
JSS Journal of Statistical Software
January 2022, Volume 101, Issue 12. doi: 10.18637/jss.v101.i12

missSBM: An R Package for Handling Missing
Values in the Stochastic Block Model

Pierre Barbillon
University Paris-Saclay,
AgroParisTech, INRAE

Julien Chiquet
University Paris-Saclay,
AgroParisTech, INRAE

Timothée Tabouy
University Paris-Saclay,
AgroParisTech, INRAE

Abstract

The stochastic block model is a popular probabilistic model for random graphs. It is
commonly used to cluster network data by aggregating nodes that share similar connec-
tivity patterns into blocks. When fitting a stochastic block model to a partially observed
network, it is important to consider the underlying process that generates the missing
values, otherwise the inference may be biased. This paper presents missSBM, an R pack-
age that fits stochastic block models when the network is partially observed, i.e., the
adjacency matrix contains not only 1s or 0s encoding the presence or absence of edges,
but also NAs encoding the missing information between pairs of nodes. This package im-
plements a set of algorithms to adjust the binary stochastic block model, possibly in the
presence of external covariates, by performing variational inference suitable for several
observation processes. Our implementation automatically explores different block num-
bers to select the most relevant model according to the integrated classification likelihood
criterion. The integrated classification likelihood criterion can also help determine which
observation process best fits a given dataset. Finally, missSBM can be used to perform
imputation of missing entries in the adjacency matrix. We illustrate the package on
a network dataset consisting of interactions between political blogs sampled during the
2007 French presidential election.

Keywords: network, missing data, stochastic block model.

1. Introduction

In many scientific fields, networks are a natural way to represent interaction data. To cite a
few examples, a network may represent social interactions such as friendship or collaboration
between people in a social network, regulation between genes and their products in a gene
regulatory network, or predation between animals in a food web. In this paper, we only
consider networks which can be represented by graphs composed of binary edges connecting

https://doi.org/10.18637/jss.v101.i12
https://orcid.org/0000-0002-7766-7693
https://orcid.org/0000-0002-3629-3429
https://orcid.org/0000-0001-8757-1524

2 missSBM: Handling Missing Values in the SBM in R

pairs of nodes (also referred to as dyads in the following).
To date, there are many software programs that perform network-related analyses. It is not
surprising that the R community is extremely active in this field. Indeed, the programming
language R is particularly well designed for data manipulation and visualization, and is there-
fore well suited to the manipulation of network data. Of the many network-related packages
available, we suggest a classification into three groups1:

(i) Packages for representation, manipulation or visualization tasks, and packages comput-
ing descriptive statistics. We mention non-exhaustively the following top representa-
tives: igraph (Csardi and Nepusz 2006), network and sna (Butts 2008a,b).

(ii) Packages learning the structure of a network from an external source of data, such as
huge (Zhao, Liu, Roeder, Lafferty, and Wasserman 2012), glasso (Friedman, Hastie, and
Tibshirani 2019), bnlearn (Scutari 2017) or bnstruct (Franzin, Sambo, and di Camillo
2017). These packages generally rely on a specific graphical modeling of the data,
e.g., Gaussian graphical models (Lauritzen 1996) in huge and glasso, or Bayesian net-
works (Pearl 2011) in bnlearn and bnstruct.

(iii) Packages fitting (probabilistic) models on network data. The ergm package (Hunter,
Handcock, Butts, Goodreau, and Morris 2008) fits the family of exponential random
graph models (ERGM) introduced in Hunter and Handcock (2006): it is part of the
collection of tools around ERGM gathered in the statnet meta-package (Handcock,
Hunter, Butts, Goodreau, and Morris 2008); latentnet (Krivitsky and Handcock 2008)
implements the latent space approach of Hoff, Raftery, and Handcock (2002); mixer
(Ambroise, Grasseau, Hoebeke, Latouche, Miele, Picard, and Smith 2018) and block-
models (Léger 2016) fit the stochastic block model (SBM) when the distribution of
the edges belongs to the exponential family (Snijders and Nowicki 1997; Nowicki and
Snijders 2001). Other R packages related to the SBM and its extensions include sbm
(Chiquet, Donnet, and Barbillon 2021), sbmr (Strayer 2021), dynSBM (Matias and
Miele 2020), blockmodeling (Ziberna 2021), dBlockmodeling (Brusco 2020), expSBM
(Rastelli and Fop 2019), MLVSBM (Chabert-Liddell, Barbillon, Donnet, and Lazega
2021; Chabert-Liddell 2021), greed (Côme and Jouvin 2021), sbmSDP (Amini 2015),
hergm (Schweinberger and Luna 2018), lda (Chang 2015), graphon (You 2021), GREM-
LINS (Donnet and Barbillon 2020) and noisySBM (Rebafka and Villers 2020). Some of
these packages, as well as some implementations in other programming languages, are
presented in the following.

The package missSBM that we present here belongs to the third category, that is, software
that fits a specific probabilistic model on network data. Specifically, missSBM is dedicated
to the estimation of the SBM, a mixture of Erdős-Rényi random graphs (Erdős and Rényi
1959) offering a high degree of heterogeneity in connectivity profiles (see Abbe 2017, for a
recent review). SBM generally fits real-world network data well while retaining the advantage
of being a probabilistic generative model (contrary to mechanistic approaches such as the
Barabási-Albert model (Albert and Barabási 2002), defined by a preferential attachment
algorithm). The main outcome of an SBM fit is a clustering of the nodes – or “blocks” – so that

1In addition to this brief typology, the interested reader may wish to consult the CRAN task view on the
related topic of graphical modeling (Højsgaard 2021).

Journal of Statistical Software 3

the nodes share the same properties within the same block. To our knowledge, the reference
package for fitting the SBM with the R programming system is blockmodels. It includes
efficient implementations of variational algorithms for fitting different flavors of SBMs, tailored
to binary network data and valued networks, with optional covariates on the edges. Two
other important extensions are available as R packages: the degree-corrected SBM in randnet
(Li, Levina, Zhu, and Le 2022) and a dynamic version in dynsbm (Matias and Miele 2020).
Beyond the R framework, there are also Python packages and C++ libraries providing efficient
codes for some particular SBMs: the Python packages CommunityDetection (Mejean and
Maison 2017) and BipartiteSBM (Yen and Larremore 2018) are dedicated to the estimation of
special network structures using various heuristics and network models, among which SBM.
Beyond variational approaches, the are Markov chain Monte Carlo (MCMC) methods for
inferring the SBM, which solve the exact problem but are generally more computationally
demanding: the Python library graph-tool (Peixoto 2014) includes an MCMC sampler to fit
the binary SBM and the degree-corrected SBM; C++ libraries sbm_canonical_mcmc (Young,
Desrosiers, Hébert-Dufresne, Laurence, and Dubé 2017) and bipartiteSBM-MCMC (Yen and
Larremore 2019) implement respectively a MCMC sampler for simple and bipartite SBMs.
Finally MODE-NET (Decelle, Krzakala, and Zhang 2019) implements the belief propagation
algorithm for inferring the degree-corrected SBM.
Despite their high quality, an important limitation of the aforementioned software is to require
a fully observed network, i.e., no missing value is supported. The main feature of missSBM is
to deal with cases where the network data is only partially observed. Specifically, we consider
situations where the adjacency matrix of the network data contains not only 1s or 0s for
presence or absence of an edge, but also NAs encoding missing information for some dyads.
Note that this situation is different from the case considered in noisySBM: there, a similarity
matrix is fully observed between all pairs of nodes, and the goal is to separate the adjacency
matrix from the noise, where the adjacency matrix is assumed to be generated by an SBM.
When inferring SBM from network data with missing values, it is important to take into
account the underlying process that generates these missing values in the estimation of the
model parameters, otherwise it may be biased. Specifically, it is necessary to identify whether
the values are missing at random or not (MAR and MNAR, see Little and Rubin 2019).
This issue has been studied in the context of network data by Handcock and Gile (2010) for
the ERGM and in our methodological paper (Tabouy, Barbillon, and Chiquet 2020) for the
SBM. missSBM is an implementation of the methodology developed therein. It also considers
new sampling designs and the inclusion of covariates simultaneously in the SBM and in the
observation process, which was not studied by Tabouy et al. (2020). Specifically, missSBM
implements variational algorithms in the vein of Daudin, Picard, and Robin (2008) and Léger
(2016) for estimating the SBM, with or without covariates, under a variety of missing data
mechanisms. This includes cases of incomplete data where inference can only be made on
the observed portion of the data (MAR), or cases where it is necessary to take the sampling
design into account in the inference (MNAR).
Some frameworks deal with missing data but more from a cross-validation perspective than
from a sampling perspective. Cross-validation is used to perform model selection for networks,
such as choosing the number of blocks or communities (Li, Levina, and Zhu 2020; Chen and
Lei 2018) or choosing the latent structure (Hoff 2007). These frameworks are thus very
different from ours since the cross-validation is performed under MAR sampling while our
main goal is to be able to infer an SBM under various MNAR sampling mechanisms.

4 missSBM: Handling Missing Values in the SBM in R

The paper is organized as follows: Section 2 introduces the statistical framework of the
binary SBM, with or without covariates, and summarizes the key points of its inference under
missing data conditions. Section 3 provides basic guidelines for the main functions and object
classes. We finally detail in Section 4 a case study that analyzes a network dataset describing
the French blogosphere during the period preceding the 2007 French presidential election,
illustrating the most striking features of the package.

