ParMA: parallelised Bayesian Model Averaging for
Generalised Linear Models

Riccardo (Jack) Lucchetti” and Luca Pedini”

*Universita Politecnica delle Marche

version 0.91

Abstract

The package ParMA provides Bayesian Model Averaging (BMA) in Generalised Lin-
ear Models (GLMs). Automatic parallelisation via MPI is supported.

1 Introduction

The central idea in Bayesian Model Averaging (BMA), is to dispense entirely with the
concept of model selection, and focus instead on weighted averaging on the whole space of
all possible model specifications of the quantities of interest (coefficients, forecasts etc.).

The basic idea, dating back to the work by Madigan and Raftery| (1994)), starts from the
definition of a quantity of interest .

P(Bly) =D _ P (BIM;,y) P (Mily) (1)
i=1
where y represents the data, M; the i-th model from a model set M = {Mj, ..., M, }, which
in a Bayesian framework becomes an additional parameter; P (3|M,, y) identifies the model
specific posterior distribution for 8 and P (M;]y) the so-called posterior model probability.
Of course, posterior moments can also be defined:

E(Bly) =Y E(Bly, Mi) P (Mily) (2)
=1
V (Bly) = Z[v (Bly, M;) + E (Bly, M;)?]P (M;ly) — E (Bly)* (3)

with E (8|M;,vy), V (8| M;,y) as, respectively, the posterior expected value and variance of
the parameter in the i-th model.
Finally, the posterior model probability is obtained via Bayes’ rule as follow:

p(y|M;)P (M;)
Soimy p(y|M;)P (M)

where p(y|M;) is the marginal data density (also referred to as marginal likelihood) and
P (M;) the prior probability for M;.

The technique employed in this package follows ideas by |Green| (1995, 2003); Lamnisos
et al.| (2009) and uses “Reversible Jump MCMC” (RJMCMC) scheme, i.e. a MCMC simula-
tion in which both parameters of interest and models are sampled jointly, with great benefits
with respect to standard MCMCs alternatives both in terms of flexibility.

P (Mly) =

(4)

The rest of the paper is organised as follows: Section 2 lays down the statistical back-
ground for GLMs and RJMCMC; Section 3 describes the Bayesian algebraic representation
of models; Section 4 deals with parallelisation and convergence; in Section 5 we discuss in
detail the package and its main features.

2 Statistical background
2.1 GLMs

As is well known, the GLM is a statistical framework that includes as special cases several
models widely used in the statistical and econometric practice. Let y1,...,y, be n observa-
tions of a dependent variable from the exponential family with density function f(y):

N exp | Y000
f(yi) = exp al(¢) +c(yi,)|

where 6; is the “canonical” (location) parameter, ¢ is a dispersion parameter, and a(-), b(-),
¢(-) are known functions. It can be shown that E (y;) = %{fj) and V (y;) = 82;(5_201')612-(@

It is assumed that the conditional expectation of y; given a set of k covariates x;,
E (y;|x;) = w; is a continuous transformation of a linear combination:

Upi) =mi =i B ()

where [(-) is known as the link function.

Maximum likelihood (ML) estimation of GLMs can be carried out, in a frequentist frame-
work, via Iterative Weighted Least Squares on the transformed variable z; = n; + (y; — ;) gZ‘ ,
where the weights w; are defined as:

Wi — 9*b(n;) (Oni 1
L 8’!712 aﬂi

In this way the ML estimator of 5 can be defined as:

B=XTWX) ' XTWz

where X is the n x k matrix of covariates and W is the n x n diagonal weight matrix with
elements w;.

