
JSS Journal of Statistical Software
January 2022, Volume 101, Issue 4. doi: 10.18637/jss.v101.i04

tlrmvnmvt: Computing High-Dimensional
Multivariate Normal and Student-t Probabilities

with Low-Rank Methods in R

Jian Cao
King Abdullah University of

Science and Technology

Marc G. Genton
King Abdullah University of

Science and Technology

David E. Keyes
King Abdullah University of

Science and Technology

George M. Turkiyyah
American University of Beirut

Abstract

This paper introduces the usage and performance of the R package tlrmvnmvt, aimed
at computing high-dimensional multivariate normal and Student-t probabilities. The
package implements the tile-low-rank methods with block reordering and the separation-
of-variable methods with univariate reordering. The performance is compared with two
other state-of-the-art R packages, namely the mvtnorm and the TruncatedNormal pack-
ages. Our package has the best scalability and is likely to be the only option in thousands
of dimensions. However, for applications with high accuracy requirements, the Truncated-
Normal package is more suitable. As an application example, we show that the excursion
sets of a latent Gaussian random field can be computed with the tlrmvnmvt package
without any model approximation and hence, the accuracy of the produced excursion sets
is improved.

Keywords: excursion sets, high dimensions, multivariate normal, multivariate Student-t, tlr-
mvnmvt.

1. Introduction
The multivariate normal distribution (MVN) is probably the most well-known probability
model due to its tractable analytical properties, principally being closed under conditioning
and marginalization. The MVN probability arises in many applications. It amounts to a
challenging numerical integration problem and becomes the computation bottleneck in high

https://doi.org/10.18637/jss.v101.i04
https://orcid.org/0000-0003-1609-4921
https://orcid.org/0000-0001-6467-2998
https://orcid.org/0000-0002-4052-7224
https://orcid.org/0000-0002-1692-5812

2 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

dimensions. Such examples include Bayes classification (Durante 2019), finding excursion and
contour uncertainty regions (Bolin and Lindgren 2015), and maximum likelihood estimation
(Cao, Genton, Keyes, and Turkiyyah 2021; Davison, Huser, and Thibaud 2013; Genton, Ma,
and Sang 2011), among others. However, the normal density decays quickly from the mean
value, which is not suitable for modeling the tail of the distribution, hence more heavy-tailed
elliptical models are needed. The multivariate Student-t (MVT) distribution belongs to this
category and can be viewed as a scale mixture of the MVN distribution.
In this paper, we introduce an R (R Core Team 2021) package that is motivated by high-
dimensional MVN probabilities but also tackles MVT probabilities. MVN and MVT proba-
bilities are defined as:

Φn(a, b; µ, Σ) =
∫ b

a

1√
(2π)n|Σ|

exp
{

−1
2(x − µ)⊤Σ−1(x − µ)

}
dx, (1)

Tn(a, b; ∆, Σ, ν) = 21− ν
2

Γ(ν
2)

∫ ∞

0
sν−1e−s2/2Φn

{
sa√

ν
− ∆,

sb√
ν

− ∆; 0, Σ
}

ds, (2)

respectively. Here, a and b are n-dimensional vectors denoting the lower and the upper
integration limits, while µ and ∆ are the mean and the location parameters. Notice that
we use the “Kshirsagar” definition of MVT probabilities in Equation 2. MVT probabilities
of the “shifted” type can be transformed into “Kshirsagar” MVT probabilities with ∆ = 0.
The type names of “Kshirsagar” and “shifted” are aligned with the naming convention of the
mvtnorm package (Genz et al. 2021; Genz and Bretz 2009). The matrix Σ ∈ Rn×n is the
positive-definite covariance matrix and ν is a positive scalar denoting the degrees of freedom.
Many methods have been proposed for estimating MVN probabilities among which Genz
(1992) suggested the first numerical solution based on Monte Carlo simulation. Later devel-
opments focused on two aspects of the numerical methods, with Miwa, Hayter, and Kuriki
(2003), Craig (2008), Nomura (2014), and Botev (2017), among others, focusing on the es-
timation accuracy, and Trinh and Genz (2015) and Genton, Keyes, and Turkiyyah (2018),
among others, focusing on scalability; see Genz and Bretz (2009) for an overview of the vari-
ous early approximation methods. Most accuracy-oriented methods are confined to n < 100
with the exception of Botev (2017), while the speed-oriented conditioning methods in Trinh
and Genz (2015) and Cao, Genton, Keyes, and Turkiyyah (2019) usually have insufficient
accuracy. We think that overall, the methods from Botev (2017) and Genton et al. (2018)
have the widest applicability. Botev (2017) used the importance sampling technique to in-
crease the convergence rate while Genton et al. (2018) improved the computation efficiency
with a hierarchical representation of the covariance matrix. Cao et al. (2021) refined Gen-
ton et al. (2018) with the block reordering from Cao et al. (2019) and a tile-low-rank (TLR;
Weisbecker 2013; Mary 2017; Akbudak, Ltaief, Mikhalev, and Keyes 2017; Cao et al. 2021)
representation of the covariance matrix. In this paper, we introduce tlrmvnmvt (Cao, Gen-
ton, Keyes, and Turkiyyah 2022), an R package that implements the methods introduced in
Cao et al. (2021) and that is available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=tlrmvnmvt, and compare the package with the
two state-of-the-art alternatives, namely, the mvtnorm and the TruncatedNormal (Botev and
Belzile 2019) packages, that implement the algorithms from Genz (1992) and from Botev
(2017), respectively.
Because the TLR Monte Carlo method in Cao et al. (2021) is based on Genz (1992), the
tlrmvnmvt package also includes an efficient implementation of the cumulative probability

https://CRAN.R-project.org/package=tlrmvnmvt

Journal of Statistical Software 3

functions from the package mvtnorm. Additionally, the algorithms modified for MVT prob-
abilities are also implemented. Section 2 reviews the algorithms of the TLR Monte Carlo
methods for MVN and MVT probabilities. Section 3 introduces the interfaces of the five
functions included in this new package and provides examples of their usage. Section 4 com-
pares the package performance with two state-of-the-art alternatives. Section 5 describes an
application of computing the excursion sets defined in Bolin and Lindgren (2015), where the
package tlrmvnmvt makes the computation feasible in thousands of dimensions without any
model approximation. Section 6 concludes the paper.

2. TLR Monte Carlo with block reordering
The TLR Monte Carlo method with block reordering, as indicated by its name, adds two
techniques to the original Monte Carlo method in Genz (1992), namely the TLR represen-
tation for the covariance matrix and the block reordering technique. The method in Genz
(1992) is also known as the separation-of-variable (SOV) transformation that transforms the
integration region into the unit hypercube. In this section, we first review the original Monte
Carlo method and then we demonstrate how it is combined with the TLR representation and
the block reordering. Without loss of generality, we assume µ = 0 and ∆ = 0 for this section
and denote MVN and MVT probabilities with Φn(a, b; Σ) and Tn(a, b; Σ, ν), respectively, to
simplify the expressions.

2.1. Monte Carlo for MVN and MVT
Genz (1992) used SOV to transform Equation 1 into

Φn(a, b; Σ) =
∫ Φ(b̃1)

Φ(ã1)

∫ Φ(b̃2)

Φ(ã2)
· · ·
∫ Φ(b̃n)

Φ(ãn)
dz, ãi =

ai −
∑i−1

j=1 Lijyj

Lii
, b̃i =

bi −
∑i−1

j=1 Lijyj

Lii
.

(3)

The sequence of transformations from Equation 1 to Equation 3 are x = Ly and yi = Φ−1(zi),
where L is the lower Cholesky factor of Σ, Σ = LL⊤; refer to Genz (1992) for further details.
Here, we use the unbolded letter with subscripts to denote the corresponding coefficient in
the matrix (vector). With a subsequent standardization, zi = Φ(ãi) + {Φ(b̃i) − Φ(ãi)}wi,
the integration region can be transformed to the unit hypercube in Rn, where quasi-Monte
Carlo rules are applicable to w. Here, the computation of the MVN integrand with w is
also referred to as Monte Carlo sampling. In Equation 3, the integration limits for the ith
integration variable depend on the first to the (i − 1)th integration variables, which allows
variable reordering to increase the Monte Carlo convergence rate but limits the degree of
parallelism. The MVT probability of Equation 2 can be transformed into

Tn(a, b; Σ, ν) =
∫ 1

0
Φn

(
χ−1

ν (t)a√
ν

,
χ−1

ν (t)b√
ν

; Σ
)

dt, (4)

through s = χ−1
ν (t), where χ−1

ν (·) is the inverse of the Chi distribution with ν degrees of
freedom. Equation 4 suggests that (n + 1)-dimensional quasi-Monte Carlo rules can be used
to generate (t, w) as one Monte Carlo sample.
Detailed Monte Carlo algorithms for the two integrations of Equations 3 and 4 can be found
in Genz (1992) and Genz and Bretz (2009), respectively. Note that a Cholesky factorization is

4 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

needed before estimating the integration with Monte Carlo samples, which has a complexity
of O(n3) and can be challenging by itself. It is recognized by Genz and Bretz (2009), Botev
(2017), and Cao et al. (2021), among others, that ordering variables based on their conditional
probabilities, measured by Φ(b̃i)−Φ(ãi), in an ascending order increases the convergence rate.
The univariate reordering introduced in Trinh and Genz (2015) is one example. It has the
same order of complexity as a Cholesky factorization and computes the Cholesky factor while
ordering the integration variables, for which it is used to substitute the Cholesky factorization
before the Monte Carlo procedures in the mvtnorm and tlrmvnmvt packages.