2. Statistical framework

2.1. Binary SBM

In an SBM, the nodes of the set N ≜ {1, . . . , n} are distributed in a set Q ≜ {1, . . . , Q} of
hidden blocks that model the latent structure of the graph. Group membership is described
by independent categorical variables (Zi, i ∈ N) with multinomial distribution M(1,α =
(α1, . . . , αQ)). The probability of having an edge between any pair of nodes (or dyad) depends
only on the blocks to which the two nodes belong. Therefore, the presence of an edge between
i and j, indicated by the binary variable Yij , is independent of the other edges conditionally
on the latent blocks:

Yij | Zi,Zj
ind∼ B(πZiZj), for all (i, j) ∈ D, (1)

where B represents the Bernoulli distribution and D the set of dyads. This set can be either
equal to {(i, j) ∈ N 2; i ̸= j} if the network is directed or to {(i, j) ∈ N 2; i < j}, otherwise2.
In the following, we denote by π = (πqℓ)(q,ℓ)∈Q2 ∈ [0, 1]Q2 the connectivity matrix, α ∈
DQ = {(α1, . . . , αQ) ∈ [0, 1]Q; α1 + . . . αQ = 1} the block proportions, Z = (Z1, . . . ,Zn)⊤

the n×Q membership matrix and Y = (Yij)(i,j)∈D the n× n adjacency matrix. This matrix
is binary, with a diagonal filled with NAs and is symmetric if and only if the network is
undirected. The vector encompassing all the unknown model parameters is θ = (α,π). A
schematic representation of the binary SBM in the undirected case is given in Figure 1, where
we highlight the latent clustering.

2.2. Accounting for external covariates

In addition to information about the connections between nodes, it is common for network
data to be accompanied by additional information about the nodes or dyads, which we call
covariates. In social networks, for example, nodes may belong to different categories (gender,
occupation, nationality). Covariates on dyads typically represent similarity or dissimilarity
between nodes: for example, in a spatial data context where nodes correspond to features
with explicit geographic location, the covariates of dyads may be the distances between nodes.
Depending on the analysis, we may want to detect a connectivity pattern beyond the covariate
effect. To do so, we implemented in missSBM a variant of Model 1 to include covariates. Let
Xij ∈ Rm denote the vector of m covariates for the dyad (i, j). If the covariates correspond to
the nodes, i.e., Xi ∈ RN is associated with node i for all i ∈ N , they are transferred onto the
dyad level via a symmetric “similarity” function ϕ(·, ·) : RN ×RN → Rm: Xij ≜ ϕ(Xi,Xj). In

2Although self-edges (Yii) could be defined in the SBM, they are not considered in missSBM since they are
scarce in real data.

Journal of Statistical Software 5

A1 A2

A3

π••

B1

B2

B3

B4

B5

π••

C1

C2

π••

π••

π••

π••

• Q = {•, •, •} blocks.

• α• = P(i ∈ •), • ∈ Q, i = 1, . . . , n.

• π•• = P(Yij = 1 | i ∈ •, j ∈ •).

Figure 1: Schematic representation of an undirected network following the stochastic block
model with 3 blocks. Colors are blocks in which nodes are dispatched with probabilities α
and the distribution of the dyads depends on colors of nodes with probabilities π.

the following, X ≜ [Xij]i,j∈N ∈ (Rm)n×n denotes the array of covariates. An SBM including
the effect of these covariates is as follows:

Zi
iid∼ M(1,α), for all i ∈ N ,

Yij | Zi,Zj ,Xij
ind∼ B(g(γzizj + β⊤Xij), for all (i, j) ∈ D,

(2)

where γqℓ ∈ R, β ∈ Rm, α = (α1, . . . , αQ), g(x) = (1 + e−x)−1. The vector of unknown
parameters is now defined by θ = (γ,β,α). Note the connection with logistic regression:
Model 2 assumes a logistic link between the presence of an edge Yij and the corresponding
covariates. The intercept term (γqℓ)qℓ depends on the blocks of the nodes and describes the
heterogeneity of the connections that is not explained by the regression term β⊤Xij .

Connections with similar models
The SBM was originally introduced by Nowicki and Snijders (2001). Many extensions have
been proposed since then, including other distributions on dyads in addition to incorporating
covariates (Mariadassou, Robin, and Vacher 2010). Unlike the latent space model of Hoff et al.
(2002) where the latent space is continuous, the latent variables in the SBM lie in a discrete
space. When covariates are included as in Equation 2, their effect is removed and the blocks
shall then explain the structure in the network beyond the covariates. This approach is similar
to Vu, Hunter, and Schweinberger (2013) and opposite to that used by Tallberg (2004) or
Binkiewicz, Vogelstein, and Rohe (2017) where covariates help learn the underlying clustering
of the nodes since their distribution is assumed to depend on the same latent variables as the
SBM.

2.3. Missing data and SBM

The main purpose of missSBM is to deal with some simple processes that generate missing
values in order to provide more accurate estimates of the parameters underlying an incom-
pletely observed network. The number of nodes n is assumed to be known and the missing
information only concerns the dyads. The sampled data can therefore be encoded in an ad-
jacency matrix Y where the missing information – the dyads whose value is unobserved – is

6 missSBM: Handling Missing Values in the SBM in R

encoded by NAs. We also define the n× n observation matrix R such as Rij = 1 if the dyad
Yij is observed and Rij = 0 otherwise. For convenience, we define Yo = {Yij : Rij = 1} and
Ym = {Yij : Rij = 0} the respective sets of observed and unobserved dyads.
In our framework, an observation process – or sampling design – is a stochastic process that
generates R. We then rely on standard missing data theory of Little and Rubin (2019) to
classify these designs as missing completely at random (MCAR), missing at random (MAR),
or missing not at random (MNAR) cases. This framework has to be extended to deal with
the latent variables Z in the SBM as we did in Tabouy et al. (2020):

Sampling design for SBM is

MCAR if R |= (Y,Z) | X,
MAR if R |= (Ym,Z) | (Yo,X),
MNAR otherwise.

(3)

The notation |= stands for independence between random variables. Note that MCAR miss-
ingness is a particular case of MAR missingness. This definition provides the general case
when covariates X are available. Otherwise, the definition remains valid just by removing
X. We denote by ψ the set of parameters associated with the distribution that generates
the sampling matrix R. These parameters account for the sampling effort of the network.
They live in a space that depends on the observation process as it is detailed in the next
section. We assume that ψ and θ live in a product space, so that we can derive the following
proposition:

Proposition 1. From (3), if the sampling is MAR or MCAR then maximizing pθ,ψ(Yo,R,X)
or pθ(Yo,X) in θ is equivalent for θ.

This proposition was proven in Tabouy et al. (2020) in the absence of covariate. The gener-
alization to handle covariates is straightforward. In words, the inference can be conducted on
the observed part of the network data when the sampling is M(C)AR without incurring any
bias. In these cases, adapting the existing algorithms for SBM inference is simple. MNAR
sampling designs require, however, more refined inference strategies since the observation
process has to be included in the inference.

2.4. Examples of sampling designs for networks

This section reviews a set of stochastic processes defining sampling designs available in
missSBM. These sampling designs may depend either on (i) the values of the dyads in the
network; (ii) the latent clustering of the nodes; or (iii) some covariates, via the vector of
parameters ψ. All examples detailed in the following assume that the observations are in-
dependent conditionally on Y, Z and X (either observations of the dyads for dyad-centered
sampling designs, or observations of the nodes for node-centered sampling designs). From a
practical viewpoint, the sampling designs implemented in missSBM allow the user to either
(i) generate new data by partially observing an existing network according to a predefined
sampling design, with user-defined parameters ψ, or (ii) to fit an SBM model under missing
data condition, assuming that the missing entries arise from a given type of sampling design
for which the unknown parameters ψ are estimated jointly with the SBM parameters θ.

Journal of Statistical Software 7

Dyad-centered sampling designs

• Dyad sampling (MCAR): each dyad (i, j) ∈ D has the same probability P(Rij = 1) ≜
ψ ∈ [0, 1] to be observed.

• Double standard sampling (MNAR): let ψ ≜ (ρ1, ρ0) ∈ [0, 1]2. Double standard
sampling consists in observing dyads with probabilities

P(Rij = 1 | Yij = 1) = ρ1, P(Rij = 1 | Yij = 0) = ρ0.

The probability for sampling a dyad thus intrinsically depends on the presence/absence
of the corresponding edge. This double standard sampling is especially likely in real
world applications, if it is easier to observe an existing connection than the absence
of connection. For instance, in protein-protein networks, the sampling effort is more
important to determine the absence of a link than its existence.

• Block-dyad sampling (MNAR): this sampling consists in observing all dyads with
probabilities ψ ≜ (ψqℓ)(q,ℓ)∈Q2 ∈ [0, 1]Q2 depending on the underlying clustering of the
network:

ψqℓ = P(Rij = 1 | Ziq = 1, Zjℓ = 1).

• Covar-dyad sampling (MAR): let us define ψ ≜ (α, κ) ∈ R×Rm. Here the probability
for observing a dyad is driven by the effect of a given covariate:

P(Rij = 1 | Xij) = g(α+ κ⊤Xij),

where we recall that g(x) = (1 + e−x)−1. Under this sampling, the external covariates
may have an impact on both a connection and the ability to observe it. In this case,
the sampling remains MAR provided that the covariates are available.

Node-centered sampling designs
A node-centered sampling consists in observing some nodes sampled with probabilities given
by the sampling design. Observing a node means observing all the dyads involving that node.
For all i ∈ N , we denote by Vi the indicator variable for observing node i. Hence if Vi = 1 we
have Rij = Rji = 1 for all j ∈ N . Node-centered sampling designs are likely in social sciences
since a network is sampled through direct interviews. During an interview, individuals (nodes)
indicate to whom they are connected. Some individuals may then indicate a connection with
an individual not available for an interview. The resulting missing dyads concern dyads
between individuals who were not interviewed. Even if the connection is oriented (directed
network), we assume that an individual, when interviewed, provides its ingoing and outgoing
connections.

• Node sampling (MCAR): the probabilities for observing nodes are uniform: P(Vi =
1) = ψ ∈ [0, 1] for all i ∈ N .

• Snowball sampling (MAR): a first batch of nodes is sampled as in node sampling.
Then, a second batch is composed of the neighbors of the first batch (the set of nodes
linked to at least a node of the first batch). Other batches can then be obtained through
several sampling steps which are called waves. These successive waves are then MAR
and not MCAR since they are built on the basis of the previously observed part of Y .

