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Abstract

This article introduces the R package BayesCTDesign for two-arm randomized Bayesian
trial design using historical control data when available, and simple two-arm random-
ized Bayesian trial design when historical control data is not available. The package
BayesCTDesign, which is available from the Comprehensive R Archive Network, has two
simulation functions, historic_sim() and simple_sim() for studying trial characteris-
tics under user-defined scenarios, and two methods print() and plot() for displaying
summaries of the simulated trial characteristics. The package BayesCTDesign works with
two-arm trials with equal sample sizes per arm. The package BayesCTDesign allows a
user to study Gaussian, Poisson, Bernoulli, Weibull, lognormal, and piecewise exponen-
tial outcomes. Power for two-sided hypothesis tests at a user-defined α is estimated via
simulation using a test within each simulation replication that involves comparing a 95%
credible interval for the outcome specific treatment effect measure to the null case value.
If the 95% credible interval excludes the null case value, then the null hypothesis is re-
jected, else the null hypothesis is accepted. In the article, the idea of including historical
control data in a Bayesian analysis is reviewed, the estimation process of BayesCTDesign
is explained, and the user interface is described. Finally, the BayesCTDesign is illustrated
via several examples.
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1. Introduction: BayesCTDesign

A controlled clinical trial is “an experiment performed on human subjects to assess the efficacy
of a new treatment for some condition” (Matthews 2006, p. 1). In its most basic form, subjects
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are assigned to one of two groups, a treated group which receives an experimental treatment,
and a control group which receives a placebo, standard of care, or some comparator treatment
(Matthews 2006, p. 1). If treatment assignment is random, then the trial is a randomized
controlled clinical trial (Matthews 2006, p. 1).
When designing a clinical trial, investigators must address questions such as (Evans and Ting
2016, p. 71–86):

• What clinical question is the trial going to answer?

• What data is necessary to address the clinical question?

• What subject population is appropriate for the treatment?

• What inclusion/exclusion criteria are necessary to obtain a sample from the chosen
population?

• What logistical controls will be implemented such as standardized outcome definitions,
will central labs be used, will central image/evaluations be used, will standardized
adjudication procedures be used, etc.?

• What is the primary outcome?

• What sample size/level of type I error control will be used?

• What statistical power is required?

• What interim analysis methods will be used?

• Will adaptive randomization be used?

• Will historical control data be used?

When designing a Bayesian clinical trial, additional questions must be addressed such as:

• What priors will be placed on model parameters?

• What criteria will be used to declare a successful trial?

• What method of interim analyses will be used (posterior vs. predictive distribution
based)?

• How will historical control data be included, if it will be used?

The package BayesCTDesign gives the investigator a set of tools to select primary outcome
type as well as address sample size and power issues within the context of a Bayesian random-
ized two-arm controlled trial, as well as address issues related to historical control utilization.
Just because a clinical trialist is designing a Bayesian randomized clinical trial, the clinical
trialist is not exempt from studying power and sample size. The clinical trialist needs to
make decisions about power and sample size within the context of reasonable hypothesized
treatment effects (Berry, Carlin, Lee, and Müller 2011, p. 70). Now, the process of designing
a Bayesian trial involves defining priors, and this is called prior elicitation. Prior elicitation
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is a very crucial part of Bayesian statistics (Ibrahim, Chen, Gwon, and Chen 2015). One
approach to defining the prior is to incorporate historical data, when available. If appropriate
historical data is available, it should be included in the analysis, because the result will be
a more efficient trial (Viele et al. 2014). One method to incorporate historical data is to
use a power prior, which uses actual historical data to define the prior. Using a power prior
makes prior elicitation more systematic and somewhat objective in the sense that it is based
on information contained in real data (Ibrahim et al. 2015). Inclusion of historical data using
a power prior, however, requires additional design decisions to be made (Viele et al. 2014).
Simulations can help the clinical trialist to make decisions with respect to sample size needed
and with respect to incorporation of historical data.

One very important consideration is concerned with the relationship between the popula-
tion from which came the historical controls and the randomized controls. Ideally, when a
researcher runs a clinical trial that incorporates historical control data, the randomized con-
trols should be from the same population as the historical controls (Ibrahim, Chen, and Chu
2012; Psioda, Soukup, and Ibrahim 2018). As such, one major question that the researcher
needs to address is the appropriateness of any historical control data relative to the popula-
tion from which a future randomized trial will be drawn. When proper historical control data
is available it is important to consider including it in the trial design, because utilizing the
information about the outcome within the historical data can result in more accurate point
estimates, can improve power, and reduced type I error thus generating stronger evidence
for any conclusion drawn from the trial results or reduce trial sample size while maintaining
sufficient power (Viele et al. 2014). Yet inclusion of historical control data does have its risks.
Inclusion of improper historical control data may bias the results and inflate type I error, de-
pending on the differences between the historical and randomized controls (Viele et al. 2014).
Similarly, inclusion of improper historical data can result in decreased power (Psioda et al.
2018). These risks can be mitigated by using a power prior, because the power prior can be
set to include all or partial amounts of information from the historical data. How to change
the amount of information encoded into the power prior will be described later in this article.
Choices about inclusion of historical data and how much information to draw from historical
data can be easily aided by simulations of trial scenarios where each trial scenario represents
a potential real life context for the actual trial.

Using a power prior and simulations, the package BayesCTDesign gives the investigator some
tools to determine how data from historical controls should be utilized when available and gain
an understanding of the vulnerability of the final design to inclusion of improper historical
control data. Via simulation, BayesCTDesign helps the investigator to determine trial sample
size and make a decision about power prior settings before trial initiation. The package
BayesCTDesign is a set of simulation tools that can help a clinical trialist to plan Bayesian
two-arm randomized clinical trials by estimating power and other operational characteristics
such as type I error, treatment effect estimate and variance, bias, and mean square error
(MSE). By setting up realistic scenarios via defined design and population characteristics
such as α level, treatment effect, sample size, and outcome, the trialist can run simulations
on these scenarios to learn how the design may behave in an actual trial. BayesCTDesign also
has the functionality for simple two-arm trials with no historical data, but its real strength
is studying trial designs that incorporate historical control data.
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2. Background

2.1. Package review
As of 2019-07-22, BayesCTDesign was only one of a few design R (R Core Team 2021) pack-
ages set up for inclusion of historical control data (Eggleston, Wilson, McNeil, Ibrahim, and
Catellier 2021). A search of packages available from the Comprehensive R Archive Network
(CRAN) shows several packages that can help a user to evaluate various Bayesian clinical trial
designs. Some packages such as bacistool, BAEssd, BDP2, and ph2bayes can help a user to
define phase II or general Bayesian trials (Chen and Lee 2020; Reyes and Ghosh 2012; Kopp-
Schneider, Wiesenfarth, and Abel 2018; Kopp-Schneider, Wiesenfarth, Ruth, Edelmann, Witt,
and Abel 2019; Nagashima 2018; Gsponer, Gerber, Bornkamp, Ohlssen, Vandemeulebroecke,
and Schmidli 2014). Yet, these do not allow for designs that include historical controls and are
limited to binary or normal outcomes. Other packages such as BOIN, dfpk, EurosarcBayes,
ph2bye, phase1RMD, and bcrm can help a user design Bayesian phase I or single arm trials
(Yan, Zhang, Zhou, Pan, Liu, and Yuan 2020; Toumazi, Zohar, and Ursino 2018; Dutton
2017; Zhu and Qin 2016; Yin, Du, and Mandrekar 2020; Sweeting, Mander, and Sabin 2013;
Sweeting and Wheeler 2019). Being specific to early phase trials, these packages are not
general design tools. Many packages are available for general clinical trial design, but these
do not allow for partial inclusion of historical data information. Packages that fit into this
last category are clinfun, Mediana, rpact, SampleSize4ClinicalTrials, gsDesign, sp23design,
SurvGSD, tsdf, TrialSize, pwr, pwr2, pwrGSD, and experiment (Seshan 2018; Paux and
Dmitrienko. 2018; Wassmer and Pahlke 2019; Qi 2021; Anderson 2021; Narasimhan, Shih,
and He 2014; Hsu and Chen 2018; Guo and Zhong 2020; Zhang, Wu, Chow, and G.Zhang
2020; Champely 2020; Lu, Liu, and Koestler 2017; Izmirlian 2021; Imai and Jiang 2019). The
Mediana package is very interesting and similar to BayesCTDesign, because it uses simulation
to calculate trial characteristics. Unlike BayesCTDesign, Mediana is not designed for inclu-
sion of historical data. We only found three packages which included historical control data
in the estimation: bayesDP, BACCT and hctrial (Balcome, Musgrove, Haddad, and Jackson
2021; Zhang and Tang 2016; Edelmann 2018). For binary outcomes, the BACCT package will
calculate type I error and power when historical controls are used, but it requires JAGS 4.0.0
to also be installed on the computer. The hctrial package can help in designing trials with
historical controls, but it is designed only for binary outcomes. bayesDP allows for historical
control data to be incorporated using a power prior where a0, a parameter that determines
how much of the information in the historical data is embedded in the power prior, is deter-
mined dynamically using a discount function. The bayesDP works with Bernoulli, Gaussian
and survival outcomes, but it is set up for trial data analysis. To use bayesDP in design, the
package results would need to be incorporated into a design focused software structure. Not
only does BayesCTDesign have functionality to design Bayesian trials that use historical con-
trols with binary (Bernoulli) or Gaussian outcomes, but it also has functionality for Weibull,
lognormal, piecewise exponential (PWE), and Poisson outcomes.

2.2. Bayesian estimation
Before we get into the details of BayesCTDesign and its use, we will review Bayesian esti-
mation with inclusion of historical control data by going through the computational concepts
involved in Bayesian estimation with historical data and a power prior, as well as go through
a simple mathematical example.
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At a high level, the conceptual steps in Bayesian analysis are actually very simple. One takes
prior information and combines it with information embedded in thoughtfully collected data
to generate an evidence-based update about the information of interest (Bolstad 2007, p. 6).
In general, one first defines a prior distribution for parameters of interest, θ, such as the
probability of success in two arms of a clinical trial. This prior embodies information about
what parameter values are plausible and which parameter values have a higher plausibility
compared to other parameter values (Bolstad 2007, p. 6). Combining these two concepts, the
prior embodies the amount of uncertainty a researcher has about the parameter. Next, one
multiplies this prior by the likelihood of collected data, where the likelihood is considered a
function of the parameters once the data is collected (Spiegelhalter, Abrams, and Myles 2004,
p. 57):

f(θ | Data) ∝ L(Data | θ)× f(θ), (1)

where the product of the prior and the likelihood is proportional to what is called a posterior
distribution, f(θ | Data). The posterior distribution for the parameters or any function
proportional to it indicates which values or range of values have a non-negligible chance
of being the correct value given information embedded in the collected data and the prior.
Sometimes the prior in Equation 1 is assumed flat and assigned a value of 1. Although a prior
of 1 is called an improper prior since it does not integrate to 1 over the real numbers, this flat
prior works for many cases since the likelihood can be integrated (Berry et al. 2011, p. 23–24).
By using such a flat improper prior, an analyst can treat the likelihood as proportional to the
posterior.
Incorporating historical control data into an analysis of clinical trial data might at first seem
like a difficult step; however, it is not. In the Bayesian framework, a posterior can in turn be
used as a prior in future analysis (Spiegelhalter et al. 2004, p. 79). If you have a collection of
historical control data, then that data can be used to generate a likelihood for a parameter
that represents the controls. This likelihood can in turn be used to generate a posterior for
the control parameter given some initial prior for the parameter that is embedded in the
control likelihood. BayesCTDesign uses a power prior to incorporate such historical control
data (Ibrahim, Chen, and Sinha 2001, p. 23–25). A power prior is simply the product of
a modified likelihood and a base prior. The idea of a base prior will be described below.
This product, which is a posterior with respect to the control parameter embedded in the
historical control likelihood, can in turn be used as a prior for a future trial. In a power
prior, some information may come from the historical controls, while other information about
other parameters will be embedded in the other base priors. Historical control information
about control group related parameters is embedded in the modified likelihood and the base
prior, while information about other parameters only comes from information embedded in
the original base prior (Ibrahim et al. 2015):

f(θ | HistControlData) ∝ [L(HistControlData | θControl]a0 .× f(θ) (2)

