specified in a prospective data-
independent manner, which will usually result in a small number of subgroups to be evaluated.
Even in these cases, since multiple subgroups are considered, a multiplicity problem arises and
appropriate analysis methods are needed, such as those that we implement in our package.
The methods implemented in the subtee package were primarily developed for dealing with
a relatively small number of pre-specified subgroups or biomarkers. We did not investigate
how these approaches would work in retrospective data-driven situations where the definition
and selection of subgroups is post-hoc.
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