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Abstract

Use of historical data in clinical trial design and analysis has shown various advan-
tages such as reduction of number of subjects and increase of study power. The meta-
analytic-predictive (MAP) approach accounts with a hierarchical model for between-trial
heterogeneity in order to derive an informative prior from historical data. In this paper,
we introduce the package RBesT (R Bayesian evidence synthesis tools) which implements
the MAP approach with normal (known sampling standard deviation), binomial and
Poisson endpoints. The hierarchical MAP model is evaluated by Markov chain Monte
Carlo (MCMC). The MCMC samples representing the MAP prior are approximated with
parametric mixture densities which are obtained with the expectation maximization algo-
rithm. The parametric mixture density representation facilitates easy communication of
the MAP prior and enables fast and accurate analytical procedures to evaluate properties
of trial designs with informative MAP priors. The paper first introduces the framework of
robust Bayesian evidence synthesis in this setting and then explains how RBesT facilitates
the derivation and evaluation of an informative MAP prior from historical control data.
In addition we describe how the meta-analytic framework relates to further applications
including probability of success calculations.

Keywords: Bayesian inference, clinical trial, extrapolation, historical control, operating char-
acteristics, prior, probability of success, robust analysis.

1. Introduction

More efficient clinical trials are of great demand in drug development for all stakeholders
such as pharmaceutical companies, regulatory agencies, health-care organizations and, most

https://doi.org/10.18637/jss.v100.i19
https://orcid.org/0000-0003-0934-1066


2 RBesT: Meta-Analytic-Predictive Priors in R

importantly, for patients. Use of historical data for quantitative trial design has become
more and more attractive for the same reason (Wandel, Schmidli, and Neuenschwander 2015;
Neuenschwander and Schmidli 2020). Using historical data can reduce the size of the control
group, leading to a smaller size of clinical trials which are more ethical and shorten study du-
ration. Therefore, studies utilizing historical data may speed up informative decision making
and eventually make better medicines available to patients sooner.
Borrowing information from historical studies has always been a part of the design of clinical
trials. For example, the definition of a patient population in a new clinical study compared
to previous similar studies, or how much of a clinically relevant treatment effect to expect
compared to the control treatment. Contributions from statisticians in a more quantitative
manner started more than 40 years ago, by Pocock (1976). Since then, the relevant statistical
approaches have been developed by many, mostly in a Bayesian framework (Chen and Ibrahim
2000; Spiegelhalter, Abrams, and Myles 2004; Neuenschwander, Capkun-Niggli, Branson, and
Spiegelhalter 2010; Hobbs, Sargent, and Carlin 2012).
In this paper, we focus on robust meta-analytic-predictive (MAP) priors (Spiegelhalter et al.
2004; Neuenschwander et al. 2010; Schmidli, Gsteiger, Roychoudhury, O’Hagan, Spiegelhal-
ter, and Neuenschwander 2014), which summarize the historical information as an informative
prior to be used in a Bayesian analysis for the study of interest. The MAP prior is derived
using a random effects meta-analysis model, also referred to as hierarchical model. The meta-
analysis accounts for between-trial heterogeneity and leads to a discounting of the historical
information. As in any meta-analytic approach, it is important to first examine the charac-
teristics of the historical trials with clinical inputs. These include quantitative descriptions of
trial population such as subject demographics, baseline characteristics and qualitative features
such as concomitant medications. This helps to ensure that selected historical controls are
comparable to those in the new trial, such that one of the key assumptions of exchangeability
between the trials holds. Secondly, the assumption for the between-trial heterogeneity needs
to be reasonable as the number of trials is commonly small to borrow from and considerable
uncertainty needs to be accounted for adequately in the analysis. Then the MAP prior can be
derived from a random-effects meta-analysis of historical data via Markov chain Monte Carlo
(MCMC) algorithms as the analysis is commonly not tractable analytically. The predictive
distribution of the effect parameter for a new study then forms the informative prior for the
study of interest. In many cases, the goal is to replace some sample size of the planned
control group with information from the MAP prior. The effective sample size of the MAP
prior can then be used as a convenient measure of informativeness for the potential sample
size savings of the actual trial. However, since in practice we can never rule out the un-
expected, a robustification of the MAP prior (Schmidli et al. 2014) is advisable in order to
ensure sensible inference whenever actual trial data and MAP prior strongly deviate from
one another. Application of the MAP approach to incorporate historical data in early phase
clinical trials has been more widely accepted, not only by statisticians but also in medical
societies (Baeten, Baraliakos, Braun, Sieper, Emery, Van Der Heijde, McInnes, Van Laar,
Landewé, Wordsworth, Wollenhaupt, Kellner, Paramarta, Wei, Brachat, Bek, Laurent, Li,
Wang, Bertolino, Gsteiger, Wright, and Hueber 2013).
While there exists a number of R (R Core Team 2021) packages which perform meta-analysis,
these target the conduct of the meta-analysis for the purpose of synthesizing the available
historical information alone. However, these lack the aspect of using the combined historical
information for the purpose of a trial design and analysis. For example, netmeta implements a
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frequentist network meta-analysis approach (Rücker 2012; Rücker, Krahn, König, Efthimiou,
and Schwarzer 2021), wheras bayesmeta conducts a Bayesian random-effects meta-analysis
(Röver 2020), metafor a Bayesian mixed-effects meta-analysis (including meta-regression)
(Viechtbauer 2010), and MetaStan performs a meta-analysis with random-effects for primarily
binary endpoints using a Bayesian approach (Günhan, Röver, and Friede 2020; Günhan 2020).
There are also R packages developed for network meta-analysis, which seeks to combine the
historical information for multiple treatments, i.e., gemtc uses JAGS (Plummer 2003) for
arm-based network meta-analysis (Van Valkenhoef and Kuiper 2021), pcnetmeta is based on
contrast-based network meta-analysis (Lin, Zhang, Hodges, and Chu 2017) and nmaINLA
employs the integrated nested Laplace approximations (Günhan, Friede, and Held 2018).

The R package RBesT for R Bayesian evidence synthesis tools (Weber 2021) is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
RBesT. In this package, we implement the MAP approach tailored for the design and analysis
of clinical trials as conducted during (usually early phases of) drug development. The focus
on trial design leads to a number of considerations specific to this application. For example,
the limited sample sizes involved may not warrant that the often used normal approximation
holds well enough such that in addition to the common normal endpoint a binomial and a
Poisson endpoint are supported by RBesT. As the package facilitates trial design and clinical
trial protocol writing, a key step, which makes RBesT unique, is that the derived MAP
prior can be easily documented in parametric form and, most importantly, the implications
of actually using an informative prior for the trial design can be readily evaluated. Thus, in
RBesT the meta-analysis is the starting point and large emphasis is on facilitating trial design
and supporting compilation of the statistical analysis plan which pre-specifies the (primary)
trial analysis.

In order to document and easily pre-specify an informative MAP prior for a trial, RBesT offers
functionality to approximate the posterior MCMC sample representing the MAP prior with
a parametric mixture distribution. The parametric mixture distribution is arbitrarily exact
and is estimated using the expectation maximization (EM) algorithm. Representing the MAP
prior in parametric form is key to design clinical trials. For one, the exact statistical analysis
of the trial results are pre-specified ahead of time of trial analysis and, for two, the parametric
representation allows seamless evaluation of the design in question. For each endpoint specific
conjugate mixture densities are estimated. This allows the use of accurate and fast analytical
results. RBesT supports trial design evaluation of one- or two-sample situations with flexible
success criteria. In addition to standard frequentist operating characteristics, the probability
of success or derivation of critical values is supported. All of these subsequent steps after
MAP prior derivation operate in RBesT on the parametric mixture densities such that a
large fraction of the package is devoted to evaluation of mixture densities.