2.2. TLR representation for covariance matrices

As shown in Equation 3, the computation of ãi and b̃i sums up to the matrix-vector multi-
plication between L and y and hence, the complexity for each Monte Carlo sample is O(n2).
This can readily be reduced through a structured representation of L. The TLR representa-
tion breaks down a large matrix into small blocks, of which a large proportion can be closely
approximated by the multiplication of two thin matrices, UV⊤. This representation is also
referred to as the low-rank representation for the block (tile) (Weisbecker 2013; Mary 2017;
Akbudak et al. 2017; Cao et al. 2021) and typically, all blocks have the same numbers of
rows and columns to reduce the complexity of matrix operations. In this paper, we refer to
the number of columns of U and V as local ranks, denoted by k, for which a smaller value
yields greater computation savings. Since the matrix we approximate is a covariance matrix
in Rn×n, we assume that the number of rows is equal to the number of columns for each
block, both of which are denoted by m.

Figure 1 visualizes the local rank distribution across blocks in a Whittle correlation matrix
and the corresponding Cholesky factor, where the pair-wise sum is simply two times the local
ranks, also the sum of the ranks of U and V. The Whittle kernel with a range parameter of
0.1 has an effective range of 0.4 on the unit square and is implemented with the matern()
function from the geoR (Ribeiro Jr and Diggle 2020) package. For most blocks, the pair-wise
local ranks are much smaller than 32 and this difference usually becomes more significant
when n increases (Cao et al. 2021). With the TLR Cholesky factor, the complexity for each
Monte Carlo sample is reduced to O(nm + kn2/m), whose order is minimized approximately
at m =

√
n because the average k across the blocks is usually a small value, for example,

below three.

Aligned with the TLR representation, a TLR Cholesky factorization can be designed at a
complexity of O(n3/m2 +nm2), which also reaches its minimum order, O(n2), when m =

√
n;

see Akbudak et al. (2017) for the algorithm of the TLR Cholesky factorization. However, the
success of the TLR Cholesky factorization is not guaranteed because truncation is involved in
the block addition part of the algorithm. Typically, the covariance matrix is close to singular
when correlation is strong, in which case the Schur complement has a much smaller magnitude
in its entries than the original covariance matrix, and small truncation errors may cause the
failure of the Cholesky factorization. To address this problem, either a lower truncation error
or a correction mechanism can be resorted to. The correction mechanism generally induces
bias because it makes the matrix “more positive-definite”. One common example is adding a
nugget effect while Xia and Gu (2010) provided a more sophisticated example of the correction
mechanism.

Journal of Statistical Software 5

(a) (b)

0

32

Figure 1: Color-coded pair-wise local ranks of (a) the TLR covariance matrix and (b) the TLR
Cholesky factor. Local ranks are truncated at the absolute error of 1e−3 and represented as
the pair-wise sum. The covariance matrix is built with the Whittle correlation kernel with a
range parameter of 0.1 for 1,024 spatial locations on a regular grid in the unit square. The
order of the locations is Morton’s order implemented by the zorder() function from the
tlrmvnmvt package.

2.3. Block reordering

The block reordering is a variable reordering scheme compatible with the TLR representation
of the covariance matrix. For a block to have a small local rank, the locations corresponding
to the rows of the block should be spatially separated from those of the columns, which
is also referred to as the admissibility condition (Börm, Grasedyck, and Hackbusch 2003b).
Figure 2(a) shows two cases, where the two sets of spatial locations are regarded as non-
separable and separable, respectively. For implementation, an explicit admissibility condition
specifies the minimum ratio of the distance between the two sets to the minimum diameter of
the sets (Börm et al. 2003b). A good ordering for the TLR representation aims to make all
pairs of two different sets of locations separable while an ordering based on the integration
limits, a and b, increases the convergence rate of Monte Carlo sampling (Genz and Bretz
2009).

To benefit from both aspects, the block reordering, visualized in Figure 2(b), first divides the
locations into sets based on their indices from Morton’s order and then orders again the sets
and the locations in each set based on their marginal probabilities; refer to Cao et al. (2019)
for the detailed algorithm of the block reordering and Cao et al. (2021) for a recursive version
of the block reordering. In this manner, the block reordering does not change the separability
of any block in Σ while improving the convergence rate significantly. Cao et al. (2021) also
discussed other potential structured representations for Σ and L and concluded that the TLR
structure combined with the block reordering leads to the best efficiency.

6 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

●

●

●
●

●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

Non−separable

Separable

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Set 1

Set 2

Set 3

Set 4

(b)

Figure 2: (a) Illustration of non-separable and separable pairs of sets. The separability is
given by the bounding boxes defined in Börm et al. (2003a). (b) Illustration of the block
reordering. The dotted red arrows indicate the sequence, in which the locations are ordered.

3. Package structure and implementation
The tlrmvnmvt package has two major functions for computing MVN and MVT probabil-
ities, namely pmvn() and pmvt(). Both functions provide the flexibility of choosing the
dense-matrix-based SOV algorithm or the TLR-matrix-based quasi-Monte Carlo algorithm.
The third function, zorder(), generates Morton’s order in 2D that is helpful for constructing
covariance matrices with the low-rank feature. The last two functions, GenzBretz() and
TLRQMC(), are used to specify the internal algorithm called by the pmvn() and the pmvt()
functions. This package has an efficient underlying C++ implementation interfaced through
Rcpp (Eddelbuettel and Balamuta 2018) and utilizes the Eigen library (Guennebaud and Ja-
cob 2010), a template library for linear algebra, via RcppEigen (Bates and Eddelbuettel 2013).
Currently, the Boost library (Schling 2011) is also linked through the BH package (Eddel-
buettel, Emerson, and Kane 2021) to provide modified Bessel functions but this dependency
can be spared when C++17 is supported by R.

3.1. Function interfaces

The interfaces of functions pmvn() and pmvt() are:

pmvn(lower = -Inf, upper = Inf, mean = 0, sigma = NULL,
uselog2 = FALSE, algorithm = GenzBretz(), ...)

pmvt(lower = -Inf, upper = Inf, delta = 0, df = 1, sigma = NULL,
uselog2 = FALSE, algorithm = GenzBretz(), type = "Kshirsagar", ...)

The two interfaces closely resemble those of the pmvnorm() and the pmvt() functions from
the mvtnorm package. The first two arguments, lower and upper, define a rectangular in-

Journal of Statistical Software 7

tegration region. The mean parameter for MVN probabilities and the delta parameter for
MVT probabilities simply shift the integration limits, lower and upper, when the type of
MVT probabilities is “shifted” whereas MVT probabilities of type = "Kshirsagar" are de-
fined in Equation 2 and do not simply shift lower and upper with delta. The covariance
matrix Σ can be either given by the sigma parameter or constructed by the package through
specifying the underlying geometry geom, the covariance kernel kernelType, and the asso-
ciated parameters para. Here, geom, kernelType, and para are optional parameters. The
parameter geom should be a matrix with n rows, each of which is a coordinate vector and
denoted with si. Currently, the only supported covariance model is the Matérn covariance
function that accepts para as a vector of length four, storing the scale parameter σ > 0, the
range parameter β > 0, the smoothness parameter κ > 0, and the nugget parameter δ ≥ 0.
Specifically, we assume the following parameterization for the Matérn covariance function:

σij = σ2{2κ−1Γ(κ)}−1
(∥si − sj∥

β

)κ

Hκ

(∥si − sj∥
β

)
+ 1{si=sj} · δ, (5)

where σij is the (i, j)th coefficient of Σ, ∥·∥ is the L2-norm that leads to the Euclidean distance,
1 is the indicator function, and Hκ(·) denotes the modified Bessel function of the second kind
of order κ. The parameter uselog2 determines whether the probability is returned as its
logarithm to the base two, which is necessary when the probability estimate is smaller than
the machine precision. The df parameter should be a positive number representing the degrees
of freedom that are needed only for MVT probabilities.
The algorithm parameter should be either of class ‘GenzBretz’ or ‘TLRQMC’, which are re-
turned by the GenzBretz() and the TLRQMC() functions, respectively. When algorithm is of
class ‘GenzBretz’, the pmvn() and the pmvt() functions implement the univariate reordering
and the SOV algorithm with a dense representation of the covariance matrix. This is rec-
ommended for MVN/MVT problems in relatively low dimensions, e.g., no more than 4,000
and is not constrained by the covariance structure. When algorithm is of the ‘TLRQMC’ class,
the two functions implement the recursive block reordering (Cao et al. 2021) and the TLR
Monte Carlo algorithm. The latter combination can solve probabilities in tens of thousands
of dimensions with reasonable time costs but requires the existence of the low-rank feature in
the covariance matrix.
Both the GenzBretz() and the TLRQMC() functions accept parameters that control the aspects
of the pmvn() and the pmvt() functions associated with the adopted algorithm:

GenzBretz(N = 499)
TLRQMC(N = 499, m = 64, epsl = 1e-4)

The N parameter controls how many Monte Carlo samples are used for estimating MVN/MVT
probabilities. Specifically, we use the Richtmyer rule (Richtmyer 1951) for sampling w that
is defined after Equation 3. The Richtmyer rule specifies a batch size N and the number of
batches ns, which amounts to a total sample size of N × ns. In our implementation, the N
parameter is the batch size and ns is set internally to 20. Two additional parameters are
needed when the TLRQMC algorithm is used. The m parameter specifies the block (tile) size
m and the epsl parameter is the absolute truncation error used in the construction of the
TLR covariance matrix and the TLR Cholesky factorization. It is worth mentioning that
the adaptive cross approximation (ACA; Bebendorf and Rjasanow 2003) algorithm is used

8 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

for constructing the TLR covariance matrix and that the low-rank matrix addition in the
TLR Cholesky factorization is based on singular value decomposition (SVD); see Börm et al.
(2003b) for a detailed discussion on low-rank matrix addition. Although m =

√
n leads to

the optimal order of complexity, the choice of m should guarantee that most off-diagonal
blocks of dimension m × m in Σ can be closely approximated by the low-rank representation
described in Section 2.2. This requirement motivates a choice of m depending on the structure
of the input sigma or geom but generally, the smaller m is, the more closely the blocks are
approximated by the low-rank representation.
When algorithm is of the class ‘GenzBretz’, the univariate reordering, described in Algo-
rithm 2.2 of Trinh and Genz (2015) is first applied, which reorders the integration variables
and simultaneously computes the Cholesky factor L of Σ. Next, the MVN and the MVT
integrands are computed for each w generated from the Monte Carlo rule through the algo-
rithms described in Section 3 of Genz (1992) and Section 4.2.2 of Genz and Bretz (2009),
respectively. When algorithm is of the class ‘TLRQMC’, the pmvn() and the pmvt() functions
first construct the TLR representation of the covariance matrix based on either sigma or the
optional parameters geom, kernelType, and para. Next, similar to the univariate reordering,
the recursive block reordering is applied to improve the convergence rate, which also implicitly
performs the TLR Cholesky factorization. The algorithms for computing the MVN and MVT
integrands under the TLR representation are described in Cao et al. (2021), where it is also
concluded that the computation costs per sample are proportional to the storage costs of the
Cholesky factor. Therefore, the TLR representation significantly improves the time efficiency
as large off-diagonal blocks are reduced to their low-rank representations.
For both, the pmvn() and the pmvt() functions, the probability estimate from one sample is
the product of n one-dimensional probabilities and we store the mantissa and exponent of the
product after each multiplication separately. This allows the storage of values much smaller
than the machine precision and is also compatible with the computation of the mean and the
standard deviation. Both functions return a numeric value of the estimated probability, either
as its original value or as its logarithm to the base two if uselog2 is TRUE. When uselog2
is FALSE, the returned value has an attribute of the estimation error, which is not available
otherwise because the standard deviation of the logarithm of the probability cannot be directly
estimated. However, this is amenable to multiple instances of Monte Carlo sampling with the
same arguments. Cao et al. (2021) showed that the logarithm of the probability has a much
smaller relative error than the probability itself and hence, is preferred in high dimensions.
The last function to introduce from the tlrmvnmvt package is zorder() that implements
Morton’s ordering in the 2D plane:

zorder(geom)

zorder() accepts a set of locations from the geom parameter, which should be an n-by-2
matrix and returns the vector that matches the old indices to the new indices, e.g., geom <-
geom[zorder(geom)]. This function aims to align the row indices of geom with their spatial
locations, based on which the constructed covariance matrices are likely to possess the low-
rank feature. This is useful when the covariance matrix cannot be constructed internally. For
example, the covariance matrix is equal to the summation of two Matérn covariance matrices.
In such cases, users can first construct a dense covariance matrix based on the order given by
zorder(); then call the pmvn() and the pmvt() functions and set the sigma parameter equal
to the previously computed covariance matrix. The time costs for constructing the dense

Journal of Statistical Software 9

covariance matrix is typically much less than that of the Monte Carlo sampling, for which
the zorder() function practically broadens the class of MVN/MVT probabilities that can be
processed by the TLR methods.

3.2. Computation with dense matrices

In this section, we present the computation of MVN and MVT probabilities with the dense
representation of the covariance matrix. The covariance matrix here is constructed from n
locations on a perturbed grid in the unit square and a Whittle correlation function with
the range parameter β = 0.1. The integration limits, a and b, are generated from uniform
distributions U(−5, −1) and U(1, 5), respectively. We set a fixed seed value for the results to
be reproducable.

R> set.seed(123)
R> nx <- 20
R> ny <- 20
R> n <- nx * ny
R> vecx <- c(1:nx) - 1
R> vecy <- c(1:ny) - 1
R> geom <- cbind(kronecker(vecx, rep(1, ny)), kronecker(rep(1, nx), vecy))
R> geom <- geom + matrix(runif(n * 2), n, 2)
R> geom <- geom / max(nx, ny)
R> a <- runif(n, -5, -1)
R> b <- runif(n, 1, 5)

Since we will use the dense representation of the covariance matrix, we do not need to reorder
the locations in geom. The covariance matrix is constructed with the matern() function from
the geoR package.

R> library("geoR")
R> distM <- as.matrix(dist(geom))
R> covM <- matern(distM, 0.1, 1.0)

Note that the Whittle covariance function is a special case of the Matérn covariance function
from Equation 5 when κ = 1. By default, the uselog2 is FALSE and the estimation error is
returned.

R> library("tlrmvnmvt")
R> sprintf("Time costs: %f seconds", system.time(
+ ret <- pmvn(a, b, 0, covM))[[3]])

[1] "Time costs: 1.203000 seconds"

R> ret

[1] 0.0001066559
attr(,"error")
[1] 3.328883e-06

10 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

The output error is the absolute error, similar to the mvtnorm package but different from the
TruncatedNormal package. Similar results can be produced for MVT probabilities, for which
we need to define the degrees of freedom.

R> nu <- 7
R> sprintf("Time costs: %f seconds", system.time(
+ ret <- pmvt(a, b, 0, nu, covM, uselog2 = TRUE))[[3]])

[1] "Time costs: 1.352000 seconds"

R> ret

[1] -6.987227

The log-probability is computed without an error estimation, which, if desired, can be es-
timated through multiple instances of the same problem. The above two examples can be
also specified with the geometry and the covariance structure. Here, we only use the pmvn()
function as an example.

R> sprintf("Time costs: %f seconds", system.time(
+ ret <- pmvn(a, b, 0, geom = geom, kernelType = "matern",
+ para = c(1, 0.1, 1, 0), algorithm = GenzBretz(N = 737)))[[3]])

[1] "Time costs: 1.723000 seconds"

R> ret

[1] 0.0001073855
attr(,"error")
[1] 3.155405e-06

In this example, we increase the sample size of Monte Carlo sampling from the default 499×20
to 737 × 20. The computed probability is very close to that from the first call of the pmvn()
function and the difference is due to the randomness of Monte Carlo sampling.

