
JSS Journal of Statistical Software
July 2022, Volume 103, Issue 8. doi: 10.18637/jss.v103.i08

On the Programmatic Generation of Reproducible
Documents

Michael Kane
Yale University

Xun (Tony) Jiang
Amgen Inc.

Simon Urbanek
The University of Auckland

Abstract

Reproducible document standards, like R Markdown, facilitate the programmatic cre-
ation of documents whose content is itself programmatically generated. While program-
matic content alone may not be sufficient for a rendered document since it does not
include prose (content generated by an author to provide context, a narrative, etc.) pro-
grammatic generation can provide substantial efficiencies for structuring and constructing
documents. This paper explores the programmatic generation of reproducible documents
by distinguishing components that can be created by computational means from those
requiring human-generation, providing guidelines for the generation of these documents,
and identifying a use case in clinical trial reporting. These concepts and use case are
illustrated through the listdown package for the R programming environment, which is is
currently available on the Comprehensive R Archive Network.

Keywords: reproducibility, reproducible documents, data presentation.

1. Background and concepts

R Markdown (Xie, Allaire, and Grolemund 2018; Baumer, Cetinkaya-Rundel, Bray, Loi, and
Horton 2014) facilitates the construction of computationally reproducible documents by al-
lowing authors to insert R code for data processing, exploration, analysis, table-making, and
visualization directly into structured, electronic documents. The resulting documents are
made up of these chunks of R code, which we will refer to as computational components
since they are generated by computational means, as well as narrative components, which
(in scientific writing) is prose intended to contextualize computational components, provide
background, define goals, establish themes, and convey results. These documents are then
used to render output documents, for users to read in the form of .html, .pdf, .doc, or other
formats using the knitr package (Xie 2015).

https://doi.org/10.18637/jss.v103.i08
https://orcid.org/0000-0003-1899-6662
https://orcid.org/0000-0003-2297-1732


2 On the Programmatic Generation of Reproducible Documents

The integration of narrative and computational components was originally identified as “Lit-
erate Programming” by Knuth (1984) and software tools, like Sweave (Leisch 2002), have
supported this functionality for almost two decades. However, more recently, R Markdown
has become particularly popular with its success likely being driven by two factors. The first
is the relative ease with which these documents can be constructed. While LATEX is more
expressive, it is relatively technical and requires an investment in time to become proficient.
By contrast R Markdown documents are easier to create and format and, when the document
is used to create LATEX, formatting can be passed through to the underlying .tex file. The
second factor driving adoption is likely its support for creating modifiable documents, namely
Microsoft Word documents. Researchers and analysts, especially those creating applied statis-
tical analyses, often collaborate with domain experts with less technical knowledge. In these
cases, the analyst focuses on creating the computational components and narrative compo-
nents related to results and interpretation. After this initial document is created, the domain
expert is free to develop narrative components directly in the document without needing to
go through the analyst.
Since computational components are, by definition, computationally derived objects and
R Markdown is a well-defined standard, it is possible to programmatically create R Markdown
documents with computational components, which is the focus of this paper. Generating doc-
uments in this manner has two appealing characteristics. First, it allows us to distinguish
the presentation of analytical results from other steps in a data science or data processing
pipeline. Other steps including cleaning and analysis often require their own environment
and configuration with requirements very different than the computational needs of creating
a presentation. By separating these components each can be developed independently. At
the same time, by specifying a contract for the output of those objects, we can establish
a consistent means by which processed data can be passed to systems for presenting those
data in a structured way. The second reason for programmatic creation of R Markdown
documents is convenience. In collaborative environments, especially in the early stages, large
numbers of graphs and tables are generated and discussed. By collecting these artifacts and
structuring them consistently, we can quickly iterate upon and restructure the resulting doc-
uments to more clearly present the data without needing to spend time on the creation of the
presentation document.
The listdown package (Kane 2022) provides functions to programmatically create R Mark-
down files from named lists. It is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=listdown and is intended for data anal-
ysis pipelines where the presentation of the results is separated from their creation. For this
use case, a data processing (or analysis) is performed and the results are provided in a single
named list, organized hierarchically. List element names denote sections, subsections, sub-
subsection, etc. and the list elements contain the data structure to be presented including
graphs and tables. The package has native support for workflowr (Blischak, Carbonetto, and
Stephens 2019), PDF, Word, or HTML document along with functions allowing a user to
easily extend to other types of supported documents. The goal of the package is to create
a documents with all tables and visualization that will appear (computational components).
This serves as a starting point from which a user can organize outputs, describe a study,
discuss results, and provide conclusions (narrative components).
listdown therefore provides a reproducible means for producing a document with specified
computational components. It is most compatible with data analysis pipelines where the