The organization of this paper is as follows. We will first give an overview of the package
key functionality and describe the details of one motivating example from a real clinical
study in Section 2. In Section 3, the theoretical background of the MAP approach and the
robustification of MAP will be explained, followed by how these approaches can be applied
with RBesT to the example in Section 4. Finally we close the paper with summary and
discussions in Section 5.

https://CRAN.R-project.org/package=RBesT
https://CRAN.R-project.org/package=RBesT
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2. Historical control in clinical trials
One of the main use-cases of RBesT is the use of historical information in the analysis of
clinical trials. The goal is to reduce the trial (usually the control group) sample size while
maintaining its target power under the assumed true effect size of an alternative hypothesis.
The RBesT package facilitates the (i) prior derivation using MCMC, (ii) parametric (mixture)
approximation of the MAP prior and finally (iii) evaluation of the clinical trial design.

Prior derivation. Once relevant data for the prior derivation have been compiled, the
first step is to use the gMAP function which performs a random-effects meta-analysis using
MCMC implemented by rstan (Stan Development Team 2020). The syntax follows standard R
modeling conventions and the returned analysis object can be modified for sensitivity analyses
with the update command or queried with the generic modeling functions. In particular, the
plot function creates graphical model diagnostics like a forest plot augmented with model
estimates. As the forest plot is a key summary of the data making up the prior a dedicated
forest_plot function is available which allows for various customization of the forest plot.

Parametric mixture approximation. After running the MCMC analysis with gMAP, the
next step is to find an accurate parametric distributional representation. The package uses the
EM algorithm implemented by the mixfit function which can be applied to ‘gMAP’ analysis
objects or MCMC samples directly. The EM procedure requires specification of the number of
mixture components to be used. To ease this step even further, the package also provides an
automixfit function which selects the number of mixture components automatically based
on information criteria measures. The resulting parametric mixture distribution objects gen-
erated from mixfit also support the plot method which produces a graphical check of the
fitted mixture distribution by a comparison to a histogram of the MCMC sample.

Trial design evaluation. It is first recommended to robustify the parametric MAP prior
with the robustify function. This function adds a weakly-informative prior component to
the mixture derived from the previous steps. The so-obtained robust MAP prior is intended
for use in a pre-specified trial analysis. Its informativeness can be assessed with the effective
sample size with the ess command. At the design stage of the trial the frequentist operating
characteristics or probability of success of the trial are of interest in order to document the
properties of the statistical analysis as planned in the statistical analysis plan of the trial.
The trial evaluation is supported in RBesT for one- or two-sample designs. In a first step,
the statistical success criterion of the trial is specified with the decision1S (decision2S)
function which return objects representing the decision function. These decision functions
are then required by the functions oc1S (oc2S), pos1S (pos2S) and decision1S_boundary
(decision2S_boundary) to specify the trial design (defined by prior, sample size and de-
cision function) for the purpose of evaluating the frequentist operating characteristics, the
probability of success or the critical decision boundaries of the trial design, respectively.

Ankylosing spondylitis example. As an example we will use a study in ankylosing
spondylitis comparing the test treatment secukinumab with placebo (Baeten et al. 2013).
The primary efficacy endpoint was a binary responder analysis for the percentage of patients
with a 20% response according to the Assessment of SpondyloArthritis international Society
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Study 1 2 3 4 5 6 7 8 Total
Patients 107 44 51 39 139 20 78 35 513
Responders 23 12 19 9 39 6 9 10 127

Table 1: Historical data of placebo response rates used in the example ankylosing spondylitis
study. The data set is available in the AS data frame as part of the RBesT package.

criteria for improvement (ASAS20) at week 6. Eight historical trials, totaling 513 patients as
shown in Table 1, were used to derive the MAP prior for the control arm.
This trial was conducted using the MAP approach (before the availability of RBesT). The
trial used a Beta(11, 32) prior for the control arm and performed a 4 : 1 randomization ratio
of active vs. control patients. The final trial compared n1 = 24 patients on active treatment
out of which r1 = 15 responded vs. n2 = 6 patients on control out of which r2 = 1 responded
and declared success based on meeting the success criterion defined as requiring that the
response rate in the active group, θ1, exceeds the response rate in the control group, θ2, with
a probability of at least 95% such that P(δ = θ1 − θ2 > 0|y) > 0.95 holds. This example is
discussed with greater focus on the statistical aspects in the vignette “Getting started with
RBesT (binary)” included in package RBesT.

3. Bayesian evidence synthesis and prediction
Important decisions should arguably be evidence based, especially in medicine (Eddy 1990;
Wandel and Roychoudhury 2016). For example, decisions regarding design and analysis
of clinical trials are important for trial sponsors, patients, physicians and policy makers.
To support such decisions, relevant sources of information should be collected, appropri-
ately synthesized through meta-analytic approaches, and used to make predictions on the
planned target trial. We use the term meta-analytic-predictive (MAP) approach (Neuen-
schwander et al. 2010) to denote the synthesis of evidence from various sources, and the pre-
diction/extrapolation to the target. Although the MAP approach is useful in a broad range
of applications, we consider here the medical setting (European Medicines Agency 2013).
Methodology for Bayesian evidence synthesis and prediction is well developed. Textbooks
on this topic include Stangl and Berry (2000), Spiegelhalter et al. (2004), Welton, Sutton,
Cooper, Abrams, and Ades (2012), and Dias, Ades, Welton, Jansen, and Sutton (2018).
Robust hierarchical models play a key role here, as explained in the following Sections 3.1
and 3.2. Applications of the MAP approach are very diverse, and we briefly discuss some
settings in Section 3.3.

3.1. Meta-analytic-predictive methodology

Figure 1 schematically depicts the MAP approach for evidence synthesis and prediction.
Suppose that a sponsor plans a new clinical trial (the target, labeled by the star symbol). This
trial will generate data Y?, to be described by a statistical model p(Y?|θ?), with parameters
θ?. Usually, several relevant sources of information will be available, e.g., clinical trials in
the same or similar patient population, and with (partly) the same treatments. Each source
of information consists of data Yj , modeled by p(Yj |θj), with corresponding parameters θj ,
j = 1, . . . , J . To borrow strength from the source information, a model is required that links
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Figure 1: MAP approach to evidence synthesis and prediction.

the parameters from both source and target: p(θ?, θ1, . . . , θJ |Ψ), with hyper-parameters Ψ.
Such hierarchical models are very natural and convenient for the synthesis of the evidence
and the prediction to the target (Spiegelhalter et al. 2004). Within the Bayesian framework, a
prior for the hyper-parameters p(Ψ) is needed, which will be specific to the considered setting.
At the planning stage of the target trial, the data Y? are not available. Hence the posterior
distribution of the parameters p(θ?, θ1, . . . , θJ ,Ψ|Y1, . . . , YJ) is based on the source data only.
The marginal posterior for the target parameter pMAP(θ?) = p(θ?|Y1, . . . , YJ) is the prior
information for the target, called the MAP prior in the following.
Once the target data Y? are available, the posterior for θ? is p(θ?|Y?) ∝ p(Y?|θ?)pMAP(θ?).
Exactly the same posterior could also be obtained through a meta-analytic-combined (MAC)
approach, from p(θ?, θ1, . . . , θJ ,Ψ|Y?, Y1, . . . , YJ) (Schmidli et al. 2014).
An analytical derivation of the MAP prior is typically not possible, and hence MCMCmethods
have to be used (Gelman, Stern, Carlin, Dunson, Vehtari, and Rubin 2013). These generate
a large sample from the posterior distribution of the parameters, including θ?. However,
an approximate analytical description of the MAP prior facilitates communication and use
with standard software. Mixtures of normal distributions generally provide such an analytical
approximation (West 1993). When conjugate priors exist, mixtures of conjugate priors may
be used (Dallal and Hall 1983; Diaconis and Ylvisaker 1985). These are preferable, as they
allow analytical posterior calculations for the target trial in simple settings (O’Hagan and
Forster 2004; Schmidli et al. 2014).

