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Abstract

UComp is a powerful library for building unobserved components models, useful for
forecasting and other important operations, such us de-trending, cycle analysis, seasonal
adjustment, signal extraction, etc. One of the most outstanding features that makes
UComp unique among its class of related software implementations is that models may
be built automatically by identification algorithms (three versions are available). These
algorithms select the best model among many possible combinations. Another relevant
feature is that it is coded in C++, opening the door to link it to different popular and
widely used environments, like R, MATLAB, Octave, Python, etc. The implemented mod-
els for the components are more general than the usual ones in the field of unobserved
components modeling, including different types of trend, cycle, seasonal and irregular com-
ponents, input variables and outlier detection. The automatic character of the algorithms
required the development of many complementary algorithms to control performance and
make it applicable to as many different time series as possible. The library is open source
and available in different formats in public repositories. The performance of the library
is illustrated working on real data in several varied examples.

Keywords: unobserved components models, state space models, Kalman filter, fixed point
smoother, maximum likelihood, R, MATLAB, Octave.

1. Introduction

UComp is a library that implements comprehensive procedures for the automatic identifi-
cation, estimation and forecasting of univariate unobserved components models (UC). All
the implemented models belong to the class of structural UC proposed in a seminal work of
Harvey (1989) and extended in many ways by a long and rich literature stream (see, e.g., De
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Jong 1991; Young, Pedregal, and Tych 1999; Durbin and Koopman 2012; Proietti and Luati
2013; Pelagatti 2015, etc.).
There are many different implementations of structural UC methods nowadays, some of them
focused exclusively on this class of models, but many others that include UC as part of a
more general statistical or state space (SS) software. Among those dedicated exclusively to
UC and probably one of the most comprehensive is STAMP, that is a standalone package
(Koopman, Harvey, Doornik, and Shephard 1999). Other packages very popular are rucm,
KFAS, stsm, bsts and autostsm in R (Chowdhury 2015; Helske 2017; López-de-Lacalle 2016;
Scott 2022; Hubbard 2022; R Core Team 2022). A big advantage of these R packages is that
they are open-source, while STAMP is commercial.
The list of general statistical or SS software that includes, among others, structural UC
methods as part of its tools is immense. Only an illustrative non-exhaustive list may be
provided here:

• General ones: SsfPack (Koopman, Shephard, and Doornik 2008), SAS (Selukar 2011),
Stata (Drukker and Gates 2011), Eviews (Bossche 2011), RATS (Doan 2011) and gretl
(Lucchetti 2011). See also the special issue in volume 41, 2011 of the Journal of Statis-
tical Software (Commandeur, Koopman, and Ooms 2011).

• MATLAB toolboxes: SSM official toolbox (The MathWorks Inc. 2021), SSpace (Villegas
and Pedregal 2018), ECOTOOL (Pedregal 2019), CAPTAIN (Taylor, Pedregal, Young,
and Tych 2007), SSM (Peng and Aston 2011), E4 (Casals, Garcia-Hiernaux, Jerez,
Sotoca, and Trindade 2016), SSMMATLAB (Gómez 2015).

• R packages: Apart from the ones cited above, the base package stats and the contributed
packages astsa (Stoffer 2022) and statespacer (Beijers 2022).

• Other environments with increasing relevance: statsmodels in Python (Seabold and
Perktold 2010; Van Rossum et al. 2011), StateSpaceModels in Julia (Saavedra, Bodin,
and Souto 2019; Bezanson, Edelman, Karpinski, and Shah 2017).

From a broader perspective, there are many other computer programs similar to UComp in the
sense of providing automatic time series models, albeit taking advantage of different methods
apart from UC, mainly ARIMA and exponential smoothing. Some of the most popular
are those procedures implemented in Forecast Pro (Goodrich 2000), Autobox (Reilly 2000),
TRAMO (Gómez and Maravall 2001), package forecast in R (Hyndman and Khandakar 2008),
SPSS (IBM Corporation 2019), STATA (StataCorp 2019), SAS (SAS Institute Inc. 2020), and
EViews (IHS Markit 2021). See also the CRAN Task View on Time Series Analysis (Hyndman
and Killick 2022) for a long list of time series packages in R.
It is literally impossible to make a full evaluation of all the above software packages compared
to UComp within a reasonable space. UComp is more restricted than some of the previous
libraries/programs in some respects, as it deals with univariate linear Gaussian models only.
But it offers a combination of advantages altogether in a single library that are not simulta-
neously available in any of them. The following list shows some important general properties
of this library:

1. Models may be identified automatically, without human intervention, by information
criteria. This means that the user does not need to impose any prior structure on the
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model, because it may be decided by UComp. This algorithm is applied with complete
flexibility, in the sense that the user may decide whether to let it pick all the components,
only one or part of them. There are several options for the search, one that runs the
whole population of models and others which run a subset of them through a stepwise
procedure, see Section 3.

2. UComp is coded in C++. This ensures optimal execution speed and the ability to
link it to many popular environments by writing the appropriate wrapper functions.
At the time of writing this paper, there are versions written in R (Pedregal 2022),
with package UComp being available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=UComp, and MATLAB and Octave
(Eaton, Bateman, Hauberg, and Wehbring 2022), available at https://github.com/
djpedregal/UComp. Extension to other environments may be done by updating the
wrapper function UCompC.cpp to the new environment (any contribution is welcome!).

3. The family of component models is wider than usual within the class of linear Gaussian
UC models. Damped trends, seasonal components that do not include all the harmonics
and give different power to each of them, or ARMA irregular components are some
possibilities not common in many computer programs. Cycles are included with the
option of estimating their period by maximum likelihood so that, combined with the
automatic identification, this means that it is possible to test the existence of cycles
automatically (see Section 5). Note that combinations of all possible component types
expand the variety of time series to which the UC class may be applied.

4. UComp may include exogenous inputs as regression terms in the specification. Auto-
matic outlier detection is also possible in conjunction with the automatic identification
algorithm. UComp implements the approach given in Harvey and Koopman (1992),
whereby perturbations above a certain threshold are considered as outliers and included
in the model as dummy variables. Some of them are later discarded if the final t-test
statistic is below a certain level set by the user.

Note that UComp focuses on univariate Gaussian UC models, allowing for specific design
choices such as some of those listed below, but which would not necessarily be optimal for
time series with properties not accounted for in the package. Therefore, UComp has been
implemented including updated statistical developments in the field, for example:

• A disturbance smoother is implemented according to Durbin and Koopman (2012),
which opens the door to further applications: (i) as an additional diagnostic check
based on the estimated perturbations, also key for outlier detection; and (ii) useful to
calculate exact gradients of the likelihood functions with a significant increase in model
estimation speed when the unknown parameters involved are perturbation variances
only.

• Exact initialization of recursive algorithms (Kalman filter, fixed interval smoother and
disturbance smoother) is implemented both as the exact diffuse initialization due to
Durbin and Koopman (2012) and as the augmented Kalman filter (De Jong 1991). The
former is important both for the evaluation of the exact maximum likelihood and ana-
lytical gradients of the log-likelihood function and the latter is relevant for models with
inputs. Note that analytical gradients are computed using the disturbance smoother
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and can only be used in models where all parameters are variances (Koopman and
Sehphard 1992).

• Profile likelihood is used always. As Harvey (1989) states on pp. 183, there is no
doubt that concentrating a parameter out of the likelihood is not only computationally
efficient but is also likely to give more reliable results. This is important for making
estimation scale independent, and also to simplify the estimation by concentrating out
of the likelihood one of the variance parameters. Additionally, for those models including
inputs, the linear parameters affecting them are concentrated out with the help of the
augmented Kalman filter.
The use of profile likelihoods in this context implies estimating ratios of variances di-
rectly, instead of variances themselves. When the variance in the denominator is close
to zero, all sorts of numerical troubles appear and such a variance ought to be replaced
by some other value well above zero. Such problems are avoided in UComp by swap-
ping the variance in the denominator by a different one while running the estimation
algorithm, see below.