8 missSBM: Handling Missing Values in the SBM in R

• Degree sampling (MNAR): for all node i ∈ N , P(Vi = 1) = ρi where (ρ1, . . . , ρn) ∈
[0, 1]n are such that ρi = g(a+bDi) for all i ∈ N where ψ ≜ (a, b) ∈ R2 and Di = ∑

j Yij .
This sampling may be the consequence of a situation where popular individuals are more
likely to be interviewed.

• Block-node sampling (MNAR): this sampling consists in observing all dyads cor-
responding to nodes selected with probabilities ψ ≜ (ψ1, . . . , ψQ) ∈ [0, 1]Q such that
ψq = P(Vi = 1 | Ziq = 1) for all (i, q) ∈ N × Q. This sampling may happen if some
communities that shape the connections in the network are not equally reachable.

• Covar-node sampling (MAR): let ψ ≜ (ν, η) ∈ R × RN . The probability to observe
a node is

P(Vi = 1 | Xi) = g(ν + η⊤Xi).

In this sampling, some external information shapes the sampling process of the nodes.
Even if the covariates also have an impact on the probabilities of connection, as in
the covar-dyad sampling, the sampling design is MAR provided that the covariates are
available.

2.5. Estimation procedure: A variational expectation-maximization

The SBM is a latent state space model which can be seen as a mixture model for random
graphs. Therefore, the expectation-maximization (EM) algorithm (Dempster, Laird, and
Rubin 1977) is the natural choice for the inference since it generally proves very useful for
inferring various types of mixture models. It is based on the evaluation of the expectation
of the complete log-likelihood of the model, with respect to the conditional distribution of
the latent variables given the data. However, this expectation is intractable in the SBM due
to the structure of dependency between the latent variables Z and the network Y. In fact,
it would require to sum over all possible clusterings for all pairs of nodes, which is out of
reach even for a moderate number of nodes or blocks. To address this shortcoming when
the network Y is fully observed, Daudin et al. (2008) introduced a variational-EM (V-EM),
based on the variational principles of Jordan, Ghahramani, Jaakkola, and Saul (1998). The
idea is to maximize a lower bound of the log-likelihood based on an approximation of the
true conditional distribution of the latent variable Z. In the case of an SBM with missing
data, the level of difficulty is higher since the set of latent variables encompasses both Z (the
latent blocks) and Ym (the missing dyads). We propose here a variational distribution of the
conditional distribution pθ,ψ(Z,Ym | Yo) where complete independence is forced on Z and
Ym, using a multinomial, respectively a Bernoulli distribution for Z and Ym. We denote
by m(·) and b(·) the probability mass functions of, respectively, the multinomial and the
Bernoulli distributions which gives the following expression of the variational distribution:

p̃τ ,ν(Z,Ym) = p̃τ (Z) p̃ν(Ym) =
∏
i∈N

m(Zi; τi)
∏

(i,j)∈Dm

b(Yij ; νij),

where τ = {τi = (τi1, . . . , τiQ) ∈ [0, 1]Q : ∑Q
q=1 τiq = 1, i ∈ N } and ν = {νij ∈ [0, 1], (i, j) ∈

Dm} are the two sets of variational parameters respectively associated with Z and Ym. In-
terestingly, τ ’s are proxies for the posterior probabilities of the group memberships for all
nodes, and ν’s correspond to the imputed values of the missing dyads in the network data.

Journal of Statistical Software 9

This variational distribution was chosen in order to replace the intractable E-step of the EM
algorithm with a tractable variational E-step. This approximation leads to the following lower
bound J of the log-likelihood, where KL is the Kullback-Leibler divergence between the true
conditional distribution and its variational approximation:

log pθ,ψ(Yo,R) ≥
Jτ ,ν,θ,ψ(Yo,R) ≜ log pθ,ψ(Yo,R) − KL

(
p̃τ ,ν(Z,Ym) || pθ(Z,Ym || Yo)

)
,

= Ep̃τ ,ν [log pθ,ψ(Yo,R,Ym,Z)] − Ep̃τ ,ν [log p̃τ ,ν(R,Ym)] .

If we choose p̃ = pθ,ψ(Z,Ym | Yo), the true conditional distribution of the latent variables
Z,Ym, we retrieve the standard EM algorithm, requiring the evaluation of the intractable
quantity Epθ,ψ(Z,Ym|Yo) [log pθ,ψ(Yo,R,Ym,Z)]. Note that we alleviated the notations above
by not explicitly writing the possible conditioning on covariates in the log-likelihoods.
Based on this approximation, the V-EM algorithm consists in alternating updates of the
variational parameters {τ ,ν} (the VE-step) with updates of the model parameters θ,ψ (the
M-step) maximizing J . Steps VE and M are iterated until convergence like in a standard
EM. The algorithm converges to a local maximum of the lower bound of the log-likelihood.
This variational is translated into a collection of algorithms for handling missing data with
all sampling designs introduced in Section 2.4. When an algorithm reaches convergence, we
obtain estimates of the parameters involved in the SBM (θ), in the sampling process (ψ),
and also estimates of the variational parameters which bring information on the clustering
(τ) and on the missing dyads (ν). The variational estimator in the SBM is proven to be
asymptotically normal in Bickel, Choi, Chang, and Zhang (2013) when the network is fully
observed. The extension to the MCAR case is proven in Mariadassou and Tabouy (2020).

Initialization

It is well known that EM-like algorithms are very sensitive to the initialization step, which
therefore requires special attention. In missSBM, the initial clustering is obtained by applying
the popular absolute eigenvalues spectral clustering (detailed in Rohe, Chatterjee, and Yu
2011) to the adjacency matrix where the NAs are replaced by zero. The initial clustering can
also be provided by the user. As specified in the next section, the exploration of the number
of blocks also provides several other relevant initializations.

Selection of the number of blocks

One of the main difficulties encountered in SBM inference is the estimation of the number of
blocks, which is usually unknown to the user. To address this problem, we use the integrated
classification likelihood (ICL) criterion defined in Biernacki, Celeux, and Govaert (2000) and
commonly used in the context of mixture models. Note that Saldana, Yu, and Feng (2017),
Wang and Bickel (2017), Hu, Zhang, Qin, Yan, and Zhu (2020) and Côme, Jouvin, Latouche,
and Bouveyron (2021) provide alternative methods for selecting the number of blocks. The
ICL criterion has been adapted to the SBM under missing data condition in Tabouy et al.
(2020), and is recalled here: for a Q-blocks model, a sampling design parametrized by K pa-

10 missSBM: Handling Missing Values in the SBM in R

none MAR MNAR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.0

0.5

1.0

1.5

2.0

blocks

tim
e

(s
ec

.)

Figure 2: Timings for adjusting binary SBM with missSBM on the French political blogo-
sphere with a single core for a varying number of blocks (50 replicated runs per # blocks).

rameters (size of ψ) and (θ̂, ψ̂) = arg max(θ,ψ) log pθ,ψ(Yo,Ym,R,Z), then

ICL(Q) = −2Ep̃τ ,ν

[
log pθ̂,ψ̂(Yo,Ym,R,Z | Q,K)

]
+ penICL(Q,K),

penICL =

(
K + Q(Q+1)

2

)
log

(
n(n−1)

2

)
+ (Q− 1) log(n) for dyad-centered sampling,

Q(Q+1)
2 log

(
n(n−1)

2

)
+ (K +Q− 1) log(n) for node-centered sampling.

We have also implemented in missSBM an exploration procedure designed to avoid getting
stuck in local minima by producing a convex and robust ICL curve. This exploration pro-
cedure is divided into two steps, forward and backward: the forward step creates new ini-
tializations for each number Q of block considered, by splitting the blocks obtained from the
estimates with Q− 1 blocks. On the other hand, the backward step tries new initializations
for each Q by merging groups of the model with Q + 1 groups. The best model in terms of
ICL is always retained. The procedure can be iterated until a satisfying shape of the ICL
curve is encountered.

Implementation details

missSBM adopts an oriented-object programming spirit for representing most models by
means of R6 classes and the R6 package of Chang (2021), which opens the way for future
extensions. This approach is not visible to the user, who essentially only has to deal with
classical R functions. The most time-consuming parts of the code are written in C++ using
the armadillo library for linear algebra (Sanderson and Curtin 2016), in conjunction with
the Rcpp and RcppArmadillo packages (Eddelbuettel and François 2011; Eddelbuettel and
Sanderson 2014) to interface C++ with R. The numerical performance of our implementation
is of the same order as existing variational implementations of the binary SBM (such as
blockmodels). It can handle networks with up to a few thousands nodes. To give the reader
an idea, Figure 2 reports the timings for adjusting an SBM to the network data considered in

Journal of Statistical Software 11

Section 4 (the 2007 French political blogosphere, 194 nodes), for a varying number of blocks
with a single Intel Core i9-9900 CPU at 3.10GHz, replicated 50 times per block-size. We point
out in the discussion some interesting avenues to improve speed in the future and eventually
tackle larger networks.

3. Guidelines for users
This section gives an overview of the basic usage of the package. In particular, it describes
the inputs and the outputs of the main functions involved in the procedure that fits an
SBM from partially observed network data. Along the section, we also describe the object
classes included in the package to facilitate the manipulation of the resulting fitted models.
In addition to this section and to the usual R package documentation, full documentation
including a vignette is available as a pkgdown website at http://grosssbm.github.io/
missSBM. The missSBM package (Chiquet, Barbillon, and Tabouy 2022) can be installed
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=missSBM.