3.2. Robustness to prior-data conflict

The MAP approach provides the prior for the target parameters as pMAP(θ?). Occasionally,
this MAP prior may turn out to be in conflict with the emerging target data Y?, despite great
care in the selection of relevant sources and in the specification of the model. The behavior of
the posterior distribution to prior-data conflicts is governed by the tails of the prior (O’Hagan
and Pericchi 2012). For example, conjugate priors are not heavy-tailed, and consequently the
posterior will always be a compromise between prior and data. However, MAP priors are
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typically heavy-tailed, and are essentially discarded in case of prior-data conflict. This is a
desirable feature in most settings.
Although the MAP prior should be robust to prior-data conflict by accounting for heterogene-
ity, a faster reaction to prior-data conflicts may be achieved by adding a weakly-informative
mixture component pV (θ?) (Schmidli et al. 2014; Neuenschwander, Wandel, Roychoudhury,
and Bailey 2016). The robustified MAP prior is:

pMAPr(θ?) = (1− w) pMAP(θ?) + w pV (θ?), (1)

where w may be interpreted as the prior probability that the source information is not relevant
for the target, expressing some degree of skepticism towards borrowing strength. The choice of
the weakly-informative prior pV (θ?) varies by endpoint and application. For binary endpoints
a Jeffrey’s prior, a neutral prior (Kerman 2011) or a uniform prior on the response scale can
be used, for example. In the case of other endpoints, like a normal, a unit information prior
(Kass and Wasserman 1995) may be suitable.

3.3. Applications

Methodology and diverse applications of the MAP approach in medicine are reviewed in
Wandel et al. (2015), Schmidli, Gsteiger, and Neuenschwander (2021), and Neuenschwander
and Schmidli (2020). Specific applications include comparison of several treatments through
a network MAP approach (Schmidli, Wandel, and Neuenschwander 2013), the design and
analysis of non-inferiority and biosimilar clinical trials (Gamalo-Siebers et al. 2016; Mielke,
Schmidli, and Jones 2018), and the use of external data in adaptive clinical trials (Gsponer,
Gerber, Bornkamp, Ohlssen, Vandemeulebroecke, and Schmidli 2014; Mütze, Schmidli, and
Friede 2018). In the following, four common applications are briefly described.

Random-effects meta-analysis. Random-effects meta-analyses of clinical trials are very
common in medicine (Higgins and Green 2008). These typically synthesize the evidence on
the comparative effectiveness of two interventions in patients with a specific disease. Hig-
gins, Thompson, and Spiegelhalter (2009) emphasize that both the overall effect size and the
prediction for the true effect in a new trial are important for decision makers.
Sources of information are often J randomized clinical trials comparing a test and a control
treatment, with a continuous clinical endpoint. Data available from the jth source trial are
taken from publications, and are usually the estimated effect Yj with standard error sej (taken
as exactly known). These data are modeled as Yj ∼ Normal(θj , se2

j ). The parameters are
linked through a model: θ?, θ1, . . . , θJ ∼ Normal(µ, τ2), with overall effect size µ and between-
trial standard deviation τ . The parameter θ? denotes the true effect in a new trial. Priors
for the hyper-parameters Ψ = (µ, τ) are, e.g., a weakly informative Normal prior for µ and
a Half-Normal prior for τ . In case with few trials (i.e., J < 5), an appropriate choice of the
prior for τ is crucial (Gelman 2006; Friede, Röver, Wandel, and Neuenschwander 2017,B).
After having specified the priors, RBesT may be used to obtain a sample from the posterior
distribution of the parameters, and to graphically and numerically summarize these.

Evaluation of probability of success. Clinical trials aiming to show the superiority of
a test treatment over a control treatment are often analyzed using a frequentist approach.
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The trial is considered a success, if a statistically significant treatment effect is observed, with
one-sided significance level α = 0.025. The sample size of the trial is chosen such that a
power of, e.g., 80% is achieved, conditional on a specific treatment effect θ?. However, the
power does not provide the unconditional probability of success (or assurance), as it ignores
the uncertainty on the treatment effect. If relevant source data on the treatment effect are
available, the uncertainty on θ? is captured by the MAP prior pMAP(θ?).
The probability of success (PoS) is the prior expectation of the power, averaged over the MAP
prior (O’Hagan, Stevens, and Campbell 2005).

PoS =
∫

CP(θ?) pMAP(θ?) dθ? , (2)

where CP(θ?) is the conditional power function, i.e., the probability of success conditional
on an assumed true treatment effect. From a MCMC sample θ(1)

? , . . . , θ
(M)
? of the MAP

prior the PoS may be calculated as 1/M
∑
mCP(θ(m)

? ). Alternatively, the MAP prior may
be approximated by a mixture of normal priors with RBesT, and PoS can be evaluated by
numerical integration.
PoS evaluations are also relevant for decision makers at interim analyses of clinical trials.
If the PoS (or predictive power) at interim is low, the trial may be stopped early to avoid
unnecessary exposure of patients to ineffective treatments and to save resources (Spiegelhalter,
Freedman, and Blackburn 1986; Schmidli, Bretz, and Racine-Poon 2007; Neuenschwander,
Roychoudhury, and Schmidli 2016). For these interim analyses, the MAP prior is updated
with the interim data.

Extrapolation. New treatments are typically first investigated in adult patients, before
starting clinical trials in children. For many diseases and treatments, a similar effect may be
expected for children and adults, using a possibly modified children version of the treatment
(e.g., dosing based on body weight). Borrowing strength from the available adult trials should
therefore always be considered (Food and Drug Administration (FDA) for Devices 2015; Eu-
ropean Medicines Agency 2018). The MAP approach may be used for extrapolation (Wandel,
Neuenschwander, Röver, and Friede 2017; Röver, Wandel, and Friede 2019; Schmidli, Häring,
Thomas, Cassidy, Weber, and Bretz 2020), although alternative methods are also available
(Gamalo-Siebers et al. 2017; Wadsworth, Hampson, and Jaki 2018).
The source data are usually J randomized clinical trials in adults comparing test and control
treatment. These can be summarized with a random-effects meta-analysis as described above,
which provides the MAP prior for the treatment effect in a new trial in adults pMAP(θ?). In
some settings essentially the same treatment effect in adults and children may be expected,
based on a scientific understanding of the disease and the mode-of-action of the treatment.
Hence, the MAP prior for adults may also be used for a new trial in children. Skepticism on the
relevance of the adult data may be expressed by robustifying the MAP prior (Section 3.2). In
simple settings, RBesT can be used to derive the MAP prior, robustify it, evaluate frequentist
operating characteristics of the trial in children, and finally obtain the posterior distribution
of the treatment effect in children, once results from the children trial are available.