The above was adapted by |Gamerman| (1997) to a Bayesian set-up by means of a MCMC
scheme: assuming to be interested in the posterior distribution of 8, f(8|y) o f(y|8)f(5),
where f(y|B) designates the likelihood function and f(f8) the prior, which in this case is
equal to 8 ~ N(mg, V), then a suitable sampling scheme is the following,

1. Set as initialisation 3(°);
2. At the i-th iteration, draw 49 from the proposal density ¢(B|30~) = N(m®, V®),
where:
VO = (V54 XTW (B x) (©)
m = VO (V5 + XTI (501) (56 1)); @)

where z(8~D) and W (50~1) defines respectively the transformed variable z and the
weight matrix W computes with pE—1);

3. Accept the new draw with probability a(8¢~1), 3()), defined via a standard Metropolis-
Hastings scheme as:

fwwm«waw%.l
(BE=D]y)q(BW|BE-1)

where ¢(8®|3¢~1) is a normal density evaluated at 8() with mean and variance,
respectively, computed with eqgs. @ and .

(B D) = min 7

2.2 The RIMCMC framework

One of main advantages of RIMCMC is that it makes it possible to sample a vector of
parameters 3, whose size can be different from one iteration to the next: this feature is
especially valuable in a context like ours, where for example the Markov Chain may jump
from a fairly general model with many covariates to a restricted one with few, or vice
versa. Consider two MCMC iterations, ¢ and j: the indices ¢ and j implicitly refer to the
corresponding model specification, so 3; and 3; should be understood as shorthand for 5y,
and [y, respectively. Therefore, the dimensions of the two vectors may be different.

The sampling is accomplished by introducing a differentiable function (3;, u;) = g(5;, u;)
which maps the current f;, of dimension k;, into a different space of dimension k;, which
corresponds to [3;.

In |Green| (2003); Hastie and Green| (2012) and, especially in [Lamnisos et al.[(2009, [2013)
we find a particularly suitable function g(-) for GLMs!: assume that the parameter f;
has posterior mean pu; and variance V;, then the transformation function from (53;, M;) to
(Bj, M;) = g(Bi, M;) could be

B = g(Bi, Ms,u;) = pj + Bjv (8)

where B is the Cholesky decomposition of the correspondent covariance matrix, u; and V;
the posterior mean and variance of 8; and v is defined as:

[RB; ' (Bi —)| itk <Ky

B Y38 — u:
u

with k& as the number of variables, R a random permutation matrix; the notation [...]*
indicates the first k; elements of the vector and finally u, a k; — k; vector of random numbers
with density f(-), in general a standard Normal or a Student t.

The probability of accepting the move is:

P(Bj, Mjly)a(M;|M;) | B
P(Bi, M;|y)q(M;|M;) | B

p = min { - Gj 1] (9)
with ¢(Mj;|M;) as the model transitional kernel, where we implicitly assume independence
from the sampling of 3, and:

f(u) if k‘j < k;
G={1 if ki = k;
Fu)™t itk >k

If the kernel is independent from the parameters, the model movements are determined
independently from those of the parameters. Therefore, we can select the new model M;
first, and its corresponding parameter vector §; next, via the function g(-). The permutation
matrix R makes the movements to lower dimensional models stochastic and actually plays
no role in the acceptance ratio.

L Another interesting approach for only binary data is provided by [Holmes and Held| (2006).

2.3 Prior choices and other technicalities

The definition of priors proposed here follows common practice in the BMA literature:
Bi|M; ~ N (po,i; Vo,i)

that is the prior of 8 on model M;, with respectively, prior mean p; and prior variance
Vo,i-

Some clarifications, however, are needed: in general, the parameter for the constant
term has a separated (improper) prior distribution, following the argument put forward by
Fernandez et al.| (2001) for linear models. The constant is to be included always, and in
practice this is accompanied by centring all other regressors, so as to make them orthogonal
to the constant. In linear models, if o denotes the intercept parameter, we assume P («) o 1.

The same argument, however, cannot be fully applied to other GLMs due to the non-
linearity of the link function. A solution is proposed in [Lamnisos et al.| (2009)), who follows
the suggestion by Brown et al.| (1998); [Sha et al.| (2004]) of a standard Normal distribution
with large variance of the following form:

o @B L)

Owhere h is set to a large number? (Lamnisos et al., 2009) and 0 is suitably sized vector of
zeros. Using this second possibility implicitly assumes that the constant is always present
in every specification, and all the other regressors have to be demeaned as in the original
framework.