• Parameter search is done by a quasi-Newton algorithm included in the library. This
allows on-the-fly operations, such as switching between concentrated variances whenever
there is evidence that the one chosen is close to zero, or restricting parameters when
they reach their boundaries (e.g., zero variances, or damping factors reaching values
of 0 or 1). The optimization method is a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton algorithm with a backtracking line search using Armijo conditions. The
BFGS part ensures fast updates of the Hessian and the backtracking line search ensures
the algorithm moves in the correct direction with a step-length that depends on the
function properties, see Chapter 6 of Nocedal and Wright (2006) or Fletcher (2000).
Covariances of parameters are estimated by the numerical Hessian evaluated at the
optimum computed after estimation.

• Most parameters are constrained between certain values, e.g., variances must be non-
negative, damping factors should be between 0 and 1, cycle periods are constrained
to avoid confusion with seasonal periods, etc. Such constraints are actually taken into
account by transforming the parameter space following Koopman et al. (1999) and
Koopman et al. (2008). These references also include careful selection of initial condi-
tions for each sort of parameter to start the non-linear search. Special mention deserves
the estimation of constrained ARMA irregular models to be stationary and invertible,
that are implemented according to Monahan (1984).

• The identification algorithm requires many complementary algorithms to make it as
fast as possible, fully automatic and reliable. Some examples are harmonic regression,
augmented Dickey-Fuller unit root tests, automatic selection of AR and ARMA models
by linear procedures, constrained estimation of ARMA models to preserve stationarity
and invertibility, etc.

On the operational side, UComp is user friendly in the sense that a complete UC analysis
can be carried out with only a few functions. In fact, all the calculations can be done with
a simple call to the UC function in which the time series is the only input. Nevertheless, the
analysis may be much more sophisticated, as later examples show.
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The rest of the paper is organized as follows. Section 2 presents the UC class of models
available in UComp. Section 3 shows how the automatic identification works step by step.
Section 4 provides a quick guide to the most important features of the library. Section 5
discusses several worked examples. Finally, Section 6 draws the main conclusions.

2. Unobserved components models
UC models decompose a time series into meaningful components. The general decomposition
used in this paper is shown in Equation 1, where Tt, Ct, St, and It stand for a trend, cycle,
seasonal and irregular components, respectively. The model allows also for linear relationships
with k exogenous variables xi,t affected by a set of parameters βi, (i = 1, . . . , k). Simplified
versions of this model, without cycles and/or inputs, are common in many studies and software
programs.

zt = Tt + Ct + St + It +
k∑

i=1
βixi,t (1)

The structural approach of UC consists in setting the above model in a SS framework in
which Equation 1 is actually the observation equation and the state equations are the block
concatenation of the models representing the dynamic behavior assumed for each of the
components (see below and Harrison and Stevens 1976; Harvey 1989; Young et al. 1999;
Durbin and Koopman 2012, among many others).
Since a picture is worth one thousand words, two examples illustrate how any UC model may
be written in SS form. The first example is shown in Equation 2 and is composed of a trend,
seasonal and irregular components. The equations in matrix form on top are the so called
‘state equations’ which establish the dynamic mechanism of the unobserved state vector (αt),
by relating it in two consecutive time stamps. The equation at the bottom is the ‘observation
equation’ and is only a selection of state elements to replicate the model in Equation 1.

αt+1 =


Tt+1

S1,t+1
S∗

1,t+1
S2,t+1
S∗

2,t+1

 =


1 0 0 0 0
0 cos ω1 sin ω1 0 0
0 − sin ω1 cos ω1 0 0
0 0 0 cos ω2 sin ω2
0 0 0 − sin ω2 cos ω2




Tt

S1,t

S∗
1,t

S2,t

S∗
2,t

 +


ηT,t

η1,t

η∗
1,t

η2,t

η∗
2,t


zt =

[
1 1 0 1 0

]
αt + It

(2)

The trend is the first element of the state vector and obeys to a random walk model (RW),
i.e., the element Tt of the state vector αt depends on the previous sample and is affected by a
Gaussian white noise (ηT,t) with constant variance σ2

T . The rest of the elements in the state
vector define the seasonal component, that is actually the sum of two terms (S1,t + S2,t, see
how the observation equation collects these two elements from the state vector in one single
component), and their definition involves two frequencies (ω1 and ω2) that are assumed to
play the role of the frequency associated to the fundamental seasonal periodicity and one of
its harmonics. The seasonal component involves four Gaussian noises (η1,t, η∗

1,t, η2,t, η∗
2,t) that

in usual formulations are mutually independent with common variance σ2
S . The final element

is the irregular component (It) that is simply white noise with constant variance σ2
I .

The seasonal model implemented in UComp is of a trigonometric form as in STAMP, as
Equation 2 shows. Another possibility is the dummy seasonal component with time varying
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coefficients. This latter approach is useful when different variances are perceived among
different seasonal effects. On the contrary, it is somewhat more complex because it needs a
time varying SS system (see Proietti 1998, for a comprehensive review of models, advantages
and disadvantages of all these possibilities).
In general, a full seasonal component in the trigonometric model is built as the sum of
individual sinusoidal terms as in Equation 2 for the fundamental period P1 = 2π/w1 (the
number of observations per year) and all its harmonics. The number of harmonics in discrete
data in general is [P1/2] = P1/2 for even P1 numbers, and [P1/2] = (P1 − 1)/2 for uneven P1
numbers, with periods Pj = P1/j, (j = 1, 2, . . . , [P1/2]). For example, a seasonal component
for a monthly time series would exhibit 6 harmonics with periods 12, 6, 4, 3, 2.4 and 2 months
per year, while there are only 2 harmonics for quarterly data with periods 4 and 2 quarters.
Note that each harmonic is defined by two states in Equation 2, but it reduces to a single
equation in the case of the last harmonic with period Pj = 2 samples, because in that case
sin(2π/Pj) = sin(π) = 0.
This model only depends on three unknown variances, namely σ2

T , σ2
S and σ2

I . It can get
a bit more complicated if the seasonal component is allowed to have different variances for
each harmonic, in which case the seasonal variance splits into two. In such a case, one extra
parameter is added, and the seasonal component gains in flexibility.
A second example is shown in Equation 3 and includes a damped trend (DT), a cycle compo-
nent with frequency ω and an AR(2) model for the irregular component. To have a DT the
parameter γ should be constrained between zero and one. Other common trend models may
be treated as particular cases of a DT, such as the so called local linear trend (LLT, with
γ = 1), the integrated random walk (IRW, γ = 1 and σ2

ηT
= 0), the RW with drift (γ = 1,

σ2
η∗

T
= 0, T ∗

1 ̸= 0), and a deterministic linear trend (γ = 1, σ2
ηT

= 0, σ2
η∗

T
= 0, T ∗

1 ̸= 0). The
cycle model is exactly like the seasonal one but with a transition matrix that is multiplied by
a damping factor 0 < ρ < 1.
The unknown parameters in this example are γ, ϕ1, ϕ2, σ2

ηT
, σ2

η∗
T

, σ2
η, σ2

ηI
, ρ, and ω if the

cycle frequency is unknown and ought to be estimated.

αt+1 =



Tt+1
T ∗

t+1
Ct+1
C∗

t+1
It+1
I∗

t+1


=



1 1 0 0 0 0
0 γ 0 0 0 0
0 0 ρ cos ω ρ sin ω 0 0
0 0 −ρ sin ω ρ cos ω 0 0
0 0 0 0 ϕ1 1
0 0 0 0 ϕ2 0





Tt

T ∗
t

Ct

C∗
t

It

I∗
t


+



ηT,t

η∗
T,t

ηt

η∗
t

ηI,t

0


zt =

[
1 0 1 0 1 0

]
αt

(3)

Note that, although the model is relatively simple (just three components), it involves many
more parameters than the first example. In addition, the parameters have to meet a number
of constraints, namely, all variances and ω ought to be estimated as positive, ρ and γ must
be estimated between zero and one and the roots of the AR(2) polynomial should lie outside
the unit circle to ensure a stationary irregular component.
Once the model is setup, well-known recursive algorithms provide the estimation of the states,
perturbations and their covariance structures, namely the Kalman filter, fixed interval and
disturbance smoothers. However, these algorithms work only on fully specified models, i.e.,
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models in which there are no unknown elements, which is generally not true, as shown in the
examples above.
Therefore the parameters must be estimated in some way. Maximum likelihood is the usual
method applied to these systems. There are many issues related to the identification and
estimation of UC models that are beyond the scope of this paper and are addressed in many
excellent references (see, for example, Harvey 1989; Young et al. 1999; De Jong 1991; Durbin
and Koopman 2012; Proietti and Luati 2013; Pelagatti 2015; Casals et al. 2016; Villegas and
Pedregal 2018). Only those issues specifically relevant to this paper will be mentioned below.