Historical controls. In many disease areas, multiple randomized controlled trials (RCTs)
have been conducted, with the same control treatment (e.g., placebo) but different test treat-
ments. When planning to investigate a new test treatment in an RCT, the question arose
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whether one could borrow strength from the historical control data (Viele et al. 2014). In this
setting, the sources of information are the control data from J trials. For a clinical endpoint,
the control mean from the jth trial may be modeled as Yj ∼ Normal(θj , se2

j ), with true con-
trol mean θj , and standard error sej (taken as exactly known). A model is used to provide
the link to the true control mean in the new trial θ? as: θ?, θ1, . . . , θJ ∼ Normal(µ, τ2). With
appropriate priors for the hyper-parameters, the MAP prior pMAP(θ?) is derived, and used
as the informative prior for the control group in the new trial. Again, it is often advisable
to robustify the MAP prior in case of some doubt on the relevance of the historical control
information (Section 3.2). RBesT may be used for MAP prior derivation, evaluation of fre-
quentist operating characteristics and the final analysis. An example data set is described
in Section 2 and in Section 4 we present how RBesT facilitates the use of historical control
information in clinical trials.
Use of the MAP approach in historical control settings has also been described for data mod-
eled by the one-parameter exponential family (Schmidli et al. 2014), count data (Gsteiger,
Neuenschwander, Mercier, and Schmidli 2013), recurrent event data (Holzhauer, Wang, and
Schmidli 2018), time-to-event data (Holzhauer 2017) and variance data (Schmidli, Neuen-
schwander, and Friede 2017).

4. Application
In the following the use of RBesT is explained using as example the study in the indication
ankylosing spondylitis as introduced in Section 2. The RBesT package facilitates the (i) prior
derivation using MCMC, (ii) parametric (mixture) approximation of the MAP prior and
finally (iii) evaluation of the clinical trial design.

4.1. Prior derivation

The statistical models implemented in the package follow the standard generalized linear re-
gression modeling conventions and are implemented with the gMAP function mostly analogous
as in the R glm command of the stats package. The supported sampling distributions are
normal (with known sampling standard deviation σ), binomial and Poisson. These use the
canonical link functions of the identity, logit and log link, respectively. The gMAP function
call for the secukinumab trial is:

R> library("RBesT")
R> AS

study n r
1 Study 1 107 23
2 Study 2 44 12
3 Study 3 51 19
4 Study 4 39 9
5 Study 5 139 39
6 Study 6 20 6
7 Study 7 78 9
8 Study 8 35 10
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R> set.seed(35667)
R> map_mcmc <- gMAP(cbind(r, n-r) ~ 1 | study, family = binomial, data = AS,
+ tau.dist = "HalfNormal", tau.prior = 1, beta.prior = cbind(0, 2))

The first argument is the formula argument which specifies a two-column matrix as response
for a binary response and contains in the first column the number of responders r and in the
second column the number of non-responders n−r. The response is modeled by the terms on
the right of the ~ operator. In this example a single intercept term is used here, but additional
covariates can be specified using standard R formulae syntax. The last element of the formula
is the grouping factor, which is separated by a vertical bar | from the model for the response.
The grouping factor defines what constitutes a trial in the data set. If no grouping factor is
specified, then each row in the input data set is interpreted as a group. The next argument is
the family argument which specifies the sampling distribution. It is strongly recommended
to use the data argument and pass a ‘data.frame’ to it where all data for the model is stored
(otherwise the environment will be searched for the respective columns). Finally, the priors
of the model are specified. As the between-trial heterogeneity parameter τ is of particular
importance for a meta-analysis, the gMAP function allows the user to choose the distributional
class for the τ parameter with the tau.dist argument whereas the regression coefficients β
are restricted to Normal priors. The arguments tau.prior and beta.prior both take a two
column argument with the convention that each row corresponds to the respective parameter
and the columns correspond to respective parameters of the prior distribution. Whenever a
prior distribution for τ only needs a single parameter, a vector can be given as well, which is
the case for the HalfNormal distribution used here with a standard deviation of 1. For the
beta.prior, the first and second column correspond to the means and standard deviations
of the normal prior distributions, respectively.
Internally the gMAP function uses Stan via the rstan package for sampling from the posterior
distribution. The diagnostics of the MCMC sampler as provided by Stan are automatically
inspected and potential issues are reported with a warning. The gMAP function returns an S3
object, which can then be further processed by standard R modeling functions. The default
print method

R> map_mcmc

Generalized Meta Analytic Predictive Prior Analysis

Call: gMAP(formula = cbind(r, n - r) ~ 1 | study, family = binomial,
data = AS, tau.dist = "HalfNormal", tau.prior = 1, beta.prior = cbind(0,

2))

Exchangeability tau strata: 1
Prediction tau stratum : 1
Maximal Rhat : 1

Between-trial heterogeneity of tau prediction stratum
mean sd 2.5% 50% 97.5%

0.3770 0.2120 0.0426 0.3510 0.8610
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Figure 2: Recommended diagnostic plot for gMAP analyses which is a forest plot augmented
with meta-analytic shrinkage estimates θj per trial. Shown are the per-trial point estimates
(light dot) and the 95% frequentist confidence intervals (dashed line) and the model derived
median (dark point) and the 95% credible interval of the meta-analytic model. In addition
the model derived typical parameter estimate µ and the MAP estimate θ? is shown.

MAP Prior MCMC sample
mean sd 2.5% 50% 97.5%

0.2620 0.0869 0.1180 0.2520 0.4660

shows a short summary of the gMAP analysis. The derived MAP prior corresponds to the
intercept-only model of the fitted statistical model (relevant when using covariates) and is
given on the response scale (here: response rate) by default as opposed to the link scale (here:
log-odds). More information of the model estimates is available with the summary method.
Importantly, the plot method provides key graphical summaries of the gMAP analysis:

R> model_plots <- plot(map_mcmc, size = 0.5)
R> names(model_plots)

[1] "densityThetaStar" "densityThetaStarLink" "forest_model"

The graphical summaries are returned as plain R list of ggplot2 (Wickham 2016) plots, which
can be plotted by printing a given element of the list. The plot in Figure 2 can be obtained
with:

R> model_plots$forest_model

The density estimate plot on the response or link scale of the MAP prior shows each fitted
chain (by default 4 chains are used) separately. The overlaid display by chain allows to assess
graphically the MCMC convergence, since each chain must have sampled the same posterior
resulting in numerically very similar densities. As key diagnostic plot we recommend to
inspect the forest_model plot as shown in Figure 2. The plot gives a graphical summary of
the MAP analysis and can serve as a fast check for coding errors.
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0.0 0.2 0.4 0.6 0.8

Figure 3: Recommended diagnostic plot for parametric approximation of the MCMC repre-
sented MAP prior. The plot overlays the MCMC histogram of the MAP prior as obtained from
gMAP and the respective parametric mixture approximation as determined from automixfit
or mixfit.

4.2. Parametric mixture prior derivation

The MAP prior, represented numerically with a large MCMC simulation sample, can be
approximated with a parametric representation with the automixfit function. This function
fits a parametric mixture representation using the EM algorithm. When calling this function
with a ‘gMAP’ analysis object, the EM algorithm is run on the MAP prior MCMC values on
the response scale (as opposed to the transformed link scale). The distributional class of the
fitted mixture densities depends on the sampling distribution of the family argument. For the
gaussian, binomial and poisson family a mixture of normal, beta and gamma distributions
are fitted with the EM algorithm, respectively. These choices allow RBesT to take advantage
of analytical results as their likelihood-prior combinations are conjugate to one another.
The EM algorithm requires a pre-specified number of components, which is automatically
chosen by automixfit through the use of the Akaike information criterion (AIC). The func-
tion fits parametric mixture models of increasing complexity with up to four components and
then selects the one with the lowest AIC. The output below shows the log-likelihood results
for the selected mixture model, as well as the mixture components of the beta mixture. Mix-
tures are represented in RBesT with a set of K mixture components and each being defined
by a triplet (w, a, b)k which corresponds to the weight w of the component, the first standard
parameter a and the second standard parameter b of the respective density. Please refer to
the overview in Table 2 for further details.