3.3. Computation with TLR matrices

In this section, we first show that the computation of relatively low-dimensional MVN and
MVT problems does not benefit much from the TLR methods, with the same examples
used in Section 3.2. Next, we provide two higher-dimensional comparisons that highlight the
computation efficiency of the TLR methods, where we construct the covariance matrix based
on thousands of locations on a perturbed grid. The following code defines the block size to
be 20 and uses the TLR method to compute the same MVN problem that appeared before.

R> sprintf("Time costs: %f seconds", system.time(
+ ret <- pmvn(a, b, 0, covM, algorithm = TLRQMC(m = 20)))[[3]])

Journal of Statistical Software 11

[1] "Time costs: 1.723000 seconds"

R> ret

[1] 0.0001026763
attr(,"error")
[1] 4.489981e-06

For the problem dimension of 400, the TLRQMC algorithm actually has lower efficiency than the
GenzBretz algorithm. This is because the block size m is 20, relative to which the local ranks
cannot be much smaller. The storage and computation savings from the TLRQMC algorithm are
significant only if the local ranks are much smaller than the block size. The same relationship
is also true for MVT probabilities in 400 dimensions.

R> sprintf("Time costs: %f seconds", system.time(
+ ret <- pmvt(a, b, 0, nu, covM, uselog2 = TRUE,
+ algorithm = TLRQMC(m = 20)))[[3]])

[1] "Time costs: 1.740000 seconds"

R> ret

[1] -6.862828

For the same MVN/MVT probability, the result computed with the TLRQMC algorithm is very
close to that computed with the GenzBretz algorithm in Section 3.2. From many similar
numerical experiments, we conclude that the error caused by the TLR approximation is
negligible compared with that from the Monte Carlo sampling. At this point, we clear the
environment variables and build a covariance matrix based on 4,000 locations on a perturbed
grid in (0, 1). We do not choose a purely random geometry because the covariance matrix
may appear singular under the truncation error, ϵ, if there are locations too close to each
other. Here, we use the same correlation function, the Whittle correlation function with a
range parameter of 0.1, and generate the integration limits also from U(−5, −1) and U(1, 5).

R> set.seed(123)
R> n <- 4000
R> geom <- c(0:(n - 1)) / n
R> geom <- geom + runif(n) / n * 0.8
R> distM <- as.matrix(dist(geom))
R> covM <- matern(distM, 0.1, 1.0)
R> a <- runif(n, -5, -1)
R> b <- runif(n, 1, 5)

In the 1D domain, the initial grid has a unit distance of 1/4000, to which we add a random
perturbation whose magnitude is uniformly distributed between zero and 0.8 times the unit
distance. Due to the small unit distance and hence, the strong correlation between neighbor
locations, we set the truncation error to 1e−6 when using the TLRQMC algorithm.

12 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

R> sprintf("Time costs: %f seconds", system.time(
+ ret <- pmvn(a, b, 0, covM,
+ algorithm = TLRQMC(m = 64, epsl = 1e-6)))[[3]])

[1] "Time costs: 10.730000 seconds"

R> ret

[1] 0.01164927
attr(,"error")
[1] 0.0002779126

The block size is chosen to be close to
√

n for the optimal asymptotic complexity as discussed
in Section 2.2. Typically, the covariance matrix from a 1D geometry and a smooth kernel
has a strong low-rank feature, where the TLR representation achieves higher savings than
what it achieves for problems defined in higher spatial dimensions. The computation for
this 4,000-dimensional MVN problem takes less than 11 seconds, which is faster than the
time of the next example where the problem size is the same but the spatial locations are in
2D. For the last problem, we consider a 4,000-dimensional MVN probability based on a 2D
perturbed grid. The original grid is 50×80 with a unit distance of 1/80, and the perturbation
is also uniformly distributed between zero and 0.8 times the unit distance but in both x and
y directions. The covariance matrix is designed to be the summation of a Whittle correlation
matrix and an exponential correlation matrix, both with the range parameter β = 0.1. Note
that to generate the low-rank feature, we index the locations based on Morton’s order before
constructing the two correlation matrices. Since the variance becomes two, we scale the range
from which we generate the integration limits proportionally.

R> set.seed(123)
R> nx <- 50
R> ny <- 80
R> n <- nx * ny
R> vecx <- c(1:nx) - 1
R> vecy <- c(1:ny) - 1
R> geom <- cbind(kronecker(vecx, rep(1, ny)), kronecker(rep(1, nx), vecy))
R> geom <- geom + matrix(runif(n * 2), n, 2) * 0.8
R> geom <- geom / max(nx, ny)
R> idxZ <- zorder(geom)
R> geom <- geom[idxZ,]
R> distM <- as.matrix(dist(geom))
R> covM1 <- matern(distM, 0.1, 1.0)
R> covM2 <- matern(distM, 0.1, 0.5)
R> covM <- covM1 + covM2
R> a <- runif(n, -10, -2)
R> b <- runif(n, 2, 10)

This type of covariance matrix cannot be generated by the tlrmvnmvt package internally, for
which the zorder() function becomes necessary for constructing the low-rank feature. For
this MVN problem, we use a truncation error of 1e−5.

Journal of Statistical Software 13

R> sprintf("Time costs: %f seconds", system.time(
+ ret <- pmvn(a, b, 0, covM,
+ algorithm = TLRQMC(m = 64, epsl = 1e-5)))[[3]])

[1] "Time costs: 29.583000 seconds"

R> ret

[1] 1.754891e-05
attr(,"error")
[1] 2.471964e-06

The local ranks are not shown through the R interface but internally we find that the average
local rank is one for the previous example in 1D space while it is five for this example in 2D
space, which explains the increase of computation time. Specifically, the time costs of both
the recursive block reordering and the Monte Carlo sampling are affected by the average local
rank. It is worth noticing that here, the relative error is bigger than for previous examples
because the “acceptance rate”, defined in Botev (2017), is low. The TruncatedNormal package
can produce smaller relative errors when the “acceptance rates” of the SOV and the TLR
Monte Carlo algorithms are low but it also has significantly higher computation costs.

4. Performance comparison
We use five examples from Botev (2017) and Genton et al. (2018) to compare the perfor-
mances of the three packages, i.e., mvtnorm, TruncatedNormal, and tlrmvnmvt. The first
example features a slow-decaying probability, where the correlation is a constant, 0.5, and the
integration limits are all (−∞, 0). This example was used as the high-dimensional example
in Botev (2017). The performance of the three packages up to 16,384 dimensions is shown in
Table 1, where the accuracy is measured with the relative error of the log-probability. Here,
“N.A.” indicates that either the package does not support the input problem dimension or
the computation cost exceeds our capacity. The same reason for using “N.A.” also applies to
Tables 2 and 3. The true probability under the constant correlation structure is computed
through a one-dimensional integration of

Φn(−∞, b; Σρ) = 1√
2π

∫ ∞

−∞
exp

(
−1

2 t2
) n∏

i=1
Φ
(

bi + √
ρt√

1 − ρ

)
dt, (6)

which can be found in Genz (1992). Here, Σρ denotes the constant correlation matrix whose
correlation is denoted by ρ. This integration is computed by the Gauss quadrature (Golub
and Welsch 1969) rule, specifically, the Gauss-Hermite rule (Liu and Pierce 1994) with 200
nodes. With the gauss.quad() function from the statmod package (Giner and Smyth 2016),
the function for computing Equation 6 is defined as

R> library("statmod")
R> nnode <- 200
R> nodeWeight <- gauss.quad(nnode, "hermite")

14 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

n 16 64 128 512 1,024 2,048 4,096 16,384

mvtnorm 0.0%
0.0s

0.1%
0.2s

0.2%
0.6s

0.5%
4.1s

N.A.
N.A.

N.A.
N.A.

N.A.
N.A.

N.A.
N.A.

TruncatedNormal 0.2%
0.1s

0.1%
0.3s

0.1%
0.9s

0.1%
9.9s

0.1%
38.4s

0.1%
164.1s

N.A.
N.A.

N.A.
N.A.

tlrmvnmvt (GenzBretz) 0.1%
0.0s

0.2%
0.1s

0.4%
0.2s

0.7%
1.2s

1.2%
3.3s

1.7%
10.5s

2.8%
58.3s

N.A.
N.A.

tlrmvnmvt (TLRQMC) 0.1%
0.0s

0.2%
0.1s

0.4%
0.2s

0.7%
1.1s

1.4%
2.2s

1.9%
6.0s

3.8%
21.5s

5.7%
133.8s

Table 1: Performance analysis under the constant correlation structure. The lower integration
limits are set to −∞, the upper integration limits are set to 0.0 and the constant correlation
to ρ = 0.5. The default sample sizes are used for all functions involved. In each cell, the upper
row shows the relative error of the log-probability and the lower row shows the computation
time. The results are the average over 10 replicates.