https://CRAN.R-project.org/package=listdown


Journal of Statistical Software 3

data format is fixed but the analyses are either being updated, which may affect narrative
components including the result discussion and conclusion, or where the experiment is differ-
ent, which affects all narrative components, but the data format and processing is consistent.
An example of the former is provided later in this paper.
One area where we have found listdown is particularly useful is in the reporting and research
of clinical trial data. These collaborations tend to be between (bio)statisticians and clinicians
either analyzing past trial data to formulate a new trial or in trial monitoring where trial
telemetry (enrollment, responses, etc.) is reported and initial analyses are conveyed to a
clinician. The associated presentations require very little context – clinicians often have as
good an understanding of the data collected as that of the statistician’s – often eliminating or
significantly reducing the need for narrative components. At the same time, a large number of
hierarchical, heterogeneous artifacts (tables and multiple types of plots) need to be conveyed
thereby making the manual creation of R Markdown documents inconvenient.
In this case, data presentation can be fixed across trials. This is especially true in the initial
stages, which focus on patient demographics and enrollment. This approach has made it con-
venient for our group to quickly generate standardize and complete reports for multiple trials
concurrently. To date, we have used listdown to report on five clinical trials, with another
two currently in process. Results are disseminated using the workflowr package, usually with
nine tabs conveying aspects of the data from collection through several different analyses,
and each tab containing approximately five to thirty tables, plots, or other artifacts including
trelliscopejs (Hafen and Schloerke 2021) environments which may hold hundreds of graphs.
By generating many presentation artifacts we are able to address data-drive questions and
issues during collaborative sessions and by carefully structuring these elements we allowing
all members to participate in the process.
The listdown package itself is relatively simple with 10 distinct methods that can be easily
incorporated into existing analysis pipelines for automatically creating documents that can
be used for data exploration and reviewing analysis results as well as a starting point for a
more formal write up. These methods include:

• as_ld_yml() – turn a computational component list into YAML with class information.

• ld_cc_dendro() – create a dendrogram from a list of computational components.

• ld_chunk_opts() – apply chunk options to a presentation object.

• ld_ioslides_header() – create an ioslides presentation header.

• ld_make_chunks() – write a ‘listdown’ object to a string.

• ld_rmarkdown_header() – create an R Markdown header.

• ld_workflowr_header() – create a worflowr header.

• ld_write_file() – write to and R Markdown file.

• listdown() – create a ‘listdown’ object to create an R Markdown document.

• print.listdown() – print the ‘listdown’ options for R Markdown document creation.



4 On the Programmatic Generation of Reproducible Documents

The rest of this paper is structured as follows. The next section goes over basic usage and
commentary. It is meant to convey the approach used by the package and shows how to
describe an output document using listdown, create a document, and change how the presen-
tation of computational components can be specialized using listdown decorators. With the
user accustomed to the package’s basic usage, Section 3 describes the design of the package.
Section 4 goes over advanced usage of the package including adding initialization code to
and outputted document as well as how to control chunk-level options. Section 5 provides
a simplified case study of how the package is currently being used in clinical trial reporting.
Section 6 concludes the paper with a few final remarks on the general types of applications
where listdown has been shown effective.