R> map <- automixfit(map_mcmc)
R> map

EM for Beta Mixture Model
Log-Likelihood = 4446.925

Univariate beta mixture
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Mixture Components:
comp1 comp2

w 0.641628 0.358372
a 17.472900 3.497193
b 52.774167 8.669930

To consider the quality of the EM fit we recommend to compare the MCMC sample with the
parametric mixture density in a graphical manner. In Figure 3 the output of the plot method
is shown for the generated mix plot, which overlays the fitted mixture density marginal with
a histogram of the MCMC sample. In rare cases the response scale can be inadequate to
compare the parametric mixture density appropriately (for example, if the response rate is
very small or very large). To obtain Figure 3:

R> em_diagnostic <- plot(map)
R> em_diagnostic$mix + ggtitle(NULL)

Additional plots which are not shown can be obtained using:

R> em_diagnostic$mixdens
R> em_diagnostic_link <- plot(map, link = "logit")
R> em_diagnostic_link$mix

with the second plot resulting in the same plot as in Figure 3 except that the plot is on the
logit scale.
Once the user has derived a parametric mixture representation for the MAP prior, the RBesT
package provides additional functions to further investigate the fit as indicated by the overview
in Table 2. In the following we discuss the key functions needed in the context of informative
prior derivation from historical data.
As the goal is to reduce the required sample size in a future trial, the informative MAP prior
enables unequal randomization of active vs. control. In the ankylosing spondylitis example
a 4:1 randomization ratio was chosen. The ess function provides approximations to the
effective sample size of a given prior for various methods. The effective sample size of the
MAP prior gives a rough guide by how much the sample size can be reduced when using
the respective frequentist power calculation as a reference, for example. For the ankylosing
spondylitis example, the overall 513 historical control patients in 8 different trials constitute

R> ess(map)

[1] 35.53539

patients worth of information on the used control patients for a future trial. The considerable
reduction in information content reflects the inherent heterogeneity between the trials.
Instead of using the MAP prior directly in a new study, we recommend to robustify the prior
with a weakly-informative component (Equation 1 of Section 3.2) as follows:

R> map_robust <- robustify(map, weight = 0.2, mean = 0.5)



14 RBesT: Meta-Analytic-Predictive Priors in R
Function

nam
e

U
se

N
otes

c(w,
a,

b)
D
efines

a
com

ponent
of

a
m
ixture

distribution.
Specifies

for
each

com
ponent

its
w
eight,the

first
and

second
standard

param
eter.

N
orm

al
densities

use
m
ean

and
standard

devia-
tion,beta

densities
use

α
and

β,gam
m
a
densities

use
shape

and
rate.

mn2norm
mn2beta

mn2gamma
M
apsto

the
standard

param
etrization

given
m
ean

and
num

ber
ofobservations.

ms2beta
ms2gamma

M
apsto

the
standard

param
etrization

given
m
ean

and
standard

deviation.
mixnorm

mixbeta
mixgamma

C
reate

supported
base

m
ixture

distribution
ob-

jects.
For

norm
aldensities

the
attribute

sigma
sets

the
know

n
sam

pling
standard

deviation.
For

gam
m
a

densities
a

likelihood
attribute

sets
the

likeli-
hood

the
density

is
intended

to
be

used
w
ith.

mixcombine
C
om

bines
m
ixture

distributions.
(d/p/q/r)mix

D
ensity/distribution/quantile/random

num
ber

generation
functions.

T
he

quantile
function

uses
num

ericalsearch
rou-

tines.
robustify

A
dds

a
w
eakly-inform

ative
com

ponent
to

a
m
ix-

ture.
(d/p/q/r)mixdiff

C
om

m
on

distribution
functions

for
the

difference
oftw

o
m
ixture

distributions.
U
sesconvolution

theorem
w
ith

num
ericalintegra-

tion
w
hile

for
norm

alm
ixtures

analytically
exact

results
are

used.
ess

C
alculates

the
effective

sam
ple

size
of

a
m
ixture

distribution.
M
ethods

im
plem

ented
are

"elir"
(default),

"moment"
and

"morita",
please

refer
to

A
p-

pendix
B
.

postmix
C
alculates

posterior
m
ixture

distribution.
U
ses

analytically
exact

results.
preddist

R
eturns

the
predictive

m
ixture

distribution.
decision1S_boundary
decision2S_boundary

C
alculates

criticaldecision
boundary.

Please
refer

to
A
ppendix

C
.

oc1S
oc2S

C
alculates

conditionalpow
er.

Please
refer

to
A
ppendix

C
.

pos1S
pos2S

C
alculates

probability
ofsuccess.

Please
refer

to
A
ppendix

C
.

summary
Produces

descriptive
statistics

ofm
ixture.

plot
Produces

diagnostic
plots.

Table
2:

O
verview

on
functions

in
R

B
esT

defined
for

param
etric

m
ixtures.



Journal of Statistical Software 15

RBesT offers many functions which facilitate to explore the implications of an informative
prior. For example, the predictive distribution of the data in a new trial can easily be derived
with the preddist command. While the MAP prior is the predictive distribution of the mean
parameter for a new trial and accounts for parameter uncertainty and between-trial hetero-
geneity, the predictive distribution of data accounts in addition for sampling uncertainty. For
beta mixture densities the respective predictive distribution is the beta-binomial mixture dis-
tribution. This can be used to illustrate possible outcomes in a future trial or to calculate
the Bayes factor of observed data with respect to the prior.
Moreover, RBesT provides the postmix command which updates a prior with the data as
observed and computes analytically the posterior mixture distribution. For two-sample cases
we are often interested in the difference distribution of two densities (representing a treatment
difference). In RBesT the difference distribution of mixtures of the same class is supported
through the use of the convolution theorem which allows for an accurate evaluation. Table 2
summarizes all functions available for parametric mixtures supported in RBesT. Further
details are available in the help files for each function.

4.3. Trial design evaluation

Once a parametric mixture MAP prior has been derived, it is crucial to understand its in-
fluence on the statistical analysis of a clinical trial. In the context of the historical control
example the goal is commonly to reduce the control group sample size while maintaining
adequate power for trial success under the alternative hypothesis which assumes some true
effect size. The main focus here is the evaluation of the (frequentist) operating characteristics
of the trial design with respect to achieving trial success.
RBesT follows a modular, step-wise approach for design evaluation. First, a success criterion
is defined, then the design of the trial is specified and finally the desired evaluation of the
trial can be conducted for possible scenarios of interest. The success criteria supported are
restricted to one-sided criteria which are referred to as decision functions. These can be set
up for one-sample (decision1S) and two-sample (decision2S) situations. In RBesT the
decision functions can be set up to require that multiple critical probability thresholds and
quantiles for the difference distribution have to be met in the two-sample case while these
thresholds are applied directly to the posterior density in the one-sample case. This enables
evaluation of so-called dual criterion designs (Roychoudhury, Scheuer, and Neuenschwander
2018) which evaluate a statistical confidence criterion (high confidence in a positive/negative
difference) and a minimally observed treatment difference (observed median difference being
greater/smaller than some value). For the ankylosing spondylitis trial, success was declared
whenever the posterior treatment difference is positive with a probability which exceeds 95%.
In RBesT this is expressed by first defining the decision function as used in the trial:

R> success <- decision2S(0.95, 0, lower.tail = FALSE)

An alternative which demands in addition to see at least a median difference of at least 10%
is defined by

R> success_dual <- decision2S(c(0.95, 0.5), c(0, 0.1), lower.tail = FALSE)

For convenience, we can print decision function objects:
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R> success

2 sample decision function
Conditions for acceptance:
P(x1 - x2 > 0) > 0.95
Link: identity

R> success_dual

2 sample decision function
Conditions for acceptance:
P(x1 - x2 > 0) > 0.95
P(x1 - x2 > 0.1) > 0.5
Link: identity

The returned object represents the decision function and is a binary function taking two
arguments. The arguments need to be two mixture densities of x1 and x2 (those will usually
be the mixture posteriors) and the decision function acts as indicator function returning 1
whenever the condition for success on the difference distribution of the two mixture densities
is fulfilled and 0 otherwise. Optionally, the success criterion allows for transformation of
the input mixture distributions prior to forming the difference distribution using the link
argument. The log and logit link enable relative risk and log odds-ratio success criteria to be
evaluated with RBesT.
The next step is to define the design of the trial using the operating characteristics function
oc2S (or oc1S for a one-sample case). The design of the trial includes the priors for each
arm, the total sample size per arm and the decision function for trial success. The aim of
using informative priors on the control response rate is to reduce the sample size needed
for control. As such, it is useful to start with the respective frequentist power calculation
to find an initial sample size needed when not using prior information. For the ankylosing
spondylitis example the assumed true response rates for control were 25% and for active 60%,
which results in a per-arm sample size of at least 24 when targeting a power of 80%, using
function power.prop.test from package stats:

R> power.prop.test(p1 = 0.25, p2 = 0.6, power = 0.8, sig.level = 0.05,
+ alternative = "one.sided")

Two-sample comparison of proportions power calculation

n = 23.59764
p1 = 0.25
p2 = 0.6

sig.level = 0.05
power = 0.8

alternative = one.sided

NOTE: n is number in *each* group



Journal of Statistical Software 17

Thus, 24 patients per arm are required to reach 80% for these assumptions and hence the
MAP prior with an effective sample size of 36 (25 for the robust MAP prior) represents a
considerable amount of information. Therefore, the sample size of the control group can be
reduced by a sizable fraction in this case. A 4:1 randomization ratio between active and
control treatment was chosen for the trial. To now evaluate the impact a MAP prior has on
the operating characteristics compared to the respective robust design, one can determine a
prior for the treatment response rate in trial with a-priori median 25% response rate matched
to the a-priori assumption of the control response rate using

R> treat_prior <- mixbeta(c(1, 1/2, 1))

and explore the different trial designs with

R> design_nonrobust <- oc2S(treat_prior, map, 24, 6, success)
R> design_robust <- oc2S(treat_prior, map_robust, 24, 6, success)

The oc2S function returns a binary function which is finally used to calculate the frequency
of trial success as a function of an assumed truth for each arm. For the binomial sampling
distribution, the function takes assumed true response rates θ1 and θ2. Whenever these two
are set to the same numerical value θ = θ1 = θ2, the scenario of no treatment difference
is evaluated, which corresponds to a type-I error in a respective frequentist trial analysis
which assumes as null hypothesis a difference of 0 between active and control. Setting θ2 to
a plausible control response rate and varying θ1 as a function of the difference δ = θ1 − θ2
yields the power of the trial. The functions take vectors of equal length as arguments so that
we can evaluate the type-I error rates over large parameter ranges as:

R> theta <- c(0.25, 0.5, 0.75)
R> round(design_nonrobust(theta, theta), 3)

[1] 0.020 0.323 0.775

R> round(design_robust(theta, theta), 3)

[1] 0.018 0.190 0.173

Here we see that the Bayesian design (with informative priors) does not control the type-
I error and that the error rates are conditional on the response rates being equal to their
respective values in each treatment arm. However, the 97.5% quantile of the MAP prior is
approximately 0.48 such that response rates greater than this would be very unusual. The
power of the trial under the assumed true response rates in each treatment group is:

R> round(design_nonrobust(0.25 + 0.35, 0.25), 3)

[1] 0.871

R> round(design_robust(0.25 + 0.35, 0.25), 3)

[1] 0.77
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Given that RBesT is fast and accurate for these calculations, it is recommended to use
graphical plots in addition to tables to visualize the (error) rates of interest as demonstrated
in the vignettes of RBesT.

4.4. Probability of success for interim trial analysis

The operating characteristics evaluate the frequency at which trial success is declared while
assuming known true values for the response rates in each treatment arm. However, in practice
it can be of interest at an interim analysis, when only a fraction of the total sample size is
collected, to evaluate the frequency of trial success whenever the response rates are subject to
uncertainty. Should the chances for success be too low at the interim analysis, then the trial
can be stopped early for futility. While this has not been applied in the ankylosing spondylitis
Phase II trial, we here assume that an interim analysis is conducted with 12 patients in the
active treatment arm and 3 in the control arm. The observed number of responders are
assumed to be 5 and 1 for the active treatment and control arm, respectively.
At the interim analysis the accrued data updates the priors. RBesT calculates this analytically
using the postmix function:

R> interim_treat <- postmix(treat_prior, r = 5, n = 12)
R> interim_control <- postmix(map_robust, r = 1, n = 3)

The probability of success calculation now follows the same conventions as before in that first
the design is specified:

R> pos_robust <- pos2S(interim_treat, interim_control, 24 - 12, 6 - 3,
+ success)

Note that the specification of the probability of success uses the interim state of the accrued
knowledge as prior and the remaining sample size. The returned object is again a binary
function accepting two arguments which need to be mixture distributions representing the
densities of the per treatment arm response rates and hence the exact value of the response
rates are treated as unknown. For the situation of an interim analysis, the state of knowledge
about the per treatment arm response rate are merely the interim posteriors and as such the
probability of success is in this example:

R> pos_robust(interim_treat, interim_control)

[1] 0.203874

However, if one would like to calculate the probability for success at the interim with the
non-robust MAP prior for the control response rate (while still using the robust prior for the
analysis), then the calculation is:

R> interim_control_nonrobust <- postmix(map, r = 1, n = 3)
R> pos_robust(interim_treat, interim_control_nonrobust)

[1] 0.2113132
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While the probability of success calculation uses for the calculation of the trial success the
robust prior for the control arm, the knowledge at the interim about the control response rate
uses the plain non-robust MAP prior as basis. This reflects that the trial success depends
on the analysis prior while at the interim we may have additional information available (not
part of the final trial analysis) to calculate the probability of success. The RBesT package
contains two further vignettes about the probability of success to detail this functionality.