3. An automatic identification algorithm for UC models
As far as the author is concerned, UComp is the first software implementing an exhaustive
automatic algorithm for the identification of structural UC models. The algorithm relies on
information criteria and involves a wide range of auxiliary algorithms and technical details
that are briefly presented in what follows. It may be considered as a set of automatic fore-
casting and modeling tools complementary to the forecast package and other packages quoted
in Section 1. The algorithm is designed to find the best model possible within the class of
univariate UC models according to information criteria, using a wide range of typical compo-
nent models found in the literature. Then, if a different UC model not considered in UComp
is the ‘true’ representation of certain data, UComp would provide the best approximation.
One way to reduce the number of models to estimate is to divide the algorithm in modules
that run sequentially one after another:

• Module 1: Pre-testing.
A seasonality test is run based on a harmonic regression with a third order polynomial
trend. This test determines which harmonics are involved in the seasonal component
and the rest of the algorithm proceeds according to this information. One harmonic is
considered absent when the t-test statistics of its coefficients are below 1.645 in absolute
value, equivalent to a 10% significance test assuming Gaussian errors. Such harmonic
is present if the t-test statistic is above 3 in absolute value and inconclusive if the t-test
statistic is within 1.645 and 3.

• Module 2: Model selection.
A battery of models combining different configurations of components are estimated and
the best is chosen by minimizing well-known information criteria, such as the standard
or corrected Akaike (AIC and AICc), or the Bayesian (BIC), see Harvey (1989).
A critical issue in this module is the number and type of models for each of the compo-
nents to be combined, so that they can represent a sufficiently wide range of time series,
but avoiding an unnecessary increase in computational burden. The models finally
considered are the following:

– Trends: None, random walk, local linear trend or damped trend.
– Cycles: None, just one or several cycles. Periods of each cycle may be fixed or

estimated independently of each other.
– Seasonal components: None, with one single variance for all the harmonics or with

different variances for each one.
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– Irregular component: None or white noise.

• Module 3: ARMA model selection.
If the innovations of the model identified in Module 2 are not white noise, a stationary
and invertible ARMA(p, q) model of orders smaller than the seasonal period is identified
automatically using an adaptation of the procedure by Hyndman and Khandakar (2008).

• Module 4: Joint estimation.
If either orders p or q are greater than zero in Module 3 a joint estimation is run including
the unobserved components identified in previous modules including the ARMA(p, q)
model for the irregular component. The joint model is only the final model chosen if it
shows a better information criterion than the one in Module 2.

UComp allows for three different implementations of Module 2 above: Firstly, a full imple-
mentation that consists barely of running all the possible combinations of components in
Module 2 (23 models in total and 47 if cycles are included). Secondly, a stepwise version
described below, which reduces the number of models to run. Finally, stepwise with unit root
testing added in Module 1.
The stepwise versions use the harmonic regression of Module 1 in an additional way, consisting
of deciding whether or not a seasonal component is present in the data. First, if one of the
t-test statistics is greater than 3 the seasonal component is present and all models without
seasonal components are discarded from the search. Second, if all the t-test statistics are
lower than 1.645, then the seasonal component is not relevant and only models without a
seasonal components are considered in further steps. Finally, if any of the t-test statistics are
between 1.645 and 3 and none is higher than 3, then the test is inconclusive and all seasonal
possibilities are taken into account in the following steps.
Then, the stepwise procedures reduce the number of models to estimate according to the
following steps:

1. The best of all models with none and RW trends is selected, according to the preferred
information criterion. If the best model is one without a trend, then go to Step 2,
otherwise proceed to Step 3. This step is similar to testing for a unit root tests.

2. Models with DT trends are estimated and the best model overall is selected. End.

3. Run all possible models with a LLT trend. In fact this step is testing empirically for a
second unit root.

4. All the models for the components in Steps 1 and 3 are combined with a DT trend. The
best model overall is selected. End.

The stepwise algorithm with unit root tests replaces Step 1 above by an augmented Dickey-
Fuller unit root tests with the number of output lags identified by BIC. Test statistic values
below −5, between −5 and −2, and above −2 define the areas of stationarity, inconclusive and
non-stationarity regions of the test, respectively. The algorithm then proceeds according to
the combined information offered by the unit root tests and the seasonality test in Module 1,
except in the case of inconclusive unit root tests, where the algorithm switches to the standard
stepwise procedure described above. The statistical tests are done with such conservative
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values for the test statistics that the combination of testing and information criterion in
UComp is free from usual criticisms (see, e.g., Flom 2018), and actually stepwise and full
procedures provide the same results in all the experiments carried out so far.
The previous algorithms can be run either with outlier or without outlier detection, meaning
that for each model in the process an outlier detection procedure inspired by Harvey and
Koopman (1992) may be activated. At the moment, UComp includes three types of outliers,
namely additive outliers (AO), level shifts (LS) and slope changes (SC). The outlier detection
is based on the auxiliary residuals or the standardized disturbances obtain from the distur-
bance smoother. LS outliers are detected on abnormally big level auxiliary residuals, SC on
slope residuals and AO on observation residuals.
This algorithm consists of the following steps:

• Initial estimation: a model without outliers is estimated.

• Forward addition step: all observations in auxiliary residuals above certain critical
values (2.5 for level, 3 for slope and 2.3 for observation disturbances, respectively) are
considered as potential outliers. Note that these numbers are bigger than 2 to take
into account the fact that the auxiliary residuals are serially correlated on a correctly
specified UC model (see Harvey and Koopman 1992). Taking these figures as lower
critical limits avoids the proliferation of countless outliers in a model

• Intermediate estimation: a model including all the outliers is estimated.

• Backward deletion step: all outliers with t-test statistics smaller than the value de-
manded by the user are dropped off and a new model with less outliers is estimated.
This procedure is repeated until all outliers in the final model have t test statistics above
the value required.

• Selection of final model: if the model in the previous step has worse information criteria
metrics than the initial one, all outliers are rejected.

4. UComp overview
UComp comprises functions that allow a comprehensive analysis of structural UC time series
models, either manually or automatically identified. Table 1 lists all the functions available
to handle the modeling of UC models. The function names begin with ‘UC’ followed by the
particular action each function performs.
All these functions either create or work on UComp objects, which are either S3 classes in R
or MATLAB/Octave structures, depending on the environment. The upper section of Table 1
shows the functions that create such objects and allow to configure all the options that control
the operation of the package. The lower section shows the rest of the functions that work
directly on the UComp objects that already exist and have a common simple syntax.
The syntax in R and MATLAB/Octave is kept as similar as possible, so that the transition from
one to the other is trivial. In addition, to provide compatibility among R packages, several
popular methods available in a similar way in well-known R packages are also implemented
for UComp objects, see Table 2. All of the listed functions return objects of appropriate
classes.
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Name Description
UC Overall function that runs all the rest.
UCsetup Creates an UComp object and sets all input options

controlling how the rest of the functions work.
UCmodel Runs UCsetup and UCestim.
UCestim Identifies UC model, estimates it by maximum likelihood

and computes forecasts.
UCvalidate Output table with diagnostic checks of UC model estimated.
UCfilter Optimal Kalman filtering of UC models.
UCsmooth Optimal fixed interval smoother.
UCdisturb Optimal disturbance smoother.
UCcomponents Components estimation.
UChp Hodrick-Prescott filtering.
getp0 Get initial conditions for parameter estimation.

Table 1: Main functions of UComp.

Name Description
print Prints a summary of models estimated (same as UCvalidate).
summary Same as print.
plot Plots estimated components.
fitted Extracts fitted values from UComp objects.
residuals Extracts model residuals from UComp objects.
logLik Log-likelihood of model at optimum.
coef Extracts model coefficients from UComp objects.
predict Extract predictions of the model.
tsdiag Plots some time series diagnostics on the residuals.
AIC Extract AIC from model.
BIC Extract BIC from model.

Table 2: Methods available in UComp common to other R packages.

