
JSS Journal of Statistical Software
January 2022, Volume 101, Issue 6. doi: 10.18637/jss.v101.i06

The JuliaConnectoR: A Functionally-Oriented
Interface for Integrating Julia in R

Stefan Lenz
University of Freiburg

Maren Hackenberg
University of Freiburg

Harald Binder
University of Freiburg

Abstract

Like many groups considering the new programming language Julia, we faced the
challenge of accessing the algorithms that we develop in Julia from R. Therefore, we
developed the R package JuliaConnectoR, available from the Comprehensive R Archive
Network (CRAN), the official R package repository, and from GitHub (https://github.
com/stefan-m-lenz/JuliaConnectoR), in particular for making advanced deep learning
tools available. For maintainability and stability, we decided to base communication
between R and Julia on the transmission control protocol, using an optimized binary
format for exchanging data. Our package also specifically contains features that allow for
a convenient interactive use in R. This makes it easy to develop R extensions with Julia
or to simply call functionality from Julia packages in R. Interacting with Julia objects and
calling Julia functions becomes user-friendly, as Julia functions and variables are made
directly available as objects in the R workspace. We illustrate the further features of
our package with code examples, and also discuss advantages over the two alternative
packages JuliaCall and XRJulia. Finally, we demonstrate the usage of the package with
a more extensive example for employing neural ordinary differential equations, a recent
deep learning technique that has received much attention. This example also provides
more general guidance for integrating deep learning techniques from Julia into R.

Keywords: language bridge, R, Julia, deep learning, neural ordinary differential equations.

1. Introduction

R (R Core Team 2021a) and Julia (Bezanson, Edelman, Karpinski, and Shah 2017) are two
high-level programming languages that are used in particular for statistics and numerical
analysis. Connecting Julia and R is particularly interesting because the two languages can
complement each other. While the history of R dates back to 1976 (Becker and Chambers
1984), the first Julia release was in 2013 (Shah 2013). As can be expected with its long

https://doi.org/10.18637/jss.v101.i06
https://orcid.org/0000-0001-9135-1743
https://orcid.org/0000-0003-4403-634X
https://orcid.org/0000-0002-5666-8662
https://github.com/stefan-m-lenz/JuliaConnectoR
https://github.com/stefan-m-lenz/JuliaConnectoR

2 JuliaConnectoR: Integrating Julia in R

history, R offers a much larger number of packages for statistical methods than Julia. Yet,
Julia also has packages that offer features that are not available in R. For example, train-
ing neural differential equations (Chen, Rubanova, Bettencourt, and Duvenaud 2018), which
will be shown in an example later, is not directly possible in R at the moment. Another
example where R users can benefit from developments in Julia is the Julia package Differen-
tialEquations (Rackauckas and Nie 2017), which also is available via the wrapper package
diffeqr in R (Rackauckas 2021). Julia was created with a strong emphasis on computational
speed, as the authors were not satisfied with the performance of existing scientific computing
languages (Bezanson et al. 2017). This makes Julia particularly interesting for statisticians
who have to deal with computationally intensive tasks. Notable Julia packages that exploit
the performance advantages of Julia are the optimization package JuMP (Dunning, Huchette,
and Lubin 2017), and the MixedModels package (Bates 2020), which we will use for a small
introductory example below.
There are already two packages, JuliaCall (Li 2019) and XRJulia (Chambers 2019, 2016,
Chapter 15), that aim at integrating Julia in R. This demonstrates the interest of the com-
munity in making functionality from Julia available in R. The requirements of convenient
interactive use, e.g., of Julia deep learning packages, led us to develop the new package Juli-
aConnectoR for this purpose.
While Julia can get close to the performance of C, it offers the convenience of a high-level
scripting language, which allows for fast code development. This makes connecting with Julia
an alternative to using C extensions in R. Considering the similarities between R and Julia,
this can further aid in making computationally demanding algorithms available in R. Also,
there are already many bridges to different languages available (Dahl 2020; Urbanek 2021;
Ushey, Allaire, and Tang 2022), making R very suitable as a glue language. This ability to
interface with other software is even central to the design of R (Chambers 2016).
While R offers a wide range of statistical approaches, access to deep learning techniques is
mostly provided only by wrappers around packages from other languages. Examples for this
are the R packages keras (Allaire and Chollet 2021), and rTorch (Reyes 2020), which wrap the
Python (Van Rossum et al. 2011) libraries Keras (Chollet et al. 2015) and PyTorch (Paszke
et al. 2019), respectively. These two packages employ Python via the language bridge provided
by the R package reticulate (Ushey et al. 2022). Julia also offers an innovative approach for
deep learning via the native Julia package Flux (Innes 2018; Innes et al. 2018b). Flux is based
on differentiable programming, a technique for interpreting programs as functions which can
be differentiated. The gradients of these functions are calculated via automatic differentiation,
which can happen at execution time or even at compile time. Thus, it becomes less necessary
for deep learning developers to adapt to a particular programming style that is enforced by
a specific framework, e.g., computational graphs in TensorFlow (Abadi, Isard, and Murray
2017). Instead, the optimization can be performed automatically on typical code. Julia is
particularly suited to support this (Innes et al. 2018a). We designed our package having deep
learning with Julia in mind. The goal is to be able to interact with Julia code in a natural
way in R.
Julia and R both target users in the fields of statistics and machine learning. This is mirrored
by the fact that both languages share more traits with each other than with languages such as
C or Python, which have not been designed primarily for this user group. In R, a functionally-
oriented programming style is more common than object-oriented programming (OOP), even
if there are several different OOP approaches available in R (Wickham 2019). Similar to

Journal of Statistical Software 3

R, Julia is also not focused on OOP. Instead, Julia relies on “multiple dispatch” (Bezanson
et al. 2017) as the central paradigm, where appropriate methods are selected based on the
types of all arguments at runtime. The generic-function OOP found in both R and Julia
is different from an encapsulated object-oriented style (Wickham 2019), e.g., employed in
Python or Java. The interface of the JuliaConnectoR reflects such commonalities between
Julia and R, leveraging the parallels between the two languages as much as possible.
In the following, we provide a first introductory example that shows how we can use the
JuliaConnectoR package for conducting statistical analyses with R and Julia, before discussing
package features in more detail, and subsequently providing a deep learning example.

2. Introductory example
For a first look at a typical workflow with the JuliaConnectoR package, we consider analyses
with mixed models. In R, mixed models can be fitted, e.g., with the lme4 package (Bates,
Mächler, Bolker, and Walker 2015). One of the authors of the mixed models package lme4
in R also develops the Julia package MixedModels. An advantage of the Julia package is
that it can often fit models much faster. To demonstrate this, let us examine the data set
InstEval from the lme4 package, which contains data about evaluations of university lectures,
collected over several years. The numeric evaluation score is contained in the variable y. The
variable d contains an identification number of individual professors or lecturers. Likewise,
the variables s and dept contain identifiers for students and departments, respectively. The
variable service denotes whether the lecture was a service lecture, i.e., if the lecturer held
the lecture for a different department than their own. An exemplary goal could be to find
the lecturer with the highest score, adjusting for the effects of the department. For this, we
can compare the random effects of the lecturers in a mixed model. To do this in R, we can
use the following code:

R> library("lme4")
R> InstEval <- readRDS("InstEval.rds")
R> formula1 <- y ~ 1 + service * dept + (1|s) + (1|d)
R> fm1 <- lmer(formula1, InstEval, REML = TRUE)
R> which.max(ranef(fm1)d`(Intercept)`)