2. Basic usage
Suppose we have just completed and analysis and have collected all of the results into a list
where the list elements are roughly in the order we would like to present them in a document.
It may be noted that this is not always how computational components derived from data
analyses are collated. Often individual components are stored in multiple locations on a single
machine or across machines. However, it is important to realize that even for analyses on
large-scale data, the digital artifacts to be presented are relatively small. Centralizing them
makes it easier to access them, since they don’t need to be found in multiple locations. Also,
storing them as a list provides a hierarchical structure that translates directly to a document
as we will see below.
As a starting point, we will consider the a list of visualizations from the Anscombe data set
below. The list is composed of four ggplot2 (Wickham 2016) elements (named Linear, Non
Linear, Outlier Vertical, and Outlier Horizontal) each containing a scatter plot from
the Anscombe quartet – made available in the datasets package (R Core Team 2022). From the
computational_components list, we would like to create a document with four sections with
names corresponding to the list names, each containing their respective visualizations. The
structure of a document derived from the computational_components list can be visualized
using the ld_cc_dendro() function, and its output is below.

R> library("ggplot2")
R> library("listdown")
R> data("anscombe", package = "datasets")
R> computational_components <- list(
+ Linear = ggplot(anscombe, aes(x = x1, y = y1)) + geom_point(),
+ `Non Linear` = ggplot(anscombe, aes(x = x2, y = y2)) + geom_point(),
+ `Outlier Vertical`= ggplot(anscombe, aes(x = x3, y = y3)) +
+ geom_point(),
+ `Outlier Horizontal` = ggplot(anscombe, aes(x = x4, y = y4)) +
+ geom_point())
R> ld_cc_dendro(computational_components)

computational_components
|-- Linear
| o-- object of type(s):gg ggplot



Journal of Statistical Software 5

|-- Non Linear
| o-- object of type(s):gg ggplot
|-- Outlier Vertical
| o-- object of type(s):gg ggplot
o-- Outlier Horizontal

o-- object of type(s):gg ggplot

2.1. Creating a document with listdown
Creating a document whose structure and content are described computational_components
requires two steps. First, we will create a listdown object specifying how the
computational_components object will be loaded into the document, which libraries and code
needs to be included, and how the list elements will be presented in the output R Markdown
document. A human-readable print function is included in the package and is the default
output of the object. It should be noted that the output shows options that will be described
and illustrated later.

R> saveRDS(computational_components, "comp-comp.rds")
R> ld <- listdown(load_cc_expr = readRDS("comp-comp.rds"),
+ package = "ggplot2")
R> ld

Listdown object description

Package(s) imported:
ggplot2

Setup expression(s) (run before packages are loaded):
(none)

Initial expression(s) (run after packages are loaded):
(none)

Expression to read data:
readRDS("comp-comp.rds")

Decorator(s):
(none)

Default decorator:
identity

Chunk option(s):
(none)

Decorator chunk option(s):
(none)



6 On the Programmatic Generation of Reproducible Documents

The ld object, along with the computational components in the comp-comp.rds file are
sufficient to to create the sections, subsections, and R chunks of a document. The only
other thing required to create the document is the header. The listdown package currently
supports regular R Markdown and workflowr as ‘yml’ objects from the yaml package (Garbett,
Stephens, and Simonov 2022). These objects are stored as named lists in R and are easily
modified to accommodate document parameters. A complete document can then be written
to the console using the code shown below. It could easily be written to a file for rendering
using the ld_write_file() function, for example.

R> ld_write_file(ld_rmarkdown_header("Anscombe's Quartet",
+ author = "Francis Anscombe", date = "1973"), ld,
+ "anscome-example.rmd")

The listdown() function provides document-wide R chunk options for displaying computa-
tional components. The chunk options are exactly the same as those in the R Markdown
document and can be used to tailor the default presentation for a variety of needs. The
complete set of options can be found in the R Markdown Reference Guide (RStudio 2014). As
a concrete example, the code used to create present the plots could be hidden in the output
document using the following code.