A power prior is the product of a weighted likelihood calculated from historical control data
and a base prior (Equation 2). The base prior is a prior on all the parameters being considered,
and it embeds all information about the parameters available before current or historical data
is collected. The weighting comes from raising the historical control likelihood to a power,
a0, which ranges from 0 to 1. If a0 = 0, then the information in the historical control data
is ignored. If a0 = 1, then all the information in the historical control data is embedded
in the resulting power prior. One way of interpreting a0 is to consider that this parameter
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controls the heaviness of the power prior tails (Ibrahim et al. 2015). Decreasing a0 makes
the power prior tails more heavier, which in turn makes the power prior less informative
(Ibrahim et al. 2015). The result of this product is a function that is proportional to a
posterior distribution that retains information from the base prior about all parameters but
also incorporates additional information about control group related parameters that was
present in the historical control data. Note: a0 can be random or fixed, but using a0 as
random makes the computations very difficult and not necessarily better than using a0 as
fixed and using simulation to make a choice on the value of a0 (Ibrahim et al. 2015; Psioda
et al. 2018). As such, BayesCTDesign follows the line of reasoning that it is sufficient to
consider a0 as a fixed parameter, but use simulation to determine the desired value.
The final step of analyzing clinical trial data while incorporating historical control data
through a power prior is to multiply the likelihood of new trial data by the power prior:

f(θ | Data) ∝ [L(RandomizedData | θ)]× f(θ|HistControlData). (3)

In Equation 3, θ is a vector of parameters, one component is θControl, and the other is
θExperimental. The function f(θ | Data) is proportional to the posterior distribution for relevant
parameters that incorporates information collected during the randomized trial, information
embedded in the base prior, and information about control group parameters embedded in
the historical control data.
Earlier, the idea of a “flat” or improper prior was mentioned. In BayesCTDesign, the base
priors are always equal to improper priors with a value of 1. The choice of flat priors was
made for simplicity, the authors are investigating options for inclusion of informative priors for
future releases of BayesCTDesign. As a result of these “flat” base priors, the only parameters
that have information embedded into the power priors of BayesCTDesign are the control
group related parameters, and this information is derived from the historical control data
alone, Equation 4.

f(θ | Data) ∝ [L(RandomizedData | θ)]× [L(HistControlData | θControl)]a0 (4)

Note that even this historical control information is dampened if a0 < 1. Given that a0
is fixed for any given trial design scenario in BayesCTDesign, it is interesting to note that
the analysis implied by a BayesCTDesign design, with flat base priors, is closely related to
weighted maximum likelihood analysis where historical control data is given a weight of a0 and
new trial data are given a weight of one (Psioda and Ibrahim 2018). Finally, with these flat
priors, all the information about the experimental group related parameters that is embedded
in the posterior comes from the trial data alone.

2.3. Mathematical example

Now we will consider a simple example to illustrate the ideas behind incorporating historical
control data using a power prior. As we go through this example, keep in mind that the
example does not illustrate the computational process that BayesCTDesign uses to estimate
power and other trial characteristics. BayesCTDesign uses simulation and the optim() func-
tion in R to produce a numerical based estimate of power, while this example goes through
all the details of an analytic approach to calculate an estimate of posterior treatment effects.
This section is intended for readers who are not familiar with Bayesian analysis using power
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priors and has a purpose of illustrating the broad strokes involved in power prior use. It can
be skipped by anybody familiar with power priors.

Example setup

Consider a scenario where:

• we have historical data from 100 controls treated with standard of care,

• among the historical controls, 65 experienced a successful response,

• the outcome is a binary (yes/no) outcome,

• we have trial data comparing a novel treatment to standard of care,

• 200 subjects are randomized into each arm of the trial,

• 150 subjects randomized to the novel therapy experienced a successful response,

• 135 subjects randomized to the control group experienced a successful response,

• we want to incorporate historical data using a power prior, a0 = 0.4,

• we want to calculate P(θexperimental > θControl | Data) for final analysis.

The scenario is based on an example described in Viele et al. (2014). We will use this scenario
to demonstrate an analytical process for incorporating historical control data into the analysis
of clinical trial data. Given that subjects are randomized into the experimental and control
group component of the trial, the randomized experimental group and the randomized control
group are independent. Given this independence, the posterior distribution of the parameters
after trial data is analyzed can be expressed as in Equation 5.

f((θExperimental, θControl) | Data) ∝ [L(RandomizedControlData | θControl]×
[L(HistControlData | θControl)]a0 ×
f(θControl)×
[L(RandomizedExpData | θExperimental)]×
f(θExperimental) (5)

In this analytical example, we will use conjugate analysis for a binary outcome. Also, as we
mentioned in the previous section, the base prior, f(θ), is a prior for control group related
and treatment group related parameters. For a two-arm clinical trial, θ will contain two sets
of parameters, θcontrol and θexperimental, where θcontrol and θexperimental are independent, due to
randomization, and equal to the probability of the outcome in the control and experimental
groups, respectively. Because of this independence due to randomization, the base prior will
be equal to f(θ) = f(θcontrol) × f(θexperimental), and the posterior represented in Equation 5
can therefore be separated into two posteriors, one for θcontrol and θexperimental. This example
of posterior estimation will take advantage of this independence between treatment groups
and contruct the posterior distributions for θcontrol and θexperimental separately and then mul-
tiply the two separate posteriors to construct the joint posterior of θcontrol and θexperimental.
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Figure 1: Base Beta prior, Beta(0.001, 0.001).

Once the trial data is incorporated into the parameter estimation and individual parame-
ter posteriors are calculated, then the joint posterior distribution of θcontrol and θexperimental
will be constructed as the product of the two independent posteriors. Given this indepen-
dence and the lack of any information in the power prior regarding θexperimental, only the base
prior component f(θcontrol) will be given attention when the power prior is constructed. The
other base prior component, f(θexperimental), will be brought into play when the posterior of
θexperimental is calculated.
For this example we will use Beta distributions for priors and the Bernoulli distribution to
build up the likelihoods for historical controls, randomized controls, and randomized experi-
mental group members. The formula for the Beta(a, b) distribution is given by Equation 6.

f(θ; a, b) = Γ(a+ b)
Γ(a)Γ(b)θ

a−1(1− θ)b−1, where 0 < θ < 1, a > 0, b > 0. (6)

Base prior

Before we learn anything from the historical control data, we need to define our base prior
components for thecontrol and experimental group event probabilities, θcontrol and θexperimental.
In this analysis, we will use a prior that is relatively flat over the (0, 1) range for both θcontrol
and θexperimental, i.e., Beta(0.001, 0.001). Figure 1 shows this base prior which is somewhat
odd because it gives highest probabilities to extreme values of θ while it is rather flat between
0 and 1. This means that in the range of the most reasonable values of θ the prior is at least
somewhat non-informative.

Modified historical control likelihood

We now can build up the power prior, focusing on the component of the power prior that
incorporates historical control information. However, before we do that, let us first take a
look at the effect of a0 on the historical control likelihood. Of the 100 historical controls,
65 successful responses were observed, so the likelihood for the historical control data has a
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Figure 2: Historical control likelihood and modified historical control likelihood.

shape proportional to a Beta(66, 36) distribution defined in Equation 7:

L(θcontrol) = θ65
control(1− θcontrol)(100−65)

∝ Γ(66 + 36)
Γ(66)Γ(36)θ

((65+1)−1)
control (1− θcontrol)((100−65+1)−1). (7)

We will use this likelihood as part of the power prior by raising the likelihood to the power
of a0: L(θcontrol)a0 . For a likelihood that is the product of a set of Bernoulli likelihoods as in
Equation 7, apart from the proportionality constant, the modified historical control likelihood
is obtained by simply multiplying the success and failure values by a0. For the historical
control data, the down weighted number of successes is 0.4 ·65 = 26, while the down weighted
number of failures is 0.4 · 35 = 14. Notice how the use of a0 down weights the value of
information in the historical control likelihood. The original historical control likelihood was
based on data from 100 subjects, but raising the historical control likelihood to the a0 power
reduces the effective sample size of the historical control data. The modified historical control
likelihood contains information from only 40 subjects. This reduction in effective sample size
increases the uncertainty represented by the historical control data. Down weighting the
historical control likelihood by a0 = 0.4, affects the graph of the historical control likelihood
in an interesting way. The down weighted likelihood is given in Equations 8 and 9 and is
visualized in Figure 2. Figure 2 shows both the likelihood of the historical control data and
the resulting modified likelihood created by down weighting the historical control likelihood
using a0 = 0.4.

L(θcontrol)0.4 = [θ65
control(1− θcontrol)(100−65)]0.4

= θ0.4·65
control(1− θcontrol)0.4·(100−65)

= θ26
control(1− θcontrol)14. (8)

L(θcontrol)0.4 ∝ Γ(27 + 15)
Γ(27)Γ(15)θ

(27−1)
control (1− θcontrol)(15−1). (9)

Notice how the historical likelihood has been spread out by raising it to the a0 power of 0.4,
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Figure 3: Power prior for randomized controls.

resulting in more values of θcontrol with non-negligible likelihood values. Down weighting the
historical control data simply made the information about the true success probability among
controls, θcontrol, a little more uncertain. One way of interpreting this procedure is to say that
we believe the historical data has good information about the central location of the true
value for θcontrol among controls receiving standard of care, but for analysis of the trial data
we assume it is overly optimistic in its precision of the success probability among controls.

Power prior
At this point, we are ready to calculate the component of the power prior that concerns ran-
domized controls and the historical control data down weighted by 0.4, by multiplying the
component of the base prior related to the controls and the modified historical control likeli-
hood. The component of the power prior for the randomized controls is given in Equation 10:

f(θcontrol | HistData) = f(θcontrol)× L(θcontrol)0.4

∝ [θ(0.001−1)
control (1− θcontrol)(0.001−1)][θ(27−1)

control (1− θcontrol)(15−1)]

∝ Γ(26.001 + 14.001)
Γ(26.001)Γ(14.001)θ

(26.001−1)
control (1− θcontrol)(14.001−1). (10)

Multiplying the base prior Beta(0.001, 0.001) by the power prior using a0 = 0.4 generates a
prior for randomized controls that is proportional to a Beta(26.001, 14.001). Figure 3 shows
this power prior, along with the base prior and the modified historical control likelihood.
This power prior embeds information about the control group parameter, θcontrol, that was
contained in the historical control likelihood and the original base prior. It is a posterior
distribution given the historical control data, but we will use it as a prior for the analysis of
randomized control data.

Posterior construction
In the trial, we have 200 subjects in each arm, with 150 successes in the experimental arm and
135 successes in the control arm. Figure 4 shows us what the likelihood for the randomized
control group looks like relative to the power prior.
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Figure 4: Power prior and likelihood for randomized controls.
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Figure 5: Randomized control group posterior.

By multiplying the likelihood of the randomized control data and the power prior for random-
ized controls, we get the posterior for the control group regarding the probability of success,
θcontrol. This posterior is a Beta(26.001 + 135, 14.001 + 65). Figure 5 shows this posterior for
the randomized control group along with the randomized control likelihood and the power
prior. In Figure 5 we see very good alignment between the power prior and the randomized
control likelihood, so the posterior is very similar to the randomized control likelihood, giving
slightly more precise information about the probability of success among controls. Similarly,
the likelihood for the randomized experimental group is calculated by multiplying the base
prior, Beta(0.001, 0.001), times the likelihood for the experimental group data, which is pro-
portional to a Beta(151, 51). The posterior is proportional to a Beta(0.001 + 150, 0.001 + 50)
distribution. Figure 6 shows both the posterior for the randomized control group and the
posterior for the randomized experimental group. Since the experimental group and the con-
trol are independent, we can look at the joint posterior distribution of the success probability
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Figure 6: Randomized control and experimental group posteriors.
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Figure 7: Contour plot of posterior joint distribution for randomized experimental and
control groups.

in each group by using θcontrol for the success probability in the controls and θexperimental for
the success probability in the experimental group and then simply multiplying the individual
group posteriors. The joint posterior distribution is given in Equation 11, and the contour
plot of the joint distribution is given in Figure 7.

f(θcontrol, θexperimental | Data) = Γ(161.001 + 79.001)
Γ(161.001)Γ(79.001) ×

[θ(161.001−1)
control (1− θcontrol)(79.001−1)]×

Γ(150.001 + 50.001)
Γ(150.001)Γ(50.001) ×

[θ(150.001−1)
experimental(1− θexperimental)(50.001−1)]. (11)
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Figure 7 shows that the posterior mean for the experimental treatment success probability is
around 0.75, while the posterior mean for the control success probability is around 0.67. What
is P(θexperimental > θcontrol | Data)? We apply double integration to Equation 11 to calculate
this probability, which results in 0.97. The double integration setup is given in Equation 12.

Pr(θexperimental > θcontrol | Data) =∫ 1

θcontrol=0

∫ 1

θexperimental=θcontrol
f(θcontrol, θexperimental | Data)dθexperimentaldθcontrol ≈ 0.97. (12)

We have a very high posterior probability (of about 0.97) of θexperimental > θcontrol. If we
wanted to, we could continue to use double integration to estimate the posterior difference
in success probabilities, θexperimental − θcontrol, and calculate a 95% credible interval for this
difference, see Equations 13 through 15.