[1] 665

For brevity, the code snippet omits the preparation of the data set and simply loads the table
from the file InstEval.rda. The pre-processing steps are documented in the supplementary
material. After the data set has been loaded, the model formula is defined and the linear
mixed model is fitted via the function lmer from the lme4 package. The ranef function can
finally be used to extract the random effects estimators from the model to find their largest
value.
To fit the same model by calling out to the Julia package MixedModels, we can use the
following code:

R> library("JuliaConnectoR")
R> MM <- juliaImport("MixedModels")

4 JuliaConnectoR: Integrating Julia in R

R> RData <- juliaImport("RData")
R> InstEval <- RData$load("InstEval.rds")
R> formula2 <- juliaEval(
+ "MixedModels.@formula(y ~ 1 + service * dept + (1|s) + (1|d))")
R> fm2 <- MM$fit(MM$LinearMixedModel, formula2, InstEval, REML = TRUE)
R> which.max(juliaCall("MixedModels.ranef", fm2)[[2]])

[1] 665

At first we also need to load the data set. R datasets can be loaded with the RData Julia
package (Bates, White, and Stukalov 2020b). To connect to Julia, we use our JuliaConnec-
toR package. The JuliaConnectoR does not know about RData or MixedModels. But the
juliaImport function can scan any given package for everything that is a function or can act
as a function. All these objects are bundled in an environment and returned by juliaImport.
Calling or referencing a function or another object from a Julia package is then possible via
accessing the returned environment. With this we can access the load function from the
RData package to get the data set in Julia. Defining the formula in Julia is possible with
the juliaEval function, which evaluates arbitrary Julia code and returns the result to R. To
minimize the communication overhead, complex objects are by default passed as references to
Julia objects. Fitting the model is also possible in a straightforward way using the imported
functions and objects. After precompilation, fitting the model in Julia is much faster than
in R (e.g., 1.5 versus 10 seconds on a typical PC). In addition to using juliaImport and the
function references, it is possible to call functions by their name via the function juliaCall.
In our example, the analyses using Julia reproduce the results from the lme4 package.

3. Features
In the following, we describe the most important features of the JuliaConnectoR package. In
this process, we also highlight parallels and differences between Julia and R. We also compare
the JuliaConnectoR package (version 1.1.1) to the packages JuliaCall (version 0.17.1) and
XRJulia (version 0.9.0) with respect to each of the described features. A short overview of
the comparison can be seen in Table 1.

3.1. Communication protocol

The JuliaConnectoR package starts a Julia process in the background and communicates
with it via a custom binary protocol that is based on the transmission control protocol (TCP;
Postel 1981). Interprocess-communication via TCP is an established technique, which is used
by Julia itself and also by R packages integrating external machine learning systems such
as h2o (Landry 2018) or sparklyr (Luraschi et al. 2022). The communication protocol of
the JuliaConnectoR package uses messages, which may contain arbitrarily complex nested
objects. The format is inspired by BSON (“binary JSON”; MongoDB, Inc. 2009), a format
that is an alternative binary format to JavaScript object notation (JSON; Bray 2017). Like
BSON, the JuliaConnectoR serialization format uses the binary form of the objects directly,
exploiting the commonalities of the binary representations between Julia and R. On the R
side, the writeBin and readBin functions can directly write and read whole R arrays. In

Journal of Statistical Software 5

Feature JuliaConnectoR JuliaCall XRJulia See
Communication TCP/binary C interface TCP/JSON 3.1
Automatic importing of packages Yes No No 3.2
Specification for type translation Yes No No 3.3
Reversible translation from Julia to R Yes No No 3.4
Callbacks Yes Yes No 3.5
Let-syntax Yes No No 3.6
Show standard (error) output Yes No Yes 3.7
Interruptible Yes No Yes 3.8
Missing values Yes Yes No 3.9
R data frames to Julia Tables Yes Yes No 3.10

Table 1: Comparison of features between the JuliaConnectoR (version 1.1.1), JuliaCall
(version 0.17.1) and XRJulia (version 0.9.0).

Julia the write and read methods for binary IO (input/output) connections can be used.
This avoids transformations which are necessary for using text-based exchange formats like
JSON, where numbers have to be converted to strings containing decimal representations.
The protocol also allows streaming the messages, which means that messages do not have to
be read completely, but a simultaneous writing and reading/parsing is possible. This allows
for fast and efficient communication.

Package XRJulia has R and Julia communicate via JSON messages, which can encapsulate
vectors, matrices and also more complex nested structures. Due to the conversion issues
of JSON mentioned above, XRJulia deviates from the strategy of serializing everything in
JSON format by writing large vectors and matrices in intermediate files in a binary format
(see the largeVectors documentation item in the manual of XRJulia). Yet, writing files
to the hard drive for communicating is still slower than sending files via TCP. Using files is
also an obstacle for taking advantage of the potential of TCP-based communication, which
is the ability to potentially run Julia as a server and R as a client on different machines or
containers.

Package JuliaCall connects Julia and R using the Julia package RCall (Bates, Lai, Byrne et al.
2020a). RCall integrates R and Julia using C interfaces. From a technical perspective, this
is a tighter integration. Earlier versions were rather unstable and not always compatible
with different Julia versions. This was one of the reasons why we started developing our own
interface. Coupling Julia and R via their C interfaces makes communication faster, but the
looser coupling via TCP also has benefits: First, it makes developing and maintaining the
package much easier. In particular, the quick release cycles of Julia exacerbate problems of
maintenance. With a coupling on a higher level of the interfaces, the compatibility has a higher
chance of surviving an update. Additionally to supporting different versions, it is furthermore
possible to support a wider range of configurations with this. For example, a particular
configuration requirement of RCall is that R has to be compiled with the –enable-R-shlib
option to build R as a dynamic library (see https://github.com/JuliaInterop/RCall.jl/
blob/v0.13.4/docs/src/installation.md). But such a setup is not wanted in all cases, as
it can reduce the performance of R by 10–20% (see R Core Team 2021b, Appendix B.1).

https://github.com/JuliaInterop/RCall.jl/blob/v0.13.4/docs/src/installation.md
https://github.com/JuliaInterop/RCall.jl/blob/v0.13.4/docs/src/installation.md

6 JuliaConnectoR: Integrating Julia in R

3.2. Automatic importing of whole packages and modules

One main feature of the JuliaConnectoR package is that it can import whole packages from
Julia conveniently in one command. The function juliaImport scans specified packages for
functions and types and creates corresponding R functions, which are returned bundled in
an environment. Types are also imported as functions, as they can be used as constructors.
The information that these functions are constructors for types is attached as attribute in
R, such that these type-constructor functions can be passed as type arguments to other Julia
functions.
Translating Julia code into R code thus becomes straightforward. Consider the following
snippet of Julia code, which loads the Julia package manager Pkg, installs the Flux Julia
package in version 0.11, and defines a small neural network using Flux:

julia> import Pkg
julia> Pkg.add(Pkg.PackageSpec(name = "Flux", version = "0.11"))
julia> import Flux
julia> model = Flux.Chain(Flux.Dense(4, 4, Flux.relu), Flux.Dense(4, 1))

This can be translated into the following R code:

R> Pkg <- juliaImport("Pkg")
R> Pkg$add(Pkg$PackageSpec(name = "Flux", version = "0.11"))
R> Flux <- juliaImport("Flux")
R> model <- Flux$Chain(Flux$Dense(4L, 4L, Flux$relu), Flux$Dense(4L, 1L))

In addition to importing installed packages, it is also possible to load plain modules from
source code. This is particularly useful when one wants to interactively develop Julia code
in parallel to R code. A good workflow for developing Julia code is to put functions into
modules. For loading a module in the current session, the corresponding (main) file can be
executed via the Julia function include. This can be repeated in a Julia session multiple
times, with the module being replaced completely every time. Thereby, the workspace can be
kept clean. With the JuliaConnectoR package, this workflow is also possible when working
in an R session. If one follows this strategy and has, e.g., the Julia functions in a module
MyModule defined in the file mymodule.jl, importing the module can be done via using its
relative module path like in Julia:

R> juliaCall("include", "/path/to/mymodule.jl")
R> MyModule <- juliaImport(".MyModule")

If the module is the last thing that is defined in the file, it is returned as result of evaluating
the file, and importing can be done in one line:

R> MyModule <- juliaImport(juliaCall("include", "/path/to/mymodule.jl"))

JuliaCall can import functions of packages via the function julia_pkg_import. This function
does not scan packages, but the names of the functions need to be specified. XRJulia has
functions juliaImport and juliaUsing, but those behave differently and do not return or
assign functions. The mechanism of connecting to Julia functionality also is more complex in
XRJulia.

Journal of Statistical Software 7

R → Julia
integer → Int
double → Float64
logical → Bool
character → String
complex → Complex{Float64}
raw → UInt8

Table 2: Basic R types and their corresponding Julia types.

3.3. Translation from R to Julia

Julia is more sensitive to types than R. In contrast to R, Julia allows to specify types of
arguments in functions. Functions that use this Julia feature then only accept arguments of
specific types. On the one hand, being specific about types has advantages: It allows the
Julia compiler to create efficient code. It also makes it possible to dispatch on the type. This
means that one function can have multiple methods depending on the types of its arguments,
which may be optimized for handling different types in the most efficient way. Julia then infers
automatically which is the most specific method to pick. On the other hand, many R users
may not be used to thinking about types, as most R functions handle types in a very relaxed
way. So, it is worthwhile to take a look at how the JuliaConnectoR package translates types
between Julia and R.

The basic R types and their counterparts in Julia are shown in Table 2. Vectors containing
only one element are translated to the type shown in the table. R arrays with more than
one element and/or having a dimension specified via the dim attribute are translated to Julia
‘Array’s of the corresponding type and dimension. For example, the R integer vector c(1L,
2L) will be of type ‘Array{Int,1}’ in Julia. A double matrix such as matrix(c(1, 2, 3,
4), nrow = 2) will be of type ‘Array{Float64,2}’. The translation is performed implicitly
when passing values to Julia. If, however, the same large R matrix needs to be accessed in
multiple calls to Julia, the function juliaPut may be used to translate/copy an R vector or
matrix to Julia only once. The resulting proxy object can then be referenced in multiple calls
to Julia without requiring further copying of data.

More complex R data structures can also be translated: R lists are translated to Julia objects
of type ‘Array{T, 1}’, where T is the most specific Julia type of the translated elements
contained in the list. This works with arbitrarily nested lists. Data frames are handled in a
special way, see below in Section 3.10.

Even if this translation may be intuitive to users familiar with types in R and Julia, the clear
specification of the translated types is a feature of the JuliaConnectoR package that helps
with common type issues, since it makes the type of arguments predictable. More details
regarding this can be found in the package documentation.

Packages JuliaCall and XRJulia currently lack such a clear specification. From experiments it
seems that JuliaCall and XRJulia use the same mapping of the types as specified in Table 2,
although this is not documented. XRJulia 0.9.0 failed to translate complex values (e.g.,
juliaCall("typeof", 1i) returned an error).

8 JuliaConnectoR: Integrating Julia in R

Julia → R
Float64 → double
Float16, Float32, UInt32 → double with type attribute
Int64 that fits in 32 bits → integer
Int64 not fitting in 32 bits → double with type attribute
Int8, Int16, UInt16, Int32, Char → integer with type attribute
UInt8 → raw
UInt64, Int128, UInt128, Ptr → raw with type attribute
Complex{Float64} → complex
Complex{Int{X}} with X ≤ 64 → complex with type attribute
Complex{Float{X}} with X ≤ 32 → complex with type attribute
String → character

Table 3: Julia types that are directly translated to R by the JuliaConnectoR package.

3.4. Translation from Julia to R

The type system of Julia is richer than that of R. The JuliaConnectoR package follows the
principle that data structures translated from Julia should be reconstructable with their orig-
inal type if needed. This eases the integration of Julia code that relies on specific types. For
example, the documentation of Flux recommends to use single-precision floating point values
(Julia type Float32) for performance reasons. If one were to translate a matrix with elements
of type Float32 to an R double array, add no type information, and then use it again with
Flux, the inferred type for the call would be Float64: The code would lose its speed advantage
unless the type was managed explicitly. For handling this, the JuliaConnectoR package adds
the type information as an attribute to translated objects. To ensure a minimal distraction
on the command line output, the type is only added if it is needed. The translations resulting
from following this principle are shown in Table 3.
Julia functions are translated to R functions that call the respective Julia functions. With
this, an anonymous function can be defined in Julia and assigned in R:

R> f2 <- juliaEval("x -> x .^ 2")

The same can be done with a named function:

R> f2 <- juliaEval('function f2(x)
+ x .^ 2
+ end')

If a named function exists already, it can be imported directly via juliaFun:

R> f2 <- juliaFun("f2")

In any case, the resulting R function can be used like any R function:

R> f2(2)

[1] 4

Journal of Statistical Software 9

Julia provides Unicode support and strings are encoded in UTF-8 in Julia by default. It
is furthermore possible to use non-ASCII characters in variable names in Julia and there
are people who make use of this feature. For example, the Julia package Flux uses Greek
letters and mathematical symbols (σ, ∇) in function names. In R, the native encoding
depends on the locale, and Windows does not yet support UTF-8 locales (Kalibera 2020).
The JuliaConnectoR package translates strings to UTF-8 encoded strings in R. These are
available regardless of the native encoding but there may be issues arising when processing
strings further as implicit conversions of strings in R may lead to unexpected results (Kalibera
2020). For the compatibility across different platforms, it is therefore advisable to refrain
from using other characters than those expressible in US-ASCII encoding as far as it is
possible. If functions from packages that make use of non-ASCII variable names are needed,
the JuliaConnectoR package facilitates writing cross-platform code by providing alternative
names for functions when importing them via juliaImport. These alternative names make
use of LATEX-like abbreviations that are defined in Julia for enabling tab completion sequences
to type special characters on the command line. For example, the Julia function Flux.logσ
is available as Flux$logσ on UTF-8 locales and as Flux$`log<sigma>` on all locales and
platforms if the package has been imported, like shown in the example in Section 3.2.
Objects that are more complex than Arrays of above types are returned to R in the form
of proxy objects. These proxy objects can be examined and used in place of the original
objects in subsequent calls to Julia. Unnecessary copying of complex objects is avoided by
communicating only references to the original Julia objects to R for constructing the proxy
objects. Examples for objects that are not converted by default are Julia ‘struct’ types or
arrays of arrays. This behavior allows to get an easy access to simple objects, which are
straightforward to use in R. It also allows to handle more complex objects in a performant
and safe way, including objects having references to external resources, such as pointers to
memory or file handles.
A full translation of complex objects to Julia is possible via the juliaGet function. Julia
objects that do not contain circular references or external pointers can be reconstructed from
their translations to R. Such objects can thus also be serialized together with the R session.
This is implemented based on the translation of complex Julia Arrays and ‘struct’s to R
‘list’s. In the case of ‘struct’s, the names of the list elements correspond to the field names
of the ‘struct’. Retaining the type information as an attribute in R, the original objects can
be assembled again.
Consider the following Julia code in a file MyLibrary.jl, defining a struct Book.