4.5. Trial analysis

Once the final data of the trial is available, the RBesT package can be used to conduct the
final analysis. For the ankylosing spondylitis trial 15 responders were reported out of 24
patients in the active treatment arm and 1 responder out of 6 in the control arm. This leads
to a successful trial result as demonstrated by the following analysis. First the final posterior
per treatment arm is obtained:

R> final_treat <- postmix(treat_prior, r = 15, n = 24)
R> final_control <- postmix(map_robust, r = 1, n = 6)

Then the success indicator function is applied to the posteriors by treatment arm:

R> success(final_treat, final_control)

[1] 1

The output of 1 indicates that the previously defined success criteria are met. The success
indicator function simply thresholds the difference probability density distribution using the
defined success criteria. Alternatively one may calculate directly the probability for a positive
value of the difference between the control and treatment response rate posterior as:

R> pmixdiff(final_treat, final_control, 0, lower.tail = FALSE)

[1] 0.9948083

Internally, all calculations with the mixture distributions use analytical results whenever
possible and always avoid the use of Monte Carlo simulations. This warrants fast and accurate
results which do not depend (numerically) on the choice of a random seed. For the trial
evaluation functions the key quantity calculated is the critical decision boundary determined
by the success criterion and the trial design. At the critical outcome boundary the success
criterion changes its value between 0 and 1. While in the one-sample case this corresponds to a
single value, it is a function of the outcome in the second sample in the two-sample case. As the
decision boundary can be useful for other applications, the boundary can be obtained with
the functions decision2S_boundary (decision1S_boundary). These are also useful when
communicating various data scenarios and their respective decisions to non-statisticians like
clinical teams. For more details please refer to the appendix for their calculation and the
vignettes of RBesT contain example visualizations of the boundaries.
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5. Summary
In this paper, we introduced the RBesT package which implements the MAP approach via
MCMC sampling algorithms for a number of common sampling and prior distributions. In-
corporating historical data in clinical studies has various advantages, such as reducing the
number of subjects randomized to a control arm or getting more precise information for deci-
sion making. Incorporation of historical data should lead to more ethical and efficient clinical
trials.
The MAP approach is a hierarchical modeling method allowing heterogeneity between histor-
ical trials, which can incorporate historical data in a meta-analytic framework. The RBesT
package allows for easier implementation of MAP priors. After selection of appropriate his-
torical information, RBesT facilitates the prior derivation using MCMC, the parametric (mix-
ture) approximation of the MAP prior, the evaluation of the clinical trial design and finally
the analysis of the trial data.

Computational details
The RBesT package depends on packages Rcpp (Eddelbuettel and François 2011; Eddelbuet-
tel 2013; Eddelbuettel and Balamuta 2018), RcppParallel (Allaire, François, Ushey, Vanden-
brouck, Geelnard, and Intel 2021), Stan (Carpenter et al. 2017), rstan (Stan Development
Team 2020), rstantools (Gabry, Goodrich, and Lysy 2020), assertthat (Wickham 2019), mvt-
norm (Genz et al. 2021; Genz and Bretz 2009), Formula (Zeileis and Croissant 2010), check-
mate (Lang 2017), bayesplot (Gabry and Mahr 2021; Gabry, Simpson, Vehtari, Betancourt,
and Gelman 2019), ggplot2 (Wickham 2016), dplyr (Wickham, François, Henry, and Müller
2021), BH (Eddelbuettel, Emerson, and Kane 2020), and RcppEigen (Bates and Eddelbuettel
2013). All R packages are available from CRAN at https://CRAN.R-project.org/.
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A. Parametric mixture inference
In RBesT the EM algorithm is used to find parametric mixture approximations to the nu-
merical representation of the MAP prior. Thus, we consider in this section as data Y the
MCMC sample representing the MAP prior (or any other MCMC sample). Direct applica-
tion of maximum likelihood is numerically problematic, since the log-likelihood for a mixture
prior, log p(Y |w,a, b) =

∑N
i=1 log

∑K
k=1wk pk(Yi|ak, bk), involves the sum over the log of the

component densities wk pk(Yi|ak, bk). The inner summation is on the natural scale and is
required as we do not know the component k which a data item Yi is a member of. However,
extending the observed data (Y ), also referred to as incomplete data, to the so-called com-
plete data (Y ,Z) leads to a numerically stable problem. The unobserved data Z is defined as
the latent component indicator such that Zi,k is 1 whenever data item i is part of component
k and 0 otherwise. The extended problem is related to the original through marginalization,
p(Y |w,a, b) = EZ [p(Y ,Z|w,a, b)]. However, the extended log-likelihood factorizes in the
usual way

log p(Y ,Z|w,a, b) =
N∑
i=1

K∑
k=1

Zi,k [log(wk) + log pk(Yi|ak, bk)] .

The EM algorithm begins with a fixed number of mixture components K and an initial guess
of all parameters. The initial guess of the parameters is achieved with the k nearest neighbors
(knn) algorithm in RBesT with the exception of the normal mixture case as detailed below.
The parameter vector (w,a, b) is then updated iteratively. The nth iteration of the EM
consists of first performing the expectation (E) step and then the maximization (M) step
which updates the parameter vector for the next iteration. These EM steps are then repeated
until convergence to a maximum or saddle-point of the log-likelihood. While it is guaranteed
that in each iteration the log-likelihood is always increased, the EM algorithm may only find
a local saddle-point rather than a global extremum. Moreover, applying the EM algorithm in
cases with an unbounded log-likelihood can also cause issues (as it can occur at the boundaries
of a Beta distribution with any of the shape parameters being smaller than 1).

E-step. The E-step calculates the posterior probability for the latent indicators p(Z|Y ,w,a, b)
in order to compute the expected posterior mean weights

E[Zi,k|Y ,w,a, b] = wk pk(Yi|ak, bk)∑
k wk pk(Yi|ak, bk)

= γ(Zi,k).

The expression γ(Zi,k) is often referred to as the responsibility of mixture component k for
data item i. The overall responsibility of mixture component k

Nk =
N∑
i=1

γ(Zi,k)

can be interpreted as the number of data items belonging to mixture component k and hence
the overall fraction of data points assigned to a specific component k is

πk = Nk

N
.
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Finally, the E-step computes the expectation of the complete log-likelihood with respect to
Z conditional on the parameter vector of the current nth iteration and the data Y ,

EZ|Y ,w(n),a(n),b(n) [log p(Y ,Z|w,a, b)] =
N∑
i=1

K∑
k=1

γ(Zi,k) [log(wk) + log pk(Yi|ak, bk)]

= Q(w,a, b|w(n),a(n), b(n)).

The dependence of Q(w,a, b|w(n),a(n), b(n)) on the parameters in the nth iteration (w(n),
a(n) and b(n)) is through γ(Zi,k).

M-step. The M-step then proceeds by finding a new parameter vector through maximiza-
tion

(w(n+1),a(n+1), b(n+1)) = arg max
w,a,b

Q(w,a, b|w(n),a(n), b(n)).

The updated weights are constrained to sum to one. Maximization with this constraint is
achieved through Lagrange multipliers and leads to the solution

wk
(n+1) = πk.

To find the maximum with respect to the parameters of each component k, we take the
gradient (∂ak

, ∂bk
) of Q(w,a, b|w(n),a(n), b(n)) and equate these to zero.

Normal mixtures. For normal mixtures RBesT implements internally a multi-variate nor-
mal EM, but only exposes the uni-variate functionality at the moment. Empirically we ob-
served that the normal EM algorithm is easily trapped into local extrema which is caused
by the commonly heavy tailed distributions of MAP priors. For this reason, we initialize the
normal EM with the result of a Student-t EM procedure as described in Peel and McLachlan
(2000). The Student-t EM is itself initialized with k nearest neighbors. The maximization
equations can be solved analytically in the normal mixture case (note that each data item i
is a vector Yi):

µk = 1
Nk

N∑
i=1

γ(Zi,k)Yi

Σk = 1
Nk

N∑
i=1

γ(Zi,k) (Yi − µk) (Yi − µk)>.

The analytical solution is a weighted mean and covariance estimate with the weight for each
data item Yi equal to γ(Zi,k)/Nk.