Several alternatives exist for the prior covariance matrix V4 ;: two common ones are the
(a) ridge prior I, with ¢ > 0 or (b) the Zellner-g prior, i.e. g(XIX;)~! with g > 0. The
ridge prior does not allow for prior correlation among regressors as the Zellner-g prior does,
and tends to produce a more evident shrinkage effect, i.e. more parsimonious models are
preferred, even though it is heavily affected by the measurement scale of the variables; for
this reason when such prior is used the a priori standardisation of the regressors is almost
mandatory. [Lamnisos et al. (2009, |2013) provide examples of Bayesian model selection
procedure with Probit models using ridge priors.

As for the Zellner-g alternative, a well-known modification for non-linear GLMs is
gn(XTX;)~1, where n is the number of observations: this reflects more directly how the
covariance should be derived from the Unit Information Prior covariance matrix by [Kass
and Wasserman| (1995), which is generally the most common choice.

For the model prior, we use the Binomial distribution:

k
P(M;) =[] (1—my) =% (11)
j=1

where £ is the total number of covariates considered, 0 < 7; < 1 is the prior probability

that the j-th variable is significant and d;; is an indicator of the variable inclusion®.

2.4 The RIMCMC sampler “in a nutshell”

The basic MCMC scheme is summarised in \Lamnisos et al.| (2013):
1. Set the initial §;, relative to model M; (normally, the full specification);

2. Propose a new model M, from a transitional kernel ¢(M;|M;) and compute its 3; as
in ;

2Usually, h = 100.
3The choice m; = 0.5 leads to the uniform distribution; in the limiting case m; = 1 variable j is always
included in every model.

3. Accept the move with probability @, otherwise stay in (5;, M;);

4. Repeat from 2 till convergence.

The above scheme, however, may be modified to deal with a potential problem that
arises when dominant specifications appear: in this case, the probability of jumping from
model M; to a different model M; may be small. In this case, it is advisable to re-sample the
parameter vector 8 anyway, to avoid undesirable consequences for the posterior distribution.

Therefore, a resampling step (the so-called within move) is introduced when a new cou-
ple (B;, M;) is rejected; in this case, a new f3;, which corresponds exactly to an iteration
of Gamerman’s MCMC, is sampled. The corresponding p; and V; for the new sampled
parameter may be updated with egs. @ and obtained in the resampling step.

In short:

1. Set the initial g; related to the model M;, in general the full specification;

2. Propose a new model M; from a transitional kernel ¢(M;|M;) and compute its 3; as
in ;

3. Accept the move with probability @D, otherwise propose a resampling of B; in M;
following a single iteration of Gamerman procedure.

4. Repeat from 2, till convergence.

3 Algebraic representation of models

The common Bayesian analysis of a variable selection scenario considers a model M; as an
additional parameter of interest; clearly an algebraic representation for such an object is
called for.

A straightforward representation uses binary vectors: given k potential regressors, a
specific model is a k x 1 vector, where each element corresponds to one regressor, and is 1
when that variable is included in the model and 0 otherwise. Clearly, each model can also
be represented by an integer, by taking each entry of that vector as a binary digit. For
example, in a model with 4 potential covariates, x1, zs, 3, x4, the full model is,

M; ={z1,x2,23,24} — [1 1 1 1] — 15 (hex 0f)
whereas a different model M, where x5 is omitted would be
M; ={z1, 23,24} — [1 0 1 1] —11 (hex Ob)

Storing information for each model, such as the posterior mean y and covariance matrix
V', could in principle be accomplished by defining an array of suitable memory structures,
indexed by model id. This, however, creates a problem when the set of possible covariates
exceeds 32, since the number of possible models exceeds 232 and handling structures of that
size becomes technically problematic.