3.1. Parameter estimation, prediction and clustering
Estimation of an SBM from a partially observed network is done by means of the function
estimateMissSBM, with the following usage:

R> estimateMissSBM(adjacencyMatrix, vBlocks, sampling = "dyad",
+ covariates = list(), control = list())

Standard usage
This function takes as a first argument – adjacencyMatrix – a square base::matrix or
a sparsely encoded Matrix::dgCMatrix, possibly with NA entries corresponding to missing
(unobserved) values of the network. The second argument vBlocks contains the successive
explored values for the number of blocks, this number being generally unknown. The third
argument – sampling – specifies how NA entries are taken into account in the estimation. It
must be one of the following character strings, corresponding to one of the sampling designs
(or observation processes) depicted in Section 2.4:

R> missSBM:::available_samplings

[1] "dyad" "covar-dyad" "node" "covar-node"
[5] "block-node" "block-dyad" "double-standard" "degree"
[9] "snowball"

Argument covariates is an optional list with as many entries as covariates. If the covariates
are nodal, each entry must be a size-n vector; if the covariates are defined between pairs of
nodes, each entry must be an n× n matrix.

Advanced tuning
The argument control is a list to control the estimation and finely tune the V-EM algo-
rithm, with the following entries:

http://grosssbm.github.io/missSBM
http://grosssbm.github.io/missSBM
https://CRAN.R-project.org/package=missSBM
https://CRAN.R-project.org/package=missSBM

12 missSBM: Handling Missing Values in the SBM in R

Field Description
models A list of models with class ‘missSBM_fit’
ICL The vector of ICL associated to the models in the collection
bestModel Best model according to the ICL (a ‘missSBM_fit’ object)
optimizationStatus A data.frame summarizing the optimization process for all models
Method Description
plot(object, type) Plot either "icl", "elbo" or "monitoring"

Table 1: Structure of missSBM_collection (output of estimateMissSBM).

(i) useCov: Logical indicating whether the covariates should be incorporated within the
SBM (or just in the sampling).

(ii) clusterInit: Initial method for clustering. Either a character (“spectral”) or a list
with length(vBlocks) vectors, each with size ncol(adjacencyMatrix), providing a
user-defined clustering. Default is “spectral”, for absolute spectral clustering.

(iii) similarity: An R × R 7→ R function to compute similarities between nodal covariates
(default is missSBM:::l1_similarity, that is, (x, y) 7→ −|x− y|).

(iv) threshold: Optimization stops when a V-EM step changes the objective function or
the connection parameters by less than threshold (default is 1.10−2).

(v) maxIter: Optimization stops when the number of iteration exceeds maxIter (default is
50).

(vi) fixPointIter: Number of iterations in the fixed-point algorithm used to solve the
variational E step (default is 3).

(vii) exploration: Character indicating what kind of exploration should be used among
"forward", "backward", "both" or "none" (default is "both").

(viii) iterates: Integer for the number of iterations during the exploration process. Only
relevant when exploration is different from "none" (default is 1).

(ix) trace: Logical for verbosity (default is TRUE).

Return value: Classes ‘missSBM_collection’ and ‘missSBM_fit’

An output of the function estimateMissSBM is an instance of an R6 object with class
‘missSBM_collection’, which can be handled as a standard list. Its fields are described in
Table 1.
Among the fields of missSBM_collection, models is a list with as many elements as in
vBlocks. These elements are R6 objects with class ‘missSBM_fit’, the fields of which are
detailed in Table 2. It gives access to the results of the inference for a fixed number of blocks.
We finally give additional details on fields fittedSBM and fittedSampling in Table 3. Note
that fittedSBM enjoys some standard plot, print, coef, predict and fitted methods,
most of them inherited from the class ‘simpleSBM_fit’ of the package sbm.

Journal of Statistical Software 13

Field Description R6 object / class
fittedSBM The adjusted SBM ‘simpleSBM_fit_missSBM’
fittedSampling The estimated sampling process ‘networkSampling’
imputednetwork The adjacency matrix with imputed values ‘dgCMatrix’
monitoring Status of the optimization process ‘data.frame’
vICL ICL criterion associated to Q ‘double’
vBound Value of the variational bound Jτ ,θ at each step ‘double’
vExpec Value of Ep̃τ [log(pθ(Y,Z))] at each step ‘double’
penalty Penalty of the model with Q blocks ‘double’
Method Description
plot(object, type) Plot either "imputed", "expected", "meso" or "monitoring"
print(object) A print method recalling important fields and methods available
coef(object, type) Model parameters (type = "mixture", "connectivity",

"covariates" or "sampling")
predict(object) Estimated adjacency matrix (with imputation)
fitted(object) Expected value of the SBM

Table 2: Selection of fields in object ‘missSBM_fit’ with descriptions and types.

R6 object Field Description Correspondence
probMemberships Estimated probability of block belonging {τ i}i∈N
connectParam Connectivity matrix π̂

fittedSBM
expectation Imputed adjacency matrix Yo ∪ {νij}(i,j)∈Dm

covarParam Regression parameter β̂
memberships Vector of blocks memberships (which.max(τ i))i∈N
blockProp Block proportions α̂

fittedSampling parameters Sampling parameter ψ̂

Table 3: Selection of fields in fittedSBM, fittedSampling and mathematical counterparts.

Models exploration

At the end of the estimation process, it is common that the algorithm gets stuck in some
local minima for some values of Q, the current number of blocks. The consequence is a “non-
smooth” ICL curve when it should be theoretically convex and rather smooth. This can lead
the user to choose a sub-optimal number of blocks. Thus, the ICL criterion is automatically
“smoothed” after a first pass on all the models. The idea is to apply a split and merge strategy
to the path of the models stored in missSBM_collection in order to find a better initialization
for each value of Q in the V-EM algorithm, so that it converges to the global minimum. This
model exploration can be tuned with the argument control, see Section Advanced tuning.
The default goes back and forth a single time.

Parallel computing

Some internal components of estimateMissSBM (initialization, estimation, exploration) use
the future framework (Bengtsson 2021) to speed-up the whole process through parallel com-
puting. The future::plan must be set by the user (by default, it is sequential without
parallelism). For example, to run missSBM on 10 cores with forking on Unix systems, the
following command should be used before calling estimateMissSBM().

14 missSBM: Handling Missing Values in the SBM in R

R> future::plan("multicore", workers = 10)

3.2. Partial observation (“sampling”) of some network data

The function observeNetwork generates missing entries in a fully observed adjacency matrix
according to a given network sampling design. The usage is the following:

R> observeNetwork(adjacencyMatrix, sampling, parameters, clusters = NULL,
+ covariates = list(), similarity = l1_similarity, intercept = 0)

The first argument – adjacencyMatrix – is the totally observed network to be partially
observed. The second argument – sampling – is the chosen sampling among the available
ones. The third argument – parameters – contains the parameters associated with the
selected sampling. Note that its dimension (or its length) depends on the sampling design
selected, as described in Section 2.4. The clusters argument only needs to be specified
for "block-dyad" and "block-node" sampling designs. The argumentscovariates is by-
default list(), covarSimilarity is set to the l1_similarity function defined by (x, y) ∈
Rd×Rd 7→ −|x−y|ℓ1 ∈ Rd, and finally intercept is set to 0. These last three arguments only
need to be specified in the case of an SBM with covariate(s). Note that the intercept is not
included in parameters and must be specified independently. The output of observeNetwork
is a matrix encoding the adjacency-matrix, with NA values for dyads not observed by the
observation process, which can be provided as input to estimateMissSBM.

4. Illustration: The 2007 French political blogosphere
This section illustrates the features of missSBM by performing an analysis of a real-world data
network. It is a sub-network of the French political blogosphere, extracted from a snapshot
of more than 1100 blogs collected during a period preceding the 2007 French presidential
election, and manually classified by the “Observatoire Présidentielle project” (see Zanghi,
Ambroise, and Miele 2008). The network is composed of 194 blogs representing the nodes
of the network and of 1432 edges indicating that at least one of the two blogs references
the other. In addition to missSBM, our analysis relies on aricode (Chiquet, Rigaill, and
Sundqvist 2020) to compute clustering comparison measures and tidyverse to perform data
manipulations and producing graphical output. The igraph package, imported by missSBM,
is needed for basic graph manipulations. The package future is used for parallel computing.
We also fix the seed for reproducibility:

R> library("missSBM")
R> library("aricode")
R> library("tidyverse")
R> theme_set(theme_bw())
R> library("igraph")
R> library("future")
R> set.seed(03052008)

We set our future::plan to multicore with 10 workers. (Use multisession if you work on
Windows or from RStudio.)

Journal of Statistical Software 15

R> future::plan("multicore", workers = 10)

The frenchblog2007 data set is provided with missSBM3 as an ‘igraph’ object. We extract
the adjacency matrix corresponding to the blog network after removing the isolated nodes.
We also extract the political party of each blog from the vertex attribute party, which gives
us a natural classification of the nodes that could be used as a reference in our analyses.

R> data("frenchblog2007", package = "missSBM")
R> frenchblog2007 <- delete_vertices(frenchblog2007,
+ which(degree(frenchblog2007) == 0))
R> blog <- as_adj(frenchblog2007)
R> party <- vertex.attributes(frenchblog2007)$party

For this network, we explore models with a number of blocks varying from 1 to 18:

R> blocks <- 1:18

Standard SBM estimation

At this stage, the data set has no missing entry: every dyad and every node is observed. The
adjacency matrix Y of the fully-observed network is stored in the variable blog. We first
perform a standard SBM estimation on the fully observed network, including smoothing of
the ICL.

R> sbm_full <- estimateMissSBM(blog, blocks, "node")

We inspect the result of the optimization process by plotting the ELBO (variational lower
bound of the log-likelihood) against the number of iterations in the V-EM algorithm, accumu-
lated along all the numbers of blocks considered (Figure 3). The ELBO is typically expected
to increase with the number of blocks at the end of the successive optimizations, which is
indeed the case here:

R> plot(sbm_full, type = "monitoring")

The ICL criterion is minimal for an SBM with 10 blocks:

R> which.min(sbm_full$ICL)

[1] 10

The corresponding model is stored in the field $bestModel of sbm_full as an object with class
‘missSBM_fit’. Printing this object results in a summary of the most important accessible
fields and methods:

R> sbm_full$bestModel
3Earlier versions of this data set were available in packages mixer and sand.