R> intfct <- function(x, b, rho) {
+ y <- rep(0, length(x))
+ for (i in 1:length(x)) {
+ y[i] <- 1 / sqrt(pi) * prod(pnorm((b + sqrt(2 * rho) * x[i]) /
+ sqrt(1 - rho)))
+ }
+ return(y)
+ }
R> constRhoProb <- function(b, rho) {
+ sum(nodeWeight$weights * intfct(nodeWeight$nodes, b, rho))
+ }

The constRhoProb() function is used to compute the true probabilities. The constant cor-
relation structure is one of the ideal cases for low-rank representations that include the TLR
structure, since all off-diagonal blocks have a numerical rank of one. All methods have rel-
atively low errors up to 2,048 dimensions, with TruncatedNormal being the most accurate.
The TLRQMC algorithm produces higher relative error than the GenzBretz algorithm because
the recursive block reordering, used in the former, reorders only on the block level, which,
heuristically, increases the convergence rate less than the univariate reordering used in the
latter. The tlrmvnmvt package has the lowest time cost and the TLR method, specifically,
finishes the estimation in 16,384 dimensions within one hundred seconds. All experiments
in this paper are run on an Intel Xeon E5-2680 v4 @ 2.40GHz CPU; see the section on the
computation details at the end of the paper for the versions of packages used.
We use the relative error of the log-probability because the relative error of the probability
is no longer informative. As shown in Botev (2017), the relative error for tail probabilities
already becomes large in moderately high dimensions, e.g., hundreds of dimensions, if the
Monte Carlo methods without importance sampling are used. This may lead to the impression
that probability estimates become meaningless in high dimensions but Cao et al. (2021) claim
that the estimates of the logarithm of the probabilities are much more robust because the
distribution of the probability estimates is skewed, and show that their relative errors are

Journal of Statistical Software 15

n 16 64 128 512 1,024 2,048 4,096 16,384

mvtnorm 0.0%
0.0s

0.3%
0.2s

0.7%
0.5s

2.8%
4.1s

N.A.
N.A.

N.A.
N.A.

N.A.
N.A.

N.A.
N.A.

TruncatedNormal 0.1%
0.1s

0.1%
0.3s

0.1%
0.7s

0.1%
8.5s

0.1%
35.5s

0.1%
148.1s

N.A.
N.A.

N.A.
N.A.

tlrmvnmvt (GenzBretz) 0.1%
0.0s

0.8%
0.1s

1.0%
0.2s

4.4%
1.1s

6.8%
2.9s

11.2%
9.2s

17.8%
41.1s

N.A.
N.A.

tlrmvnmvt (TLRQMC) 0.0%
0.0s

0.5%
0.1s

1.4%
0.2s

4.4%
0.9s

9.0%
1.9s

15.4%
4.4s

17.6%
14.4s

108.4%
105.3s

Table 2: Performance analysis under the constant correlation structure. The lower integration
limits are set to −∞, the upper integration limits are set to −1.0 and the constant correlation
to ρ = 0.5. The default sample sizes are used for all functions involved except for n = 16,384,
where the sample size is 4e4. In each cell, the upper row shows the relative error of the
log-probability and the lower row shows the computation time. The results are the average
over 10 replicates.

usually small. We choose the relative error of the log-probability to show that the probability
estimates are still close to the true values in terms of orders of magnitude and that the
tlrmvnmvt package provides a viable option for high-dimensional applications with reasonably
high accuracy requirements.
The second example considers tail probabilities, changing the integration limits from (−∞, 0)
used in Table 1 to (−∞, −1), which becomes identical to the Example IV in Botev (2017).
The relative errors of the log-probabilities and computation times are listed in Table 2. This
problem design is considered more challenging than the first example because the integration
regions are farther towards the tail. Compared with Table 1, the relative error increases
faster with n, for which we use four times the default sample size in 16,384 dimensions. The
methods from the tlrmvnmvt package become less reliable when the problem size exceeds two
thousand. Based on these results, the accuracy of the TruncatedNormal package is the least
affected by the shift of the integration region towards the tail.
The third example uses the same integration region as the second one but increases the con-
stant correlation ρ to 0.8, which resembles Table 8 in Genton et al. (2018). The corresponding
results for ρ = 0.8 are shown in Table 3. The relative errors become smaller than those in
Tables 1 and 2. By increasing the correlation strength, the Monte Carlo sampling has a
higher convergence rate, which is possibly due to the reduced number of effective integration
variables. The first three examples consider only the constant correlation scenarios, where the
true probability can be efficiently and accurately solved with Equation 6. The logarithm of
such computed true probabilities is used as the benchmark for computing the relative errors.
For these three examples, we do not experiment with the MVT functions because of the lack
of their true probabilities.
The fourth example uses randomly generated covariance matrices as described in Davies and
Higham (2000) and defines the integration limits to be (−∞, 0.5), which is similar to Example
III in Botev (2017) but experiments are in 1,000 dimensions. The code snippet for generating
random correlation matrices is based on the rGivens() function from the fungible package
(Waller 2021).

16 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

n 16 64 128 512 1,024 2,048 4,096 16,384

mvtnorm 0.0%
0.0s

0.1%
0.2s

0.1%
0.5s

0.1%
4.1s

N.A.
N.A.

N.A.
N.A.

N.A.
N.A.

N.A.
N.A.

TruncatedNormal 0.1%
0.1s

0.1%
0.3s

0.1%
0.7s

0.1%
8.5s

0.2%
35.1s

0.2%
147.6s

N.A.
N.A.

N.A.
N.A.

tlrmvnmvt (GenzBretz) 0.0%
0.0s

0.1%
0.1s

0.1%
0.2s

0.3%
1.1s

0.4%
2.9s

0.4%
9.3s

0.4%
40.6s

N.A.
N.A.

tlrmvnmvt (TLRQMC) 0.0%
0.0s

0.1%
0.1s

0.2%
0.2s

0.3%
0.9s

0.3%
1.9s

0.4%
4.4s

0.6%
14.4s

1.2%
105.4s

Table 3: Performance analysis under the constant correlation structure. The lower integration
limits are set to −∞, the upper integration limits are set to −1.0 and the constant correlation
to ρ = 0.8. The default sample sizes are used for all functions involved. In each cell, the upper
row shows the relative error of the log-probability and the lower row shows the computation
time. The results are the average over 10 replicates.

Min 1st quartile Median 3rd quartile Max Time

MVN probabilities

mvtnorm 0.23% 0.28% 0.38% 0.45% 0.70% 12.3s
TruncatedNormal 0.03% 0.05% 0.07% 0.09% 0.12% 27.1s
tlrmvnmvt (GenzBretz) 0.23% 0.35% 0.40% 0.51% 0.56% 2.7s

MVT probabilities

mvtnorm 4.82% 5.64% 6.24% 7.07% 9.35% 12.3s
TruncatedNormal 0.02% 0.03% 0.03% 0.04% 0.06% 41.7s
tlrmvnmvt (GenzBretz) 4.35% 6.93% 7.89% 8.90% 11.55% 2.7s

Table 4: Quartiles of the relative errors of the log-probabilities under random correlation
matrices in 1,000 dimensions. The correlation matrix is randomly generated based on Davies
and Higham (2000). The lower integration limits are set to −∞ and the upper integration
limits are set to 0.5. The degrees of freedom for MVT probabilities are ν = 7. The default
sample sizes are used for all functions involved. The statistics are computed from 20 simulated
problems and the relative errors are based on 10 estimations of each problem.