module MyLibrary
export Book, cite

struct Book
author::String
title::String
year::Int

end

function cite(book::Book)
"$(book.author): $(book.title) ($(book.year))"

10 JuliaConnectoR: Integrating Julia in R

end
end

Such a ‘struct’ can be fully translated to an R ‘list’, which can again be translated back
to a Julia object when passed to a Julia function:

R> MyLibrary <- juliaImport(juliaCall("include", "/path/to/MyLibrary.jl"))
R> book <- juliaGet(MyLibrary$Book("Shakespeare", "Romeo and Julia", 1597L))
R> book

$author
[1] "Shakespeare"

$title
[1] "Romeo and Julia"

$year
[1] 1597

attr(,"JLTYPE")
[1] "Main.MyLibrary.Book"

R> MyLibrary$cite(book)

[1] "Shakespeare: Romeo and Julia (1597)"

For comparison, JuliaCall also creates proxy objects for more complex objects, e.g., for an ar-
ray of arrays such as [[1;2], [3;4]]. But there is no possibility for an automatic translation
of such a structure to a native R data structure.
XRJulia also has a function juliaGet, which can translate more complex structures to R.
However, it does not annotate the translation with the original types, so an exact reconstruc-
tion is generally not possible.

3.5. Callbacks

R functions are translated to Julia functions that call the original R functions. This way, they
can be passed to Julia functions as arguments. It is possible to nest callbacks, e.g., invoking
a Julia function that calls an R function as a callback that again may call a Julia function,
and so on. This feature makes the JuliaConnectoR package a truly functional interface.
This kind of communication becomes possible by the custom TCP-based protocol, which
allows bidirectional communication. A simple example using the Julia function map (which is
analogous to the R function Map) demonstrates this:

R> juliaCall("map", function(x) {x + 1}, c(1, 2, 3))

[1] 2 3 4

Journal of Statistical Software 11

Such callback functions are useful, e.g., for monitoring the training progress when training
a neural network. We demonstrate this below with the neural ordinary differential equation
example (see Section 4).
JuliaCall can also use R functions in place of Julia functions. For example, julia_call("map",
function(x) x + 1, c(1, 2, 3)) returns the same result. XRJulia does not allow to pass
R functions as arguments. It also does not translate Julia functions to R functions.

3.6. let syntax

The usage of the keyword let in functionally-oriented programming languages is inspired by
mathematical language. In Julia, let allows to create a new scope, and declare variables in
this scope. The value of the expression is the value of the final expression in the block. From
this perspective, a let block is equivalent to defining an anonymous function and evaluating
it only once. Using a let block in Julia, declaring (intermediate) global variables can be
avoided, which allows for a clean programming style.
The function juliaLet of the JuliaConnectoR package allows to create such a let block
in a simple way. R variables can be passed as arguments. They are then inserted for the
corresponding variables in the expression, which is given as a string. With this, one can
evaluate complex Julia expressions and insert R variables in place of Julia variables.
The primary usage scenario for juliaLet is to build Julia objects using Julia syntax from R
data without having to define intermediate variables at the global scope. The following code
demonstrates this by creating a dictionary object, using distinct Julia syntax, in a straight-
forward way:

R> juliaLet('Dict("x" => x, "y" => y)', x = c(1, 2), y = c(2, 3))

<Julia object of type Dict{String, Vector{Float64}}>
Dict{String, Vector{Float64}} with 2 entries:

"x" => [1.0, 2.0]
"y" => [2.0, 3.0]

JuliaCall and XRJulia do not have an equivalent function.

3.7. Output redirection

The standard output and standard error output from Julia are redirected and displayed in
the R console. This is particularly useful for interactive work because warnings or output
are needed to detect errors. The implementation of this is challenging because catching the
output needs to be handled asynchronously from the function call itself. We implement this
with Julia Tasks that collect the output. These tasks are synchronized in Julia, so that R can
receive the messages synchronously.
JuliaCall does not have this feature. Recent versions of XRJulia are able to display the output.

3.8. Interrupting

In interactive programming of machine learning algorithms, it is important to be able to
interrupt long-running commands. The JuliaConnectoR catches interrupts that are signaled

12 JuliaConnectoR: Integrating Julia in R

via the Ctrl + C key combination or the Esc key in RStudio and terminates the running
Julia process.
To test this feature, we can run an infinite loop and try to interrupt it.

R> juliaEval('while true; end')

It is currently not possible to interrupt a command in JuliaCall. For example, RStudio as a de-
velopment environment needed to be shut down forcefully after executing julia_eval(’while
true; end’). Interrupting commands in XRJulia is possible.

3.9. Missing values

Julia has a concept of missing values with a three-valued logic like R. The difference is that
missing values are of the distinct type Missing, which has the single value missing. This
means an array that may contain missing values has a different type than an array without
missing values. For example, [1.0; 2.0; 3.0] is of type ‘Array{Float64,1}’ and [1.0;
missing; 3.0] is of type ‘Array{Union{Missing, Float64},1}’. In R, on the other hand,
c(1.0, 2.0, 3.0) and c(1.0, NA, 3.0) have the same type. Both behaviors are integrated
by the JuliaConnectoR package. Missing values in R, which are all textually represented
by “NA” but have different binary representations for the different types, are translated to
missing values in Julia. R arrays with missing values are converted to Julia arrays of type
‘Array{Union{Missing, T}}’, where T stands for the translated type in Table 2. In double
vectors, NA and NaN values are distinguished. A double value of NaN in R is translated to a
NaN value of type Float64 in Julia and vice versa.

R> juliaCall("+", c(1, NA, NaN), c(1, 2, 3))

[1] 2 NA NaN

R> juliaCall("sqrt", NA)

[1] NA

JuliaCall also supports missing values. The corresponding command julia_call("+", c(1,
NA), c(1, 2)) yields the same result as the code above. But a fatal error occurs when calling
julia_call("sqrt", NA) (on version 0.17.1), which terminates the R session.
XRJulia does not handle NAs properly. The first command from the code snippet above
returns a proxy object pointing to an object of type ‘Array{Float64, 1}’ which cannot be
retrieved via juliaGet. The second command prints a warning message and returns NULL.