R> ld <- listdown(load_cc_expr = readRDS("comp-comp.rds"),
+ package = "ggplot2", echo = FALSE)
R> ld_make_chunks(ld)[1:7]

[1] ""
[2] "```{r echo = FALSE}"
[3] "library(\"ggplot2\")"
[4] ""
[5] "cc_list <- readRDS(\"comp-comp.rds\")"
[6] "```"
[7] ""

2.2. Decorators

The first example is simple in part because the ‘ggplot’ objects both contains the data
we want to display and, at the same time, provides the mechanism for presenting them –
rendering them in a visualization However, this is not always the case. The objects being
stored in the list of computational components may not translate directly to the presentation
in a document. In these cases, a function is needed that takes the list component and returns
an object to be displayed. For example, suppose that, along with showing graphs from the
Anscombe Quartet, we would like to include the data themselves. We could add the data to
the computational_components list and then create the document with:

R> computational_components$Data <- anscombe
R> saveRDS(computational_components, "comp-comp.rds")
R> ld_make_chunks(ld)[32:36]



Journal of Statistical Software 7

[1] "# Data"
[2] ""
[3] "```{r echo = FALSE}"
[4] "cc_list$Data"
[5] "```"

In this case, the listdown package will show the entire data set as is the default specified.
However, suppose we do not want to show the entire data set in the document. This is
common, especially when the data set is large and requires too much vertical space in the
outputted document resulting in too much or irrelevant data being shown. Instead, we would
like to output to an HTML document where the data is shown in a datatable thereby
controlling the amount of real-estate needed to present the data and, at the same time,
providing the user with interactivity to sort and search the data set.
In listdown, a function or method that implements the presentation of a computational com-
ponent is referred to as a decorator since if follows the classic decorator pattern described
in Gamma, Helm, Johnson, and Vlissides (1995). A decorator takes the element that will
be presented as an argument and returns an object for presentation in the output directory.
A decorator is specified using the decorator parameter of the listdown() function using
a named list where the name corresponds to the type and the element correspond to the
function or method that will decorate an object of that type. For example, the anscombe
data set can be decorated with the DT::datatable() function (Xie, Cheng, and Tan 2022)
as:

R> ld <- listdown(load_cc_expr = readRDS("comp-comp.rds"),
+ package = c("ggplot2", "DT"), decorator = list(data.frame = datatable))
R> ld_make_chunks(ld)[33:37]

[1] "# Data"
[2] ""
[3] "```{r}"
[4] "datatable(cc_list$Data)"
[5] "```"

List names in the decorator argument provide a key to which a function or method is
mapped. The underlying decorator resolution is implemented for a given computational
component by going through decorator names sequentially to see if the component inherits
from the name using the inherits() function. The function or method is selected from the
corresponding name which the element first inherits from. This means that when customizing
the presentation of objects that inherit from a common class, the more abstract classes should
appear at the right-end of the list. This will ensure that specialized classes will be encountered
first in the resolution process. It should be noted that an object’s type is first checked against
the decorator name list and then checked to see if it is a list. This allows a user to both
decorate a list and retain "list" in its class attributes.
A separate argument, default_decorator, allows the user to specify the default decorator
for an object whose type does not appear in the decorator list. This allows the user to
specify any class name for the decorator and avoids a potential type name collision with a



8 On the Programmatic Generation of Reproducible Documents

default decorator whose name is determined by convention. By default, this argument is set
to identity but it can be use to not display a computational component by default if the
argument is set to NULL.
It should be noted that it is not possible to decorate a list and an attempt to do so results
in an error. This is because, when generating a document, the ld_make_chunks() function
recursively descends into the list of computational components. The decision to descend is
made based on the type of the element being visited. If it is a list, then it descends otherwise
it presents the object. However, a list can’t designate both an object to hold elements for
presentation and an object to be presented. To present arbitrary list elements, including lists,
a user may add class information to a list element and a corresponding decorator.

3. Design
A listdown object specifies the location of a list of computational components and options
for presenting those components in an R Markdown document. The list is a hierarchical
data structure that also provides the structure of the outputted document. A correspond-
ing document has two sections “Iris” and “Sepal.Length”. The latter has three subsections
“Sepal.Width”, “Petal.Length”, and “Colored”. The “Colored” subsection has two subsub-
sections, “Sepal.Width” and “Petal.Length”. The structure can once again be seen using the
ld_cc_dendro() function.