R> library("fungible")
R> lambda <- runif(n)
R> lambda <- lambda * n / sum(lambda)
R> covM <- rGivens(lambda, Seed = i)$R

Here, i is the index of the current correlation matrix under simulation, ranging from 1 to 20.
The five-number summaries and the computation times are shown in Table 4. We also include
the MVT functions from the three packages, whose names are all pmvt(). The methods from
the mvtnorm and tlrmvnmvt packages perform much better for MVN probabilities than for
MVT probabilities. We reckon that the former has a higher convergence rate than the latter
because the MVT algorithm (Genz and Bretz 1999) with univariate reordering is more affected
by the negative correlation randomly generated. The relative errors of all three packages are

Journal of Statistical Software 17

Min 1st quartile Median 3rd quartile Max Time

MVN probabilities

mvtnorm 0.11% 0.18% 0.20% 0.23% 0.33% 11.8s
TruncatedNormal 0.13% 0.20% 0.26% 0.34% 0.43% 24.2s
tlrmvnmvt (GenzBretz) 0.13% 0.28% 0.36% 0.38% 0.50% 3.1s

MVT probabilities

mvtnorm 0.34% 0.45% 0.50% 0.60% 0.86% 11.9s
TruncatedNormal 0.15% 0.19% 0.25% 0.29% 0.41% 34.1s
tlrmvnmvt (GenzBretz) 0.40% 0.64% 0.79% 0.93% 1.29% 3.1s

Table 5: Quartiles of the relative errors of the log-probabilities under Whittle correlation
matrices in 900 dimensions. The correlation matrix is generated based on a 30×30 perturbed
grid in the unit square. The Whittle correlation function has a range parameter β = 0.1.
The lower integration limits are independently generated from U(−5, −1) and the upper
integration limits are independently generated from U(1, 5). The degrees of freedom for
MVT probabilities are ν = 7. The default sample sizes are used for all functions involved.
The statistics are computed from 20 simulated problems, each with a different geometry and
integration limits, and the relative errors are based on 10 estimations of each problem.

again low for MVN probabilities, which renders the package tlrmvnmvt the preferred choice
due to its shorter computation times. For applications involving MVT probabilities with
irregular correlation, the TruncatedNormal package is a more reliable option.
The last example assumes a 2D Whittle correlation structure that is used in Section 3 of this
paper and in Table 3 of Genton et al. (2018). The correlation matrices such generated are more
representative than the previous four for spatial covariance matrices. Unlike Genton et al.
(2018), we simulate integration limits from U(−5, −1) and U(1, 5), which is more challenging
as the true probabilities become smaller. The performance of the three packages in 900
dimensions is summarized in Table 5. The difference in the convergence rate between MVN
probabilities and MVT probabilities is less obvious than that in Table 4, which indicates
that the Monte Carlo methods with variable reordering for MVT probabilities work more
favorably under positive correlation. The relative errors are small for all methods while the
computation time of the tlrmvnmvt package is less than a quarter of that of the mvtnorm
package and approximately one twentieth of that of the TruncatedNormal package. We think
that overall, the tlrmvnmvt package has a good tradeoff between accuracy and computation
time for this category of MVN/MVT problems.
For Tables 4 and 5, the true probabilities are no longer available and hence, for each simulated
problem, we repeat the computation for ten times, based on which the standard deviation
of the log-probabilities are computed. This standard deviation is then used to compute the
relative error of the log-probabilities. It is also worth mentioning that the TLR methods are
not included in these two tables because the random correlation matrix does not have the
low-rank feature while under the 2D Whittle correlation structure, the computation savings
from the TLR representation is not significant in under 1,000 dimensions. Figure 3 shows the
scalability of the GenzBretz and the TLRQMC algorithms, featuring the time growth with n
when the Monte Carlo sample size is fixed at 1e4.

18 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

0.01

0.47

16.90

609.49

10 20 40 80 160 320 640 1000 2000 4000
n

C
om

pu
ta

tio
n

tim
e

(s
)

mvtnorm
pmvn.genz
TruncatedNormal

(a)

0.14

3.33

77.59

1807.46

64 121 225 441 841 1681 3249 6400 1638432400 65536
n

C
om

pu
ta

tio
n

tim
e

(s
)

pmvn.genz
pmvn.tlr

(b)

Figure 3: Computation times of MVN probabilities in n dimensions under (a) the random
correlation structure and (b) the 2D Whittle correlation structure. For (a), the problems are
simulated in the same way as those in Table 4. For (b), the problems are simulated in the
same way as those in Table 5 but in higher dimensions with an additional nugget effect of
0.05. The underlying geometry is a

√
n ×

√
n perturbed grid in the unit square. Both x and

y-axes are on the logarithm scale.

Figure 3(a) suggests that the pmvn() function may serve as a more efficient implementation
of the pmvnorm() function from the mvtnorm package when the GenzBretz algorithm is used
and that the cost of finding the proposal density (Botev 2017) used in the TruncatedNormal
package grows quickly with n. Figure 3(b) compares the efficiencies of the GenzBretz and
the TLRQMC algorithms under the 2D Whittle correlation structure. The difference in time is
not significant when n < 1,000 but their ratio increases to 20 when n = 16,384. We conclude
from the five examples above that the TLRQMC algorithms from the tlrmvnmvt package can
efficiently estimate MVN/MVT probabilities in tens of thousands of dimensions but their
accuracy may depend on the integration region and the correlation structure. For tail prob-
abilities with weak correlation strength, the TruncatedNormal package is probably the best
option. However, for most other cases, the functions in the tlrmvnmvt package can be the
preferred choice, especially for high-dimensional applications.

5. Application in finding excursion sets
For applications that need to compute MVN probabilities, their models are often simplified to
be computationally feasible in high dimensions. Bolin and Lindgren (2015) provided such an
example that computed the excursion sets of a latent Gaussian random field. In their second
example, they created a latent Gaussian random field in 2D and approximated it with a
Gaussian Markov random field (GMRF). Although this approximation made the computation
feasible in 6,400 dimensions, the accuracy was shown to be one-order-of-magnitude lower than
their first example, where the exact posterior distribution was used. In this section, we show
that with the tlrmvnmvt package, we can compute the excursion sets of the 2D latent Gaussian

Journal of Statistical Software 19

random field with its exact posterior distribution and that the accuracy of our excursion sets
reaches the same level as the first example in Bolin and Lindgren (2015).
Using the definition in Bolin and Lindgren (2015), a positive level u excursion set with prob-
ability 1 − α is defined by:

E+
u,α(X) = argmaxD{|D| : P{D ⊆ A+

u (X)} ≥ 1 − α},

where A+
u (f) = {s ∈ Ω; f(s) > u} and f is a deterministic function in Ω. The negative ex-

cursion sets are symmetrically defined and not elaborated upon here. In the implementation,
E+

u,α(X) is computed as the largest D that satisfies P{D ⊆ A+
u (X)} ≥ 1 − α in a family of

expanding sets:

D+
1 (ρ) = {s; P{X(s) > u} ≥ 1 − ρ},

which is referred to as the one-parameter family in Bolin and Lindgren (2015). Based on
E+

u,α(X), the positive excursion function is defined as:

F +
u (s) = sup{1 − α; s ∈ E+

u,α(X)},

which can be significantly different from the posterior marginal exceedance probability. To
compute E+

u,α(X) and F +
u (s), we need to estimate P{D ⊆ A+

u (X)} for all D in the chosen
one-parameter family, whose size can range from hundreds to thousands. Therefore, the
efficient estimation of P{D ⊆ A+

u (X)} is crucial to the computation of the excursion sets.
The structure of the latent Gaussian random field is the same as that in Bolin and Lindgren
(2015). Specifically, X(s) is a Gaussian random field with a zero mean structure and the
Matérn covariance structure, described in Equation 5, with σ = 1, β =

√
2/20, κ = 1, and

δ = 0. Our goal is to predict one realization of this random field on a 80 × 80 grid in the unit
square based on one thousand observations on this grid under the additive Gaussian noise
N(0, 0.52). Using y to denote the observations, X(s) | y is the 2D latent Gaussian random
field whose excursion sets are of interest. The posterior distribution of X(s) | y is another
MVN distribution with

Qpost = Q + 1
ϵ2 A⊤A,

µpost = µ + 1
ϵ2 Q−1

postA⊤(y − Aµ),

where µ = 0 and Q are the mean and the precision matrix of x, µpost and Qpost are
the posterior mean and precision matrix of x | y, A is the matrix such that the coefficients
in y − Ax have i.i.d. N(0, ϵ2) distributions and ϵ = 0.5 is the magnitude of the additive
Gaussian noise. Here, we use x for the realization of X(s) on the grid. When the level u is
zero, the posterior marginal probability, P{X(s) > 0 | y}, and the positive excursion function,
F +

0 (s), are shown in Figure 4. The posterior marginal probability is greater than or equal
to the positive excursion function and in fact, E+

u,0.99(X | y) ⊆ D+
1 (0.05), which indicates

a strong mismatch between P{X(s) > 0 | y} and F +
0 (s). Similar to Bolin and Lindgren

(2015), we simulate 50,000 realizations from X(s) | y and compute the empirical probability
of min({X(s); s ∈ E+

0,α(X)}) > 0, denoted by p̂(α). Figure 5 describes the difference between
p̂(α) and 1 − α as a function of 1 − α. The differences are smaller than those in Bolin and

20 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

(a)

(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: (a) The posterior marginal probability for P{X(s) > 0 | y} and (b) the positive
excursion function F +

0 (s).

0.0 0.2 0.4 0.6 0.8

−
0.

00
4

−
0.

00
2

0.
00

0
0.