16 missSBM: Handling Missing Values in the SBM in R

−5000

−4500

−4000

−3500

0 50 100 150
cumulated V−EM iterations

E
vi

de
nc

e
(v

ar
ia

tio
na

l)
Lo

w
er

 B
ou

nd

nBlock

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Optimization monitoring

Figure 3: Evolution of the ELBO during the optimization for the successive numbers of blocks.

missSBM-fit
==
Structure for storing an SBM fitted under missing data condition
==
* Useful fields (first 2 special objects themselves with methods)

$fittedSBM (the adjusted stochastic block model)
$fittedSampling (the estimated sampling process)
$imputedNetwork (the adjacency matrix with imputed values)
$monitoring, $ICL, $loglik, $vExpec, $penalty

* S3 methods
plot, coef, fitted, predict, print

In particular, one can access various parameters (e.g., block proportion/mixture parameters),

R> coef(sbm_full$bestModel, type = "mixture")

[1] 0.02741279 0.03589227 0.08965712 0.06583498 0.14612002 0.12372170
[7] 0.05670103 0.12990416 0.13922946 0.18552647

or plot diverse outputs, for instance a matrix view of the original network with columns and
rows reordered according to the block memberships of the nodes, see Figure 4).

R> plot(sbm_full$bestModel, dimLabels = list(row = "blogs", col = "blogs"))

Partial observation of an existing network
For illustrative purposes, we sample a sub-graph from the blog network to mimic missing data
and create a new adjacency matrix with missing entries. Since data consists in interactions

Journal of Statistical Software 17

blogs

blogs

Figure 4: Network data reorganized by the estimated block memberships.

between blogs (who references who), it is natural to sample the network with a node-centered
sampling design: the following code generates a realization of a 194 × 194 sampling matrix
according to the block-node sampling, where the blocks correspond to the clustering estimated
by the SBM fitted on the full data set. The sampling rate is either low (0.2) in small blocks
or high (0.8) in large blocks.

R> samplingParameters <-
+ ifelse(sbm_full$bestModel$fittedSBM$blockProp < 0.1, 0.2, 0.8)
R> blog_obs <- observeNetwork(adjacencyMatrix = blog,
+ sampling = "block-node", parameters = samplingParameters,
+ clusters = sbm_full$bestModel$fittedSBM$memberships)

Estimation of a partially observed network
We now perform SBM inference under missing data conditions by fitting two types of model:
first, the SBM under the MNAR block-node sampling design, i.e., under the design that
truly generated the missing entries; second, the SBM under the MCAR node sampling design
which basically performs inference only on the observed part of the network, neglecting the
process that generates the missing values. The estimation is run on both models with the
same settings as for the fully observed data. The ICL curve is smoothed with five iterations
of forward-backward exploration since the presence of missing values typically increases the
chances for falling into local minima.

R> sbm_block <- estimateMissSBM(blog_obs, blocks, "block-node",
+ control = list(iterates = 5))
R> sbm_node <- estimateMissSBM(blog_obs, blocks, "node",
+ control = list(iterates = 5))

Sampling design comparison
We plot on Figure 5 the ICL of the three models ("fully observed", "block-node" sampling
and "node" sampling) to show how it can be compared to select which sampling design fits
at best the data:

18 missSBM: Handling Missing Values in the SBM in R

8000

9000

10000

5 10 15
blocks

In
te

gr
at

ed
 C

la
ss

ifi
ca

tio
n

Li
ke

lih
oo

d
sampling

block−node

fully observed

node

Model Selection

Figure 5: ICL for models with fully observed data, block-node sampling and node sampling.

R> rbind(tibble(Q = blocks, ICL = sbm_node$ICL, sampling = "node"),
+ tibble(Q = blocks, ICL = sbm_block$ICL, sampling = "block-node"),
+ tibble(Q = blocks, ICL = sbm_full$ICL, sampling = "fully observed")
+) %>% ggplot(aes(x = Q, y = ICL, color = sampling)) +
+ geom_line() + geom_point() + ggtitle("Model Selection") +
+ labs(x = "# blocks", y = "Integrated Classification Likelihood")

Note that the curves associated with the block-node sampling and the node sampling are quite
close for small numbers of blocks (less than 10) and then depart from each other: the choice
of the sampling design is a difficult issue for the network data at stake. We also plot the
ICL curve for the collection of SBMs estimated on the fully observed network: although the
ICL values cannot be compared between this model and the two obtained on the partially
observed network (the datasets are not the same), we point out that the numbers of blocks
selected in the different cases remain comparable. A model with 10 blocks is selected with
the fully observed network, while a model with only 9 blocks is chosen for the block-node
sampling SBM. Indeed, due to the partial sampling, some blocks are less well represented
than others, and it seems more likely to cluster some blocks given the available information.
Regarding the clustering obtained by the three variants, we compare them with the Adjusted
Rand Index (ARI, Rand 1971) calculated with the aricode package (Chiquet et al. 2020).
We use the fully-observed SBM classification as a reference, since its clustering was used to
sample the network with the block-node sampling design. We typically expect that a model
relying on better modeling of missing values shall lead to a clustering closer to the reference.
This is indeed the case when looking at the following piece of code, where it is shown that the
ARI with the reference clustering is higher for the block-sampling SBM than for the MCAR
node sampling SBM:

R> ARI(sbm_block$bestModel$fittedSBM$memberships,
+ sbm_full$bestModel$fittedSBM$memberships)

[1] 0.6570555

Journal of Statistical Software 19

R> ARI(sbm_node$bestModel$fittedSBM$memberships,
+ sbm_full$bestModel$fittedSBM$memberships)

[1] 0.5436008

Extraction of the SBM with block-sampling design
The model that we finally retain is thus a block-sampling with 9 blocks.

R> myModel <- sbm_block$bestModel

myModel is an object with class ‘missSBM_fit’ with two special elements used for storing
the results of the estimation of both the SBM (field fittedSBM) and the sampling design
(fittedSampling). These two elements are special objects themselves with dedicated fields
and methods which are recalled to the user thanks to the print/show methods:

R> myModel$fittedSBM

Simple Stochastic Block Model -- bernoulli variant
===
Dimension = (194) - (9) blocks and no covariate(s).
===
* Useful fields

$nbNodes, $modelName, $dimLabels, $nbBlocks, $nbCovariates, $nbDyads
$blockProp, $connectParam, $covarParam, $covarList, $covarEffect
$expectation, $indMemberships, $memberships

* R6 and S3 methods
$rNetwork, $rMemberships, $rEdges, plot, print, coef

R> myModel$fittedSampling

block-node-model for network sampling
==
Structure for handling network sampling in missSBM.
==
* Useful fields

$type, $parameters, $df
$penalty, $vExpec

Representation and validation
With myModel, we now have at hand a tool for analyzing the clustering of the French political
blogosphere. The first output is the connectivity matrix of the network, which puts into
light the community structure of the blogosphere. Indeed, it is revealed by a diagonal filled
with high probabilities and off-diagonal with low probabilities. Thus, nodes (blogs) in blocks
connect with a high probability with other nodes in the same block and with a low probability
with nodes in other blocks. Such a network concentrates most of its edges between nodes of
the same blocks. This can be seen by displaying the probability of connection predicted by
the SBM at the whole network scale (see Figure 6):

20 missSBM: Handling Missing Values in the SBM in R

blogs

blogs

Figure 6: Probabilities of connection predicted by the SBM with block-node sampling.

R> plot(myModel, type = "expected", dimLabels = list(row = "blogs",
+ col = "blogs"))

For validation, we suggest comparing the clustering of the model with the node attribute
corresponding to the political parties to which the blogs belong. First, we remark that the
SBM fitted on missing entries carries a little bit less information regarding the political party
than the SBM adjusted on the fully observed network:

R> ARI(party, myModel$fittedSBM$memberships)

[1] 0.4126328

R> ARI(party, sbm_full$bestModel$fittedSBM$memberships)

[1] 0.463709

A more detailed comparison between blocks inferred by the SBM and political parties is
reported in Figure 7 with an alluvial diagram. Also remember that missSBM performs im-
putation of the missing dyads in the adjacency matrix. Thus, we can compare the imputed
values with the values of the dyad in the fully observed network to validate the performance of
our approach. Using the R package pROC (Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez,
and Müller 2011), we check the quality of the imputation. We replicate this experiment 500
times with a sampling rate varying between ≈ 0.4 and ≈ 0.9 (always with block-sampling
design), fixing the number of blocks to the best one found on the fully observed network. The
area under the curve (AUC) is plotted in Figure 8 against the sampling rate, showing the
robustness and the good performance of the imputation method.

Journal of Statistical Software 21

far−right

right

liberal

center−right

analyst

center−left

left

green

far−left

1

6

3

4

5

8

2

7

9

party block

Figure 7: Alluvial plot between block-node sampling clustering and political parties.

0.7

0.8

0.9

0.4 0.6 0.8
sampling rate

A
re

a
un

de
r

th
e

R
O

C
 c

ur
ve

Figure 8: AUC of the imputation as a function of the sampling rate.