E(θexperimental − θcontrol) =∫ 1

θcontrol=0

∫ 1

θexperimental=0
(θexperimental − θcontrol)×

f(θcontrol, θexperimental | Data)dθexperimentaldθcontrol ≈ 0.079 (13)

E(θexperimental − θcontrol)2 =∫ 1

θcontrol=0

∫ 1

θexperimental=0
(θexperimental − θcontrol)2×

f(θcontrol, θexperimental | Data)dθexperimentaldθcontrol ≈ 0.0081 (14)

σ(θexperimental,θcontrol) =
√

(E(θexperimental − θcontrol)2 − (E(θexperimental − θcontrol))2 ≈ 0.043
(15)

In summary, the posterior probability that the difference in success proportion is greater
than 0 is 0.97. The posterior estimate of the difference in success probability is 0.079, with
a large sample 95% credible interval of (−0.01, 0.16). Yet, not all Bayesian analyses are
this simple, and as analysts we do not want to work with double integrals unless necessary.
Even worse, as the number of parameters increases, the analytical approach via integrals
become intractable. Markov chain Monte Carlo (MCMC) techniques are available for accurate
estimation of parameters and thus available for use in simulation studies of power; however
powering Bayesian trial via MCMC and simulation can take a very long time. BayesCTDesign
was created to assist clinical trialists in studying the consequences of including historical
controls into the study through simulation and numerical approximation, and reduce the
amount of time it takes to get results via simulation relative to MCMC utilization.

3. BayesCTDesign overview
BayesCTDesign is a simulation based package that helps clinical trialists to estimate power
and make sample size determinations about Bayesian two-arm trial designs that may or may
not include historical control data, partial or in full. The package will allow a user to define
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α, but at present only two-sided hypothesis tests can be considered. Also, only equal sized
trial arms can be considered. The package will allow a clinical trialist to consider Gaussian,
Poisson, Bernoulli, Weibull, lognormal, and piecewise exponential outcomes. As noted earlier,
flat priors are used for the base priors, so informative prior knowledge is embedded in the
likelihood of the historical controls, and this information is potentially down weighted by the
power prior parameter, a0. For a given simulation set-up, the package will simulate a user
specified number of trials, which in turn can be summarized to estimate trial operational
characteristics. Within each trial replication the package will estimate a Gaussian posterior
for a function of the treatment effect. The treatment effect that is implemented depends on
the outcome:

• Gaussian: Estimated effect is a difference in two means.

• Bernoulli: Estimated effect is an odds ratio (experimental over control).

• Poisson: Estimated effect is a mean ratio (experimental over control).

• Weibull: Estimated effect is a hazard ratio (experimental over control).

• Lognormal: Estimated effect is a mean ratio (experimental over control).

• Piecewise exponential: Estimated effect is a hazard ratio (experimental over control).

The function of the treatment effect that has a posterior generated also depends on the
outcome. Because log transformation of ratios can improve the Gaussian approximation of a
posterior, actual posteriors for ratio effects are on the log scale:

• Gaussian: Estimated posterior is for the difference in two means.

• Bernoulli: Estimated posterior is for the log odds ratio (experimental over control).

• Poisson: Estimated posterior is for the log mean ratio (experimental over control).

• Weibull: Estimated posterior is for the log hazard ratio (experimental over control).

• Lognormal: Estimated posterior is for the log mean ratio (experimental over control).

• Piecewise exponential: Estimated posterior is for the log hazard ratio (experimental
over control).

The package uses the Bayesian central limit theorem (BCLT) to generate trial characteristics
such as power and type I error (Berry et al. 2011, p. 28). As noted earlier, the appropriateness
of applying the BCLT is enhanced by the using the log transformations in the estimation when
treatment effect is a ratio.
The package uses the BCLT to estimate trial effect posteriors, which in turn are used to make
decisions about rejecting/accepting a null hypothesis. The BCLT states that if:

1. the data collected from each subject is independent from data collected from other
subjects,

2. the data collected are generated from the same distribution,
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3. the priors have positive value for all real numbers and are twice differentiable near the
posterior mode,

4. the joint distribution of the data is positive and twice differentiable near the posterior
mode,

then under suitable regularity conditions, the posterior distribution for large sample sizes can
be approximated by a normal distribution (perhaps multivariate) with mean equal to the
posterior mode and the covariance matrix equal to negative one times the inverse Hessian
matrix of the log posterior evaluated at the log posterior mode, which will equal the posterior
mode.
For posterior mode and hessian matrix estimation, BayesCTDesign uses the R optim() func-
tion, using the Nelder-Mead optimization method to estimate the posterior mode and hessian
matrix at the posterior mode. Once the covariance matrix is determined from the hessian
matrix, posterior standard deviations are calculated from the diagonals of the covariance ma-
trix. The use of log transformations on treatment effect estimates when the treatment effects
are in the form of ratios increases the quality of the Gaussian approximation when applying
the BCLT. The concern of how large sample size needs to be in order for the approximation
to be acceptable will be considered in Section 3.2.
If the treatment effect is on the log scale, then a large sample 100 · (1 − α/2)% credible
interval is calculated by using the posterior mode as the mean and the posterior standard
deviation as the measure of variability and the result is exponentiated to calculate a large
sample 100 · (1 − α/2)% credible interval for the treatment effect. If the treatment effect
is not estimated on the log scale, the credible interval is calculated but not exponentiated.
Within a trial replication, a decision about rejecting the null hypothesis of no treatment effect
is made by determining if the credible interval excludes the null value, null value for ratios
is 1 and null value for differences is 0. The package has two primary simulation functions,
simple_sim() and historic_sim(). The function simple_sim() is for studying simple two-
arm clinical trials where no historical data is being included. The function historic_sim()
is for studying two-arm clinical trials where historical data is being included. In addition
to these two primary simulation functions, the package has print() and plot() methods.
These functions will be described in more detail in Section 4.

3.1. Simulation process

The process of simulation that is used in BayesCTDesign can be explained by focusing on
one trial replication that incorporates historical control data and uses a Bernoulli outcome.
First, the historical control data is analyzed to estimate the base success probability, θhistc, for
controls. With θhistc defined the user can decide if the randomized controls and the historical
controls will differ in success probabilities or not. If one assumes no difference between
historical and randomized controls, then θrandc, the success probability among randomized
controls, is set equal to θhistc. If one needs to assume a difference exists between historical
and randomized controls, then θrandc is calculated using a user-defined odds ratios, ORc, that
defines the difference between the two control groups:

θrandc =
ORc × θhistc

1−θhistc

1 + ORc × θhistc
1−θhistc

, (16)
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Figure 8: Basic data generation and trial simulation for historic_sim().

where ORc is the odds ratio between randomized and historical control success probabilities,
randomized over historic. With the two control group success probabilities θhistc and θrandc
defined, the success probability for the randomized experimental treatment group, θrandexp
is calculated. In BayesCTDesign, the value of θrandexp is always set relative to the value of
θrandc. The value of θrandexp is determined using a user-defined treatment odds ratio, ORtrt,
see Equation 17.

θrandexp =
ORtrt × θrandc

1−θrandc

1 + ORtrt × θrandc
1−θrandc

. (17)

With the parameters defined for all three groups, data is simulated for the randomized control
group and the randomized experimental group. Finally, the historical control data and the
simulated trial data are modeled to estimate the posterior of log(ORtrt) using optim() and
then a credible interval is calculated for log(ORtrt). Finally, the credible interval for log(ORtrt)
is exponentiated to determine if the credible interval for ORtrt excludes 1. To estimate trial
characteristics, the above process is repeated many times, the characteristics are recorded
each time, and averages across all trial replicates are calculated.
Figure 8 contains a flow chart of the basic data generating and trial simulation process for
the most complicated simulation function, historic_sim(). The process for simple_sim()
is very similar, except historical data is not involved, so randomized control arm data are
generated based on distributional parameters given by the user.
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3.2. Time savings and accuracy

The goal of BayesCTDesign is to reduce the time it takes to run simulations that quantify
trial characteristics relative to MCMC. One can study complex Bayesian trial characteristics
using simulations and MCMC for estimation, but the time it takes to run the number of
replications needed to get good estimates of the posteriors within each trial replication is very
time consuming. Using MCMC techniques in the simulations for power calculations involves
simulating the trial by creating a hypothetical dataset of trial data and then analyzing the
hypothetical data using MCMC techniques. The large amount of time taken to study trial
characteristics using MCMC is mostly taken up by the time it takes to create the MCMC
chains that are used to approximate the treatment effect posterior. BayesCTDesign reduces
the time necessary for running the replications by using the BCLT and numerical optimization
to approximate the posterior with a Gaussian distribution centered on the posterior mode.
Since BayesCTDesign still uses simulations, a very large and complex simulation can still take
a long time, but as the following discussion will show, the time will always be a fraction of
the time necessary when using MCMC.

Using the BCLT saves a lot of time relative to MCMC use, but such time savings are only
good if the simplification does not lead to inaccuracies in posterior estimation. In this section
we will look at a set of simulations that demonstrate not only the time savings of using the
BCLT for estimation, but also that its use does not impose inaccuracies relative to an MCMC
approach when sample sizes are reasonable large. Note, the MCMC approach used for these
comparisons involved the same simulation process as used by BayesCTDesign except MCMC
estimation results were used to construct the credible interval for treatment effect estimate.

In all simulations except for the piecewise exponential, flat N(µ = 0, σ = 100) priors were
used for base priors of model parameters in the MCMC models. In the MCMC model for the
piecewise exponential the treatment effect base prior was a flat N(µ = 0, σ = 100); however, a
multivariate gamma prior was used for the set of hazards defined for the time intervals. Each
MCMC call used the R package rjags and the JAGS software to generate the MCMC chains
(Plummer 2003). For posterior approximation using MCMC, 2 chains were created, using
1000 adaptations, 1000 burn-ins, and then 10000 samples were collected. No thinning was
used on the final chains. The total estimation approaches were compared using a Windows
machine with an i7-3770 process runing at 40GHz and 8 GB of RAM. In these time and
accuracy assessment simulations, 2 cores were used by utilizing the R packages doParallel
and foreach (Wallig, Corporation, Weston, and Tenenbaum 2020a, Wallig, Microsoft, and
Weston 2020b, see also Kane, Emerson, and Weston 2013).

Table 1 contains the time and accuracy assessment results for Bernoulli, Gaussian, Pois-
son, Weibull, lognormal, and piecewise exponential outcomes respectively. The following is
reported in the table: outcome type, true effect value, estimation mode (MCMC or BayesCT-
Design), posterior treatment effect estimates on the log scale if applicable, posterior standard
deviation on the log scale if applicable, posterior treatment effect estimate on the untrans-
formed scale, posterior standard deviation on untransformed scale if applicable, power, single
trial replication run time (in seconds), ratio of MCMC run time to BayesCTDesign run time,
total time for 100 trial replications (in minutes). In the table, the treatment effect estimates
(on log scale and untransformed scale) are averages based on 100 trial replications. In all sim-
ulations, the outcome distributions for the randomized controls was the same as the outcome
distributions for the historical controls.
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For Gaussian outcomes, a trial with 80 subjects per arm and 60 historical groups were sim-
ulated. The mean in the historical controls was 25.93, standard deviation was 2.60, and the
treatment effect was set to a mean difference of 1.1. Table 1 shows that the posterior treat-
ment effect, standard deviation, and power estimates from the MCMC and BayesCTDesign
approaches are within 0.02 of each other. Using BayesCTDesign, 100 trial replications were
ran and summarized in about 0.13 minutes of clock time, while the MCMC approach took
about 285 minutes.

For Bernoulli outcomes, a trial with 80 subjects per arm and 60 historical groups were simu-
lated. The true proportion with the outcome among the historical controls was 0.57, and the
true treatment effect was 0.45. Table 1 shows that the posterior log treatment effect, standard
deviation, and power estimates from the MCMC and BayesCTDesign approaches are within
0.02 of each other. Even though the estimates are about equal, using BayesCTDesign to run
100 trial replications and summarize the results took only about 0.11 minutes of clock time,
while the MCMC approach took up to 57 minutes.

For Poisson outcomes, a trial with 80 subjects per arm and 60 historical groups were simulated.
The mean in the historical controls was 0.95, and the treatment effect was set to a mean ratio
of 0.6. Table 1 shows that the posterior log treatment effect, standard deviation, and power
estimates from the MCMC and BayesCTDesign approaches are within 0.02 of each other.
Using BayesCTDesign, 100 trial replications were ran and summarized in about 0.11 minutes
of clock time, while the MCMC approach took about 57 minutes.

For Weibull outcomes, a trial with 80 subjects per arm and 60 historical groups were simu-
lated. The median event-time among the historical controls was 2.5 years, and the treatment
effect was set to a hazard ratio of 0.6. Weibull parameters for the historical controls were
scale = 2.814651 and shape = 3.091710 (using rweibull() parameterization). Among
historical controls and randomized trial data, the event times were right censored at 3 years.
Table 1 shows that the posterior log treatment effect, standard deviation, and power esti-
mates from the MCMC and BayesCTDesign approaches are within 0.02 of each other. Using
BayesCTDesign, 100 trial replications were ran and summarized in about 0.60 minutes of
clock time, while the MCMC approach took up to 291 minutes.