In ParMA, we circumvented the issue by exploiting the fact that, although the model
space can be potentially very large, only a small subset is going to be actually visited by
the MCMC iterations, and we only need to store it as an element of an associative array
(known in gretl as a “bundle”), using the hexadecimal representation of the model id as the
key.

The hexadecimal representation is preferred to the decimal representation, because gretl
lacks an integer type, and therefore when the number of models is very large, numerical
accuracy can be an issue. Moreover, storing models in a bundle has the advantage that
once the information on a model is stored, this does not need to be recomputed each time
the related model appears, leading to considerable time saving. This method rests on the

possibility of storing the bundle in RAM, but this should not be a problem since in BMA
applications as long as the number of regressors is the one commonly found in real-world
applications.

4 Parallelisation in MCMCs

Apparently, there seems to be little room for parallelisation in MCMCs, where the Markov
property is used to set up a sequential process. In fact, parallelisation is possible, but
special attention is required: splitting a MCMC across several cores could lead to failure
if convergence to the stationary state is not reached by each single MCMC thread and the
burn-in time required is large if compared to the total amount of iterations (Amdahl, (1967}
Rosenthal, 2000). A plausible guideline is provided by |Gelman and Rubin| (1992); Brooks
and Gelman| (1998), who introduce some indices to monitor the convergence rate of multiple
chains.

When these requirements are met, parallelisation can still bring about large computa-
tional efficiency gains, although the benefits in terms of CPU time may not scale linearly
with the number of cores or networked computers, as in the standard independent Monte
Carlo.

Notice, moreover, that splitting a MCMC in several ones in parallel can improve the
exploration of the parameter space too: when the target distribution is multimodal, a single
chain may get stuck in local maximum points; running the same MCMC in parallel, possibly
with different starting points, may help overcome the problem.

4.1 Convergence in parallel

As already pointed out, the idea of running the same MCMC on different cores, splitting the
total number of iterations and combining the single contribution as if it was the sampling
result of a unique MCMC requires two main conditions, namely the convergence of the
chains and a small burn-in time. In fact, these two requirements are closely linked, as a
small burn-in size, in general, is appropriate where convergence is fast, so what is required
is a measure of divergence between chains.

A rigorous solution to this problem is provided by |Gelman and Rubin| (1992): the authors
analyse the scenario of a univariate parameter 5 simulated n times in ¢ parallel chains (or
cores). Given an unbiased estimator 3 of E (3), the between (intra core) variance B and the
within (inside the same core) variance W defined as,

B=-—" Z(Bz - B)? (12)

c—1+4
=1
1 c n _
WYY (5 A (13)
¢(n—1) i=1 j=1
where 3;; is the sampled parameter at iteration j in core ¢; Bi = %2?21 Bj; and B =

l—c 3. . o .
= > i—1 Bi; the Gelman-Rubin convergence measure is given by:

R= (14)

bl

Sl

where

f/:n_1W+<C+1)B

n C n

Clearly, the closer equation is to 1, the more similar the chain are in terms of 3, so

convergence is deemed to be achieved when R ~ 1.%. The extension to a multivariate set-up
is given in |Brooks and Gelman| (1998), where a generalisation of R is proposed given § as a
k x 1 parameter vector: define the matrices

1 C n B _
W= > (Bii = Bi)(Big = BT

as multivariate versions of and ([13)); then the new convergence statistics is:

n—1 c+1
+
n c

R= A (15)
where) is the maximum eigenvalue of W~1B/n. Again, convergence is reached when
is close to 1; a commonly used threshold is R < 1.2.