R> comp_comp2 <- list(
+ Iris = iris,
+ Sepal.Length = list(
+ Sepal.Width = ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
+ geom_point(),
+ Petal.Length = ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
+ geom_point(),
+ Colored = list(
+ Sepal.Width = ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width,
+ color = Species)) + geom_point(),
+ Petal.Length = ggplot(iris, aes(x = Sepal.Length, y = Petal.Length,
+ color = Species)) + geom_point())))
R> ld_cc_dendro(comp_comp2)

comp_comp2
|-- Iris
| o-- object of type(s):data.frame
o-- Sepal.Length
|-- Sepal.Width
| o-- object of type(s):gg ggplot
|-- Petal.Length
| o-- object of type(s):gg ggplot
o-- Colored
|-- Sepal.Width
| o-- object of type(s):gg ggplot



Journal of Statistical Software 9

o-- Petal.Length
o-- object of type(s):gg ggplot

Both the ld_cc_dendro() and ld_make_chunks() functions work by recursively descending
the computational components list depth-first. If the list containing and element has a name,
it is written to the output as a section, subsection, subsubsection, etc. to a return string.
If the visited list element is itself a list, then the same procedure is called on the child list
through a recursive call. If the element is not a list, then it is outputted inside an R Markdown
chunk in the return string using the appropriate decorator.

4. Advanced usage

4.1. Setup and initialization code

The listdown() function facilitates the insertion of setup and initialization code through the
setup_expr and init_expr arguments. If and argument is provided to the setup_expr, then
the first code chunk of the document will have the specified code inserted. This code chunk
is named setup and the include parameter is set to FALSE. When the init_expr argument
is specified, code is inserted immediately after the libraries are loaded in the R Markdown
document. In general, it is suggested that the number of initial expressions be kept small so
that the R Markdown document is easy to read. If a large number of functions are required
by the target R Markdown document then they can be put into a file and sourced using
the initial expression. As an example, suppose we are creating an HTML document and
presenting data using the datatable() function. However, we do not want to include the
search capabilities provided. This can be easily accomplished by creating a new function,
datatable_no_search(), created using the partial() function Henry and Wickham (2020)
to partially apply list(dom = "t") to the options argument of datatable.

R> saveRDS(comp_comp2, "comp-comp2.rds")
R> ld <- listdown(load_cc_expr = readRDS("comp-comp2.rds"),
+ package = c("ggplot2", "DT", "purrr"),
+ decorator = list(ggplot = identity, data.frame = datatable_no_search),
+ setup_expr = knitr::opts_chunk$set(echo = FALSE),
+ init_expr = {
+ datatable_no_search <- partial(datatable, options = list(dom = "t"))
+ })
R> ld_make_chunks(ld)[2:14]

[1] "```{r setup, include = FALSE}"
[2] "knitr::opts_chunk$set(echo = FALSE)"
[3] "```"
[4] ""
[5] "```{r}"
[6] "library(\"ggplot2\")"
[7] "library(\"DT\")"
[8] "library(\"purrr\")"



10 On the Programmatic Generation of Reproducible Documents

[9] ""
[10] "datatable_no_search <- partial(datatable, options = list(dom = \"t\"))"
[11] ""
[12] "cc_list <- readRDS(\"comp-comp2.rds\")"
[13] "```"

4.2. R code chunk customization

The listdown package supports also supports capabilities to further customize the presentation
by specifying R code chunk options in the R Markdown document in two distinct ways. The
first is used when the options we would like to specify is tied to type of the object being
presented. This can be though of as a chunk-option decorator. The second is use for changing
the options for an individual chunk in an ad hoc manner.
With three different modes of chunk customization it should be noted that the increasing
priority of the chunk options specification is document-wide, decorator-wide, and ad hoc.
That is, decorator-wide chunk options take priority over document-wide chunk options and
ad-hod options take priority over decorator-wide options. In addition, it should be noted that
the use of the lowest priority scheme that accomplishes the presentation goals is preferred
because it lends itself to greater code and maintenance efficiency.

4.3. Controlling options associated with a decorator

The document-wide chunk option specification provides the default chunk options for output
documents generated using listdown. However, the presentation of a data object often varies
by type. For example, we may want to specify the height and width of a graph, but not a
table. This is accomplished in the listdown package when a listdown object is created using
the decorator_chunk_opts option in the listdown() function. For example, associating all
‘ggplot’ objects with R chunks having a width of 100 and a height of 200 can be accomplished
with the following code and it can be seen that only chunk options associated with a plot are
modified.