For lognormal outcomes, a trial with 80 subjects per arm and 60 historical groups were simu-
lated. The median event-time among the historical controls was 2.54 years, and the treatment
effect was set to a mean ratio of 0.6. Lognormal parameters for the historical controls were
meanlog = 0.9332408 and sdlog = 1.147586 (using rlnorm() parameterization). Among
historical controls and randomized trial data, the event times were right censored at 3 years.
Table 1 shows that the posterior log treatment effect, standard deviation, and power esti-
mates from the MCMC and BayesCTDesign approaches are within 0.02 of each other. Using
BayesCTDesign, 100 trial replications were ran and summarized in about 0.27 minutes of
clock time, while the MCMC approach took about 432 minutes.

Finally, for piecewise exponential outcomes, a trial with 80 subjects per arm and 60 histor-
ical groups were simulated. The time intervals among historical controls were created by
using cutpoints at 0.3, 0.9, 1.5, 2.1, and 2.4 years. The corresponding interval hazards were
0.1707802, 0.3213363, 0.5089973, 0.4216200, 0.2620553, and 0.3884450. The median event-
time among the historical controls was 1.92 years, and the treatment effect was set to a hazard
ratio of 0.6. Among historical controls and randomized trial data, the event times were right
censored at 3 years. The rpch() function in the eha package is used to generate draws from
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a piecewise exponential distribution (Broström 2012). Table 1 shows that the posterior log
treatment effect, standard deviation, and power estimates from the MCMC and BayesCTDe-
sign approaches are within 0.02 of each other. Using BayesCTDesign, 100 trial replications
were ran and summarized in about 12.6 minutes of clock time, while the MCMC approach
took up to 645 minutes. The piecewise exponential simulation process is slower than the other
processes, because extra data processing is needed to determine if each combination of time
interval and control/experimental treatment group combination has at least 5 events. This
extra processing is a conservative step to ensure evaluable likelihoods across many simulated
trials.
Although the timing differences are dependent on the particular computer used and on the
MCMC model and MCMC generating software used, Table 1 shows that substantial time
savings can be obtained using BayesCTDesign relative to MCMC, reducing run time by at
least 97%. Table 1 only briefly illustrates the time savings and accuracy assessments of
BayesCTDesign relative to MCMC. In addition to Table 1, the authors constructed several
tables to study the time savings and accuracy of each outcome in a more thorough matter
than could be reported in this article. These additional tables along with the underlying code
are provided as supplementary files.

4. Package user interface overview
The package user interface is an R command that can be called from the R command line or
coded into an R script. The package has four primary functions that are accessible by the user:

• simple_sim(): A command line interface for simulating two-arm Bayesian clinical trials
that do not incorporate historical data.

• historic_sim(): A command line interface for simulating two-arm Bayesian clinical
trials that incorporate historical data.

• print(): A command line interface for printing out tables from the object created by
simple_sim() or historic_sim().

• plot(): A command line interface for plotting and/or smoothing, uses loess(), tabu-
lated results from the object created by simple_sim() or historic_sim().

The functions simple_sim() and historic_sim() are called first to generate a set of simu-
lated trial results. The function simple_sim() has 13 parameters. A call to simple_sim()
will have the following form:

simple_sim(trial_reps = 100, outcome_type = "weibull",
subj_per_arm = c(50, 100, 150, 200, 250), effect_vals = c(0.6, 1, 1.4),
control_parms = NULL, time_vec = NULL, censor_value = NULL,
alpha = 0.05, get_var = FALSE, get_bias = FALSE, get_mse = FALSE,
seedval = NULL, quietly = TRUE)

The trial_reps parameter determines how many trials to simulate. The outcome_type pa-
rameter determines what outcome type will be studied. Possible values for outcome_type are:
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"weibull", "lognormal", "pwe" (for piecewise exponential survival outcome), "gaussian",
"bernoulli" (for binary outcome), "poisson".
The parameters subj_per_arm and effect_vals are vectors of sample sizes and treatment
effect values respectively to explore via simulation. The treatment effect value that is used
depends on the outcome. For each outcome type, the following effects are used:

• Gaussian: Estimated positive difference in two means.

• Bernoulli: Estimated odds ratio (experimental over control).

• Poisson: Estimated mean ratio (experimental over control).

• Weibull: Estimated hazard ratio (experimental over control).

• Lognormal: Estimated mean ratio (experimental over control).

• Piecewise exponential: Estimated hazard ratio (experimental over control).

For binary outcomes, the current version of BayesCTDesign only allows the odds ratio to be
studied as a treatment effect, an estimated difference in proportions is being considered for a
future release of BayesCTDesign.
The control_parms parameter is a vector of distributional parameters that defines the out-
come distribution of the randomized controls. The parameters listed in control_parms must
be sufficient to define a distribution of type ‘outcome_type’. For each outcome type, the
following information is required for control_parms:

• Gaussian: (mean, sd), where mean is the mean parameter for the control group used in
a call to rnorm(), and sd is the common standard deviation parameter for both groups
used in a call to rnorm().

• Bernoulli: (prob), where prob is the event probability for the control group used in a
call to rbinom().

• Poisson: (lambda), where lambda is the lambda parameter for the control group used
in a call to rpois() and is equal to the mean of a Poisson distribution.

• Weibull: (scale, shape), where scale is the scale parameter for the control group
used in a call to rweibull(), and shape is the shape parameter for both groups used
in a call to rweibull().

• Lognormal: (meanlog, sdlog), where meanlog is the mean parameter for the control
group used in a call to rlnorm(), and sdlog is the sd parameter for both groups used
in a call to rlnorm().

• Piecewise exponential: A vector of lambdas used in a call to eha::rpch(), where each
lambda is a hazard (numerical value representing the failure rate) for an interval defined
by the time_vec parameter.

The time_vec parameter is a vector of time cut-offs and is used only for the piecewise expo-
nential. If time_vec has 4 values t1, t2, t3, t4, then five intervals are created, (0, t1), (t1, t2),
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(t2, t3), (t3, t4), and (t4, +∞). In such a case, control_parms should have 5 values, a hazard
value for each interval. Between the values of time_vec, the hazard is assumed constant.
If the outcome_type is a survival outcome and the user wants to study a trial where event
times are right censored at some value, then censor_value is used to define when simulated
event times are right censored. The parameter alpha is used to define the test wise type I
error rate. All simulation runs using simple_sim() will return results for power and effect
estimation; however, the user has to indicate whether or not variance, bias, and MSE results
are to be returned as well. The parameters get_var, get_bias and get_mse are TRUE/FALSE
indicators that determine if variance, bias, and MSE results are returned in addition to esti-
mated power and effect estimate results. The parameter seedval allows the user to set the
seed necessary for repeatable results. When simple_sim() runs it can print a short list of
numbers indicating which trial scenario is being simulated. This simple report will help the
user to know the program is running and how far along it is. When BayesCTDesign is run
in a notebook or a log file is generated from the output, this simple report can create a very
large amount of unnecessary information in the results file. The parameter quietly can be
used to turn this report off.
The function simple_sim() will take each combination of subj_per_arm and effect_vals,
run trial_reps replicates of the trial, then calculate the number of replicates where the null
hypothesis was rejected, calculate the average effect, and if requested by the user, estimate
values of variance, bias, and MSE on appropriate scales. Once done, simple_sim() returns
a list that is an S3 object of class ‘bayes_ctd_array’. A ‘bayes_ctd_array’ class object has
6 elements:

• a list containing simulation results (called data),

• the subj_per_arm vector,

• the effect_vals vector,

• the a0_vals vector (which is a single value of 1 for simple_sim()),

• the rand_control_diff vector (which is a single value of 1 for simple_sim()),

• an indicator of whether simple_sim() was used.

Because simple_sim() returns the same type of object as historic_sim(), each element of
data returned from simple_sim() is a four-dimensional array. The first dimension contains
information related to levels of subj_per_arm studied in the simulation, and the third di-
mension contains information related to levels of effect_vals studied in the simulation.
Note, however, that the second and fourth dimensions are not relevant for results from
simple_sim(). The size of the first and third dimensions are determined by the vector
lengths of parameters subj_per_arm and effect_vals as requested by the user. At a min-
imum, at least one of subj_per_arm or effect_vals must contain at least 2 values. The
simulation results data will always contain two elements: An array of power results (power)
and an array of estimation results (est). In addition to power and est, data may also contain
elements var, bias, or mse, depending on the values of get_var, get_bias, and get_mse.
The values returned in est are in the form of hazard ratios, mean ratios, odds ratios, or mean
differences depending on the value of outcome_type as previously described. The values
returned in bias, var, and mse are on the scale of the values returned in est.
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Results from the simulation contained in the bayes_ctd_array object can be printed or plot-
ted using the print_table() and plot_table() methods. The results can also be accessed
using basic list element identification and array slicing. For example, to get the power re-
sults from a simulation, one could use the code bayes_ctd_arrayname$data$power, where
bayes_ctd_arrayname is replaced with the name of the variable containing the
bayes_ctd_array object. Even though the arrays returned in the data element are 4-
dimensional arrays, for simple_sim() simulations the power and estimate results really only
occupy a single 2-dimensional table. To print this 2-dimensional table without using the
print_table() method, one could use the code bayes_ctd_arrayname$data$power[ , 1,
, 1], where
bayes_ctd_arrayname is replaced with the name of the variable containing the bayes_ctd_array
object.
The function, historic_sim() has 15 parameters. A call to historic_sim() will have the
following form:

historic_sim(trial_reps = 100, outcome_type = "weibull",
subj_per_arm = c(50, 100, 150, 200, 250), a0_vals = c(0, 0.33, 0.67, 1),
effect_vals = c(0.6, 1, 1.4), rand_control_diff = c(0.8, 1, 1.2),
hist_control_data = NULL, time_vec = NULL, censor_value = NULL,
alpha = 0.05, get_var = FALSE, get_bias = FALSE, get_mse = FALSE,
seedval = NULL, quietly = TRUE)

The function historic_sim() shares the following parameters with simple_sim():
trial_reps, outcome_type, subj_per_arm, effect_vals, censor_value, alpha, get_var,
get_bias, get_mse, seedval, quietly. For a description of these shared parameters, see
the above description of the simple_sim() user interface. Parameters that are unique to
historic_sim() are a0_vals, rand_control_diff, and hist_control_data. The
hist_control_data parameter needs to be set equal to the name of the historical control
dataset.
For survival outcomes, the historical control dataset must have 4 columns: id, treatment
(must equal 0), event_time (positive valued), and status (0 = right censored, 1 = observed
event). For other outcomes, historical control datasets must have columns: id, treatment
(must equal 0), and y. The parameter, rand_control_diff defines differences between his-
torical controls and randomized controls. The meaning of rand_control_diff depends on
the value of outcome_type. The following list details the meaning of rand_control_diff for
each outcome type:

• Gaussian: Difference in two means (randomized controls minus historical controls).

• Bernoulli: An odds ratio (randomized controls over historical controls).

• Poisson: A mean ratio (randomized controls over historical controls).

• Weibull: A hazard ratio (randomized controls over historical controls).

• Lognormal: A mean ratio (randomized controls over historical controls).

• Piecewise exponential: A hazard ratio (randomized controls over historical controls).
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Finally, the a0_vals parameter is a vector of values that defines the amount of information
from the historical controls that will be included in the posterior estimation of the treatment
effect. If an element of a0_vals is 1, then all the historical control information will be used.
If an element of a0_vals is less than 1, then partial information will be used. If an element
of a0_vals is 0, then no information will be used.

The function historic_sim() will take each combination of subj_per_arm, effect_vals,
a0_vals, and rand_control_diff and run trial_reps replicates of the trial, then calculate
the number of replicates where the null hypothesis was rejected, calculate the average effect,
and if requested by the user, estimate values of variance, bias, and MSE on appropriate scales.
Just like simple_sim(), the function historic_sim() will return a list. The contents of this
list are the same as those returned by simple_sim() and are described above; however, the
size of the resulting list can be much larger than the resulting list of simple_sim() because
the dimensions of a0_vals, and rand_control_diff may not have size 1.

Each element of data is a four-dimensional array, where each dimension is determined by the
length of parameters subj_per_arm, a0_vals, effect_vals, and rand_control_diff. The
size of each four-dimensional array depends on which results are requested by the user. At
a minimum, at least one of subj_per_arm, a0_vals, effect_vals, or rand_control_diff
must contain at least 2 values, while the other three must contain at least 1 value. The
simulation results data will always contain two elements: an array of power results (power)
and an array of estimation results (est). In addition to power and est, data may also contain
elements var, bias, or mse, depending on the values of get_var, get_bias, and get_mse.
The values returned in est are in the form of hazard ratios, mean ratios, odds ratios, or mean
differences depending on the value of outcome_type as previously described. The values
returned in bias, var, and mse are on the scale of the values returned in est.