3.10. Data frame support

Data of tabular shape is very common for statistics. Therefore, this is a very important type
of data structure for languages like R and Julia, which both focus on making statistical and
numerical computing easily accessible.
Unsurprisingly, the implementation of such tabular data has some parallels in R and Julia.
Base R provides data frames, but there are some packages providing alternative versions of

Journal of Statistical Software 13

such data structures, namely tibble (Müller and Wickham 2021) and data.table (Dowle and
Srinivasan 2021). The implementations of tables provided by these packages extend the basic
data frame interface, such that these tables can be used like a ‘data.frame’ from base R.
Similar to R, there are different takes on data frames in Julia, provided by different packages,
most prominently DataFrames (Julia Data Collaborators 2020) and JuliaDB (Julia Computing,
Inc. 2020). There is also a unifying interface for the data structures defined in these packages,
which is defined in the Tables Julia package.
These parallels are used in the JuliaConnectoR package to make it simple to exchange tabular
data. By enabling translations between the interfaces ‘data.frame’ and Tables, it becomes
possible to translate other kinds of tabular data structures extending ‘data.frame’s, in par-
ticular tibble and data.table structures, as well. For implementing the Tables interface, we
use a custom type, which wraps the columns in a minimal way.
As information about the internal structure of the original Julia objects gets lost with the
translation to R, it is generally not possible to fully restore an object implementing the
Tables interface from its ‘data.frame’ translation. For this reason, the resulting tabular
data structures are given back to R as proxy objects. Performance is another reason: By
using proxy objects, it is possible to interactively create large subsets of Julia Tables without
having to worry about heavy traffic between Julia and R because only references need to be
transferred instead of the complete data. The translation of data structures from Julia to R
can be requested via a call to as.data.frame.
JuliaCall translates data frames to ‘DataFrame’ objects from the DataFrames package. This
is also compatible with the Tables interface. We decided against DataFrames since it is
more heavy-weight and has changed its interface many times during different releases until it
reached version 1.0, which was after the publication of the JuliaConnectoR package on CRAN.
XRJulia translates data frames to a proxy object encapsulating a ‘Dict{String, Any}’.
This has the disadvantage that the column order is lost and it is also not compatible to
the Tables interface.

4. An example using neural differential equations
As a further illustration, we use the JuliaConnectoR package to reconstruct a deep learning
approach proposed by Chen et al. (2018) in their work on neural ordinary differential equa-
tions, which won a best paper award at NeurIPS 2018 (https://nips.cc/Conferences/
2018/Awards). Specifically, the authors present a new family of deep learning models by
combining neural networks with ordinary differential equations.
Many types of neural networks such as residual networks (He, Zhang, Ren, and Sun 2016) or
recurrent neural networks (RNNs; Rumelhart, Hinton, and Williams 1986) are characterized
by applying a finite sequence of discrete transformations to a hidden state ht:

ht+1 = ht + f(ht, θt), t ∈ {0, . . . , T}

The central idea in the work of Chen et al. (2018) is to generalize this discretized transfor-
mation to a continuous dynamic of the hidden units in the form of an ordinary differential
equation (ODE):

dh(t)
dt

= f(h(t), θt), t ∈ [0, T] (1)

https://nips.cc/Conferences/2018/Awards
https://nips.cc/Conferences/2018/Awards

14 JuliaConnectoR: Integrating Julia in R

Figure 1: Overview of the architecture for modeling the trajectories of a series
(xt0 , yt0), . . . , (xtN , ytN) of two-dimensional points in time. The model architecture is based
on a variational autoencoder, consisting of an encoder network, a decoder network, and a
latent space with reduced dimensionality in-between.

The function f(h(t), θt) that parameterizes the derivative of the hidden state is given by a
neural network with the parameters θt. To obtain the value of the hidden state at some time
T , instead of applying all transformations for t = 0, 1, . . . , T , the initial value problem defined
by Equation 1 and a starting point h(0) can be solved at T using a black-box differential
equation solver.
In the paper, the authors propose a memory-efficient way of solving the ODE by using the
adjoint sensitivity method, a technique for performing reverse-mode differentiation (aka back-
propagation) through the ODE solver with constant memory cost with respect to the network
depth. As a result, this allows to build continuous-depth residual networks and continuous-
time latent variable models that can be trained efficiently. The concrete model architecture,
shown in Figure 1, is based on a variational autoencoder (VAE), a generative deep learning
model first presented by Kingma and Welling (2014). It consists of two distinctly param-
eterized but jointly optimized neural networks: The encoder maps the input data x to a
lower-dimensional latent representation z, while the decoder performs the reverse transfor-
mation from the latent space back to data space. The encoder and decoder parameterize the
conditional distributions qϕ(z|x) and pθ(x|z), respectively. This formulation as probability
distributions allows to generate synthetic data after training by drawing samples from the
learned distributions. The VAE training objective is to recover the central factors of variation
underlying the data in the lower-dimensional latent space, thus obtaining a compressed repre-
sentation. Based on the framework of variational inference (Blei, Kucukelbir, and McAuliffe
2017), a loss function for the VAE can be derived, which is given by the negative of the
evidence lower bound (ELBO):

LVAE(x, ϕ, θ) = −ELBO(x, ϕ, θ) = DKL(qϕ(z|x)∥p(z)) − Eqϕ(z|x)[log(pθ(x|z)] (2)

Intuitively, the second term of the loss function can be thought of as a reconstruction error.
The first term, in which DKL denotes the Kullback-Leibler divergence, enforces the consistency
between the prior p(z) (assumed to follow a standard normal distribution) and the posterior

Journal of Statistical Software 15

−20 −15 −10 −5 0 5 10 15

−
15

−
10

−
5

0
5

10
15

x1

x2

Clockwise

−4 −2 0 2 4 6 8 10

−
5

0
5

10
x1

x2

Counter−clockwise

Sample
Prediction

Figure 2: Learning of samples from spiral trajectories with the latent time series VAE. The
points on the spiral are moving inwards over time. Half of the samples are drawn from the
clockwise spiral and half from the counter-clockwise one. The trajectories can be predicted by
solving the differential equation in the VAE latent space and can be extrapolated by solving
it at other time points than the ones in the training data.

distribution of z. It can be shown (Blei et al. 2017) that

log p(x) ≥ ELBO(x, ϕ, θ).

This means minimizing the VAE loss amounts to maximizing a lower bound on the true data
likelihood.
The model from Chen et al. (2018) is trained on time series data. These time series are
represented as latent trajectories in the model, where each trajectory is obtained by solving
an ODE system in the latent space of the VAE model. Our specific dataset comprises time
series of two-dimensional points (xt0 , yt0), . . . , (xtN , ytN) that are drawn from a spiral trajec-
tory. More specifically, there are two underlying spiral trajectories, one clockwise and one
counter-clockwise, each including 100 two-dimensional points. These points can be thought
of as a time series of coordinates of a point on the two-dimensional plane that travels in-
wards along a spiral-shaped trajectory. From these underlying trajectories, we generate 100
training observations by randomly sampling a starting point somewhere on the trajectory and
adding Gaussian noise with mean 0 and standard deviation 0.1 to the subsequent 20 points,
corresponding to the next 20 time points of the trajectory. Each observation thus consists
of a time series of 20 points moving inwards along the trajectory of one of the two spirals
(clockwise or counter-clockwise). The complete code for creating the data set is available as
supplementary material. The underlying ground-truth spiral trajectories and the samples of
two time-series observations from the training set are shown in Figure 2.
We want to demonstrate how to implement such a complex deep learning model in R. This
also more generally shows how the JuliaConnectoR package can be used to bring capabilities

16 JuliaConnectoR: Integrating Julia in R

for deep learning and related novel techniques from Julia to R. To implement the model for
capturing these patterns in Julia, we use the machine learning packages Flux (Innes 2018)
and DiffEqFlux (Rackauckas, Innes, Ma, Bettencourt, White, and Dixit 2019). DiffEqFlux
integrates the deep learning models from Flux with differential equations and realizes efficient
backpropagation through arbitrary ODE solvers.
The Julia code for the example can be found in the file SpiralExample.jl, which defines
the Julia module SpiralExample. The R code that uses the Julia functions of the module is
contained in the file SpiralExample.R. We first consider the implementation of the model
architecture in Julia. The model is composed of different parts, which are collected in a Julia
data structure of type ‘LatentTimeSeriesVAE’:

struct LatentTimeSeriesVAE
rnn
latentODEfunc
latentODEparams
decoder

end

For constructing the model, which is depicted in Figure 1, we can specify the dimensions fol-
lowing the architecture from Chen et al. (2018). Specifically this corresponds to the following
parameters (with the actual numbers given in parentheses):

• the number of dimensions in the latent space, i.e., the length of µ and σ (4),

• the number of observed dimensions (2),

• the number of hidden nodes for the RNN encoder (25),

• the number of hidden dimensions for the neural network defining the latent ODE func-
tion (20), and

• the number of hidden nodes for the decoder network (20).