The work flow of UComp is straightforward. The model is created with UCsetup and the
unknown parameters are estimated by UCestim (alternatively, both actions may be carried
out with one single call to UCmodel, while UC runs all functions one after another). The
suitability of the identified model from a statistical point of view is checked with UCvalidate
(R users may prefer summary or print, instead). This function produces a table showing
the estimated parameters, their asymptotic standard errors, information criteria and some
diagnostic checks on auto-correlation, Gaussianity and heteroskedasticity. If the model is not
acceptable, the model or the additional options ought to be re-formulated with the previous
functions.
If the model is judged appropriate, then the optimal states may be obtained either with
UCfilter or UCsmooth, depending on whether filtered or smoothed output is required. Fil-
tered states are obtained with the Kalman filter that takes into account the information up to
the current time stamp, while smoothed states are estimated by the fixed interval smoother
and are based on the whole sample. Note that full covariance matrices of states are not
returned by these functions, but only their diagonal or just the variances of the states in field



Journal of Statistical Software 11

Name Description
y Single time series output data.
u Matrix of external regressors affecting only the observation equation.

model Model string.
stepwise Stepwise algorithm TRUE/FALSE.
periods Vector of periods to include in seasonal component.

tTest Unit root tests TRUE/FALSE for stepwise algorithm.
p0 Initial parameters for estimation.
h Forecasting horizon.

criterion Information criterion for identification.
verbose Show intermediate results in estimation or identification.

arma Identify ARMA irregulars TRUE/FALSE.
outlier Critical value for outliers.

Table 3: Input fields of UComp objects.

P of any UComp object. If desired, the disturbances involved in the model may be estimated
with the disturbance smoother, implemented in UCdisturb; see details of these recursive al-
gorithms in Durbin and Koopman (2012); De Jong (1991) and references therein. Finally,
the unobserved components may be estimated by UCcomponents (and plotted with plot),
that in fact is nothing else than the grouping of smoothed states estimated by UCsmooth.
If convergence problems are encountered, the user can try different starting points for the
parameters using the function getp0, which provides the initial parameters UComp would
select to start the search for the optimization with their names.
An inspection of the inputs to function UCsetup (or UC or UCmodel) is useful to highlight the
power and flexibility of UComp. All these inputs are actually fields of any UComp object
(listed in Table 3):

• Obvious inputs to these functions are the output and input data of the model. The
output data is y, a data vector or a time series object in R. Exogenous inputs to the
model affecting only the observation equation are represented by a numerical or time
series matrix u. If output forecasts are required in an input-output model, matrix u
must contain future values for inputs. Only y is mandatory in R if it is a time series
object, but frequency (the number of observations per year) needs to be supplied as
well in MATLAB/Octave.

• The key input is model, which selects the model to be identified or estimated. It is a
single string that indicates the type of model for each component. It allows two formats,
either "trend/seasonal/irregular" or "trend/cycle/seasonal/irregular". The
possibilities available for each component are discussed in the previous section, but a
question mark indicates that such component is not known and UComp must select it:

– Trend: ? / none / rw / irw / llt / dt.
– Cycle: ? / none / combination of positive or negative numbers, see below.
– Seasonal: ? / none / equal / different.
– Irregular: ? / none / arma(0,0) / arma(p,q), with p and q integer positive orders.
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Name Description
After running UCestim or UCmodel:
p Estimated parameters.
v Estimated innovations.
yFor Output forecasts.
yForV Output forecast variances.
criteria Criteria value for selected model.
After running UCvalidate:
table Estimation and validation table.
After running UCfilter, UCsmooth or UCdisturb:
yFit Fitted values of output.
yFitV Variance of fitted values of output.
a State estimates.
P Variance of state estimates.
After running UCdisturb:
eta State perturbations estimates.
eps Observed perturbations estimates.

Table 4: Output fields of UComp object.

• Other standard inputs that manage the workflow are: (i) stepwise or full procedure
(stepwise, may be either TRUE or FALSE, see previous section); (ii) a vector of periods
for the seasonal component (periods), normally the fundamental period and all its har-
monics (Pj = P1/j, j = 1, 2, . . . , [P1/2], see previous section); (iii) forecasting horizon
(h); (iv) information criterion for model selection (criterion, either "aic", "aicc"
or "bic") ; (v) verbose intermediate output during estimation or identification process
(verbose, may be TRUE or FALSE); (vi) use of ARMA identification of innovations (arma,
either TRUE or FALSE, see Module 3 in the previous section).

• The user may select arbitrary initial conditions for the parameters to start the maximum
likelihood estimation. A lot of work has been done to look for appropriate general initial
values, and actually UComp provides its choices for any model calling function getp0,
see the sales example in Section 5.

• The possibility of running the stepwise procedure shown in the previous section with
unit root tests is triggered by setting both tTest and stepwise to TRUE.

• The automatic detection of outliers can be activated by selecting a positive number for
outlier, which stands for the cutting t-test for the inclusion of outliers in the model
(a recommended value is 4).

Setting cycles in model deserves further consideration. Any positive number sets the period
of the cycle while negative values are taken as initial estimates (in absolute value) to search
for the optimization of the period, along with the rest of the parameters. Several cycles with
any combination of positive or negative values are possible and if a question mark is included,
the existence of cycles is tested like any other component.
UComp is able to handle the input model with entire flexibility. For example, the follow-
ing cases are valid specifications when there is no cycle: "?/?/?", "?/none/arma(1,1)",
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"llt/?/arma(0,0)", "dt/equal/arma(0,0)". In the case of cycles, all the following spec-
ifications have different meanings: "?/?/?/?", "?/24/?/?", "?/-24/?/?", "?/24?/?/?",
"?/-24?/?/?". Several cycles are possible as well, the following are valid specifications in
this case: "?/-48+24/?/?", "?/+48-24/?/?", "?/-48+24?/?/?", "?/+48-24?/?/?".
The syntax of any function in the middle section of Table 1 is fixed. They all work on an
input UComp object and return the same or a different UComp object that stores the results
of the function operations. Table 4 shows the fields filled in by these functions.

5. Examples
Several examples are shown in this section to illustrate the power, flexibility and ease of use
of the library. Code listings are provided mainly in R. The reason is that the code is very
similar in any environment, and then MATLAB/Octave code is restricted to some cases in
the first example. The code is simplified to make the text more readable, and comprehensive
R code to obtain all the results and figures in this paper is included in the supplementary
material. Some of the examples are also provided in code written for MATLAB/Octave 1.

5.1. US air passengers data

This well-known time series taken from Box, Jenkins, Reinsel, and Ljung (2015) offers an
excellent opportunity to show the power of the algorithms described in the previous sections.
The reason is that the UC identification highlights some interesting properties that result in
better forecasts, improving upon standard UC models as well.
Taking advantage that there is a standard function in R that loads the data (AirPassengers),
the following listing shows the commands to fit a standard Basic Structural Model (BSM) to
the variable in logs. All the results are stored in an UComp object called m.

R> y <- log(AirPassengers)
R> autoplot(AirPassengers, ylab = "Thousands")
R> m <- UC(y, model = "llt/equal/arma(0,0)")
R> summary(m)

The main call in MATLAB/Octave code would be

m = UC(y, 12, 'model', 'llt/equal/arma(0,0)');

Note that both code chunks are very similar, with the difference that the number of observa-
tions per year have to be supplied compulsorily to MATLAB/Octave. In the latter case, also
the inputs are supplied in pairs, the first element of which is always a string representing the
input argument name.
Calling the UC function in reality is equivalent to sequentially calling UCmodel, UCdisturb,
UCvalidate and UCcomponents. When forecasts are only required in contexts where the

1The post-processing stage of the paper revealed that the same source code compiled on different systems
(Windows 10, Linux, etc.) resulted in tiny differences in the estimation of the models. In no case did such
differences imply a change in the conclusions drawn for any of the analyses. The results shown in this section
were obtained with R version 4.1.2 (2021-11-01) on an x86_64-w64-mingw32/x64 (64-bit) machine running
Windows 10 x64.
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computing time is to be optimized, running UCmodel would provide the forecasts avoiding the
rest of operations. The following listing shows the estimation results, that are actually the
output of UCvalidate (print or summary in R would produce the same output).