The end product from using simple_sim() or historic_sim() will be a set of tables or
figures, each containing information about one trial operational characteristic as a func-
tion of a trial design characteristic, stratifying on a second trial design characteristic. For
simple_sim() the table will always be power by sample size, stratified by a set of treatment
effects, where power in this context is the power of a hypothesis test to reject the null hy-
pothesis and not the power of the power prior a0. For historic_sim(), the output will most
likely be at least a table of power (power of a test) by sample size for a set of a0 values (power
for the power prior), given a specific effect and historical/randomized control difference. How-
ever, if a user passes to historic_sim() multiple sample sizes, multiple effect values, and
multiple differences between historical and randomized controls, then the generated object
will be a 4-dimensional array with all dimensions equal to 2 or more. The first dimension will
be sample size, the second dimension will be a0 values, the third dimension will be treatment
effect, and the last dimension will be differences between randomized and historical controls.

As already mentioned, at a minimum two arrays of simulation results will be generated by
historic_sim() and simple_sim(), one for power and one for treatment effect estimate.
In historic_sim(), if two of the parameters (sample size, a0 value, treatment effect, and
control differences) are set to only one level, then output results will still be a 4-dimensional
array but only two dimensions will have more than one level. As a result, the resulting arrays
will basically be 2-dimensional. Like power and effect estimate, identical structures will occur
in the variance, bias, and MSE arrays when requested.

In order to print and/or plot information contained in these arrays, a user can extract them
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• Example table for power
• Effect size equal to 0.6

a0
0 0.5 1.0

SS 20 0.10 0.11 0.12
40 0.20 0.24 0.40
60 0.70 0.75 0.85
80 0.90 0.92 0.95

• Example table for type I error
• Effect size equal to null case

a0
0 0.5 1.0

SS 20 0.06 0.05 0.04
40 0.05 0.04 0.05
60 0.05 0.06 0.03
80 0.03 0.05 0.04

Table 2: Representation of output structure from historic_sim(). Historical and Random-
ized controls are from the same population.

from the bayes_ctd_array object and slice them like any other R array, or the user can
use the BayesCTDesign slicing system implemented in the print and plot methods. Let W
represent the sample size dimension, X the a0 dimension, Y the effect dimension, and Z the
historical/randomized control difference dimension. Moreover, let AB|CD represent a table that
summarizes a trial operational characteristic with rows made from values of A and columns
made from values of B while holding C and D constant. Then:

• WX|YZ will represent a power (estimate/var/bias/MSE) table with rows representing
sample size values and columns representing power prior a0 values, while holding effect
size and historical/randomized control group difference constant.

• WY|XZ will represent a power (estimate/var/bias/MSE) table with rows representing
sample size values and columns representing effect size values, while holding power
prior a0 parameter and historical/randomized control group difference constant.

• WZ|XY will represent a power (estimate/var/bias/MSE) table with rows representing
sample size values and columns representing historical/randomized control group dif-
ferences, while holding power prior a0 parameter and effect size constant.

• XY|WZ will represent a power (estimate/var/bias/MSE) table with rows representing
power prior a0 parameter values and columns representing effect size values, while hold-
ing sample size and historical/randomized control group difference constant.

• XZ|WY will represent a power (estimate/var/bias/MSE) table with rows representing
power prior a0 parameter values and columns representing historical/randomized control
group differences, while holding sample size and effect size constant.

• YZ|WX will represent a power (estimate/var/bias/MSE) table with rows representing
effect size values and columns representing historical/randomized control group differ-
ences, while holding sample size and power prior a0 parameter constant.

Since simple_sim() will return a 4 dimensional array with the X dimension and the Z di-
mension equal to 1, only the WY|XZ table from simple_sim() is meaningful. This table will
contain all the information generated by a trial simulation call to simple_sim().
The BayesCTDesign package can also produce results regarding type I error, when the null
effect case is represented in the set of possible treatment effects. Table 2 shows the struc-
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tural form of two possible output tables for two treatment effects when no differences be-
tween historical and randomized controls are present, one for power and the other for type
I error. In the tables, SS refers to sample size and the columns represent 3 values of a0.
Finally, the BayesCTDesign package will generate similar arrays of treatment effect estimate,
treatment effect variance, bias and MSE on an appropriate scale given the outcome_type,
if the user requests such output. The bayes_ctd_array object created by simple_sim() or
historic_sim() will have two methods. A print method is available to print two-dimensional
tables from the bayes_ctd_array object. A plotting method is also available to plot data
either contained in the bayes_ctd_array object or derived from the bayes_ctd_array object
via loess() smoothing. The plot method calls the print method to generate the table prior
to plotting. Both the print and the plot methods allow the user to print and plot data for
power and treatment effect, as well as variance, bias, or MSE when available.
The user interface for the print method is:

print(bayes_ctd_array = NULL, measure = "power", tab_type = "WX|YZ",
subj_per_arm_val = NULL, a0_val = NULL, effect_val = NULL,
rand_control_diff_val = NULL, print_chg_warn = 1)

The object bayes_ctd_array is of class ‘bayes_ctd_array’ that has been created with
simple_sim() or historic_sim(). The value of measure can be either "power", "est",
"var", "bias", or "mse". The value of tab_type can be:

• "WX|YZ": Trial operational characteristic by sample size (W), stratifying by a0 (X), while
holding treatment effect (Y) and control differences (Z) constant.

• "WY|XZ": Trial operational characteristic by sample size (W), stratifying by treatment
effect (Y), while holding a0 (X) and control differences (Z) constant.

• "WZ|XY": Trial operational characteristic by sample size (W), stratifying by control dif-
ferences (Z), while holding a0 (X) and treatment effect values (Y) constant.

• "XY|WZ": Trial operational characteristic by a0 (X), stratifying by treatment effect (Y),
while holding sample size (W) and control differences constant (Z).

• "XZ|WY": Trial operational characteristic by a0 (X), stratifying by control differences
(Z), while holding sample size (W) and treatment effect (Y) constant.

• "YZ|WX": Trial operational characteristic by treatment effect (Y), stratifying by control
differences (Z), while holding sample size (W) and a0 (X) constant.

• "ZX|WY": Trial operational characteristic by control differences (Z), stratifying by a0
(X), while holding sample size ( W) and treatment effect (Y) constant.

• "XW|YZ": Trial operational characteristic by a0 ( X), stratifying by sample size (W), while
holding treatment effect (Y) and control differences (Z) constant.

• "YW|XZ": Trial operational characteristic by treatment effect (Y), stratifying by sample
size (W), while holding a0 (X) and control differences (Z) constant.

• "YX|WZ": Trial operational characteristic by treatment effect (Y), stratifying by a0 (X),
while holding sample size (W) and control differences (Z) constant.



Journal of Statistical Software 27

• "ZW|XY": Trial operational characteristic by control differences (Z), stratifying by sam-
ple size (W), while holding a0 (X) and treatment effect constant (Y).

• "ZY|WX": Trial operational characteristic by control differences (Z), stratifying by treat-
ment effect (Y), while holding sample size (W) and a0 (X) constant.

W represents the sample size, X a0, Y the treatment effect, and Z the historical/randomized
control difference. The first letter in the tab_type indicates what parameter will be on the
x-axis. The second letter in the tab_type indicates what parameter will be the stratifying
parameter. The two letters after ‘|’ indicate which parameters are being held constant.
When sample size per arm is being held constant, subj_per_arm_val must be a value that
was given to subj_per_arm in the call to simple_sim() or historic_sim(). Similarly, when
a0_val is held constant it must be equal to a value for a_0 that was used in simple_sim()
or historic_sim(). Finally, effect_val and rand_control_diff_val must be set equal to
a value of effect_vals or rand_control_diff respectively that was used in simple_sim()
or historic_sim(). The last parameter of print() is print_chg_warn. This last parameter
is not primarily for the user, it is used by plot() to ensure warnings are not printed twice.
The user interface for the graph method will have a form such as:

plot(bayes_ctd_array, measure = "power", tab_type = "WX|YZ", smooth = FALSE,
plot_out = TRUE, subj_per_arm_val = NULL, a0_val = NULL,
effect_val = NULL, rand_control_diff_val = NULL, span = 0.75, degree = 2,
family = "gaussian", title = NULL, ylim = NULL)

Most of the parameters for plot() are the same as for print() and they are used in the same
manner. The parameters that are unique are smooth, plot_out, span, degree, and family.
The parameter smooth is a TRUE/FALSE parameter indicating whether smoothed results should
be plotted. Smoothing is done through a call to loess() and requires the length of the trial
design characteristic (subj_per_arm or a0_val or effect_val or rand_control_diff_val)
that populates the x-axis on the graph to contain enough elements to justify the smoothing.
The method plot() does not check to see if enough elements are present to justify smoothing.
The parameter plot_out is a TRUE/FALSE parameter indicating whether the plot should be
produced. This toggle parameter is useful if the user only wants a table of smoothed values.
The other parameters that are unique to plot() (span, degree and family) are parameters
required for a call to loess() and are explained in the stats::loess() help page.

5. Examples
In this section we will illustrate the use of BayesCTDesign by working through an initial
simple trial example followed by three more complex trial design investigations where one
uses a Weibull outcome, another uses a piecewise exponential, and a third uses a Bernoulli
outcome. The simple trial example will not take much time to run; however, the reader
may want to read the other examples to get a sense of the BayesCTDesign functionality
prior to running them. The purpose of the simple trial example is to give the reader a
sense of what BayesCTDesign can do without the code taking a long time to run. The
complex examples take longer to run, but are much richer in results. The purpose of the
first complex example is to illustrate how BayesCTDesign can be used to power a study
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which incorporates historical control data, and to illustrate how BayesCTDesign can be used
to investigate effects of differences between historical and randomized controls on bias and
power. These investigations can often lead to unusual results, and BayesCTDesign can be
used to tabulate or visualize these results. The second complex example demonstrates the
piecewise exponential capabilities of BayesCTDesign. Finally, the third complex example
illustrates more of the plotting capabilities of the package, while showing that unusual results
coming from differences between historical and randomized controls are not unique to the
Weibull outcome. The reader may want to run a few examples of his own using a smaller
set of trial characteristic combinations and starting off with a small number of replicates,
and then continue to increase the number of replicates to get a sense of how long different
simulation setups take to run. After the reader has a good sense of time needed to run
simulations within his own computing environment, the reader may run the more complex
trial examples in this paper, but even then the reader will want to reduce the number of
replications substantially before running them until the reader is aware of how long the full
examples will take to run.

5.1. Simple trial example

For our simple example of using BayesCTDesign, consider a scenario where we have historical
control Weibull data from 60 subjects, which are right censored at 3.0. We want to determine
the sample size needed for a two-arm clinical trial that will utilize information from these 60
control subjects to detect a treatment hazard ratio of 0.6 with 80% power and a two-sided α
of 0.05 when all of the information in the historical controls is used (a0 = 1) and no differences
exist between randomized and historical controls. The following code will help the clinical
trialist determine the necessary sample size. The results from this small simulation show us
that about 80 subjects per arm are needed for 80% power. It took about 5 seconds to run on
a 2.6 GHz i7-6700HQ Lenovo ThinkPad using only one core.