22 missSBM: Handling Missing Values in the SBM in R

R> library("pROC")
R> library("parallel")
R> cl0 <- sbm_full$bestModel$fittedSBM$memberships
R> nBlocks <- sbm_full$bestModel$fittedSBM$nbBlocks
R> future::plan("sequential")
R> res_auc <- mclapply(1:500, function(i) {
+ subGraph <- observeNetwork(blog, "block-node", runif(nBlocks), cl0)
+ missing <- which(as.matrix(is.na(subGraph)))
+ true_dyads <- blog[missing]
+ sbm_block <- estimateMissSBM(subGraph, nBlocks, "block-node",
+ control = list(cores = 1, trace = 0))
+ imputed_dyads <- sbm_block$bestModel$imputedNetwork[missing]
+ c(rate = 1 - length(missing) / length(blog),
+ auc = auc(true_dyads, imputed_dyads, quiet = TRUE))
+ }, mc.cores = 10)
R> purrr::reduce(res_auc, rbind) %>% as.data.frame() %>%
+ ggplot() + aes(x = rate, y = auc) + geom_point(size = 0.25) +
+ geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
+ labs(x = "sampling rate", y = "Area under the ROC curve")

Dealing with covariates

In order to illustrate how we can deal with covariates in the observation process, we now con-
sider a sampling which depends on the political parties of the blog. For illustrative purposes,
we extract a sub-graph that only contains the nodes whose political party is either left or
right:

R> blog_subgraph <- frenchblog2007 %>%
+ igraph::induced_subgraph(V(frenchblog2007)$party %in%
+ c("right", "left"))
R> blog_subgraph <- delete_vertices(blog_subgraph,
+ which(degree(blog_subgraph) == 0))

The sub-graph is given in Figure 9, generated with the following piece of code:

R> plot(blog_subgraph, vertex.shape = "none",
+ vertex.label = V(blog_subgraph)$party,
+ vertex.label.color = "steel blue", vertex.label.font = 1.5,
+ vertex.label.cex = 0.6, edge.color = "gray70", edge.width = 1)

We then build a simple binary covariate on nodes indicating their party (1/0 = left/right).

R> dummy_party <- (V(blog_subgraph)$party == "left") * 1

Now, the observation process of the network is assumed to depend on this covariate so that a
node belonging to the left party is more likely to be observed than a node belonging to the
right party:

Journal of Statistical Software 23

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

right

left

left

left

left
left

left

left

left
left

left

left

left

left

left

left
left

left

left

left

left

left

left

left

left

left

left

left

left

left

left

left

left
left

left

left

left

left

left

left

left

left
left

left

left

left

left

left

left

left

left

left

left

left

left

left

left

left

Figure 9: Subnetwork extracted from the French political blogosphere (only blogs with at-
tribute party in {left, right} were kept).

R> blog_subgraph_obs <- blog_subgraph %>% as_adj() %>%
+ observeNetwork(sampling = "covar-node", parameters = 10,
+ covariates = list(dummy_party))
R> blocks <- 2:8
R> future::plan("multicore", workers = 10)

Since the covariate is nodal, a nodal observation process is considered. When it comes to take
into account the effect of this covariate on the probability of connection between two nodes
in the SBM as in Equation 2, the covariate has to be transferred at the dyad level. This
consists in computing an n× n matrix whose elements are equal to one if the corresponding
two nodes belong to the same political party, zero otherwise. This matrix computation is
directly handled in missSBM, when the option useCov is TRUE.
From the observed network blog_subgraph_obs, four modeling choices (labeled i to iv) are
possible whether the covariate is taken into account in the SBM or not, and whether the
sampling is set as depending on the covariate or not. For the latter choice, we know that the
sampling which depends on the covariate is more appropriate but this information is generally
not available a priori. We then run the estimation in these four scenarios below and print
the estimated parameters related to the SBM and the sampling.

(i) Take the covariate into account in both the sampling and the SBM:

R> sbm_covar1 <- estimateMissSBM(blog_subgraph_obs, blocks,
+ "covar-node", covariates = list(dummy_party),
+ control = list(useCov = TRUE, iterates = 2))

24 missSBM: Handling Missing Values in the SBM in R

The sampling and regression parameters are respectively:

R> sbm_covar1$bestModel$fittedSampling$parameters

[1] -0.3629055 2.9469030

R> sbm_covar1$bestModel$fittedSBM$covarParam

[1] 4.945801

(ii) Take the covariate into account in the sampling only:

R> sbm_covar2 <- estimateMissSBM(blog_subgraph_obs, blocks,
+ "covar-node", covariates = list(dummy_party),
+ control = list(useCov = FALSE, iterates = 2))

The sampling parameters are:

R> sbm_covar2$bestModel$fittedSampling$parameters

[1] -0.3629055 2.9469030

(iii) Take the covariate into account in the SBM only:

R> sbm_covar3 <- estimateMissSBM(blog_subgraph_obs, blocks,
+ "node", covariates = list(dummy_party),
+ control = list(useCov = TRUE, iterates = 2))

The sampling and regression parameters are respectively:

R> sbm_covar3$bestModel$fittedSampling$parameters

[1] 0.71875

R> sbm_covar3$bestModel$fittedSBM$covarParam

[1] 4.945801

(iv) Ignore the covariate in both the sampling and the SBM:

R> sbm_covar4 <- estimateMissSBM(blog_subgraph_obs, blocks,
+ "node", control = list(useCov = FALSE, iterates = 2))

The sampling parameter is:

R> sbm_covar4$bestModel$fittedSampling$parameters

[1] 0.71875

Journal of Statistical Software 25

2600

2800

3000

3200

2 4 6 8
#blocks

IC
Ls

useCov

false

true

sampling

covar−node

node

Figure 10: ICL criterion for different numbers of blocks under the four models which make
different use of the covariate political party.

For models (i) and (ii), we notice that the estimates of the sampling parameters are quite
accurate. For models (iii) and (iv), the estimation of the unique sampling parameter boils
down to the proportion of observed nodes. For models (i) and (iii), the estimate of the
parameter β in Equation 2 is positive and quite high. Thus, we conclude that the probability
of connection between two nodes is strengthened by the fact that the nodes belong to the
same party.
Figure 10 shows clearly that the "covar-node" sampling is uncovered from the data since
the ICL criterion favors this sampling no matter if the covariate is taken into account in the
SBM or not. The ICL criterion also points out that the models including the covariate effect
in the SBM are better.

R> rbind(
+ tibble(Q = blocks, ICL = sbm_covar1$ICL, sampling = "covar-node",
+ useCov = "true"),
+ tibble(Q = blocks, ICL = sbm_covar2$ICL, sampling = "covar-node",
+ useCov = "false"),
+ tibble(Q = blocks, ICL = sbm_covar3$ICL, sampling = "node",
+ useCov = "true"),
+ tibble(Q = blocks, ICL = sbm_covar4$ICL, sampling = "node",
+ useCov = "false")
+) %>% ggplot(aes(x = Q, y = ICL, color = sampling, shape = useCov)) +
+ geom_line() + geom_point() + labs(x = "#blocks", y = "ICLs")

Finally, we compare the clustering obtained with the four models together by computing
pairwise adjusted Rand indices (ARIs). We also compare them with the clustering obtained
by the SBM fitted on the fully observed network, adjusted as follows:

R> sbm_covar_full <- as_adj(blog_subgraph) %>%
+ estimateMissSBM(blocks, "node", covariates = list(dummy_party))

26 missSBM: Handling Missing Values in the SBM in R

i ii iii iv
Full 0.63 0.51 0.63 0.51
i NA 0.42 1.00 0.42
ii NA NA 0.42 1.00
iii NA NA NA 0.42

Table 4: Clustering comparison with ARIs between models taking the covariate into account
(models (i), (ii), (iii), (iv) and model with fully observed network).

For the sake of clarity, the ARIs are displayed in Table 4. We obtain the same clustering with
model (i) and (iii), which is the closest to the one obtained with the fully observed network.
This is expected since these models also take into account the effect of the covariate.

5. Discussion

The R package missSBM enables the estimation of an SBM from partially observed binary
networks, even for some observation processes which generate MNAR data.

Although version 1.0.0 of missSBM deals only with binary networks, we deploy a structure
that allows for easy inclusion of other variants in the future. In particular, extending missSBM
to weighted SBMs where the distribution on the edges belongs to the exponential family
(e.g., Poisson distribution or Gaussian distribution, see Mariadassou et al. 2010) should be
straightforward in the MAR case. To pave the way of such a generalization, missSBM relies
on the package sbm which is designed to offer a collection of methods and algorithms for
handling more general SBM, but in the absence of missing data, or at least, with imputed
data. Therefore, missSBM could benefit in the future of improvements and new advances in
sbm, while focusing specifically on handling of missing data, dealing only with modeling of
the observation process and imputing missing entries. The modular object-oriented coding of
missSBM also allows the developer to make it easily evolving in the way it can handle missing
data: new observation processes could be incorporated by providing new sampling designs
which should contain the functions corresponding to the sampling specific steps of the V-EM
algorithm. Other dependency structures between the SBM and the covariates could also be
modeled and incorporated. For example, the latent variables Z could depend directly on the
covariates X instead of the adjacency matrix Y.

Some recent work focuses on improving the speed of variational inference (see e.g., Blei, Ku-
cukelbir, and McAuliffe 2017). This work could be adapted in the SBM context with or with-
out missing data to allow our package to handle larger networks. Resorting to minorization-
maximization algorithms within the Variational E-step as in Vu et al. (2013) could also be
of interest to speed up the algorithm. Finally, a common drawback of variational inference
is that is provides too narrow standard errors for the estimated parameters (Westling and
McCormick 2019). Moreover, there is no uncertainty measure on the stability of node cluster-
ing. We consider it as future work to provide the user with confidence intervals and stability
measures for clustering based on resampling techniques such as bootstrapping.

Journal of Statistical Software 27

Acknowledgments
The authors thank all members of MIRES group for fruitful discussions on network sam-
pling designs. This work is supported by public grants overseen by the French national
research agency (ANR) as part of the “Investissement d’Avenir” program, through the “IDI
2017” project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02, and second by the
“EcoNet” project, ANR-18-CE02-0010.

References

Abbe E (2017). “Community Detection and Stochastic Block Models: Recent Developments.”
The Journal of Machine Learning Research, 18(1), 6446–6531.

Albert R, Barabási AL (2002). “Statistical Mechanics of Complex Networks.” Reviews of
Modern Physics, 74(1), 47. doi:10.1103/revmodphys.74.47.