-------------------------------------------------------------
Model: llt/none/equal/arma(0,0)
Periods: 12.0 / 6.0 / 4.0 / 3.0 / 2.4 / 2.0
Q-Newton: Function convergence
(*) concentrated out parameters
(**) constrained parameters during estimation

-------------------------------------------------------------
Param asymp.s.e. |T| |Grad|

-------------------------------------------------------------
Level: 2.98e-04*
Slope: 0.0000**

Seas(All): 3.56e-06 8.63e-06 0.4123 2.21e-05
Irregular: 2.34e-04 7.08e-05 3.3093 2.35e-05

-------------------------------------------------------------
AIC: -2.7807 BIC: -2.4508 AICc: -2.7530

Log-Likelihood: 216.2139
-------------------------------------------------------------

Summary statistics:
-------------------------------------------------------------

Missing data:
Q( 1): 1.1707 Q( 4): 5.2652
Q( 8): 6.7149 Q(12): 10.3053

Bera-Jarque: 1.5154 P-value: 0.4687
H( 44): 0.6122 P-value: 0.1073

-------------------------------------------------------------

This table is divided into four sections. The first section shows general information about
the model and the estimation process, in particular the harmonics included in the model, and
some information about numerical optimization. The second section presents the parameter
values, their transformed counterparts, the asymptotic standard error, the ratio of the two
and the gradient at the optimum. A variance with an asterisk marks the one that has
been concentrated out of the likelihood. Some parameters are marked with two asterisks to
highlight that this parameter has been constrained along the estimation procedure because it
reached its boundary. Note that standard errors and gradients are shown only for parameters
that have been estimated explicitly (only two in this case). The third section shows the
information criteria and log-likelihood value at the optimum. The final section shows some
diagnostic statistics about the innovations, such as the Ljung-Box Q autocorrelation test for
several lags (that should be compared with a χ2 distribution with n−npar degrees of freedom,
where n is the sample length and npar are the number of parameters), a Gaussianity and a
variance test ratio (Ljung and Box 1978; Bera and Jarque 1981). Innovations are stored in
m$v (or m.v) so that any further tests with any other library may be run.
The estimated model shows that a random-walk-with-drift trend appears naturally since the
slope variance is strictly zero (constrained during estimation), and there is no strong evidence
against it because innovations are uncorrelated, Gaussian and homoskedastic.
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The following listing shows the code to identify the best possible model. Several options
are shown to illustrate the flexibility of UComp, namely the full algorithm and the stepwise
algorithm with and without unit root tests. Both stepwise procedures result in the same
model as the full one. Note that the call to UC only requires the output time series when
declared as an R time series object (and frequency in MATLAB/Octave code). If the data
is stored as a numerical vector, then an additional input is mandatory, namely periods that
specifies explicitly the period for the seasonal component and all or part of its harmonics. In
any case, periods may be chosen as any set of arbitrary values and the seasonality test in
Module 1 (see previous section) would select the most relevant among them.

R> m <- UC(y)
R> m <- UC(y, stepwise = TRUE, tTest = TRUE)
R> m <- UC(y, stepwise = TRUE)

For the sake of comparison, the listing is also shown below in MATLAB/Octave format.

m = UC(y, 12);
m = UC(y, 12, 'stepwise', true, 'tTest', true);
m = UC(y, 12, 'stepwise', true);
-------------------------------------------------------------

Model: llt/none/different/arma(0,0)
Periods: 12.0 / 6.0 / 4.0 / 3.0 / 2.4
Q-Newton: Function convergence
(*) concentrated out parameters
(**) constrained parameters during estimation

-------------------------------------------------------------
Param asymp.s.e. |T| |Grad|

-------------------------------------------------------------
Level: 2.34e-04 8.68e-05 2.6950 1.13e-04
Slope: 0.0000**

Seas(12.0): 1.10e-05 1.86e-05 0.5930 6.93e-05
Seas(6.0): 5.17e-06 2.11e-05 0.2447 7.32e-05
Seas(4.0): 0.0000**
Seas(3.0): 2.19e-06 2.01e-05 0.1092 5.93e-05
Seas(2.4): 1.24e-06 9.62e-06 0.1293 5.84e-05
Irregular: 3.45e-04*

-------------------------------------------------------------
AIC: -2.9056 BIC: -2.5138 AICc: -2.8640

Log-Likelihood: 228.2060
-------------------------------------------------------------

Summary statistics:
-------------------------------------------------------------

Missing data:
Q( 1): 0.0229 Q( 4): 1.3965
Q( 8): 2.9684 Q(12): 8.1034

Bera-Jarque: 5.0102 P-value: 0.0817
H( 46): 0.5517 P-value: 0.0464

-------------------------------------------------------------
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Figure 1: Estimated optimal components for the air passengers data.
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Figure 2: Forecasts for air passengers data with 95% prediction intervals.

The model finally identified with the whole sample has some interesting features, namely:
(i) the trend model is again a random-walk-with-drift; (ii) the Nyquist seasonal frequency is
not relevant; (iii) the seasonal component selected has different variances for each harmonic,
with the one corresponding to period 4 constrained to zero during estimation, and the rest
ranging between 1.24×10−6 and 1.10×10−5; (iv) the irregular component is white noise with
variance 3.45 × 10−4; v) no correlation is left in the innovations (the Ljung-Box statistic with
12 lags is 8.10).
The estimated components and the forecasts with 95% prediction intervals are shown in
Figures 1 and 2, respectively. Components are produced by the UCcomponents function and
stored in m$comp or m.comp (variances in m$compV or m.compV). Forecasts and their variances
are stored in m$yFor (m.yFor) and m$yForV (m.yForV), respectively.
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Criteria Log-Lik AIC BIC AICc
AIC 228.206 −2.906 −2.514 −2.864

BIC and AICc 222.713 −2.885 −2.576 −2.864
BSM model 216.214 −2.781 −2.451 −2.753

Table 5: Values of different criteria depending on the criterion used to select the best model for
the natural logarithms of the air passengers data. The first and second rows show the criteria
values for the best models identified with AIC, BIC and AICc. The third row shows the
standard BSM with the seasonal component including all harmonics and one single variance
for all of them.

Table 5 shows some complementary information, namely the values of the log-likelihood and
the information criteria for different UC specifications. The first two rows in Table 5 show
all the criteria values when each criterion (AIC, BIC and AICc) is used in turn to select
the optimal model. The AIC selects the model in the previous paragraph, reaching the
maximum value of the likelihood possible (228.206). However, BIC and AICc preferred the
model with equal variances for all harmonics (but excluding the Nyquist one). As is generally
acknowledged, BIC and AICc are more demanding in terms of parsimony.
In order to check the ability of the automatic algorithm to find the optimal model, the criteria
values for the standard BSM are included in Table 5. The BSM is worse than models in the
previous rows according to all criteria because it includes all harmonics (even the one for the
Nyquist frequency) and variances of harmonics are constrained to be the same. This suggests
that a single parameter for all harmonics, including the one that is not present, is producing
a poorer model.
All versions of the identification algorithm (full, stepwise with and without unit root tests)
end up selecting the same model.
Forecasting performance is finally tested based on an experiment with rolling origins for 12
months ahead forecasts, starting on observation 108 and moving one month at a time with
re-identification of all models at each single step. Table 6 shows the mean of all the mean
absolute scaled error metrics (MASE, Hyndman and Koehler 2006) for ETS, ARIMA, UC,
BSM, seasonal naïve and the mean and median of all of them. The conclusions are the same
for symmetric mean absolute percentage error metrics (sMAPE, Makridakis and Hibon 2000).
Results are cut clear: (i) all models outperform the seasonal naïve by a wide margin; (ii)
median performs better than mean, ARIMA, and ETS; (iii) ARIMA is better than ETS; (iv)
BSM is better than all of them (except for the first two months); (v) still the UC identified
by the procedures proposed in this paper is the best of all for every single horizon.