As a matter of fact, virtuous practice should impose to back the Brooks and Gelman
statistics up with additional diagnostics: the previous ones, as already pointed out in |Brooks
and Gelman| (1998)), consider the heterogeneity of each parallel chain as a whole, but ac-
tually initial samples may diverge quite remarkably especially if insufficient burn-in time is
provided. For this purpose, the convergence should be also analysed graphically, by visu-
alising the sequence of the sampled parameters as well as the running mean plot for both
the parallel chains and the resulting single one. Moreover, (Geweke| (1992) and |Heidelberger:
and Welch| (1983) propose two distinct diagnostics for testing convergence: the former, is a
robust univariate test on the mean difference between a parameter sample coming from the
starting 0.1 replications (sub-sample A, with n4 = 0.1n replications where n is the total
number of iterations) of the chain and another sample given by the ending 0.5 replications
(sub-sample B, with ng = 0.5n replications). For a generic parameter 3, the test is simply
given by ~ ~

7 Ba — Br ~ N(0,1)
V(8(0).4/n4) + (S(0)5/np)
where 3 is the sample mean, the subscripts identify the the related sub-samples, and finally
5(0) is the spectral density at 0 of the related sample parameters.
In the Heidelberg-Welch diagnostic, the following quantity is defined:

(i, Bi — Lnt)B)
nS(0)

B, = , 0<t<1 (16)

where again, § is a univariate parameter sampled n times and S(0) the spectral density at 0.
Equation [16] is asymptotically distributed as a Brownian bridge and the Cramer-von Mises
statistic can be used to test the stationarity of the univariate parameter sequence. In case
of rejection, the first « items in the chain are discarded and the test is re-computed. This
process is iterated for « = 0.1,0.2, ... until the test is accepted, or « reaches 0.5 and the test
still fails. In the latter case, we can conclude that stationarity is not achieved.

5 Using the package

The ParMA package provides a main function, called bma_glm, and three auxiliary functions,
bma_printout, marginal_graph and mcmc_checks briefly described in Section The
bma_glm function performs the numerical computation, and it is illustrated in the next

4In their paper |Gelman and Rubin| (1992) propose other different indices either build as modification of
or on different quantities such as quantiles.

section, with a special attention to the settings used to parallelise the algorithm effectively.
The other functions are used for pretty-printing the main results and plotting the posterior
distribution for the model parameters, and is described in Section [5.3

Parallelisation is implemented by using the Message Passing Interface (MPI) specification
via the mpi block construct. Users, however, should be aware that CPU time is not a
straightforward function of the number of processors used. Finally, although each unit of
MPI parallelisation, known as process, can actually employ one or more threads, in gretl
each process employs a single thread of the machine as a default option and in ParMA this
is always the case. For this reason, even if we are working with MPI processes, the term
“thread” has to be intended as a synonym of process.

5.1 The main function

The public function which performs the BMA procedure is bma_glm, and its signature is:

function bundle bma_glm(series y, list X, string glm_type,
int ndraw, int burn, bundle params)

The function returns a “bundle”, which is the term used in gretl for an associative array,
holding the results.
The function arguments are defined as follows:

e series y: the dependent variable;
e list X: the list of covariates;
e string glm_type: type of model; at present, the recognised options are:

— "linear" for linear models;
— "probit" for binary models;
— "logit" for binary models;

— "cloglog" for binary models;

— "poisson" for count models.
e int ndraw: total number of MCMC iterations;
e int burn: burn-in iterations (per thread);

e bundle params: a bundle for extra optional settings (described below). This argument
can be omitted, in which case default choices will be used.

A constant term, if absent, will be automatically added to the covariates list X.° As for
the number of MCMC iterations, note that the ndraw setting refers to the total number
of drawings, that will be automatically split across cores. On the contrary, the burn-in
parameter burn is kept fixed for each parallel chain. For example, if ndraw and burn were
10000 and 1000, respectively, using 4 parallel threads will cause each thread to perform 3500
Monte Carlo iterations.