Ambroise C, Grasseau G, Hoebeke M, Latouche P, Miele V, Picard F, Smith A (2018). MixeR:
Random Graph Clustering. R package version 1.9, URL https://CRAN.R-project.org/
src/contrib/Archive/mixer/.

Amini AA (2015). sbmSDP: Semidefinite Programming for Fitting Block Models of Equal
Block Sizes. R package version 0.2, URL https://CRAN.R-project.org/package=sbmSDP.

Bengtsson H (2021). “A Unifying Framework for Parallel and Distributed Processing in R
Using Futures.” The R Journal. doi:10.32614/rj-2021-048.

Bickel P, Choi D, Chang X, Zhang H (2013). “Asymptotic Normality of Maximum Likelihood
and Its Variational Approximation for Stochastic Blockmodels.” The Annals of Statistics,
41(4), 1922–1943. doi:10.1214/13-aos1124.

Biernacki C, Celeux G, Govaert G (2000). “Assessing a Mixture Model for Clustering with the
Integrated Completed Likelihood.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(7), 719–725. doi:10.1109/34.865189.

Binkiewicz N, Vogelstein JT, Rohe K (2017). “Covariate-Assisted Spectral Clustering.”
Biometrika, 104(2), 361–377. doi:10.1093/biomet/asx008.

Blei DM, Kucukelbir A, McAuliffe JD (2017). “Variational Inference: A Review for Statis-
ticians.” Journal of the American Statistical Association, 112(518), 859–877. doi:
10.1080/01621459.2017.1285773.

Brusco M (2020). dBlockmodeling: Deterministic Blockmodeling of Signed, One-Mode
and Two-Mode Networks. R package version 0.2.0, URL https://CRAN.R-project.org/
package=dBlockmodeling.

Butts C (2008a). “network: A Package for Managing Relational Data in R.” Journal of
Statistical Software, 24(2), 1–36. doi:10.18637/jss.v024.i02.

Butts C (2008b). “Social Network Analysis with sna.” Journal of Statistical Software, 24(6),
1–51. doi:10.18637/jss.v024.i06.

https://doi.org/10.1103/revmodphys.74.47
https://CRAN.R-project.org/src/contrib/Archive/mixer/
https://CRAN.R-project.org/src/contrib/Archive/mixer/
https://CRAN.R-project.org/package=sbmSDP
https://doi.org/10.32614/rj-2021-048
https://doi.org/10.1214/13-aos1124
https://doi.org/10.1109/34.865189
https://doi.org/10.1093/biomet/asx008
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://CRAN.R-project.org/package=dBlockmodeling
https://CRAN.R-project.org/package=dBlockmodeling
https://doi.org/10.18637/jss.v024.i02
https://doi.org/10.18637/jss.v024.i06

28 missSBM: Handling Missing Values in the SBM in R

Chabert-Liddell SC (2021). MLVSBM: A Stochastic Block Model for Multilevel Networks. R
package version 0.2.2, URL https://CRAN.R-project.org/package=MLVSBM.

Chabert-Liddell SC, Barbillon P, Donnet S, Lazega E (2021). “A Stochastic Block Model
Approach for the Analysis of Multilevel Networks: An Application to the Sociology of
Organizations.” Computational Statistics & Data Analysis, 158. doi:10.1016/j.csda.
2021.107179.

Chang J (2015). lda: Collapsed Gibbs Sampling Methods for Topic Models. R package ver-
sion 1.4.2, URL https://CRAN.R-project.org/package=lda.

Chang W (2021). R6: Classes with Reference Semantics. R package version 2.5.1, URL
https://CRAN.R-project.org/package=R6.

Chen K, Lei J (2018). “Network Cross-Validation for Determining the Number of Communi-
ties in Network Data.” Journal of the American Statistical Association, 113(521), 241–251.
doi:10.1080/01621459.2016.1246365.

Chiquet J, Barbillon P, Tabouy T (2022). missSBM: Handling Missing Data in Stochastic
Block Models. R package version 1.0.2, URL https://CRAN.R-project.org/package=
missSBM.

Chiquet J, Donnet S, Barbillon P (2021). sbm: Stochastic Blockmodels. R package ver-
sion 0.4.3, URL https://CRAN.R-project.org/package=sbm.

Chiquet J, Rigaill G, Sundqvist M (2020). aricode: Efficient Computations of Standard Clus-
tering Comparison Measures. R package version 1.0.0, URL https://CRAN.R-project.
org/package=aricode.

Côme É, Jouvin N (2021). greed: Clustering and Model Selection with the Integrated Classifi-
cation Likelihood. R package version 0.5.1, URL https://CRAN.R-project.org/package=
greed.

Côme É, Jouvin N, Latouche P, Bouveyron C (2021). “Hierarchical Clustering with Discrete
Latent Variable Models and the Integrated Classification Likelihood.” Advances in Data
Analysis and Classification, pp. 1–30. doi:10.1007/s11634-021-00440-z.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695.

Daudin JJ, Picard F, Robin S (2008). “A Mixture Model for Random Graphs.” Statistics and
Computing, 18(2), 173–183. doi:10.1007/s11222-007-9046-7.

Decelle A, Krzakala F, Zhang P (2019). MODE-NET: MOdules DEtection in NETworks.
URL http://www.lps.ens.fr/~krzakala/MODE_NET.

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data
via the EM Algorithm.” Journal of the Royal Statistical Society B, 39(1), 1–38. doi:
10.1111/j.2517-6161.1977.tb01600.x.

Donnet S, Barbillon P (2020). GREMLINS: Generalized Multipartite Networks. R package
version 0.2.0, URL https://CRAN.R-project.org/package=GREMLINS.

https://CRAN.R-project.org/package=MLVSBM
https://doi.org/10.1016/j.csda.2021.107179
https://doi.org/10.1016/j.csda.2021.107179
https://CRAN.R-project.org/package=lda
https://CRAN.R-project.org/package=R6
https://doi.org/10.1080/01621459.2016.1246365
https://CRAN.R-project.org/package=missSBM
https://CRAN.R-project.org/package=missSBM
https://CRAN.R-project.org/package=sbm
https://CRAN.R-project.org/package=aricode
https://CRAN.R-project.org/package=aricode
https://CRAN.R-project.org/package=greed
https://CRAN.R-project.org/package=greed
https://doi.org/10.1007/s11634-021-00440-z
https://doi.org/10.1007/s11222-007-9046-7
http://www.lps.ens.fr/~krzakala/MODE_NET
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://CRAN.R-project.org/package=GREMLINS

Journal of Statistical Software 29

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

Erdős P, Rényi A (1959). “On Random Graphs.” Publicationes Mathematicae, 6, 290–297.

Franzin A, Sambo F, di Camillo B (2017). “bnstruct: An R Package for Bayesian Network
Structure Learning in the Presence of Missing Data.” Bioinformatics, 33(8), 1250–1252.
doi:10.1093/bioinformatics/btw807.

Friedman J, Hastie T, Tibshirani R (2019). glasso: Graphical Lasso: Estimation of Gaussian
Graphical Models. R package version 1.11, URL https://CRAN.R-project.org/package=
glasso.

Handcock M, Hunter D, Butts C, Goodreau S, Morris M (2008). “statnet: Software Tools for
the Representation, Visualization, Analysis and Simulation of Network Data.” Journal of
Statistical Software, 24(1), 1–11. doi:10.18637/jss.v024.i01.

Handcock MS, Gile KJ (2010). “Modeling Social Networks from Sampled Data.” The Annals
of Applied Statistics, 4(1), 5–25. doi:10.1214/08-aoas221.

Hoff P (2007). “Modeling Homophily and Stochastic Equivalence in Symmetric Relational
Data.” In Advances in Neural Information Processing Systems, pp. 657–664.

Hoff PD, Raftery AE, Handcock MS (2002). “Latent Space Approaches to Social Network
Analysis.” Journal of the American Statistical Association, 97(460), 1090–1098. doi:
10.1198/016214502388618906.

Højsgaard S (2021). “CRAN Task View: Graphical Models.” Version 2021-12-18, URL
https://CRAN.R-project.org/view=GraphicalModels.

Hu J, Zhang J, Qin H, Yan T, Zhu J (2020). “Using Maximum Entry-Wise Deviation to
Test the Goodness of Fit for Stochastic Block Models.” Journal of the American Statistical
Association, pp. 1–10. doi:10.1080/01621459.2020.1722676.

Hunter D, Handcock M, Butts C, Goodreau S, Morris M (2008). “ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks.” Journal of Statistical
Software, 24(3), 1–29. doi:10.18637/jss.v024.i03.

Hunter DR, Handcock MS (2006). “Inference in Curved Exponential Family Models for
Networks.” Journal of Computational and Graphical Statistics, 15(3), 565–583. doi:10.
1198/106186006x133069.

Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK (1998). “An Introduction to Variational
Methods for Graphical Models.” In Learning in Graphical Models, pp. 105–161. Springer-
Verlag.

Krivitsky P, Handcock M (2008). “Fitting Latent Cluster Models for Networks with latentnet.”
Journal of Statistical Software, 24(5), 1–23. doi:10.18637/jss.v024.i05.

https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1093/bioinformatics/btw807
https://CRAN.R-project.org/package=glasso
https://CRAN.R-project.org/package=glasso
https://doi.org/10.18637/jss.v024.i01
https://doi.org/10.1214/08-aoas221
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1198/016214502388618906
https://CRAN.R-project.org/view=GraphicalModels
https://doi.org/10.1080/01621459.2020.1722676
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.1198/106186006x133069
https://doi.org/10.1198/106186006x133069
https://doi.org/10.18637/jss.v024.i05

30 missSBM: Handling Missing Values in the SBM in R

Lauritzen LS (1996). Graphical Models. Clarendon Press.

Léger JB (2016). “Blockmodels: A R Package for Estimating in Latent Block Model and
Stochastic Block Model, with Various Probability Functions, with or without Covariates.”
arXiv:1602.07587 [stat.CO], URL https://arxiv.org/abs/1602.07587.