These parameters affect the ability of the model to learn the structure in a data set. Therefore,
it is useful to be able to set the parameters easily for tuning the model. For this purpose,
we define a constructor method, which accepts these parameters and returns an initialized
network:

function LatentTimeSeriesVAE(; latent_dim, obs_dim,
rnn_nhidden, f_nhidden, dec_nhidden)

rnn = Chain(RNN(obs_dim, rnn_nhidden), Dense(rnn_nhidden, latent_dim*2))

latentODEfunc = Chain(Dense(latent_dim, f_nhidden, Flux.elu),
Dense(f_nhidden, f_nhidden, Flux.elu),
Dense(f_nhidden, latent_dim))

latentODEparams, re = Flux.destructure(latentODEfunc)

decoder = Chain(Dense(latent_dim, dec_nhidden, Flux.relu),

Journal of Statistical Software 17

Dense(dec_nhidden, obs_dim))
LatentTimeSeriesVAE(rnn, re, latentODEparams, decoder)

end

The training of the model is performed in the Julia function SpiralExample.train!. Besides
taking care of some monitoring and data preparation, the actual training is performed with
the Flux function train!, which requires a loss function that is to be minimized. In our
case, the loss function is the negative of the ELBO (plus a regularization term concerning the
weights of the RNN). The ELBO is calculated in the elbo function in the SpiralExample
module:

function elbo(model::LatentTimeSeriesVAE, x::SpiralSample, t)
empmu, emplogsd = latent_mu_logsd(model, x)
Flux.reset!(model.rnn)
z0 = latentz0(empmu, emplogsd)
pred_z = n_ode(model, z0, t)
sumlogp_x_z = sum([logp_x_z(x[i],

model.decoder(pred_z[:, i])) for i in 1:size(pred_z, 2)])
sumlogp_x_z - kl_q_p(empmu, emplogsd)

end

To keep the code clean, the different calculations in the elbo function are outsourced to helper
functions in the SpiralExample module: In latent_mu_logsd, µ and log σ are calculated
from the input to the encoder network x. The latent variable z is then sampled from the
normal distribution N (µ, σ). From the ODE solver, we get the predicated values for z via
n_ode. With this, the terms of the ELBO can finally be calculated via the helper functions
kl_q_p and logp_x_z, which are used for determining the values of the two terms in formula
(2).
In the next step, we show how to use this model in R. This also illustrates some more general
patterns which typically occur in code that performs deep learning.
Although the default installation of Julia offers a broad range of features in the standard
library, advanced functionality, such as algorithms for deep learning, needs to be added via
external packages. The Julia installation is discovered by the JuliaConnectoR package from
the system environment variable JULIA_BINDIR, which may define the directory that contains
the Julia executable, or it is found by looking in the executable path for a “julia” executable.
A proper setup of the basic Julia installation can be ensured via the function juliaSetupOk.
Extra packages can be added via the Julia package manager, which can be accessed via the
JuliaConnectoR package. In case of this example, we additionally need the Julia packages
Flux, DiffEqFlux, and their dependencies. To ensure optimal reproducibility of the experi-
ment, we use a Julia “project”. This is simply a directory containing a Projects.toml file
and a Manifest.toml file. These files specify the exact versions of all packages used. They
are created by Julia to record the state of all package operations that have been executed
while using a project. With the Julia function Pkg.activate, we tell Julia to use the project.
With Pkg.instantiate, we can install all project dependencies with one call.

R> Pkg <- juliaImport("Pkg")
R> Pkg$activate(".")
R> Pkg$instantiate()

18 JuliaConnectoR: Integrating Julia in R

The Julia project environment ensures that all necessary Julia dependencies are set up in a
reproducible way. This, however, cannot guarantee a perfect reproducibility of all results
of numerical computations in all cases. The implementations of floating-point calculations
use optimizations of machine code that might differ on different systems. Thereby, slightly
different results may be observed (Demmel, Ahrens, and Nguyen 2016). The results presented
in this section were obtained on Windows.
In the SpiralExample Julia module, a type ‘LatentTimeSeriesVAE’ is defined, which com-
bines several neural networks models from the package Flux in a single object. After importing
the module (see also Section 3.2), we can call the constructor of this type to initialize the
model, specifying the parameters of the architecture. The resulting object is by default trans-
lated to an R object that serves as proxy for the corresponding Julia object. The model proxy
object holds only a reference to the Julia object, and no data are copied to R, which makes
this approach also feasible and effective for large networks.

R> juliaCall("include", normalizePath("SpiralExample.jl"))
R> SpiralExample <- juliaImport(".SpiralExample")
R> model <- SpiralExample$LatentTimeSeriesVAE(latent_dim = 4L,
+ obs_dim = 2L, rnn_nhidden = 25L, f_nhidden = 20L, dec_nhidden = 20L)

It is very common in deep learning that many parameters are used. To avoid confusion, it is
advised to use named arguments, as shown above. In contrast to R, named arguments and
positional arguments are strictly separated in Julia. For named arguments, Julia requires the
names and does not infer their values by their position.
In the next step, the model can be trained on the data:

R> epochs <- 20
R> plotValVsEpoch <- function(epoch, val) {
+ if (epoch == 1) {
+ ymax <- max(val)
+ plot(x = 1, y = val, xlim = c(0, epochs),
+ ylim = c(0, ymax * 1.1), xlab = "Epoch", ylab = "Value")
+ } else {
+ points(x = epoch, y = val)
+ }
+ }
R> spiraldata <- SpiralExample$spiral_samples(nspiral = 100L, ntotal = 150L,
+ nsample = 30L, start = 0, stop = 6 * pi, a = 0, b = 1)
R> SpiralExample$`train!`(model,
+ spiraldata[["samp_trajs"]], spiraldata[["samp_ts"]],
+ epochs = epochs, learningrate = 0.01, monitoring = plotValVsEpoch)

The training function receives the model, the x values in spiraldata[["samp_trajs"]] and
the time values in spiraldata[["samp_ts"]]. Optional named arguments can be specified
here as well. The example also demonstrates the use of a callback function, which is here
specified as monitoring argument. The plotValVsEpoch defined above is used to plot the
value of the loss function during the training. It is called after each training epoch. (An
“epoch” is deep learning jargon for the update of the model parameters based on the loss

Journal of Statistical Software 19

0 10 20 30 40 50

0.
0e

+
00

6.
0e

+
06

1.
2e

+
07

Epoch

V
al

ue

Figure 3: The output of the function plotValVsEpoch, which is used to plot the value of the
loss over the number of epochs. In this case, the loss gets suddenly worse in one step but
decreases to a better optimum later in the training.

function using all samples once.) A plot of the loss function (see Figure 3) allows to evaluate
the training progress at one glance. Displaying output directly during the training is especially
useful if the training takes longer.
After the model has been trained, we can evaluate the model performance. In our case, we
take a look at the model predictions for the training observations. By parameterizing the
latent space dynamics as a time-continuous ODE solution, we can inter- and extrapolate the
time series by solving the ODE at other time points than the ones observed in the training
data and decoding them to data space (see Figure 2). The prediction can be done, e.g., with
the following code:

R> predlength <- length(spiraldata[["samp_ts"]] + 10
R> SpiralExample$predictspiral(model, sample,
+ spiraldata[["orig_ts"]][1:predlength])

Here, the sample contains the x values, and spiraldata[["orig_ts"]] contains all possible
time values.