Beta mixtures. For beta mixture distributions the M-step requires solving the joint equa-
tion system of (see also Ma and Leijon 2009):

ψ(ak)− ψ(ak + bk) = 1
Nk

N∑
i=1

γ(Zi,k) log(Yi)

ψ(bk)− ψ(ak + bk) = 1
Nk

N∑
i=1

γ(Zi,k) log(1− Yi).
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Here ψ(x) is the digamma function defined as ∂x log(Γ(x)). This equation system is solved
simultaneously for ak and bk through numerical minimization.

Gamma mixtures. With gamma mixtures the algebraic equation system

ψ(ak)− log(bk) = 1
Nk

N∑
i=1

γ(Yi,k) log(Yi)

ak
bk

= 1
Nk

N∑
i=1

γ(Zi,k)Yi

is obtained for the M-step. This system can be reduced to a single equation, which is again
solved through numerical minimization.

B. Effective sample size
The effective sample size is an approximate measure for the number of observations a prior is
equivalent to. In the setting of conjugate likelihood-prior pairs without mixtures the standard
parameters can be cast into an effective sample size. For mixture priors the conjugacy of the
likelihood-prior pair is preserved and analytical results still apply with some modifications.
However, in the mixture prior case there is no more a clear relationship between the standard
parameters and the effective sample size. RBesT implements three approaches to calculate
the effective sample size for mixture priors:

"elir" : The expected local information ratio has been proposed in Neuenschwander, Weber,
Schmidli, and O’Hagan (2020) and is a predictively consistent effective sample size
measure. The predictive consistency requires that the effective sample size of the prior
is equal to the average effective sample size of the respective posterior of this prior
after simulation of m samples from the predictive prior distribution and subtracting m
from the averaged posterior effective sample size. The method is neither liberal nor
conservative and is the default method in RBesT.

"morita" : The method from Morita, Thall, and Müller (2008) evaluates the curvature of
the prior at a reference point (mode, median or mode) and compares this against the
expected curvature of a posterior of a variance inflated prior which is updated with
m samples from the prior predictive of the prior. The m is chosen to minimize the
difference in curvature. Since the Morita method evaluates the prior at a single point,
the approach can be sensitive to the curvature at this point and has been observed to
report relatively large effective sample sizes when used with mixture priors.

"moment" : The moment based approach matches the mean and the variance of a given prior
to its respective canonical prior from which the effective sample size can be obtained
directly from the standard parameters. This approach has been found empirically to
report very conservative (low) effective sample sizes.

The key expressions involved in the effective sample size calculations are the prior information

i(p(θ)) = −∂2
θ log(p(θ))
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Sampling distribution Fisher information Prior density Prior information
p(Y |θ) iF (θ) pk(θ|a, b) i(pk(θ))

Normal(Y |θ, σ2) σ−2 Normal(θ|m, s2) s−2

Binomial(Y |θ, n) n
θ (1−θ) Beta(θ|a, b) a−1

θ2 + b−1
(1−θ)2

Poisson(Y |θ) θ−1 Gamma(θ|a, b) a−1
θ2

Exp(Y |θ)† θ−2 Gamma(θ|a, b) a−1
θ2

Table 3: Overview on supported conjugate likelihood-prior pairs supported in RBesT. †Note
that for the exponential sampling distribution only the effective sample size calculations are
supported as of RBesT 1.6-2 (the predictive distribution is not available for this likelihood-
prior pair).

and the Fisher information

iF (θ) = EY1|θ [i(p(Y1|θ))] = −EY1|θ
[
∂2
θ log(p(Y1|θ)))

]
.

The Fisher information is derived from the sampling distribution, but the second derivative
of the log mixture prior density with K components, defined as

p(θ|w,a, b) =
K∑
k=1

wk pk(θ|ak, bk),

needs some considerations for a numerically stable evaluation. It is key to evaluate the log
density instead of the density on the natural scale whenever possible. We will in the following
suppress the weights and standard parameters of p(θ) and pk(θ) for simplicity. Using the
equality ∂θp(θ) = p(θ) ∂θ log(p(θ)) one finds that the prior information for a mixture is

i(p(θ)) = 1
p(θ)2

[
K∑
k=1

wk pk(θ) ∂θ log pk(θ)
]2

− 1
p(θ)

K∑
k=1

wk pk(θ)
[
(∂θ log pk(θ))2 + ∂2

θ log pk(θ)
]
. (3)

Table 3 lists all the main expressions required for the supported conjugate likelihood-prior
pairs in RBesT.

C. Informative prior evaluation
In RBesT one-sided decision functions with multiple criteria are supported for one- and two-
sample cases. The decision functions are indicator functions through thresholding density
distributions such that critical quantiles must exceed predefined probability thresholds. De-
noting with H(x) the Heaviside step function, which is 0 for x ≤ 0 and 1 otherwise, the
decision functions are defined as

D(p(θ)) =
∏
i

H(P(θ ≤ qi,c)− pi,c) one sample,

D(p1(θ1), p2(θ2)) =
∏
i

H(P(θ1 − θ2 ≤ qi,c)− pi,c) two sample.
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In the two-sample case the difference distribution of p1(θ1) and p2(θ2) is thresholded.

Critical decision boundary. With the design of a trial the priors and the sample size
per sample are defined and these determine the critical decision boundary of the decision
function,

Dc = sup
y
{D(p(θ|y)) = 1} = yc one sample,

Dc,1(y2) = sup
y1
{D(p1(θ1|y1), p2(θ2|y2)) = 1} two sample.

While for the one-sample cases the decision boundary is a single value, Dc = yc, the decision
boundary for the two-sample case is a function of the outcome in one of the samples (by
convention the second sample), Dc,1(y2).

Conditional power. The critical decision boundary is used in RBesT to simplify the con-
ditional power calculation in the following manner,

CP(θ) =
∫
D(p(θ′|y)) p(y|θ) dy =

∫ yc

−∞
p(y|θ) dy

= P(y ≤ yc|θ) one sample,

CP(θ1, θ2) =
∫∫

D(p1(θ′1|y1), p2(θ′2|y2)) p1(y1|θ1) p2(y2|θ2) dy1 dy2

=
∫
P1(y1 ≤ Dc,1(y2)|θ1) p2(y2|θ2) dy2 two sample.

Therefore, the conditional power simplifies in the one-sample case to evaluating the cumulative
distribution function corresponding to the sampling distribution and in the two-sample case
the integration is simplified to a one dimensional integral instead of a two dimensional one.
For the case of a binomial sampling distribution the calculations are carried out exactly.
With normal and Poisson endpoints the respective integrals are evaluated with quadrature
integration on a domain which corresponds to 1− ε (ε = 10−6 by default) of probability mass.

Probability of success. The probability of success as defined in Equation 2 of Section 3.3
results in a double (triple) integral for the one-(two-)sample case. To simplify this, the prior
predictive distribution of the prior p(θ),

p(y) =
∫
p(y|θ) p(θ) dθ,

is used. The prior predictive distribution is available in analytic form and allows to re-arrange
the evaluation of the Equation 2 as

PoS =
∫

CP(θ) p(θ) dθ =
∫∫

D(p(θ′|y)) p(y|θ) p(θ) dθ dy =
∫
D(p(θ′|y)) p(y) dy.

This re-arrangement also holds for the two-sample case. This leads to the same calculations
as previously for the operating characteristics with the only difference in that the sampling
distribution, p(y|θ), is replaced by the predictive distribution of the prior, p(y). For the two-
sample case the integration is performed using numerical integration while for the one-sample
case the cumulative distribution function of the predictive is evaluated.
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