R> ld <- listdown(load_cc_expr = readRDS("comp-comp2.rds"),
+ package = c("ggplot2", "DT", "purrr"), decorator_chunk_opts = list(
+ ggplot = list(fig.width = 100, fig.height = 200)),
+ init_expr = {
+ datatable_no_search <- partial(datatable, options = list(dom = "t"))},
+ echo = FALSE)
R> ld_make_chunks(ld)[c(12:16, 19:24)]

[1] "# Iris"
[2] ""
[3] "```{r echo = FALSE}"
[4] "cc_list$Iris"
[5] "```"
[6] ""
[7] "## Sepal.Width"



Journal of Statistical Software 11

[8] ""
[9] "```{r echo = FALSE, fig.width = 100, fig.height = 200}"

[10] "cc_list$Sepal.Length$Sepal.Width"
[11] "```"

4.4. Controlling chunk-level options

Along with providing decorator-wide chunk options, it is also possible to control individual
chunk options. The capability is distinct from the document-wide and decorator-wide spec-
ification of options in that it must be applied to the computational component list element
whose associated options will be modified, rather than the listdown object. This is because
the listdown only specifies how classes of objects should be presented. To modify the chunk
options associated with a specific list element the list element is provided with a set of at-
tributes that can be queried by the ld_chunk_opts() function as the output document is
being generated. Because of the ad hoc nature of this capability, its use is discouraged. A
better solution, that maintains the behavior is to add class information to the list element
and specify decorator-wide chunk options for the new class. This maintains the separation
of the computational component list, which maintains the document structure and data for
presentation from the specification of how the document will be created and rendered.

R> comp_comp2$Iris <- ld_chunk_opts(comp_comp2$Iris, echo = TRUE)
R> saveRDS(comp_comp2, "comp-comp2.rds")
R> ld_make_chunks(ld)[12:16]

[1] "# Iris"
[2] ""
[3] "```{r echo = TRUE}"
[4] "cc_list$Iris"
[5] "```"

4.5. Presenting base graphics

Since a base plot does not encapsulate the state and ability to present the plot, like a ‘ggplot’
object, for example it is not possible to assign a base graphic to a list element and present it.
Instead, it is recommended that the corresponding data is held as a list element, with base
graphic options, and that that element is given a class and a corresponding decorator. Using
this approach the decorator generates the visualization though a call to base graphics when
the output document is rendered.

5. Example: Reporting on the gtsummary::trial dataset
As mentioned before, we have found the listdown package particularly helpful for reporting
the results of clinical trials thereby creating a basis for discussion and collaboration between
(bio)statisticians and the clinicians running the trials. For this use case, the context and data
collection procedures are well-understood and as a result very few narrative components are



12 On the Programmatic Generation of Reproducible Documents

needed. It is also the case that the modes of presentation (tables, scatterplots, survival plots,
consort diagrams, etc.) are standardized. The goal in presenting the trial characteristics
is to identify problems in the data, monitor trial enrollment and response, quantify known
relationships among the data, and test hypotheses about a therapy’s efficacy.
In practice we generally separate the data cleaning, exploration, analysis, monitoring, and
presentation components. The computational component list has tens of elements with thou-
sands of visualizations. These facts, coupled with the privacy constraints make a complete
example difficult for the purposes of this paper. So, below we provide a simple example of
the types of documents we provide using the gtsummary::trial data set. While it is not
complete, it does convey they types of reports we are currently generating for completed and
ongoing clinical trials.
The code creates a computational component list containing a table of the patient character-
istics along with survival plots by overall survival, survival by stage, and survival by grade.
The table is an element of a named list called Table 1 and then survival plots are elements of
named lists indicating the conditioning variable. The structure can be seen in the dendrogram
below.