5. Summary and outlook
We have introduced the JuliaConnectoR package for connecting R and Julia in a reliable and
convenient way. The example with neural differential equations shows how the JuliaConnec-
toR package can help to enable more flexible ways of deep learning in R. It also demonstrates
some best practices for employing Julia, such as using Julia modules.
The comparison of current features in Table 1 provides an overview over the different language
bridges between Julia and R. It can be seen that the JuliaConnectoR package is a new solution
for connecting Julia and R that offers many features not available in other packages. The usage
of the most important functions of the package has been exemplified in the small code snippets
for illustrating the features. An overview of the functions that have been presented here can
be seen in Table 4.
There is also some potential that is not yet fully leveraged: A next step for developing the
JuliaConnectoR package further could be to harness the fact that the communication via
TCP could in principle be used to run Julia sessions remotely from the computer running

20 JuliaConnectoR: Integrating Julia in R

Function name Short description Usage see
juliaImport Load a Julia package in Julia via import and return its

functions and data types as an environment, such that the
functions can be called directly in R.

3.2

juliaFun Create an R function that wraps a Julia function. 3.4
juliaCall Call any Julia function by name. (Not needed for functions

created via juliaImport or juliaFun.)
3.2, 3.9

juliaEval Evaluate a simple Julia expression (and return the result). 3.4, 3.8
juliaLet Evaluate Julia expressions with R variables in place of Julia

variables employing a let block (and return the result).
3.6

juliaGet Fully translate a Julia object to an R object. 3.4

Table 4: Overview of most important exported functions.

the R session. This might be useful when users want to use a convenient user interface for
programming on their machine, and at the same time, they would like to utilize resources on
remote computing servers. As detailed in Section 3.1, the JuliaConnectoR is the only one of
the three packages connecting Julia and R whose design allows it to be used in such a way. It is
technically not complicated to run a Julia server with the Julia part of the JuliaConnectoR on
a remote server in the network, and connect to it from a different computer. Yet, additional
security measures need to be implemented for putting this in practice since the execution of
arbitrary code can be triggered via such a connection.
The goal of the current version is to connect R and Julia in an intuitive way. The best example
for this is the automatic importing of Julia packages. Also, the features for interactive use,
such as the redirection of the standard (error) output and the possibility to interrupting
running commands, make it easier to develop extensions for R in Julia.
Additionally, the JuliaConnectoR package comes with a design that aims to avoid a state in
Julia that is not visible in R: Julia functions can be translated to R functions and all variables
returned from Julia are translated into R variables. It is not necessary or encouraged by the
package to use global variables. In places where Julia and R do not align so easily, this is
aided by the introduction of the function juliaLet to handle more complex Julia expressions.
By that, the design of the JuliaConnectoR package allows for a clean style of programming
and minimizes the feeling of “remote-controlling” Julia.

Acknowledgments
This work has been supported by the Federal Ministry of Education and Research (BMBF)
in Germany in the MIRACUM project (FKZ 01ZZ1801B).

References

Abadi M, Isard M, Murray DG (2017). “A Computational Model for TensorFlow: An In-
troduction.” In MAPL 2017 – Proceedings of the 1st ACM SIGPLAN International Work-
shop on Machine Learning and Programming Languages, pp. 1–7. doi:10.1145/3088525.
3088527.

https://doi.org/10.1145/3088525.3088527
https://doi.org/10.1145/3088525.3088527

Journal of Statistical Software 21

Allaire JJ, Chollet F (2021). keras: R Interface to Keras. R package version 2.7.0, URL
https://CRAN.R-project.org/package=keras.

Bates D (2020). “Julia Package MixedModels (GitHub Repository).” doi:10.5281/zenodo.
3727845.

Bates D, Lai R, Byrne S, et al. (2020a). “Julia Package RCall (GitHub Repository).” URL
https://github.com/JuliaInterop/RCall.jl.

Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Bates D, White JM, Stukalov A (2020b). “Julia Package RData (GitHub Repository).” URL
https://github.com/JuliaData/RData.jl.

Becker RA, Chambers JM (1984). S: An Interactive Environment for Data Analysis and
Graphics. Wadsworth Advanced Book Program, Belmont.

Bezanson J, Edelman A, Karpinski S, Shah V (2017). “Julia: A Fresh Approach to Numerical
Computing.” SIAM Review, 59(1), 65–98. doi:10.1137/141000671.

Blei DM, Kucukelbir A, McAuliffe JD (2017). “Variational Inference: A Review for Statis-
ticians.” Journal of the American Statistical Association, 112(518), 859–877. doi:
10.1080/01621459.2017.1285773.

Bray T (2017). The JavaScript Object Notation (JSON) Data Interchange Format. URL
https://tools.ietf.org/html/rfc8259.

Chambers JM (2016). Extending R. Chapman & Hall/CRC, Boca Raton.

Chambers JM (2019). XRJulia: Structured Interface to Julia. R package version 0.9.0, URL
https://CRAN.R-project.org/package=XRJulia.

Chen TQ, Rubanova Y, Bettencourt J, Duvenaud D (2018). “Neural Ordinary Dif-
ferential Equations.” In S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-
Bianchi, R Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc. URL https://proceedings.neurips.cc/paper/2018/
file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

Chollet F, et al. (2015). “Keras: The Python Deep Learning API.” URL https://keras.io/.

Dahl D (2020). “Integration of R and Scala Using rscala.” Journal of Statistical Software,
92(4), 1–18. doi:10.18637/jss.v092.i04.

Demmel J, Ahrens P, Nguyen HD (2016). “Efficient Reproducible Floating Point Summa-
tion and BLAS.” Technical Report UCB/EECS-2016-121, EECS Department, University
of California, Berkeley. URL https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/
EECS-2016-121.html.

Dowle M, Srinivasan A (2021). data.table: Extension of ‘data.frame’. R package version
1.14.2, URL https://CRAN.R-project.org/package=data.table.

https://CRAN.R-project.org/package=keras
https://doi.org/10.5281/zenodo.3727845
https://doi.org/10.5281/zenodo.3727845
https://github.com/JuliaInterop/RCall.jl
https://doi.org/10.18637/jss.v067.i01
https://github.com/JuliaData/RData.jl
https://doi.org/10.1137/141000671
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://tools.ietf.org/html/rfc8259
https://CRAN.R-project.org/package=XRJulia
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://keras.io/
https://doi.org/10.18637/jss.v092.i04
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html
https://CRAN.R-project.org/package=data.table

22 JuliaConnectoR: Integrating Julia in R

Dunning I, Huchette J, Lubin M (2017). “JuMP: A Modeling Language for Mathematical
Optimization.” SIAM Review, 59(2), 295–320. doi:10.1137/15m1020575.