00
2

1 − α

1
−

α
−

p̂(
α)

Figure 5: The difference between the empirical probability of min({X(s); s ∈ E+
0,α(X)}) > 0,

denoted by p̂(α), and 1 − α.

Lindgren (2015) by one-order of magnitude, which highlights the extra accuracy gained from
using the exact posterior distribution over using the GMRF approximation.
It is worth mentioning that the TLRQMC algorithm is used for computing E+

0,α(X) and F +
0 (s)

because the low-rank feature is strong if we order the locations on the 80 × 80 grid with the
zorder() function. The run time is reduced by a factor between two and three compared with
that using the GenzBretz algorithm. For higher-dimensional applications, this computation
saving is expected to be more significant. The following code snippet is used to generate the
observations Y.

Journal of Statistical Software 21

R> n.obs <- 1000
R> sigma.e <- 0.5
R> m <- 80; n <- m * m
R> y <- x <- seq(from = 0, to = 1, length.out = m)
R> geom <- cbind(kronecker(x, rep(1, m)), kronecker(rep(1, m), y))
R> odrMorton <- zorder(geom)
R> geom <- geom[odrMorton,]
R> distM <- as.matrix(dist(geom))
R> covM <- matern(distM, phi = sqrt(2)/20, kappa = 1)
R> cholM <- t(chol(covM))
R> mu <- rep(0, n)
R> set.seed(120)
R> y0 <- as.vector(cholM %*% rnorm(n)) + mu
R> obsIdx <- sample(1:n, n.obs)
R> Y <- y0[obsIdx] + rnorm(n.obs) * sigma.e

The next code snippet constructs the parameters for the posterior distribution of X(s), which
is a MVN distribution with mean mu.post and covariance matrix covM.

R> A <- matrix(0, n.obs, n)
R> A[cbind(seq_len(n.obs), obsIdx)] <- 1
R> Q <- chol2inv(chol(covM))
R> Q.post <- Q
R> Q.post <- Q.post + crossprod(A) / (sigma.e^2)
R> mu.post <- as.vector(mu + solve(Q.post,
+ (t(A) %*% (Y - mu[obsIdx]))/(sigma.e^2)))
R> covM <- chol2inv(chol(Q.post))

Knowing the posterior distribution, the marginal probability at each location on the grid can
be readily achieved to build the one-parameter family, D+

1 (ρ), based on which the excursion
function is computed.

R> pMar <- 1 - pnorm(0, mean = mu.post, sd = sqrt(diag(covM)))
R> FMar <- rep(0, n)
R> ttlNum <- sum(pMar > 0.95)
R> pMarOdr <- order(pMar, decreasing = TRUE)
R> numVec <- round(seq(from = 3180, to = 1000, by = -10))
R> for (num in numVec) {
+ selectIdx <- pMarOdr[1 : num]
+ tmpLower <- rep(-Inf, n)
+ tmpLower[selectIdx] <- 0
+ FMar[selectIdx] <- pmvn.tlr(lower = tmpLower, mean = mu.post,
+ sigma = covM, m = 80)[[1]]
+ }

FMar stores the excursion function F +
0 (s) and E+

0,α(X) can be simultaneously constructed as
{s; F +

0 (s) ≥ 1 − α}.

22 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

6. Summary and discussion
We introduced the R package tlrmvnmvt that computes MVN/MVT probabilities with the
TLR Monte Carlo methods described in Cao et al. (2021). This package also provides a more
efficient implementation of the SOV methods introduced in Genz (1992). Through comparison
with the two state-of-the-art packages, i.e., the mvtnorm and the TruncatedNormal packages,
we conclude that our package has the highest time efficiency and is probably the only viable
option in thousands of dimensions. The TLR Monte Carlo methods improve the computation
efficiency compared with the dense SOV methods but require the low-rank feature. Fortu-
nately, the covariance matrices constructed from a spatial domain under common covariance
functions typically possess this block-level low-rank feature.
The relative error of the probability estimates may increase quickly with the number of dimen-
sions, depending on the covariance structure and the integration limits. However, we showed
that the relative error of the log-probability is usually much smaller than that of the proba-
bility estimates. Even for cases where the relative error of the probability estimates exceeds
50%, the relative error of the log-probability can still be small, e.g., below 1%. The tlrmvnmvt
and the mvtnorm packages work less favorably compared with the TruncatedNormal package
when solving tail probabilities or probabilities with negative correlation structures. Although
the TruncatedNormal package produces the most accurate results among the three, it has
the highest time costs and is typically not applicable in high dimensions.
We used the computation of the excursion sets of a latent Gaussian random field (Bolin and
Lindgren 2015) as an example to which the tlrmvnmvt package can be applied. Bolin and
Lindgren (2015) approximated the posterior MVN distribution with a Gaussian Markov ran-
dom field to make the computation of MVN probabilities feasible in thousands of dimensions.
With the tlrmvnmvt package, we utilized the low-rank feature of the posterior covariance
matrix and computed the excursion sets using the exact posterior distribution. We showed
that the accuracy of the excursion sets was improved by one order of magnitude compared
with Bolin and Lindgren (2015).

Computational details
The results in this paper were obtained using R 3.6.3 with the fields 10.3 package, the fun-
gible 1.95.2 package, the geoR 1.8.1 package, the ggplot2 3.2.1 package, the mvtnorm 1.0.11
package, the scales 1.1.0 package, the statmod 1.4.33 package, the tlrmvnmvt 1.1.1 package,
and the TruncatedNormal 2.1 package. R itself and all packages used are available from
CRAN at https://CRAN.R-project.org/.

References

Akbudak K, Ltaief H, Mikhalev A, Keyes D (2017). “Tile Low Rank Cholesky Factorization
for Climate/Weather Modeling Applications on Manycore Architectures.” In International
Supercomputing Conference, pp. 22–40. Springer-Verlag.

Bates D, Eddelbuettel D (2013). “Fast and Elegant Numerical Linear Algebra Using the
RcppEigen Package.” Journal of Statistical Software, 52(5), 1–24. doi:10.18637/jss.
v052.i05.

https://CRAN.R-project.org/
https://doi.org/10.18637/jss.v052.i05
https://doi.org/10.18637/jss.v052.i05

Journal of Statistical Software 23

Bebendorf M, Rjasanow S (2003). “Adaptive Low-Rank Approximation of Collocation Ma-
trices.” Computing, 70(1), 1–24. doi:10.1007/s00607-002-1469-6.

Bolin D, Lindgren F (2015). “Excursion and Contour Uncertainty Regions for Latent Gaussian
Models.” Journal of the Royal Statistical Society B, 77(1), 85–106. doi:10.1111/rssb.
12055.

Börm S, Grasedyck L, Hackbusch W (2003a). “Hierarchical Matrices.” Lecture note 21,
Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig. URL https:
//www.mis.mpg.de/de/publications/andere-reihen/ln/lecturenote-2103.html.

Börm S, Grasedyck L, Hackbusch W (2003b). “Introduction to Hierarchical Matrices with
Applications.” Engineering Analysis with Boundary Elements, 27(5), 405–422. doi:10.
1016/s0955-7997(02)00152-2.

Botev ZI (2017). “The Normal Law Under Linear Restrictions: Simulation and Estimation
via Minimax Tilting.” Journal of the Royal Statistical Society B, 79(1), 125–148. doi:
10.1111/rssb.12162.

Botev ZI, Belzile L (2019). TruncatedNormal: Truncated Multivariate Normal and Stu-
dent Distributions. R package version 2.1, URL https://CRAN.R-project.org/package=
TruncatedNormal.

Cao J, Genton MG, Keyes DE, Turkiyyah GM (2019). “Hierarchical-Block Conditioning
Approximations for High-Dimensional Multivariate Normal Probabilities.” Statistics and
Computing, 29(3), 585–598. doi:10.1007/s11222-018-9825-3.

Cao J, Genton MG, Keyes DE, Turkiyyah GM (2021). “Exploiting Low Rank Covariance
Structures for Computing High-Dimensional Normal and Student-t Probabilities.” Statistics
and Computing, 31(1), 1–16. doi:10.1007/s11222-020-09978-y.

Cao J, Genton MG, Keyes DE, Turkiyyah GM (2022). tlrmvnmvt: Low-Rank Methods for
MVN and MVT Probabilities. R package version 1.1.1, URL https://CRAN.R-project.
org/package=tlrmvnmvt.

Craig P (2008). “A New Reconstruction of Multivariate Normal Orthant Probabilities.” Jour-
nal of the Royal Statistical Society B, 70(1), 227–243. doi:10.1111/j.1467-9868.2007.
00625.x.