R> library("gtsummary")
R> library("dplyr")
R> library("survival")
R> library("survminer")
R> library("rmarkdown")
R> make_surv_cc <- function(trial, treat, surv_cond_chars) {
+ table_1 <- trial %>%
+ tbl_summary(by = all_of(treat)) %>%
+ gtsummary::as_flex_table()
+ scs <- lapply(c("1", surv_cond_chars), function(sc) {
+ sprintf("Surv(ttdeath, death) ~ %s + %s", treat, sc) %>%
+ as.formula() %>%
+ surv_fit(trial) %>%
+ ggsurvplot()
+ })
+ names(scs) <- c("Overall", tools::toTitleCase(surv_cond_chars))
+ list(`Table 1` = table_1, `Survival Plots` = scs)
+ }
R> surv_cc <- make_surv_cc(trial, treat = "trt",
+ surv_cond_chars = c("stage", "grade"))
R> ld_cc_dendro(surv_cc)

surv_cc
|-- Table 1
| o-- object of type(s):flextable
o-- Survival Plots
|-- Overall
| o-- object of type(s):ggsurvplot ggsurv list
|-- Stage
| o-- object of type(s):ggsurvplot ggsurv list



Journal of Statistical Software 13

o-- Grade
o-- object of type(s):ggsurvplot ggsurv list

As shown before, the report is created by saving the computational components, creating
a ‘listdown’ object, writing the R Markdown document, and rendering it. The resulting
document, trial-report.html, can then be placed in a shared space where it can be viewed
and interpreted by stakeholders in the clinical trial. The R Markdown document created by
this code is shown in supplementary materials.

R> class(surv_cc$`Survival Plots`$Overall) <-
+ class(surv_cc$`Survival Plots`$Stage) <-
+ class(surv_cc$`Survival Plots`$Grade) <- "list"
R> names(surv_cc$`Survival Plots`) <-
+ paste(names(surv_cc$`Survival Plots`), "{.tabset}")
R> names(surv_cc$`Survival Plots`$`Overall {.tabset}`) <-
+ names(surv_cc$`Survival Plots`$`Stage {.tabset}`) <-
+ names(surv_cc$`Survival Plots`$`Grade {.tabset}`) <-
+ c("Plot", "Data", "Table")
R> saveRDS(surv_cc, "surv-cc.rds")
R> ld_surv <- listdown(load_cc_expr = readRDS("surv-cc.rds"),
+ package = c("gtsummary", "flextable", "DT", "ggplot2"),
+ decorator_chunk_opts = list(gg = list(fig.width = 8, fig.height = 6)),
+ decorator = list(data.frame = datatable), echo = FALSE,
+ message = FALSE, warning = FALSE, fig.width = 7, fig.height = 4.5)
R> writeLines(
+ paste(c(as.character(ld_rmarkdown_header("Simple Trial Report")),
+ ld_make_chunks(ld_surv))), "trial-report.rmd")
R> render("trial-report.rmd", quiet = TRUE)
R> browseURL("trial-report.html")

6. Conclusion
While the programmatic generation of reproducible documents has appealing qualities, it
also has fundamental limitations that should be kept in mind when deciding if tools like
listdown should be employed. First and foremost, without narrative components a document
has very little context. Quantitative analyses require research questions, hypotheses, reviews,
interpretations, and conclusions. Computational components are necessary but generally not
sufficient for constructing an analysis. This means that if narrative components must be
conveyed in a document, then listdown may make the generation of their presentation more
convenient. Narrative components can even by created in listdown by including character
elements with a chunk option decorator setting results = "as.is". However, it does not
relieve the burden of the author to create prose developing a narrative.
Second, it is difficult if not impossible to construct computational components for an arbitrary
analyses. Analyses themselves have context and are built with a set of assumptions and goals.
Our experience shows that listdown is easiest to used for a fixed data format. This means a
standard set of table and visualizations for similarly formatted data. In particular, data that



14 On the Programmatic Generation of Reproducible Documents

is periodically updated, without changes to the format, is a case that is particularly amenable
to document generation reuse.
Keeping these limitations in mind, listdown can be used to effectively reduce the the difficulty
of generating documents in a variety of contexts and fits readily in data processing and analysis
pipelines.