R> library("BayesCTDesign")
R> set.seed(2250)
R> SampleHistData <- genweibulldata(sample_size = 60, scale1 = 2.82487,
+ hazard_ratio = 1.0, common_shape = 3, censor_value = 3)
R> histdata <- subset(SampleHistData, subset = (treatment == 0))
R> histdata$id <- histdata$id + 10000
R> weibull_test <- historic_sim(trial_reps = 100, outcome_type = "weibull",
+ subj_per_arm = c(40, 70, 100), a0_vals = 1, effect_vals = 0.6,
+ rand_control_diff = 1, hist_control_data = histdata, censor_value = 3,
+ alpha = 0.05, get_var = TRUE, get_bias = TRUE, get_mse = TRUE,
+ seedval = 123)
R> print(weibull_test)

[1] "Since only subj_per_arm vector has more than 1 element,
tab_type was set to WX|YZ"
[1] "This works towards putting all results in a single table"

40 70 100
0.68 0.81 0.86
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5.2. Complex trial example 1

If a user wants to use historic_sim() he should have access to historical control data with
the required structure. However, BayesCTDesign also has several data generating functions
that can be used to generate hypothetical control data, which can be used for exploratory
purposes. For example, genweibulldata() can be used to simulate a trial where the out-
come is a Weibull time-to-event variable. To use genweibulldata() to generate hypothetical
historical control data, a user would create a simulated trial and then retain only the con-
trol data created. Now the historical control dataset needs to have a certain structure. For
survival outcomes like a Weibull, the historical control dataset must have 4 columns: id,
treatment (must equal 0), event_time (positive valued) and status (0 = right censored, 1
= observed event). When you run genweibulldata() the result will be hypothetical data for
a control arm (treatment = 0) as well as an experimental arm (treatment = 1). To gener-
ate a hypothetical historical control group dataset, we use genweibulldata() to generate a
full trial dataset and subset the data so that we keep only records where treatment = 0. In
the following examples, we will use this process to generate the historical control datasets.
As our first complex example of using BayesCTDesign, consider a scenario where we have
historical control Weibull data from 60 subjects, which are right censored at 3.0. We want
to determine the sample size needed for a two-arm clinical trial that will utilize information
from these 60 control subjects to detect a treatment hazard ratio of 0.7 with 80% power
and a two-sided α of 0.05. Although the targeted treatment hazard ratio is 0.7, assume the
clinical trialist believes the effect could range between 0.6 and 1.0. Initially, the clinical trialist
believes the required sample size per arm will be in the range of 75 to 175 subjects per arm.
Since the clinical trialist might incorporate historical control data into the trial design, the
clinical trialist needs to assess the risk of including these historical control data. The model
will assume historical control and randomized control data are samples from the same control
population. Yet, the historical control data might be very different from the randomized
control data. If the control groups are different, including the historical control data may
significantly bias the results, because the model will produce a biased estimate of the control
group hazard. Assume the clinical trialist believes the randomized and historical control data
might differ in such a way that the hazard ratio between the two control groups will be in
the range of 0.8 to 1.2. Will such differences create unacceptable bias in the final Bayesian
estimate of the treatment hazard ratio? If so, how might the clinical trialist mitigate against
this possible bias?
The clinical trialist will need to determine if differences between randomized and historical
controls within this range will have a significant biasing effect on power and other trial char-
acteristics. If a significant bias is possible, the clinical trialist will need to determine what
value of a0 will mitigate the effects of differences between historic and randomized controls.
Putting the simulation setup together, the clinical trialist needs to study power to detect
treatment hazard ratios (experimental over control) ranging from 0.6 to 1.0 while allowing
sample size to range from 75 to 175 and including a sample of 60 historical controls. At the
same time, the clinical trialist also needs to study the effects of randomized/control differences
(control hazard ratio ranging from 0.8 to 1.2) when the power prior parameter, a0, ranges
from 0 (no historical control information included) to 1 (all historical control information
included). Finally, assume the outcome is a Weibull distributed time-to-event variable, and
the expected treatment hazard ratio is 0.7. The test will be two-sided: H0: Treatment hazard
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ratio = 1 vs Ha: Treatment hazard ratio 6= 1. With this information, the clinical trialist can
run historic_sim() and generate several arrays of simulated output, each array containing
information about a trial characteristic. In turn, these arrays of simulated output can be
investigated to determine what sample size the trial should use and make a decision on what
value of a0 should be used. The code for this exploration is shown below.

R> set.seed(2250)
R> SampleHistData <- genweibulldata(sample_size = 60, scale1 = 2.82487,
+ hazard_ratio = 1.0, common_shape = 3, censor_value = 3)
R> histdata <- subset(SampleHistData, subset = (treatment == 0))
R> histdata$id <- histdata$id + 10000
R> weibull_test <- historic_sim(trial_reps = 500, outcome_type = "weibull",
+ subj_per_arm = c(75, 100, 125, 150, 175),
+ a0_vals = c(0, 0.25, 0.50, 0.75, 1),
+ effect_vals = c(0.6, 0.7, 0.8, 0.9, 1),
+ rand_control_diff = c(0.8, 1, 1.2),
+ hist_control_data = histdata, censor_value = 3, alpha = 0.05,
+ get_var = TRUE, get_bias = TRUE, get_mse = TRUE, seedval = 123)

As mentioned above, the call to genweibulldata() is used to generate the dataset of his-
torical controls for illustration purposes only. Normally, the data generating functions in
BayesCTDesign are only used by simple_sim() and historic_sim() to generate hypothet-
ical trial data; however, the data generating functions are made available to the user so one
can explore the capabilities of BayesCTDesign even if real historical control data is not avail-
able. In the call to genweibulldata(), we create a sample of 60 subjects per group where
the Weibull scale parameter is 2.82487 and the shape parameter is 3. We right censor the
data at 3. Since this use of genweibulldata() is for generating control group data only, we
assign the hazard ratio to 1. After the data has been created, we subset the data to include
only those subjects who are in the control group (treatment = 0).
On a 2.6 GHz i7-6700HQ Lenovo ThinkPad the above call to historic_sim() took about one
hour to complete; however, this is much less than it would have taken if MCMC estimation
was used within the simulation process. Once complete, this simulation gives a rich set of
results to investigate via printing or plotting the results. In all, the simulation produces
results for 375 different trial scenarios (5 sample sizes by 5 a0 values by 5 effect values by 3
randomized and historical control differences).
First look at power by sample size, stratifying by a0, while holding the effect to 0.6 and
assuming no randomized/historical control differences. Code needed to create this table is
shown below. Notice that we have measure = ”power”, since we want a table of power. Also
tab_type = ”WX|YZ”, because for a table we want sample size (W) represented in the rows
and we want a0 (X) values in the columns, while holding treatment effect (Y) and histori-
cal/randomized control differences (Z) constant. Remember that for a Weibull outcome, the
parameter used in BayesCTDesign to define a difference between historical and randomized
controls is a hazard ratio, so we set rand_control_diff_val=1.0 to look at the scenario
where historical and randomized controls are not different. In this table, both rows and
columns have appropriate labels to identify which sample size and a0 value is represented
by a power estimate in the table. On the one hand, we see that when the historical control
data is ignored (a0 = 0), we need between 100 and 125 subjects per arm for 80% power (first
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column with a heading). On the other hand, if all of the information in the historical control
data is used (a0 = 1), then only 75 to 100 subjects per arm are needed for 80% power (last
column with a heading).

R> test_table0_6 <- print(weibull_test, measure = "power",
+ tab_type = "WX|YZ", effect_val = 0.6, rand_control_diff_val = 1.0)
R> test_table0_6

0 0.25 0.5 0.75 1
75 0.670 0.728 0.756 0.796 0.780
100 0.776 0.814 0.854 0.880 0.892
125 0.876 0.906 0.940 0.918 0.940
150 0.932 0.944 0.944 0.970 0.964
175 0.960 0.972 0.980 0.980 0.988

Next consider a similar table of power by sample size, stratifying by a0, but this time holding
the treatment effect to 0.7 and assuming no randomized/historical control differences. Code
needed to create this table is shown below. In this scenario, we see that when the historical
control data is ignored (a0 = 0), we need over 175 subjects per arm for 80% power. In
contrast, if all of the information in the historical control data is used (a0 = 1), then 150
subjects per arm are needed for 80% power. As expected, reducing the treatment effect that
we want to power requires us to collect more data to maintain a specified amount of power.
Also, including the historical control data does give us 80% power within the expected sample
size range.

R> test_table0_7 <- print(weibull_test, measure = "power",
+ tab_type = "WX|YZ", effect_val = 0.7, rand_control_diff_val = 1.0)
R> test_table0_7

0 0.25 0.5 0.75 1
75 0.434 0.394 0.458 0.488 0.520
100 0.524 0.528 0.574 0.576 0.592
125 0.602 0.654 0.642 0.662 0.730
150 0.692 0.744 0.758 0.744 0.804
175 0.788 0.742 0.816 0.822 0.834

Now consider a table of power by sample size, stratifying by a0, while holding the effect to
1.0 and assuming no randomized/historical control differences. Because the treatment effect
(hazard ratio) is set to 1.0, this is a study of type I error. Code needed to create this table
is shown below. In this table we see that regardless of how much information is used from
the historical controls, the type I error is controlled. Average type I error when a0 = 0 is
0.055, when a0 = 0.25 the average type I error is 0.043. When a0 = 0.5, 0.75, and 1, the
average type I error is 0.038, 0.037, and 0.032 respectively. This table shows the interesting
observation that when historical control data and randomized control data are from the same
population, inclusion of historical control data using the power prior can reduce type I error
below the nominal level. Note that, in a real trial design context, the trialist will want to
rerun the simulation using many more replications than 500, especially for a study of type I
error.
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R> test_table1_0 <- print(weibull_test, measure = "power",
+ tab_type = "WX|YZ", effect_val = 1.0, rand_control_diff_val = 1.0)
R> test_table1_0

0 0.25 0.5 0.75 1
75 0.044 0.048 0.044 0.030 0.028
100 0.060 0.044 0.040 0.028 0.030
125 0.052 0.052 0.032 0.036 0.028
150 0.058 0.036 0.046 0.048 0.030
175 0.060 0.036 0.028 0.044 0.042

The clinical trialist may also think that it possible that randomized and historical controls
could differ on a hazard ratio scale of 0.8 to 1.2, so the trialist must also look into issues related
to such differences. The following code and subsequent tables extract information needed
from the simulations to study the effects of randomized/historical control non-compatibility
on power, when the true treatment effect is 0.7.
When the hazard ratio between randomized to historical controls is 1.2, randomized controls
tend to experience more events than historical controls. The effect of this on power is very
interesting. Inclusion of the historical control data under this scenario decreases power!

R> test_table0_7_1_2 <- print(weibull_test, measure = "power",
+ tab_type = "WX|YZ", effect_val = 0.7, rand_control_diff_val = 1.2)
R> test_table0_7_1_2

0 0.25 0.5 0.75 1
75 0.430 0.402 0.362 0.364 0.344
100 0.536 0.530 0.548 0.472 0.444
125 0.700 0.638 0.630 0.584 0.574
150 0.688 0.724 0.720 0.644 0.702
175 0.798 0.782 0.804 0.750 0.728

This decrease in power is due to a biased treatment effect estimate towards the null value of
a hazard ratio equal to 1, which can be seen by replacing the measure parameter with "est"
instead of "power".

R> test_table0_7_1_2e <- print(weibull_test, measure = "est",
+ tab_type = "WX|YZ", effect_val = 0.7, rand_control_diff_val = 1.2)
R> test_table0_7_1_2e

0 0.25 0.5 0.75 1
75 0.719 0.737 0.746 0.755 0.762
100 0.708 0.723 0.727 0.746 0.762
125 0.695 0.720 0.725 0.737 0.746
150 0.712 0.716 0.723 0.737 0.731
175 0.703 0.712 0.720 0.731 0.740



Journal of Statistical Software 33

Why is there a bias towards the null? If we focus on expected values, then we can see part
of the answer. For a given hazard among historical controls, call it hc, the assumed hazard
among randomized controls is 1.2 × hc. Since the overall control hazard will be a weighted
average of hc and 1.2×hc, the control hazard will be in the interval (hc, 1.2×hc). Now, since
the treatment effect is 0.7, which is relative to the randomized control hazard, the hazard
among the experimental group is 0.7× 1.2× hc or 0.84× hc. As such, we see the final hazard
ratio will be in the interval (0.84×hc)/(b×hc), where b ∈ (1, 1.2). It follows that the treatment
effect will be a hazard ratio between 0.7 and 0.84 and biased towards the null.
Now, including the historical control data should have some effect on the posterior variance.
The following code and table demonstrate, however, that the variance is not affected that
much in the current context and actually decreases slightly as a0 increases.

R> test_table0_7_1_2v <- print(weibull_test, measure = "var",
+ tab_type = "WX|YZ", effect_val = 0.7, rand_control_diff_val = 1.2)
R> test_table0_7_1_2v

0 0.25 0.5 0.75 1
75 0.021 0.020 0.019 0.019 0.018
100 0.015 0.015 0.014 0.014 0.014
125 0.011 0.012 0.011 0.011 0.011
150 0.010 0.010 0.009 0.010 0.009
175 0.008 0.008 0.008 0.008 0.008

Now, when the hazard ratio between randomized to historical controls is 0.8, randomized
controls tend to experience fewer events than historical controls and inclusion of the historical
control data increases power.

R> test_table0_7_0_8 <- print(weibull_test, measure = "power",
+ tab_type = "WX|YZ", effect_val = 0.7, rand_control_diff_val = 0.8)
R> test_table0_7_0_8

0 0.25 0.5 0.75 1
75 0.380 0.470 0.530 0.606 0.702
100 0.470 0.524 0.608 0.684 0.738
125 0.556 0.636 0.686 0.776 0.842
150 0.628 0.664 0.746 0.824 0.854
175 0.694 0.758 0.818 0.830 0.862

Of course this time, the increase in power is a result of biased estimation of treatment effect
away from the null value of a hazard ratio equal to 1, as shown when the call to print()
using "est" instead of "power" for the measure parameter.