Davies PI, Higham NJ (2000). “Numerically Stable Generation of Correlation Matrices
and Their Factors.” BIT Numerical Mathematics, 40(4), 640–651. doi:10.1023/a:
1022384216930.

Davison AC, Huser R, Thibaud E (2013). “Geostatistics of Dependent and Asymptoti-
cally Independent Extremes.” Mathematical Geosciences, 45(5), 511–529. doi:10.1007/
s11004-013-9469-y.

Durante D (2019). “Conjugate Bayes for Probit Regression via Unified Skew-Normal Distri-
butions.” Biometrika, 106(4), 765–779. doi:10.1093/biomet/asz034.

Eddelbuettel D, Balamuta JJ (2018). “Extending R with C++: A Brief Introduction to
Rcpp.” The American Statistician, 72(1), 28–36.

https://doi.org/10.1007/s00607-002-1469-6
https://doi.org/10.1111/rssb.12055
https://doi.org/10.1111/rssb.12055
https://www.mis.mpg.de/de/publications/andere-reihen/ln/lecturenote-2103.html
https://www.mis.mpg.de/de/publications/andere-reihen/ln/lecturenote-2103.html
https://doi.org/10.1016/s0955-7997(02)00152-2
https://doi.org/10.1016/s0955-7997(02)00152-2
https://doi.org/10.1111/rssb.12162
https://doi.org/10.1111/rssb.12162
https://CRAN.R-project.org/package=TruncatedNormal
https://CRAN.R-project.org/package=TruncatedNormal
https://doi.org/10.1007/s11222-018-9825-3
https://doi.org/10.1007/s11222-020-09978-y
https://CRAN.R-project.org/package=tlrmvnmvt
https://CRAN.R-project.org/package=tlrmvnmvt
https://doi.org/10.1111/j.1467-9868.2007.00625.x
https://doi.org/10.1111/j.1467-9868.2007.00625.x
https://doi.org/10.1023/a:1022384216930
https://doi.org/10.1023/a:1022384216930
https://doi.org/10.1007/s11004-013-9469-y
https://doi.org/10.1007/s11004-013-9469-y
https://doi.org/10.1093/biomet/asz034

24 tlrmvnmvt: Low-Rank Methods for Multivariate Normal and t Probabilities in R

Eddelbuettel D, Emerson JW, Kane MJ (2021). BH: Boost C++ Header Files. R package
version 1.78.0-0, URL https://CRAN.R-project.org/package=BH.

Genton MG, Keyes DE, Turkiyyah G (2018). “Hierarchical Decompositions for the Compu-
tation of High-Dimensional Multivariate Normal Probabilities.” Journal of Computational
and Graphical Statistics, 27(2), 268–277. doi:10.1080/10618600.2017.1375936.

Genton MG, Ma Y, Sang H (2011). “On the Likelihood Function of Gaussian Max-Stable
Processes.” Biometrika, 98(2), 481–488. doi:10.1093/biomet/asr020.

Genz A (1992). “Numerical Computation of Multivariate Normal Probabilities.” Journal
of Computational and Graphical Statistics, 1(2), 141–149. doi:10.1080/10618600.1992.
10477010.

Genz A, Bretz F (1999). “Numerical Computation of Multivariate t-Probabilities with Ap-
plication to Power Calculation of Multiple Contrasts.” Journal of Statistical Computation
and Simulation, 63(4), 103–117. doi:10.1080/00949659908811962.

Genz A, Bretz F (2009). Computation of Multivariate Normal and t Probabili-
ties. Lecture Notes in Statistics. Springer-Verlag, Berlin, Heidelberg. doi:10.1007/
978-3-642-01689-9.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2021). mvtnorm: Multivari-
ate Normal and t Distributions. R package version 1.1-3, URL https://CRAN.R-project.
org/package=mvtnorm.

Giner G, Smyth GK (2016). “statmod: Probability Calculations for the Inverse Gaussian
Distribution.” The R Journal, 8(1), 339–351. doi:10.32614/rj-2016-024.

Golub GH, Welsch JH (1969). “Calculation of Gauss Quadrature Rules.” Mathematics of
Computation, 23(106), 221–230. doi:10.1090/s0025-5718-69-99647-1.

Guennebaud G, Jacob B (2010). “Eigen V3.” URL https://eigen.tuxfamily.org/.

Liu Q, Pierce DA (1994). “A Note on Gauss-Hermite Quadrature.” Biometrika, 81(3), 624–
629. doi:10.1093/biomet/81.3.624.

Mary T (2017). Block Low-Rank Multifrontal Solvers: Complexity, Performance, and Scala-
bility. Ph.D. thesis, King Abdullah University of Science and Technology.

Miwa T, Hayter AJ, Kuriki S (2003). “The Evaluation of General Non-Centred Orthant
Probabilities.” Journal of the Royal Statistical Society B, 65(1), 223–234. doi:10.1111/
1467-9868.00382.

Nomura N (2014). “Computation of Multivariate Normal Probabilities with Polar Coordinate
Systems.” Journal of Statistical Computation and Simulation, 84(3), 491–512. doi:10.
1080/00949655.2012.717224.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ribeiro Jr PJ, Diggle PJ (2020). geoR: Analysis of Geostatistical Data. R package version
1.8-1, URL https://CRAN.R-project.org/package=geoR.

https://CRAN.R-project.org/package=BH
https://doi.org/10.1080/10618600.2017.1375936
https://doi.org/10.1093/biomet/asr020
https://doi.org/10.1080/10618600.1992.10477010
https://doi.org/10.1080/10618600.1992.10477010
https://doi.org/10.1080/00949659908811962
https://doi.org/10.1007/978-3-642-01689-9
https://doi.org/10.1007/978-3-642-01689-9
https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=mvtnorm
https://doi.org/10.32614/rj-2016-024
https://doi.org/10.1090/s0025-5718-69-99647-1
https://eigen.tuxfamily.org/
https://doi.org/10.1093/biomet/81.3.624
https://doi.org/10.1111/1467-9868.00382
https://doi.org/10.1111/1467-9868.00382
https://doi.org/10.1080/00949655.2012.717224
https://doi.org/10.1080/00949655.2012.717224
https://www.R-project.org/
https://CRAN.R-project.org/package=geoR

Journal of Statistical Software 25

Richtmyer RD (1951). “The Evaluation of Definite Integrals, and a Quasi-Monte-Carlo
Method Based on the Properties of Algebraic Numbers.” Technical report, Los Alamos
Scientific Lab.

Schling B (2011). The Boost C++ Libraries. XML Press.

Trinh G, Genz A (2015). “Bivariate Conditioning Approximations for Multivariate
Normal Probabilities.” Statistics and Computing, 25(5), 989–996. doi:10.1007/
s11222-014-9468-y.

Waller NG (2021). fungible: Psychometric Functions from the Waller Lab. R package version
1.99, URL https://CRAN.R-project.org/package=fungible.

Weisbecker C (2013). Improving Multifrontal Solvers by Means of Algebraic Block Low-Rank
Representations. Ph.D. thesis, King Abdullah University of Science and Technology.

Xia J, Gu M (2010). “Robust Approximate Cholesky Factorization of Rank-Structured Sym-
metric Positive Definite Matrices.” SIAM Journal on Matrix Analysis and Applications,
31(5), 2899–2920. doi:10.1137/090750500.

Affiliation:
Jian Cao, Marc G. Genton, David E. Keyes
CEMSE Division, Extreme Computing Research Center
King Abdullah University of Science and Technology
Thuwal 23955-6900, Saudi Arabia
E-mail: jian.cao@kaust.edu.sa, marc.genton@kaust.edu.sa,

david.keyes@kaust.edu.sa

George M. Turkiyyah
Department of Computer Science
American University of Beirut
Beirut, Lebanon
E-mail: gt02@aub.edu.lb

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

January 2022, Volume 101, Issue 4 Submitted: 2020-03-11
doi:10.18637/jss.v101.i04 Accepted: 2021-02-16

https://doi.org/10.1007/s11222-014-9468-y
https://doi.org/10.1007/s11222-014-9468-y
https://CRAN.R-project.org/package=fungible
https://doi.org/10.1137/090750500
mailto:jian.cao@kaust.edu.sa
mailto:marc.genton@kaust.edu.sa
mailto:david.keyes@kaust.edu.sa
mailto:gt02@aub.edu.lb
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v101.i04

	Introduction
	TLR Monte Carlo with block reordering
	Monte Carlo for MVN and MVT
	TLR representation for covariance matrices
	Block reordering

	Package structure and implementation
	Function interfaces
	Computation with dense matrices
	Computation with TLR matrices

	Performance comparison
	Application in finding excursion sets
	Summary and discussion