References

Baumer B, Cetinkaya-Rundel M, Bray A, Loi L, Horton NJ (2014). “R Markdown: Integrating
a Reproducible Analysis Rool into Introductory Statistics.” arXiv 1402.1894, arXiv.org E-
Print Archive. doi:10.48550/arXiv.1402.1894.

Blischak JD, Carbonetto P, Stephens M (2019). “Creating and Sharing Reproducible Research
Code the workflowr Way [version 1; Peer Review: 3 Approved].” F1000Research, 8(1749).
doi:10.12688/f1000research.20843.1.

Gamma E, Helm R, Johnson R, Vlissides J (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Garbett SP, Stephens J, Simonov K (2022). yaml: Methods to Convert R Data to YAML and
Back. R package version 2.3.5, URL https://CRAN.R-project.org/package=yaml.

Hafen R, Schloerke B (2021). trelliscopejs: Create Interactive Trelliscope Displays. R package
version 0.2.6, URL https://CRAN.R-project.org/package=trelliscopejs.

Henry L, Wickham H (2020). purrr: Functional Programming Tools. R package version 0.3.4,
URL https://CRAN.R-project.org/package=purrr.

Kane MJ (2022). listdown: Create R Markdown from Lists. R package version 0.5.2, URL
https://CRAN.R-project.org/package=listdown.

Knuth DE (1984). “Literate Programming.” The Computer Journal, 27(2), 97–111. doi:
10.1093/comjnl/27.2.97.

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis.” In W Härdle, B Rönz (eds.), COMPSTAT 2002 – Proceedings in Computational
Statistics, pp. 575–580. Physica Verlag, Heidelberg. doi:10.1007/978-3-642-57489-4_
89.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

RStudio (2014). R Markdown Reference Guide. URL https://rmarkdown.rstudio.com/
articles.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. URL
https://ggplot2.tidyverse.org/.

Xie Y (2015). Dynamic Documents with R and knitr. 2nd edition. Chapman and Hall/CRC,
Boca Raton, Florida. URL https://yihui.org/knitr/.

https://doi.org/10.48550/arXiv.1402.1894
https://doi.org/10.12688/f1000research.20843.1
https://CRAN.R-project.org/package=yaml
https://CRAN.R-project.org/package=trelliscopejs
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=listdown
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1007/978-3-642-57489-4_89
https://doi.org/10.1007/978-3-642-57489-4_89
https://www.R-project.org/
https://rmarkdown.rstudio.com/articles
https://rmarkdown.rstudio.com/articles
https://ggplot2.tidyverse.org/
https://yihui.org/knitr/


Journal of Statistical Software 15

Xie Y, Allaire JJ, Grolemund G (2018). R Markdown: The Definitive Guide. Chapman and
Hall/CRC, Boca Raton, Florida. URL https://bookdown.org/yihui/rmarkdown.

Xie Y, Cheng J, Tan X (2022). DT: A Wrapper of the JavaScript Library DataTables. R pack-
age version 0.21, URL https://CRAN.R-project.org/package=DT.

Affiliation:
Michael Kane
Yale University
60 College Street
New Haven, CT 06510, United States of America
E-mail: michael.kane@yale.edu

Xun (Tony) Jiang
Amgen Inc.
One Amgen Center Drive
Thousand Oaks, CA 91320-1799, United States of America
E-mail: xunj@amgen.com

Simon Urbanek
The University of Auckland
38 Princes Street
Auckland Central, Auckland 1010, New Zealand
E-mail: s.urbanek@auckland.ac.nz

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
July 2022, Volume 103, Issue 8 Submitted: 2020-06-23
doi:10.18637/jss.v103.i08 Accepted: 2022-01-24

https://bookdown.org/yihui/rmarkdown
https://CRAN.R-project.org/package=DT
mailto:michael.kane@yale.edu
mailto:xunj@amgen.com
mailto:s.urbanek@auckland.ac.nz
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v103.i08

	Background and concepts
	Basic usage
	Creating a document with listdown
	Decorators

	Design
	Advanced usage
	Setup and initialization code
	R code chunk customization
	Controlling options associated with a decorator
	Controlling chunk-level options
	Presenting base graphics

	Example: Reporting on the gtsummary::trial dataset
	Conclusion