R> test_table0_7_0_8e <- print(weibull_test, measure = "est",
+ tab_type = "WX|YZ", effect_val = 0.7, rand_control_diff_va = 0.8)
R> test_table0_7_0_8e
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0 0.25 0.5 0.75 1
75 0.716 0.679 0.678 0.651 0.634
100 0.712 0.700 0.678 0.668 0.644
125 0.706 0.693 0.682 0.669 0.651
150 0.708 0.699 0.684 0.665 0.662
175 0.703 0.701 0.683 0.673 0.670

This time, the hazard among randomized controls is 0.8×hc. Since the overall control hazard
will be a weighted average of hc and 0.8 × hc, the control hazard will be in the interval
(0.8×hc, hc). Now, since the treatment effect is still 0.7, the hazard among the experimental
group is 0.7 × 0.8 × hc or 0.56 × hc. As such, we see the final hazard ratio will be around
(0.56× hc)/(b× hc), where b ∈ (0.8, 1). It follows that the estimated treatment effect will be
a hazard ratio between 0.56 and 0.7 and biased away from the null.
Based on the tables seen so far, it seems that when all the information in the historical control
data is used, the trial needs to enroll about 150 subjects per arm for 80 percent power to detect
a 0.7 hazard ratio between experimental and controls groups. Yet, what are the effects of
randomized/historical control differences? A set of different tables can be used to address this
question. One the one hand, table test_table0_7_1_2 showed that if the true randomized
experimental to control group hazard ratio is 0.7, but the randomized and historical controls
differ by a hazard ratio of 1.2, then the power drops from 0.80 to 0.70 (fourth row, last column)
when sample size remains at 150. On the other hand, table test_table0_7_0_8 showed that
if the true randomized experiment to control group hazard ratio is 0.7, but the randomized
and historical controls differ by a hazard ratio of 0.8, then the power increases from 0.80 to
0.85 (fourth row, last column). In both cases, the change in power is due to bias in treatment
effect estimation caused by the differences in randomized and historical controls. As we saw
in tables test_table0_7_0_8e and test_table0_7_1_2e, this bias can go in either direction
depending on the true treatment effect among randomized in relation to the randomized and
historical control group differences.
To get a final view of the effect of historical/randomized control differences, consider table
test_table150_0_7 given below. In the following code tab_type = ”ZX|WY” is used, so it is
a table where the rows will be values of historical/randomized control differences and columns
will be different a0 values. Notice that in this table, we see that when a0 is equal to 0.25
(second column), the historical/randomized control difference of 0.8 tended to have lower
power than the historical/randomized control difference of 1.2. Also, when a0 is equal to 0.75
(fourth column), the historical/randomized control difference of 0.8 tended to have higher
power than the historical/randomized control difference of 1.2. Finally, when a0 is equal to
0.5, power is rather close regardless of the historical/randomized control differences.

R> test_table150_0_7 <- print(weibull_test, measure = "power",
+ tab_type = "ZX|WY", subj_per_arm_val = 150, effect_val = 0.7)
R> test_table150_0_7

0 0.25 0.5 0.75 1
0.8 0.628 0.664 0.746 0.824 0.854
1 0.692 0.744 0.758 0.744 0.804
1.2 0.688 0.724 0.720 0.644 0.702
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If the randomized control trial sample size could be increased so that this third column was
roughly 0.80, then a trial with a0 = 0.5 and that sample size per arm would be rather robust
to historical/randomized control differences within the range of 0.8 to 1.2. This is illustrated
in test_table175_0_7.

R> test_table175_0_7 <- print(weibull_test, measure = "power",
+ tab_type = "ZX|WY", subj_per_arm_val = 175, effect_val = 0.7)
R> test_table175_0_7

0 0.25 0.5 0.75 1
0.8 0.694 0.758 0.818 0.830 0.862
1 0.788 0.742 0.816 0.822 0.834
1.2 0.798 0.782 0.804 0.750 0.728

When a sample size of 175 per arm is considered, we find that at a0=0.5 the estimated power is
always 0.80 or greater. In conclusion, a clinical trialist could conclude that at least 80% power
will be obtained when 175 subjects are randomized into each of two arms (experimental and
control groups) and the true effect is equal to 0.7, and when data from 60 historical controls
are included in the trial using a power prior with a0 equal to 0.5 and the historical controls
do not differ from randomized controls in terms of a hazard ratio beyond the range 0.8 to 1.2.
Earlier, we saw that a simple randomized trial of 175 subjects per arm would not be sufficient
to have 80% power to detect a true hazard ratio of 0.7 with a two-sided test and an α of
0.05. With the addition of 60 historical controls using a power prior with a0 = 0.5, we see
that the trial now has at least 80% power to detect the true hazard ratio of 0.7 as long as
the historical and randomized controls do not differ more than what was explored in these
simulations. Finally, test_table175_1_0 shows that when the sample size is set to 175 and
the true treatment effect is 1.0, the power (which now is equal to type I error) is always less
than 0.05, which demonstrates the conservatism of the test. We say the test is conservative
since the probability of committing a type 1 error is less than the pre-specified value of 0.05.
Based on these investigations, the clinical trialist has a good idea of how to incorporate the
historical controls and gain some power without inflating type I error as long as the differences
between historical and randomized controls do not go beyond what is expected.

R> test_table175_1_0 <- print(weibull_test, measure = "power",
+ tab_type = "ZX|WY", subj_per_arm_val = 175, effect_val = 1.0)
R> test_table175_1_0

0 0.25 0.5 0.75 1
0.8 0.076 0.048 0.040 0.064 0.074
1 0.060 0.036 0.028 0.044 0.042
1.2 0.052 0.036 0.046 0.058 0.056

In addition to tabulating the results as we have done, we can also plot similar slices (two-
dimensional tables) of the results. For example, the following code creates a plot of power as
a function of sample size and a0 value, when the true experiment to control hazard ratio is 0.7
and the randomized and historical controls differ by a hazard ratio of 1.2, see Figure 9. In this
call to plot(), we have set smooth = FALSE, so no smoothing is applied to the simulation
results. Also, plot_out = TRUE, therefore, we request that the graph is created.
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Figure 9: Power as a function of sample size, stratified by a0, while holding effect to a hazard
ratio of 0.7 and a hazard ratio between randomized and historical controls = 1.2.

R> plot(weibull_test, measure = "power", tab_type = "WX|YZ",
+ smooth = FALSE, plot_out = TRUE, effect_val = 0.7,
+ rand_control_diff_val = 1.2)

Although Figure 9 clearly indicates that an insufficient number of replications (500) were used
to estimate each point on the graph, we can nevertheless see the general tendency for power
to drop when the treatment effect is less than 1 and the randomized controls have a higher
hazard for the outcome than the historical controls.
Although this simulation took about an hour to run, the results were very rich in information
to not only design parts of the trial, but also gain in understanding how differences between
randomized and historical controls can affect posterior estimation.

5.3. Complex trial example 2

For the next example, we will look at a trial that will use the piecewise exponential outcome.
A clinical trialist may want to simply design a two-arm Bayesian trial that does not include
historical data. Consider the case where a clinical trialist wants to use a piecewise exponential
model with 6 time intervals (0 to 0.3 years, 0.3 to 0.9 years, 0.9 to 1.5 years, 1.5 to 2.1 years,
2.1 to 2.4 years, and 2.4 years or higher). Assume the vector of constant hazards for this
six-piece PWE is (0.19, 0.35, 0.56, 0.47, 0.38, 0.34). Finally, assume the true hazard ratio
(experimental over control) within any time interval is 0.8, but the clinical trialist wants to
study hazard ratios ranging from 0.6 to 1.0. We now are ready to use simple_sim() to
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determine the required sample size if the clinical trialist wants the trial to have 80% power to
detect a hazard ratio of 0.8 using a two-sided test and α = 0.05. The clinical trialist believes
the required sample size will be in the range of 400 to 550 subjects. With simple_sim(),
we need to assign control_parms the assumed parameters for the randomized control group.
The code for the call to simple_sim() is given below. On a 2.6 GHz i7-6700HQ Lenovo
ThinkPad, this simulation took about 4.1 hours.

R> set.seed(2250)
R> time.vec <- c(0.3, 0.9, 1.5, 2.1, 2.4)
R> lambdaHC.vec <- c(0.19, 0.35, 0.56, 0.47, 0.38, 0.34)
R> pwe_test <- simple_sim(trial_reps = 500, outcome_type = "pwe",
+ subj_per_arm = c(400, 425, 450, 475, 500, 525, 550),
+ effect_vals = c(0.6, 0.7, 0.8, 0.9, 1.0),
+ control_parms = lambdaHC.vec, time_vec = time.vec,
+ censor_value = 3, alpha = 0.05, get_var = TRUE,
+ get_bias = TRUE, get_mse = TRUE, seedval = 123)

The following code and table shows the simulation results. Remember that when results
from simple_sim() are being printed or plotted, there is no need to define a value for
tab_type. The simple_sim() function creates an array that really only has information
in two-dimensions. The print() method automatically extracts the needed dimensions. No-
tice how print() prints out a few messages to indicate that it reduced the simulation results
down to a single table.

R> pwe_test_table <- print(pwe_test, measure = "power")

[1] "Since simple_sim was used, tab_type was set to WX|YZ"
[1] "Values for tab_type, subj_per_arm_val, a0_val, effect_val,
and rand_control_diff_val were ignored"
[1] "This works towards putting all results in a single table,
effect by sample size"

R> pwe_test_table

0.6 0.7 0.8 0.9 1
400 1 0.974 0.734 0.212 0.060
425 1 0.978 0.754 0.230 0.052
450 1 0.992 0.812 0.250 0.048
475 1 0.990 0.796 0.260 0.054
500 1 0.994 0.820 0.266 0.078
525 1 0.988 0.828 0.278 0.068
550 1 0.998 0.848 0.318 0.064

Based on these results, the trial will need to enroll between 475 and 500 subjects per arm to
detect a hazard ratio of 0.8 with 80% power at an α of 0.05.
This second example took a good bit longer because it used the PWE outcome. Anytime the
PWE outcome is used, the total simulation time will increase.
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5.4. Complex trial example 3

The third and final example will give us another chance to see how BayesCTDesign allows us
to explore randomized/historical control differences and their sometimes unexpected results.
Consider a scenario where a hematologist wants to design a two-arm clinical trial to study
the efficacy of a novel therapy for Immune Thrombocytopenia (ITP) relative to standard of
care. The outcome is a (0/1) outcome where 0 indicates no ITP related bleeding during 1
year of treatment (no relapse). The trial needs to detect an odds ratio of 0.7 with at least 80%
power with a two-sided α of 0.05. Budget constraints limit enrollment to 480 subjects per
arm. Finally, the clinical trialist has data from 60 historical controls who received standard
of care. Probability of relapse among historical controls is 0.6.
The clinical trialist has a few questions that need answers.

1. Will we have enough power to detect an odds ratio of 0.7 without incorporating the
historical control data?

2. If a simple randomized trial will not have enough power, will incorporation of historical
data result in at least 80% power?

3. If the historical control data is necessary, what are the consequences of reasonable
differences between historical and randomized controls?

The code needed to answer the first question and the resulting table of simulation results
are given below. Since we do not use historical control data to answer this first question,
simple_sim() is used. On a 2.6 GHz i7-6700HQ Lenovo ThinkPad, this simulation took
about 27 minutes. Notice that in this example the replications have been increased from 500
to 10000.

R> BasicTwoArm.Bernoulli <- simple_sim(trial_reps = 10000,
+ outcome_type = "bernoulli",
+ subj_per_arm = c(180, 220, 240, 280, 320, 360, 400, 440,
+ 480, 520), effect_vals = c(0.6, 0.7, 0.8, 0.9, 1.0),
+ control_parms = c(0.6), alpha = 0.05, get_bias = TRUE,
+ get_mse = TRUE, seedval = 123, quietly = FALSE)
R> print(BasicTwoArm.Bernoulli)

[1] "Since simple_sim was used, tab_type was set to WX|YZ"
[1] "Values for tab_type, subj_per_arm_val, a0_val, effect_val,"
[1] " and rand_control_diff_val were ignored"
[1] "This works towards putting all results in a single table,"
[1] " effect by sample size"

0.6 0.7 0.8 0.9 1
180 0.6723 0.3845 0.1766 0.0734 0.0458
220 0.7676 0.4535 0.2090 0.0793 0.0458
240 0.7950 0.4911 0.2217 0.0813 0.0424
280 0.8390 0.5475 0.2560 0.0914 0.0524
320 0.9028 0.6093 0.2819 0.0991 0.0500
360 0.9274 0.6462 0.3154 0.1060 0.0530
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Figure 10: Power by sample size, stratified by a0 value.

400 0.9460 0.7097 0.3383 0.1108 0.0440
440 0.9645 0.7488 0.3842 0.1263 0.0562
480 0.9753 0.7726 0.3932 0.1211 0.0481
520 0.9835 0.8119 0.4261 0.1259 0.0533

From this table of results, we see that between 480 and 520 subjects per arm are needed to
detect an OR of 0.7, if we ignore the historical data and simply run a two-arm randomized
trial. These same results can be plotted using plot(). Since plot() uses ggplot2, the output
from plot() can be modified using ggplot2 commands once the ggplot2 package is loaded.
The following code creates the basis plot using a call to plot(); however, additional calls to
other ggplot2 functions add a vertical line at a sample size of 480 and a horizontal line at
0.80, and the title is improved. As with the table, Figure 10 shows us that 480 subjects per
arm is insufficient to produce a design with 80% power.