5.2. Monthly sales index for food in large retail stores in Spain

Figure 3 shows the monthly index for food in large retail stores in Spain. The series exhibits
a very strong seasonal pattern with a clear peak in December each year and a growing trend
in the first half of the sample followed by a long stagnation period after 2008.
The listing below shows the commands to separate the last year’s data as a validation set,
create a time series object based on the logs of the raw data and run a battery of nine models,
some of which include the identification procedure. In this listing u is a matrix containing one
calendar effect, a leap year effect created with R package tsoutliers (López-de-Lacalle 2019).
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h ETS ARIMA UC BSM Naïve Mean Median
1 0.4469 0.3634 0.3436 0.3853 1.0548 0.4306 0.3720
2 0.5302 0.4150 0.3888 0.4194 1.0724 0.4672 0.4121
3 0.6100 0.4747 0.4254 0.4651 1.0777 0.5136 0.4623
4 0.6538 0.5171 0.4442 0.4808 1.1003 0.5390 0.4808
5 0.6755 0.5419 0.4466 0.4874 1.1279 0.5476 0.4907
6 0.6790 0.5664 0.4468 0.4881 1.1588 0.5515 0.4952
7 0.6841 0.5853 0.4500 0.4835 1.1925 0.5565 0.4958
8 0.6796 0.6084 0.4530 0.4818 1.2216 0.5588 0.4980
9 0.6754 0.6301 0.4571 0.4846 1.2454 0.5571 0.5033
10 0.6697 0.6446 0.4607 0.4835 1.2717 0.5582 0.5047
11 0.6492 0.6552 0.4630 0.4825 1.2952 0.5556 0.5022
12 0.6384 0.6666 0.4640 0.4816 1.3173 0.5537 0.5024

Table 6: Mean of MASE metrics for 1 to 12 steps ahead forecasts of air passengers data based
on rolling forecasting origins starting on observation 108.
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Figure 3: Monthly sales index for food in large retail stores in Spain from 1995 to 2019.

The leap year effect takes into account February months with 29 days. Several specifications
of Easter and trading day effects were also included initially, but they turned out to be not
significant.
The models called m1 store the results of the identification procedure with the full and both
stepwise algorithms (the name is the same because the resulting models are the same). Models
m2 repeat the identification procedure, but including the calendar effects and models m3 ex-
pand the previous models to take into account the automatic outlier identification by selecting
all those with a t-test value greater or equal to 4.

R> y <- window(y, end = c(2018, 12))
R> yl <- log(y)
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R> u <- calendar.effects(sales, trading.day = FALSE, leap.year = TRUE,
+ easter = 0)
R> m1 <- UC(yl)
R> m1 <- UC(yl, stepwise = TRUE)
R> m1 <- UC(yl, stepwise = TRUE, tTest = TRUE)
R> m2 <- UC(yl, u = u)
R> m2 <- UC(yl, u = u, stepwise = TRUE)
R> m2 <- UC(yl, u = u, stepwise = TRUE, tTest = TRUE)
R> m3 <- UC(yl, u = u, outlier = 4)
R> m3 <- UC(yl, u = u, outlier = 4, stepwise = TRUE)
R> m3 <- UC(yl, u = u, outlier = 4, stepwise = TRUE, tTest = TRUE)

By default, the qualifier verbose in function UC or UCmodel is set to FALSE. By switching it
to TRUE a list of all the models with their information criteria is shown in table form. That
allows the user to check if the best model is very different from others or if all the criteria
point toward the same model. Below is a truncated output of the command to estimate model
m1 above (note that the full table is 23 models long).

------------------------------------------------------------
Model AIC BIC AICc

------------------------------------------------------------
none/none/none/arma(0,0): -0.1600 -0.1473 -0.1600

none/none/equal/none: 1.8040 1.9566 1.8074
none/none/equal/arma(0,0): -0.2121 -0.0468 -0.2087

*** (17 models removed) ***
dt/none/equal/arma(0,0): -3.6690 -3.4655 -3.6621
dt/none/different/none: -3.5437 -3.2894 -3.5333

dt/none/different/arma(0,0): -3.7056 -3.4385 -3.6952
------------------------------------------------------------

The output for model m3 is shown in the following listing. Mind that the model exhibits
certain complexity, as it involves 12 parameters for a univariate time series. The model is
composed of a local linear trend with a seasonal component with different variances for each
harmonic, a leap year effect that assumes an increase of 2.48% every February with 29 days,
i.e., (e0.0245 − 1) × 100; and two outliers, a step starting on December 2001 (observation 84)
and a step in the slope at May 2008 (observation 161). Figures 4 and 5 show the estimated
components and the forecasts for model m3.

-------------------------------------------------------------
Model: llt/none/different/arma(0,0) + inputs
Periods: 12.0 / 6.0 / 4.0 / 3.0 / 2.4 / 2.0
Q-Newton: Function convergence
(*) concentrated out parameters
(**) constrained parameters during estimation

-------------------------------------------------------------
Param asymp.s.e. |T| |Grad|

-------------------------------------------------------------
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Figure 4: Components of retail sales in Spain.

Level: 1.61e-05 1.83e-05 0.8770 2.87e-05
Slope: 3.30e-07 3.06e-06 0.1079 4.04e-05

Seas(12.0): 5.89e-07 6.20e-06 0.0949 4.38e-05
Seas(6.0): 4.42e-07 5.58e-06 0.0792 1.66e-05
Seas(4.0): 0.0000**
Seas(3.0): 1.75e-05 1.01e-05 1.7242 8.24e-05
Seas(2.4): 4.13e-08 4.46e-06 0.0093 3.29e-05
Seas(2.0): 2.51e-07 6.02e-06 0.0418 3.62e-05
Irregular: 4.18e-04*

Beta(1): 0.0245* 0.0100 2.4476
LS84: -0.0930* 0.0153 6.0593

SC161: -0.0107* 0.0024 4.4456
-------------------------------------------------------------

AIC: -3.7289 BIC: -3.4237 AICc: -3.7151
Log-Likelihood: 560.9683

-------------------------------------------------------------

One interesting feature of UComp is that the user can choose arbitrary initial parameters to
start the quasi-Newton search with the function getp0. This function provides the particular
choice of initial parameters done by UComp. Once the parameters are suggested, the user
may change any or all of them to preferred values and put them into a call to standard
functions. A typical code flow is shown in the following listing.

R> p0 <- getp0(yl, model = "llt/equal/arma(0,0)")
R> p0[1] <- 0
R> m <- UC(yl, model = "llt/equal/arma(0,0)", p0 = p0)

The printout of p0 shows the values and labels of each parameter. In this example, the first
parameter (the level variance) is initialized at 0 in a standard BSM model. It should be
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Figure 5: Forecasts of sales data in Spain with 95% prediction intervals.

noted that the estimation may or may not converge starting on the new initial conditions and
therefore users should use the handling of initial parameters with extreme care and at their
own risk. To assist the user in this task, many checks have been added in the code to avoid
meaningless initial parameters, such as negative variances, damping parameters smaller than
zero or greater than one, non-stationary and/or non-invertible ARMA irregular components,
etc.
Forecasting performance is tested based on a rolling experiment for 12 months ahead horizons
similar to the previous example, starting on observation 228 (December 2013). Table 7 shows
the overall results in a similar format to Table 6.
One remarkable fact is that the naïve model performance is much better than in the previous
example, due to the flatness of the time series in the test period. As a matter of fact, it is better
than ETS. This time mean is better than median and struggles to be the best against UC
(both are actually close to each other). ARIMA lies in a middle range between the extremes
and BSM is not good. One point worth mentioning is that, given BSM is not particularly good
(it is a fixed UC structure commonly used in the UC literature), the identification procedure
implemented in UComp managed to find a better UC model according to the forecasting
point of view.