He K, Zhang X, Ren S, Sun J (2016). “Deep Residual Learning for Image Recognition.” In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Innes M (2018). “Flux: Elegant Machine Learning with Julia.” Journal of Open Source
Software, 3(25), 602. doi:10.21105/joss.00602.

Innes M, Karpinski S, Shah V, Barber D, Stenetorp P, Besard T, Bradbury J, Churavy V,
Danisch S, Edelman A, Malmaud J, Revels J, Yuret D (2018a). “On Machine Learning
and Programming Languages.” In SysML Conference 2018. URL https://mlsys.org/
Conferences/doc/2018/37.pdf.

Innes M, Saba E, Fischer K, Gandhi D, Rudilosso MC, Joy NM, Karmali T, Pal A, Shah
V (2018b). “Fashionable Modelling with Flux.” arXiv:1811.01457 [cs.PL], URL https:
//arxiv.org/abs/1811.01457.

Julia Computing, Inc (2020). “Julia Package JuliaDB (GitHub Repository).” URL https:
//github.com/JuliaComputing/JuliaDB.jl.

Julia Data Collaborators (2020). “Julia Package DataFrames (GitHub Repository).” URL
https://github.com/JuliaData/DataFrames.jl.

Kalibera T (2020). “UTF-8 Support on Windows.” The R Blog, URL https://blog.
R-project.org/2020/05/02/utf-8-support-on-windows/.

Kingma DP, Welling M (2014). “Auto-Encoding Variational Bayes.” In Y Bengio, Y Le-
Cun (eds.), 2nd International Conference on Learning Representations (ICLR), Conference
Track Proceedings.

Landry M (2018). Machine Learning with R and h2o. h2o Booklet, 7th edition. H2O.ai. URL
https://www.h2o.ai/resources/.

Li C (2019). “JuliaCall: An R Package for Seamless Integration between R and Julia.” Journal
of Open Source Software, 4(35), 1284. doi:10.21105/joss.01284.

Luraschi J, Kuo K, Ushey K, Allaire JJ, Falaki H, Wang L, Zhang A, Li Y, Ruiz E, The
Apache Software Foundation (2022). sparklyr: R Interface for Apache Spark. R package
version 1.7.4, URL https://CRAN.R-project.org/package=sparklyr.

MongoDB, Inc (2009). “BSON (Binary JSON) Serialization.” URL http://bsonspec.org/.

Müller K, Wickham H (2021). tibble: Simple Data Frames. R package version 3.1.6, URL
https://CRAN.R-project.org/package=tibble.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein
N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy
S, Steiner B, Fang L, Bai J, Chintala S (2019). “PyTorch: An Imperative Style, High-
Performance Deep Learning Library.” In H Wallach, H Larochelle, A Beygelzimer, F d’Alché
Buc, E Fox, R Garnett (eds.), Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc. URL http://papers.neurips.cc/paper/

https://doi.org/10.1137/15m1020575
https://doi.org/10.21105/joss.00602
https://mlsys.org/Conferences/doc/2018/37.pdf
https://mlsys.org/Conferences/doc/2018/37.pdf
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://github.com/JuliaComputing/JuliaDB.jl
https://github.com/JuliaComputing/JuliaDB.jl
https://github.com/JuliaData/DataFrames.jl
https://blog.R-project.org/2020/05/02/utf-8-support-on-windows/
https://blog.R-project.org/2020/05/02/utf-8-support-on-windows/
https://www.h2o.ai/resources/
https://doi.org/10.21105/joss.01284
https://CRAN.R-project.org/package=sparklyr
http://bsonspec.org/
https://CRAN.R-project.org/package=tibble
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Journal of Statistical Software 23

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Postel J (1981). Transmission Control Protocol. URL https://tools.ietf.org/html/
rfc793.

Rackauckas C (2021). diffeqr: Solving Differential Equations (ODEs, SDEs, DDEs, DAEs).
R package version 1.1.1, URL https://CRAN.R-project.org/package=diffeqr.

Rackauckas C, Innes M, Ma Y, Bettencourt J, White L, Dixit V (2019). “DiffEqFlux.jl –
A Julia Library for Neural Differential Equations.” arXiv:1902.02376 [cs.LG], URL https:
//arxiv.org/abs/1902.02376.

Rackauckas C, Nie Q (2017). “DifferentialEquations.jl – A Performant and Feature-Rich
Ecosystem for Solving Differential Equations in Julia.” Journal of Open Research Software,
5(1). doi:10.5334/jors.151.

R Core Team (2021a). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

R Core Team (2021b). R Installation and Administration. R version 4.1.0, URL https:
//CRAN.R-project.org/doc/manuals/r-release/R-admin.pdf.

Reyes AR (2020). rTorch: R Bindings to PyTorch. R package version 0.4.2, URL https:
//CRAN.R-project.org/package=rTorch.

Rumelhart D, Hinton G, Williams R (1986). “Learning Representations by Back-Propagating
Errors.” Nature, 323(6088), 533–536. doi:10.1038/323533a0.

Shah VB (2013). “Julia 0.1 Release on GitHub.” URL https://github.com/JuliaLang/
julia/releases/tag/v0.1.

Urbanek S (2021). rJava: Low-Level R to Java Interface. R package version 1.0-6, URL
https://CRAN.R-project.org/package=rJava.

Ushey K, Allaire JJ, Tang Y (2022). reticulate: R Interface to Python. R package version
1.23, URL https://CRAN.R-project.org/package=reticulate.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Wickham H (2019). Advanced R. 2nd edition. Chapman & Hall/CRC, Boca Raton. ISBN
978-1-4665-8696-3.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://CRAN.R-project.org/package=diffeqr
https://arxiv.org/abs/1902.02376
https://arxiv.org/abs/1902.02376
https://doi.org/10.5334/jors.151
https://www.R-project.org/
https://CRAN.R-project.org/doc/manuals/r-release/R-admin.pdf
https://CRAN.R-project.org/doc/manuals/r-release/R-admin.pdf
https://CRAN.R-project.org/package=rTorch
https://CRAN.R-project.org/package=rTorch
https://doi.org/10.1038/323533a0
https://github.com/JuliaLang/julia/releases/tag/v0.1
https://github.com/JuliaLang/julia/releases/tag/v0.1
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=reticulate
https://www.python.org/
https://www.python.org/

24 JuliaConnectoR: Integrating Julia in R

Affiliation:
Stefan Lenz
University of Freiburg
Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center
Stefan-Meier-Str. 26
79104 Freiburg, Germany
E-mail: lenz@imbi.uni-freiburg.de
URL: https://www.uniklinik-freiburg.de/imbi.html

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
January 2022, Volume 101, Issue 6 Submitted: 2020-05-13
doi:10.18637/jss.v101.i06 Accepted: 2021-03-29

mailto:lenz@imbi.uni-freiburg.de
https://www.uniklinik-freiburg.de/imbi.html
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v101.i06

	Introduction
	Introductory example
	Features
	Communication protocol
	Automatic importing of whole packages and modules
	Translation from R to Julia
	Translation from Julia to R
	Callbacks
	let syntax
	Output redirection
	Interrupting
	Missing values
	Data frame support

	An example using neural differential equations
	Summary and outlook