R> library("ggplot2")
R> BasicPlot <- plot(BasicTwoArm.Bernoulli, measure = "power",
+ tab_type = "WX|YZ", smooth = TRUE)
R> BasicPlot <- BasicPlot + geom_hline(yintercept = 0.80)
+ geom_vline(xintercept = 480)
R> ggtitle("Two Arm Study, No Historical Data, Bernoulli Outcome")
+ xlab("Sample Size per Arm") + ylab("Estimated Power")
R> BasicPlot
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Given 480 subjects was the maximum number of subjects per arm the hematologist could
enroll, the next step is to address question 2. Will including the historical control data,
increase the power to at least 80%? To answer this question, historic_sim() must be used.
The simulation code to address question 2 as well as the results are given below. On a 2.6 GHz
i7-6700HQ Lenovo ThinkPad, this simulation took about 1.7 days. Yes, this code takes a very
long time to run even using the BCLT, but the simulation setup looks at 1250 trial scenarios,
the same code would take weeks to run with MCMC, and each trial characteristic combination
is estimated very accurately with 10000 replicates. Notice in this example, hypothetical
historical control data is being used and it is generated with the function genbernoullidata()
that is available in BayesCTDesign.

R> set.seed(2250)
R> samplehistdata <- genbernoullidata(sample_size = 60, prob1 = 0.6,
+ odds_ratio = 1.0)
R> histdata <- subset(samplehistdata, subset = (treatment == 0))
R> histdata$id <- histdata$id + 10000
R> HistoricTwoArm.Bernoulli <- historic_sim(trial_reps = 10000,
+ outcome_type = "bernoulli",
+ subj_per_arm = c(180, 220, 240, 280, 320, 360, 400, 440, 480, 520),
+ a0_vals = c(0, 0.25, 0.5, 0.75, 1),
+ effect_vals = c(0.6, 0.7, 0.8, 0.9, 1.0),
+ rand_control_diff = c(0.6, 0.8, 1.0, 1.2, 1.4),
+ hist_control_data = histdata, time_vec = NULL, alpha = 0.05,
+ get_var = TRUE, get_bias = TRUE, get_mse = TRUE, seedval = 123,
+ quietly = FALSE)
R> print(HistoricTwoArm.Bernoulli, measure = "power",
+ tab_type = "WY|XZ", a0_val = 1.0,
+ rand_control_diff_val = 1.0)

0.6 0.7 0.8 0.9 1
180 0.7494 0.4275 0.1910 0.0693 0.0368
220 0.8128 0.5077 0.2223 0.0741 0.0362
240 0.8523 0.5413 0.2431 0.0827 0.0386
280 0.8910 0.5995 0.2770 0.0890 0.0421
320 0.9279 0.6586 0.3006 0.0999 0.0421
360 0.9480 0.7064 0.3418 0.1038 0.0432
400 0.9640 0.7437 0.3593 0.1084 0.0419
440 0.9780 0.7841 0.3988 0.1177 0.0433
480 0.9853 0.8110 0.4247 0.1215 0.0424
520 0.9894 0.8364 0.4577 0.1373 0.0430

As with question 1, the graphical results needed to answer question 2 can be modified using
ggplot2 commands. Figure 11 shows that power is above 80% at 480 subjects per arm when
historical control data is included in the estimation process.

R> HistoricPlot <- plot(HistoricTwoArm.Bernoulli, measure = "power",
+ tab_type = "WY|XZ", a0_val = 1.0,
+ rand_control_diff_val = 1.0, smooth = TRUE)
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Figure 11: Power by sample size, stratified by a0 value.

R> HistoricPlot <- HistoricPlot + geom_hline(yintercept = 0.80)
+ geom_vline(xintercept = 480)
+ ggtitle("Two Arm Study, With Historical Data: Binary Outcome")
+ xlab("Sample Size per Arm, a0_val=1.0, control_diff=1.0")
+ ylab("Estimated Power")
R> HistoricPlot

Now we are ready to study the consequences of differences between randomized and historical
controls. First consider a plot of power by sample size, stratifying on control differences,
Figure 12.

R> HistoricPlot2 <- plot(HistoricTwoArm.Bernoulli, measure = "power",
+ tab_type = "WZ|XY", a0_val = 1.0, effect_val = 0.7, smooth = TRUE)
R> HistoricPlot2 <- HistoricPlot2
+ ggtitle("Two Arm Study, With Historical Data: Binary Outcome")
+ xlab("Sample Size per Arm, a0_val = 1.0, effect = 0.7")
+ ylab("Estimated Power")
R> HistoricPlot2

Figure 12 has the interesting result that as the control effect ORc decreases power increases,
where ORc is the odds ratio between randomized controls and historical controls. Similarly,
while control effect ORc increases power decreases. Why are these changes occurring? Con-
sider the case where control differences are not present (ORc = 1.0), and let a0 > 0 and the
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Figure 12: Power by sample size, stratified by control differences.
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Figure 13: Success probabilities when no control differences are present. HistC = event
probability for historical controls, RandC = event probability for randomized controls, Ran-
dExp = event probability for randomized experimental group.

treatment effect be ORt = 0.7, see Figure 13. Since the control groups are not different, the
effect estimate of experimental group over control group will be unbiased. Also, as sample size
increases, power naturally increases. If control differences are present and the control effect
is ORc = 0.6, a0 > 0, and the treatment effect is ORt = 0.7, then what is the consequence of
these control differences on power as a function of sample size? The consequence is illustrated
in Figure 14. In this case, the probability of event in the randomized controls will be less
than the probability in historical controls, since ORc = 0.6. When the overall estimate of
the control probability of event is estimated it will be a weighted average of the event proba-
bility in the randomized controls and the historical controls. As a result, the overall control
probability will be pulled upward. All the while, the event probability in the randomized
experimental group will be estimated without bias. It will represent the event probability
needed to produce a treatment effect of 0.7 relative to randomized controls. The result will
be an odds ratio experimental group over control that is biased downward to OR values closer
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Figure 14: Success probabilities when control differences are present and randomized controls
at less risk than historical controls. HistC = event probability for historical controls, RandC
= event probability for randomized controls, RandExp = event probability for randomized
experimental group.
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Figure 15: Type I error by control differences, stratified by a0 values.

to zero and away from the true value. The treatment odds ratio is biased downward and the
increase in power is artificial. Next, let us look at what happens to type I error when historic
and randomized controls are different. Code for studying the type I error is given below. On
a 2.6 GHz i7-6700HQ Lenovo ThinkPad, this code took about 11.2 hours to run. The plot
is shown in Figure 15. Notice that trial_reps = 100000. As noted before, this code will
take several hours to run, but the results will be rich in detail and take much less time than
a similar MCMC based study.

R> HistoricTwoArm.Bernoulli2 <- historic_sim(trial_reps = 100000,
+ outcome_type = "bernoulli", subj_per_arm = c(480),
+ a0_vals = c(0, 0.33, 0.67, 1), effect_vals = c(1.0),
+ rand_control_diff = c(0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6),
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+ hist_control_data = histdata, time_vec = NULL,
+ alpha = 0.05, get_var = TRUE, get_bias = TRUE,
+ get_mse = TRUE, seedval = 123, quietly = FALSE)
R> HistoricPlot3 <- plot(HistoricTwoArm.Bernoulli2,
+ measure = "power", tab_type = "XZ|WY", effect_val = 1.0,
+ subj_per_arm_val = 480, smooth = FALSE)
R> HistoricPlot3 <- HistoricPlot3 +
+ ggtitle("Two Arm Study, With Historical Data: Binary Outcome")
+ xlab("a0 Value, Sample Size = 480, effect value = 1.0")
+ ylab("Type 1 Error")
R> HistoricPlot3

When historic and randomized controls are not different, there is a tendency for type I error to
decrease as a0 increases (more historical information is included in estimation). In contrast,
when historic and randomized controls are different, large control differences along with large
a0 values can result in highly inflated type I error.
However, simulations may show that type I erroris not unduly inflated for a range of control
differences given a specific a0. If background knowledge supports the belief that controls will
not differ more than what is predicted by this range, then a0 can be pre-specified and type I
error controlled.
To further explore power when historic and randomized controls are different, we perform a
simulation looking at effects on power due to control group differences and different values of
a0. The simulation code and figure code is given below and results are shown in Figure 16.
In this simulation, we look at 9 difference values of randomized and control differences. On a
2.6 GHz i7-6700HQ Lenovo ThinkPad, this code took about 1.5 hours to run. Note that we
hold sample size to 480 subjects and we set the treatment effect, ORt, equal to 0.7.

R> HistoricTwoArm.Bernoulli3 <- historic_sim(trial_reps = 10000,
+ outcome_type = "bernoulli",
+ subj_per_arm = c(480),
+ a0_vals = c(0, 0.33, 0.66, 1),
+ effect_vals = c(0.7),
+ rand_control_diff = c(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4),
+ hist_control_data = histdata, time_vec = NULL,
+ alpha = 0.05, get_var = TRUE, get_bias = TRUE, get_mse = TRUE,
+ seedval = 123, quietly=FALSE)
R> HistoricPlot4 <- plot(HistoricTwoArm.Bernoulli3,
+ measure = "power", tab_type = "ZX|WY",
+ subj_per_arm = 480, effect_val = 0.7,
+ smooth=TRUE)
R> HistoricPlot4 <- HistoricPlot4
+ ggtitle("Two Arm Study, With Historical Data: Binary Outcome")
+ xlab("Control Differences (OR), subj_per_arm = 480, effect = 0.7")
+ ylab("Power")
R> HistoricPlot4

In Figure 16, we see that when ORc = 1, as a0 increases, power increases as expected. In con-
trast, when ORc is large, in this example ORc > 1.2, as a0 increases, power decreases. Going
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Figure 16: Plot of power by control differences stratified on a0 values.
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Figure 17: Success probabilities when control differences are present and randomized con-
trols are at a higher risk than historical controls. HistC = event probability for historical
controls, RandC = event probability for randomized controls, RandExp = event probability
for randomized experimental group.

in the other direction, when ORc < 1.0 and small, we see that power continues to increases as
a0 increases. Figure 17 explains why power decreases if ORc is large, while Figure 14 explains
why power increases if ORc is small and < 1.0. Figure 14 was discussed earlier. When ORc is
large and greater than 1, the probability of event is greater in the randomized controls than in
the historical controls. Yet, the treatment effect is still 0.7, so the event probability in the ran-
domized experimental group is less than the event probability in the randomized controls. In
this example, the event probability in the randomized experimental group is slightly smaller
than the event probability among historical controls. Overall, the estimated control event
probability will be a weighted average of the two control groups, thus the estimated control
event probability will be pulled downward towards the randomized experimental group event
probability. The consequence will be lower power than when historical controls were ignored.
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Figure 18: OR estimation by control differences stratifying on a0 values.

The following code looks at the same simulation from the perspective of estimated treatment
odds ratio, ORt.

R> HistoricPlot5 <- plot(HistoricTwoArm.Bernoulli3, measure = "est",
+ tab_type = "ZX|WY", subj_per_arm = 480, effect_val = 0.7, smooth = TRUE)
R> HistoricPlot5 <- HistoricPlot5
+ ggtitle("Two Arm Study, With Historical Data: Binary Outcome")
+ xlab("Control Differences (OR), subj_per_arm = 480, effect = 0.7")
+ ylab("Estimated Odds Ratio")
R> HistoricPlot5

In Figure 18, we see that when a0 = 1, all estimation routines are roughly unbiased. The
estimated treatment effect is just over 0.7. In contrast, when ORc < 1, we see that the
estimated ORt is biased downward. Likewise, when ORc > 1, we see that the estimated ORt

is biased upward.

6. Discussion
BayesCTDesign was developed to allow users to study two-arm Bayesian designs that might
include historical control data. The package uses simulation to estimate trial design charac-
teristics under user-defined scenarios. Given simulation is used, the time it takes to generate
results is longer than the time required by closed form solutions; however, by using Bayesian
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central limit theorem, BayesCTDesign saves a substantial amount of time relative to simu-
lation methods that make calls to external MCMC programs like WinBUGS or JAGS. The
package allows the user to study designs with Gaussian, Poisson, Bernoulli, Weibull, lognor-
mal, and piecewise exponential outcomes.
Future development of the package will allow users to study unequal arm sizes, informative
initial priors, and add a Poisson model for relative risk estimation. One possible development
will be potentially dynamic determination of power prior parameter. For example, incorpo-
rating the estimation process contained in the bayesDP package to allow for designing trials
that use a discount formula for dynamic borrowing, (Balcome et al. 2021). Another potential
development is to add functionality that allows for inclusion of historical data from actively
treated subjects as well as controls and follow the framework for Bayesian P-value calculations
as described in Psioda and Ibrahim (2019).

Computational details
The results in this paper were obtained using R 4.1.2 (R Core Team 2021). R itself and all
packages used are available from the CRAN at https://CRAN.R-project.org/.
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