5.3. Cycles

Business cycle analysis of macro- or micro-economic variables is an area that has attracted
much interest among researchers (see, e.g., Leser 1961; Hodrick and Prescott 1997; Baxter
and King 1999; Gómez and Maravall 2001; Galati, Hindrayanto, Koopman, and Vlekke 2016).
UComp offers the possibility to analyze this issue from different points of view, as is shown in
this section on the OECD seasonally adjusted quarterly real gross domestic product (GDP).
The data are available from 1962 to 2019 and are shown in Figure 6.
Apparently, there is little variation about a smooth trend with an abrupt jump in 2009 as a
result of the recession. The following listing shows the code to generate four different models
to deal with these data in logs. Model m1 is just a bottom line benchmark to compare with
the rest; model m2 represents the standard output when the cycle wanted to be identified (the
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h ETS ARIMA UC BSM Naïve Mean Median
1 0.4392 0.3901 0.3800 0.4318 0.4499 0.3819 0.3933
2 0.4597 0.4082 0.3832 0.4456 0.4456 0.3895 0.4040
3 0.4634 0.4203 0.3885 0.4498 0.4508 0.3950 0.4127
4 0.4728 0.4284 0.3930 0.4558 0.4530 0.3980 0.4167
5 0.4793 0.4320 0.3950 0.4600 0.4542 0.3998 0.4210
6 0.4741 0.4246 0.3937 0.4587 0.4553 0.3949 0.4154
7 0.4744 0.4214 0.3921 0.4578 0.4568 0.3924 0.4095
8 0.4726 0.4176 0.3927 0.4516 0.4586 0.3901 0.4063
9 0.4687 0.4159 0.3925 0.4504 0.4590 0.3893 0.4042
10 0.4693 0.4192 0.3982 0.4535 0.4592 0.3911 0.4064
11 0.4682 0.4211 0.4016 0.4535 0.4595 0.3917 0.4073
12 0.4663 0.4206 0.4050 0.4539 0.4590 0.3910 0.4068

Table 7: Mean of MASE metrics for 1 to 12 steps ahead forecasts of the sales at large retail
stores data based on forecasts run at moving forecasting origins starting on observation 228.
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Figure 6: OECD quarterly real gross domestic product from 1962 to 2019.

inputs could have recognized the fact that the data are seasonally adjusted by selecting model
= "?/?/none/?"); and models m3 and m4 replace the cycle with irregular components of type
AR(2) or ARMA(2, 1), respectively, following Clark (1987) and Harvey and Jaeger (1993).

R> yl <- log(OECDgdp)
R> m1 <- UC(yl)
R> m2 <- UC(yl, model = "?/?/?/?")
R> m3 <- UC(yl, model = "?/?/arma(2,0)")
R> m4 <- UC(yl, model = "?/?/arma(2,1)")

Note that the stepwise algorithms are not worthy in this case, because the time series is not
seasonal and the population of models reduces to 7 models. In addition, when any of the
stepwise algorithms is used the output is always the same.
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Model Log-Lik AIC BIC Period
1 dt/none/none/none 901.183 −7.743 −7.698
2 dt/-16/none/none 911.519 −7.806 −7.717 15.495
3 llt/none/none/arma(2,0) 912.917 −7.818 −7.729 29.446
4 llt/none/none/arma(2,1) 912.894 −7.809 −7.705 31.320

Table 8: Different specifications of UC models and some statistics for OECD GDP. The last
column shows the estimated period of the cycle in quarters. For the ARMA models the
calculation is based on the complex roots of the AR polynomial.

It is worth noting that in model m2 the cycle is tested under the same conditions as the rest of
the components, and therefore the optimal result could be a model without a cycle. However,
the cycle is initially imposed on models m3 and m4 under an ARMA(p, q) disguise, though
zero estimation of the parameters involved would indicate the absence of such a cycle.
Two words of caution are important at this point:

• Though it is possible in UComp, it is not generally recommended to mix cycles with
irregular ARMA(p, q) components in the same model, because identification problems
may arise as a consequence of both trying to model the cycle effectively. It may work in
some cases, but the analysis should be done with extreme precaution to avoid nonsensical
conclusions.

• The approach followed by models m3 and m4 above follow the tradition of model-based
business cycle literature which specifies ARMA(p, q) models for the irregular component,
and which checks the cycle period on the complex roots arising from the estimated AR
polynomial (see, e.g., Clark 1987; Harvey and Jaeger 1993; Gómez and Maravall 2001).
However, the estimation based on band-pass or low-pass filters does not care about the
stochastic properties of the estimated cycles; one would simply call ‘cycle’ or ‘trend-
cycle’ what comes out of the procedure (Leser 1961; Hodrick and Prescott 1997; Baxter
and King 1999). This means that, from this point of view, even a non-periodical ARMA
model would qualify as a cycle. Whether this is reasonable or not enters into an endless
discussion about the exact meaning of the components that is beyond the scope of this
paper.

The cycle can be imposed on model m2 by removing the question mark and adding the period
of the cycle with a plus or minus sign. A negative value (e.g., model = "?/-16/?/?") gives
UComp the initial condition for the period of the cycle, and the best model shall necessarily
have a cycle. A positive value (e.g., model = "?/16/?/?") imposes the period of the cycle
and only its damping factor and the disturbance variance noise are estimated.
Table 8 shows a summary of the output. The cycle periods in ARMA models are calculated
based on the complex roots of the AR polynomials. Strictly speaking, the best cycle estimate
is specified as an ARMA(2, 0) model, though in reality the three models with the cycle are
very similar. The main difference is in the cycle period estimate. However, as the period
for m2 is approximately half of the other two, it may be well the case that the trigonometric
model is concentrating on a harmonic of the cycle estimated by m3 and m4.
The following listing shows a shortened version of the model with the trigonometric cycle
m2. The model trend is close to an IRW trend since the level variance is constrained to zero
during estimation.
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Figure 7: Four different measurements of the cycle. Hodrick-Prescott (black-solid); trigono-
metric cycle (red-dashed); ARMA(2, 0) (blue-dotted); and ARMA(2, 1) (green-dashed-dot).

-------------------------------------------------------------
Model: dt/-16/none/none
Periods:
Q-Newton: Function convergence
(*) concentrated out parameters
(**) constrained parameters during estimation

-------------------------------------------------------------
Param asymp.s.e. |T| |Grad|

-------------------------------------------------------------
Damping: 0.9869 0.0052 188.1536 2.20e-06

Level: 0.0000**
Slope: 1.93e-06 7.89e-06 0.2447 8.10e-06

Rho(1): 0.9091 0.0236 38.5492 8.86e-06
Period(1): 15.4952 1.0341 14.9850 5.68e-06

Var(1): 9.79e-06*
-------------------------------------------------------------

AIC: -7.8062 BIC: -7.7171 AICc: -7.8062
Log-Likelihood: 911.5185

-------------------------------------------------------------

Figure 7 shows the estimation of the three cycles and the Leser-Hodrick-Prescott (LHP)
cycle estimated with a smoothing constant of 1600 (estimated by the command hpCycle =
UChp(yl)). There are clear similarities between them, but their volatility range from the
more stable trigonometric cycle with a variance of 4.15−5 to the less stable ARMA(2, 1), with
variance 1.53−4. Correlations with the LHP filter ranges from 0.85 (trigonometric cycle) to
0.94 (AR(2)).
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Figure 8: All series used in Section 5.4. From top to bottom and left to right: monthly fatal-
ities and seriously injured in road accidents in the UK; annual rainfall in Fortaleza (Brazil);
28-day-period purse snatching in Chicago; annual US GNP; quarterly US air passengers in
the US; and quarterly coal consumption in the UK.

5.4. Comparisons with models in Harvey (1989)

In this section all the applications of Section 2.7 of Harvey (1989) are re-estimated with
STAMP, and compared with the results obtained by UComp. The aim of this section is,
therefore, a direct comparison of the models obtained by different sources and software. In
order to make the section agile all the information about the models is restricted to the
minimum necessary. All time series involved in this section are represented in Figure 8.

Road accidents in the UK

Table 9 shows several models estimated for the logs of this time series up to 1982. The second
column shows the BSM model estimated by STAMP which matches that reported in Harvey
(1989, p. 83) and the one estimated with UComp. This model is rather peculiar in that the
slope and seasonal variances are zero (both components are deterministic).
In fact, when the automatic identification is run on the data (third column of Table 9), the
optimal trend model lacks the slope (it is actually a RW), the seasonal variance is once again
zero and the last harmonic is missing, resulting in a model with somewhat better metrics,
as the log-likelihood and all information criteria are better than the pure BSM in the second
column.
When the last optimal model selected is re-estimated with the full sample and with automatic
detection of outliers, the outcome is the model in the fourth column of Table 9, that is further
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Sample up to 1982 Full sample and outliers
Parameter STAMP UComp UComp UComp

& UComp optimal optimal
Level 5.853 ×10−4 5.145 ×10−4 5.269 ×10−4 5.173 ×10−4

Slope 0 − − −
Seasonal 0 0 7.393 ×10−7 1.589 ×10−6

Irregular 3.703 ×10−3 3.787 ×10−3 4.030 ×10−3 3.983 ×10−3

LS Feb1983 − − −0.241 −0.245
Log-Lik 141.362 152.454 174.511 179.138

AIC −1.492 −1.660 −1.662 −1.720
BIC −1.195 −1.418 −1.407 −1.483

Table 9: Models estimated by UComp and reported in the literature on road accidents in
the UK. The second column is the model in Harvey (1989, pp. 83). The third column is
the optimal model identified by UComp. The fourth and fifth columns show the models re-
estimated with the full sample and outlier detection.

refined by the full identification procedure (in the fifth column). The only difference between
these two latter models is that the fully optimized lacks the Nyquist harmonic in the seasonal
component.
The code to replicate the models in Table 9 is shown in the following listing. m1 is the model
also determined in Harvey (1989, pp. 83); m2 is the model determined using the automatic
identification, m3 the model with outliers and the full sample and m4 the optimal model with
outliers.