Li T, Levina E, Zhu J (2020). “Network Cross-Validation by Edge Sampling.” Biometrika,
107(2), 257–276. doi:10.1093/biomet/asaa006.

Li T, Levina E, Zhu J, Le CM (2022). randnet: Random Network Model Selection and
Parameter Tuning. R package version 0.5, URL https://CRAN.R-project.org/package=
randnet.

Little RJA, Rubin DB (2019). Statistical Analysis with Missing Data, volume 793. John
Wiley & Sons.

Mariadassou M, Robin S, Vacher C (2010). “Uncovering Latent Structure in Valued Graphs:
A Variational Approach.” The Annals of Applied Statistics, 4(2), 715–742. doi:10.1214/
10-aoas361.

Mariadassou M, Tabouy T (2020). “Consistency and Asymptotic Normality of Stochastic
Block Models Estimators from Sampled Data.” Electronic Journal of Statistics, 14(2),
3672–3704. doi:10.1214/20-ejs1750.

Matias C, Miele V (2020). dynsbm: Dynamic Stochastic Block Models. R package version 0.7,
URL https://CRAN.R-project.org/package=dynsbm.

Mejean A, Maison J (2017). “CommunityDectection.” URL https://github.com/
Jonas1312/CommunityDetection.

Nowicki K, Snijders TAB (2001). “Estimation and Prediction for Stochastic Blockstruc-
tures.” Journal of the American Statistical Association, 96(455), 1077–1087. doi:
10.1198/016214501753208735.

Pearl J (2011). “Bayesian Networks.” Technical report, UCLA: Department of Statistics. URL
https://escholarship.org/uc/item/53n4f34m.

Peixoto TP (2014). “The graph-Tool Python Library.” Figshare. doi:10.6084/m9.figshare.
1164194.

Rand WM (1971). “Objective Criteria for the Evaluation of Clustering Methods.” Journal
of the American Statistical Association, 66(336), 846–850. doi:10.1080/01621459.1971.
10482356.

Rastelli R, Fop M (2019). expSBM: An Exponential Stochastic Block Model for Interaction
Lengths. R package version 1.3.5, URL https://CRAN.R-project.org/package=expSBM.

Rebafka T, Villers F (2020). noisySBM: Noisy Stochastic Block Mode: Graph Inference by
Multiple Testing. R package version 0.1.4, URL https://CRAN.R-project.org/package=
noisySBM.

https://arxiv.org/abs/1602.07587
https://doi.org/10.1093/biomet/asaa006
https://CRAN.R-project.org/package=randnet
https://CRAN.R-project.org/package=randnet
https://doi.org/10.1214/10-aoas361
https://doi.org/10.1214/10-aoas361
https://doi.org/10.1214/20-ejs1750
https://CRAN.R-project.org/package=dynsbm
https://github.com/Jonas1312/CommunityDetection
https://github.com/Jonas1312/CommunityDetection
https://doi.org/10.1198/016214501753208735
https://doi.org/10.1198/016214501753208735
https://escholarship.org/uc/item/53n4f34m
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
https://CRAN.R-project.org/package=expSBM
https://CRAN.R-project.org/package=noisySBM
https://CRAN.R-project.org/package=noisySBM

Journal of Statistical Software 31

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011). “pROC:
An Open-Source Package for R and S+ to Analyze and Compare ROC Curves.” BMC
Bioinformatics, 12, 77. doi:10.1186/1471-2105-12-77.

Rohe K, Chatterjee S, Yu B (2011). “Spectral Clustering and the High-Dimensional Stochastic
Block Model.” The Annals of Statistics. doi:10.1214/11-aos887.

Saldana DF, Yu Y, Feng Y (2017). “How Many Communities Are There?” Journal of
Computational and Graphical Statistics, 26(1), 171–181. doi:10.1080/10618600.2015.
1096790.

Sanderson C, Curtin R (2016). “Armadillo: A Template-Based C++ Library for Linear
Algebra.” Journal of Open Source Software, 1(2), 26. doi:10.21105/joss.00026.

Schweinberger M, Luna P (2018). “hergm: Hierarchical Exponential-Family Random Graph
Models.” Journal of Statistical Software, 85(1). doi:10.18637/jss.v085.i01.

Scutari M (2017). “Learning Bayesian Networks with the bnlearn R Package.” Journal of
Statistical Software, 77(2), 1–20. doi:10.18637/jss.v077.i02.

Snijders TAB, Nowicki K (1997). “Estimation and Prediction for Stochastic Blockmodels
for Graphs with Latent Block Structure.” Journal of Classification, 14(1), 75–100. doi:
10.1007/s003579900004.

Strayer N (2021). sbmr: Fit and Investigate Stochastic Block Models in R. R package ver-
sion 0.0.2.0, URL https://tbilab.github.io/sbmr/.

Tabouy T, Barbillon P, Chiquet J (2020). “Variational Inference for Stochastic Block Models
from Sampled Data.” Journal of the American Statistical Association, 115(529), 455–466.
doi:10.1080/01621459.2018.1562934.

Tallberg C (2004). “A Bayesian Approach to Modeling Stochastic Blockstructures
with Covariates.” Journal of Mathematical Sociology, 29(1), 1–23. doi:10.1080/
00222500590889703.

Vu DQ, Hunter DR, Schweinberger M (2013). “Model-Based Clustering of Large Networks.”
The Annals of Applied Statistics, 7(2), 1010. doi:10.1214/12-aoas617.

Wang YXR, Bickel PJ (2017). “Likelihood-Based Model Selection for Stochastic Block Mod-
els.” The Annals of Statistics, 45(2), 500–528. doi:10.1214/16-aos1457.

Westling T, McCormick TH (2019). “Beyond Prediction: A Framework for Inference with
Variational Approximations in Mixture Models.” Journal of Computational and Graphical
Statistics, 28(4), 778–789. doi:10.1080/10618600.2019.1609977.

Yen TC, Larremore D (2019). bipartiteSBM-MCMC. URL https://github.com/
junipertcy/bipartiteSBM-MCMC.

Yen TC, Larremore DB (2018). “Blockmodeling on a Bipartite Network with Bipartite Prior.”
URL https://docs.netscied.tw/det_k_bisbm.

You K (2021). graphon: A Collection of Graphon Estimation Methods. R package ver-
sion 0.3.5, URL https://CRAN.R-project.org/package=graphon.

https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1214/11-aos887
https://doi.org/10.1080/10618600.2015.1096790
https://doi.org/10.1080/10618600.2015.1096790
https://doi.org/10.21105/joss.00026
https://doi.org/10.18637/jss.v085.i01
https://doi.org/10.18637/jss.v077.i02
https://doi.org/10.1007/s003579900004
https://doi.org/10.1007/s003579900004
https://tbilab.github.io/sbmr/
https://doi.org/10.1080/01621459.2018.1562934
https://doi.org/10.1080/00222500590889703
https://doi.org/10.1080/00222500590889703
https://doi.org/10.1214/12-aoas617
https://doi.org/10.1214/16-aos1457
https://doi.org/10.1080/10618600.2019.1609977
https://github.com/junipertcy/bipartiteSBM-MCMC
https://github.com/junipertcy/bipartiteSBM-MCMC
https://docs.netscied.tw/det_k_bisbm
https://CRAN.R-project.org/package=graphon

32 missSBM: Handling Missing Values in the SBM in R

Young JG, Desrosiers P, Hébert-Dufresne L, Laurence E, Dubé LJ (2017). “Finite-Size Anal-
ysis of the Detectability Limit of the Stochastic Block Model.” Physical Review E, 95(6),
062304. doi:10.1103/physreve.95.062304.

Zanghi H, Ambroise C, Miele V (2008). “Fast Online Graph Clustering via Erdős-Rényi
Mixture.” Pattern Recognition, 41(12), 3592–3599. doi:10.1016/j.patcog.2008.06.019.

Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L (2012). “The huge Package for High-
Dimensional Undirected Graph Estimation in R.” The Journal of Machine Learning Re-
search, 13(1), 1059–1062.

Ziberna A (2021). blockmodeling: Generalized and Classical Blockmodeling of Val-
ued Networks. R package version 1.0.5, URL https://CRAN.R-project.org/package=
blockmodeling.

Affiliation:
Pierre Barbillon, Julien Chiquet, Timothée Tabouy
UMR MIA-Paris, Université Paris-Saclay, AgroParisTech, INRAE
16 rue Claude Bernard
75 231 Paris Cedex 05, France
E-mail: pierre.barbillon@agroparistech.fr, julien.chiquet@inrae.fr,

timothee.tabouy@gmail.com

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

January 2022, Volume 101, Issue 12 Submitted: 2019-07-05
doi:10.18637/jss.v101.i12 Accepted: 2021-06-26

https://doi.org/10.1103/physreve.95.062304
https://doi.org/10.1016/j.patcog.2008.06.019
https://CRAN.R-project.org/package=blockmodeling
https://CRAN.R-project.org/package=blockmodeling
mailto:pierre.barbillon@agroparistech.fr
mailto:julien.chiquet@inrae.fr
mailto:timothee.tabouy@gmail.com
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v101.i12

	Introduction
	Statistical framework
	Binary SBM
	Accounting for external covariates
	Connections with similar models

	Missing data and SBM
	Examples of sampling designs for networks
	Dyad-centered sampling designs
	Node-centered sampling designs

	Estimation procedure: A variational expectation-maximization
	Initialization
	Selection of the number of blocks
	Implementation details

	Guidelines for users
	Parameter estimation, prediction and clustering
	Standard usage
	Advanced tuning
	Return value: Classes missSBMcollection and missSBMfit
	Models exploration
	Parallel computing

	Partial observation (``sampling'') of some network data

	Illustration: The 2007 French political blogosphere
	Standard SBM estimation
	Partial observation of an existing network
	Estimation of a partially observed network
	Sampling design comparison
	Extraction of the SBM with block-sampling design
	Representation and validation
	Dealing with covariates

	Discussion