R> y <- log(UKDriverDeaths)
R> m1 <- UC(subset(y, end = 168), model = "llt/equal/arma(0,0)")
R> m2 <- UC(subset(y, end = 168))
R> m3 <- UC(y, outlier = 4, model = "rw/equal/arma(0,0)")
R> m4 <- UC(y, outlier = 4)

Rainfall in north-east Brazil and purse snatching in Chicago

The rainfall time series is interesting because it is sampled at an annual rate and is used to
look for modeling the cycle, see Harvey (1989, pp. 86). There are some differences between
the model estimated in Harvey (1989), shown in the second column of Table 10 and the
same models estimated by STAMP and UComp (that are identical, third column). Still, the
optimal model obtained with UComp (in the fourth column) is not the model with the cycle
but a simple AR(1) with a constant. This latter model has better metrics.
Those models are replicated with UComp with the code in the listing below, assuming y is a
vector containing the rainfall data. Note that the first call to function UC imposes a cycle in
the model, while the second tests for it and actually selects the AR(1) model as best, rather
than the model with the cycle.

R> m1 <- UC(y, model = "?/-8/?/?")
R> m2 <- UC(y, model = "?/?/?/?")
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Rainfall in Fortaleza Purse snatching in Chicago
Param. Harvey STAMP UComp Param. STAMP UComp

(1989) & UComp optimal & UComp optimal
Rho 0.84 0.832 − − − −

Period 15.32 15.624 − Level 5.151 −
Var 214 229.457 − AR(1) − −0.301

Irregular 1593 1582.780 2187.159 AR(2) − −0.392
AR(1) − − −0.242 Irregular 24.782 35.839
Const. 142.2 142.243 142.521 Const. − 13.475

Log-Lik − −686.250 −685.284 Log-Lik −228.679 −225.818
AIC − 10.538 10.493 AIC 6.498 6.446
BIC − 10.626 10.537 BIC 6.562 6.541

Table 10: Estimated models for rainfall in Fortaleza (Brazil) using different software and
configurations in the left half of the table. Purse snatching in Chicago models in the right
half.

The right side of Table 10 shows some estimated models for purse snatching in Chicago.
For this series there are some differences in the random-walk-plus-noise model estimated in
Harvey (1989) and STAMP and UComp, but they are really small (not shown). However, the
optimal model according to UComp is an AR(2), with marginally better information criteria
and log-likelihood values. The code to replicate those models is in the following listing.

R> m1 <- UC(y, model = "rw/none/arma(0,0)")
R> m2 <- UC(y)

Trends and cycles in US macroeconomic time series and quarterly airline passengers

The description of these two examples in Harvey (1989) are somewhat odd, because it was
impossible to replicate them, although both STAMP and UComp provided identical results.
With respect to annual US GNP data, the problem may lie on the fact that Harvey (1989)
keeps referring to the data from 1909, whereas the database included in the book starts
in 1910 and it is not clearly stated which sample was used in the models shown. Even
the ARIMA(2, 1, 0) model suggested in the book did not match the one with the published
data. Nevertheless, the model estimated by STAMP and UComp is in the second column of
Table 11, with a cycle of 7.64 years and no irregular component. The best model according
to UComp, however, is a damped trend with no irregular component (third column). The
code reproducing the models on the left hand side of Table 11 is in the following listing.

R> m1 <- UC(log(y), model = "llt/-8/none/arma(0,0)")
R> m2 <- UC(log(y), model = "?/?/?/?")

The models for the quarterly airline data reported in Harvey (1989) suffer from the same
problems, they are rather odd, but, once more, there is an exact match between the models
estimated by STAMP and UComp. A final interesting point is that the optimal model is one
with a random walk with drift trend, no irregular component and different variances for both
harmonics. The code is in the following listing.
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US GNP Quarterly airline passengers
Param. STAMP UComp Param. STAMP UComp

& UComp optimal & UComp optimal
Damping − 0.725 − − -

Level 1.733 ×10−3 1.071 ×10−3 Level 6.273 ×10−4 7.279 ×10−4

Slope 3.607 ×10−4 1.193 ×10−3 Slope 3.634 ×10−9 0
Rho 0.897 0.888 Seasonal 2.010 ×10−5 −

Period 7.638 7.392 Season(4) − 2.857 ×10−5

Var 3.860 ×10−4 3.562 ×10−4 Season(2) − 7.725 ×10−7

Irregular 0 − Irregular 2.284 ×10−9 −
Log-Lik 75.499 80.715 Log-Lik 73.498 74.570

AIC −2.246 −2.450 AIC −2.729 −2.774
BIC −2.004 −2.242 BIC −2.417 −2.462

Table 11: US GNP models in the left hand part of the table estimated with STAMP and
UComp. The right hand side of the table shows the models for the US airline passenger data
in quarters.

Param. Harvey STAMP UComp
(1989) & UComp optimal

Level 6.42 ×10−4 4.737 ×10−4 2.921 ×10−3

Slope 0.29 ×10−4 7.073 ×10−6 -
Seasonal 0.84 ×10−4 0 3.804 ×10−7

Irregular 1.14 ×10−2 1.358 ×10−2 1.187 ×10−2

Log-Lik − 37.396 37.994
AIC − −0.639 −0.696
BIC − −0.420 −0.531

Table 12: Models estimated for quarterly coal consumption in the UK with data up to the
end of 1982.

R> y <- ts(log(colSums(matrix(AirPassengers, 3, 144 / 3))),
+ start = 1949, frequency = 4)
R> m1 <- UC(y, model = "llt/equal/arma(0,0)")
R> m2 <- UC(y)

Coal consumption in the UK
The last example quoted in Section 2.7 of Harvey (1989) concerns energy consumption in the
UK. Three time series are mentioned, namely coal, gas and electricity, but only the explicit
model for coal is shown. That model is replicated in the second column of Table 12 with data
up to the last quarter of 1982. As usual, STAMP and UComp provide a model somewhat dif-
ferent to the one shown in the book, though exactly equal to each other (third column). The
optimal model is also different and shown in the last column of Table 12. The models are esti-
mated with the following listing, provided y is a vector containing the coal consumption data.

R> m1 <- UC(log(subset(y, end = 92)), model = "llt/eq/arma(0,0)")
R> m2 <- UC(log(subset(y, end = 92)))
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6. Conclusion
This paper has presented UComp, a new library for the exploitation of UC models. It imple-
ments comprehensive procedures for identification, estimation and forecasting of such models.
The library incorporates most of the modern algorithms and advances in the field, following
mainly Harvey (1989), Durbin and Koopman (2012) and many others. The system is capable
of handling systems with trends, cycles, seasonal and irregular components of different types,
and effects of exogenous input variables, as well as automatic identification of outliers.
The most novel aspect of UComp is that it incorporates automatic identification algorithms
of UC in a way such that the program selects the optimal model for each time series without
any human intervention. In addition, the family of models to be selected for each component
is wider than usual in the UC literature.
Another important feature is that the library is coded in C++, allowing it to be linked to
popular environments, such as R, MATLAB, Octave, Python, etc. At the moment, versions in
R, MATLAB and Octave are available in a public repository.
The automatic nature of the identification procedure involves the development of many com-
plementary algorithms to perform many secondary tasks, such as automatic selection of
ARMA models, unit root testing, seasonal testing, estimation of constrained stationary and
invertible ARMA models, etc.
However, from the user’s point of view, handling the library is rather easy, because just a
few functions are enough to make an exhaustive analysis of any time series. The core of the
paper describes the automatic identification algorithm and shows how its R implementation
works on several varied examples.
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