The elements of the output bundle are:

e sampled_coeff: matrix array containing the sampled coefficients f3;
e sampled_binmodel: matrix array holding the sampled models in binary notation;
e sampled_var: matrix array holding the covariance matrices for the 3 coefficients;

e sampled_mean: matrix containing the means of sampled § coeflicients (one column
per thread);

5For linear models, the intercept may be excluded by giving it a diffuse prior set-up; see Subsection

e sampled_pip: matrix containing the posterior inclusion probability (pip) for each vari-
able (one column per thread);

e sampled_modelid: matrix array containing the summary of the sampled model along
with the number of times they have appeared on the related thread simulation;

e best_models: bundle containing the best models in terms of model posteriors;

e GB: matrix (vector) containing as first entry the multivariate Gelman and Brooks
statistics as in ; the remaining elements are the univariate convergence statistics
for each parameter;

e opt_for_print: bundle containing additional information to be passed into the print-
ing function (bma_printout);

e clapsed_time is the elapsed CPU time in seconds;

e nrep_x_thread, burnin, thinning: scalars; the numbers of replications per threads,
the burn-in iterations, the thinning interval, respectively.

All the matrix arrays in the output bundle contain as many elements as threads. There-
fore, if necessary to join them up into a single matrix, the standard gretl function flatten
function can be used.

The posterior inclusion probability is defined as the frequency of a covariate being re-
tained through the MCMC iterations after the burn-in.

5.2 Additional options

The arguments listed in the previous subsection determine the main aspect of the RIMCMC
procedure used to implement BMA. However, the behaviour of the function can be tuned
more finely by passing a bundle with additional options. The keys recognised at the moment
are:

e focus, list: a list of covariates that have to be always kept in every proposed spec-
ification; this list may be a subset of X, or contain extra variables. Default: a void
list;

e pm, matrix: prior mean for 8. In general, pm should be a k x 1 matrix, k£ being the
number of total regressors minus the constant, ordered with focus first and then X.
However, a “shorthand” option is allowed: if pmis a 1 x 1 matrix, then the same prior
mean will be used for for all covariates. Default: 0;

e pv, string: choice of prior covariance matrix for 8. Three options are available: ridge
for the ridge prior, Zellner for the Zellner prior and custom for a user-defined matrix.
See below for the scaling factor. Default: params.pv = "Zellner",

e pv_scaling, matrix: its meaning depends on the pv option:
— if params.pv = "ridge", then pv_scaling is interpreted as the scalar shrinkage

coefficient ¢ and the prior variance is cI;

— if params.pv = "Zellner" then pv_scaling is interpreted as the scalar shrink-
age coefficient g and the prior variance is g(X! X;)™1;

— if params.pv = "custom" then custom pv_scaling must be a k x k covariance
matrix provided by the user.

Default: the number of observations n.

phi, matrix: individual prior variable inclusion probabilities 7; as per (LI). In general,
phi should be a k x 1 matrix, but a “shorthand” option is allowed like for pm (see above).
Default: 0.5 (uniform prior);

start, matrix: the binary representation of the initial model from which the Markov
chain starts. Each column should contain binary entries as explained in Section [3] and
have as many rows as the number of variables that are allowed to be included/excluded
during the RIMCMC (no constant and no focus variables). The matrix should have
as many columns as threads. If, however, start is an 1 X 1 matrix, then the same
setting is understood to be applied to the entire matrix, so if start equals O or 1, each
chain will start from the null or full model, respectively. Default: 1.

kernel, scalar: choice for the kernel (see discussion at the end of Subsection [2.2)); 0
gives the simpler choice ¢ la Madigan et al.| (1995). 1 is used for the more sophisticated
alternative used in Lamnisos et al.| (2009). Default: 0.

change_regr, scalar: only used if kernel is 1. The number of potential variable to
change;

prob_regr, scalar: only used if kernel is 1. The probability which determines how
many variables to change;

resamp, Boolean: enables the resampling step (within move), when a new parameter
and model proposal is rejected. Default: resamp = 0;

center, scalar: prior regularisation of the covariates. 0: no modification, 1: centring,
2: standardisation. Default: 1.

mpi, integer: number of threads used to parallelise the Markov chains. Default: the
number of available physical cores, as reported by the ncores key in the $sysinfo
bundle.

thinning, scalar: the so-called “thinning interval”, for discarding draws during the
execution of the MCMC. For example, if the thinning interval is 2, then every third
draw is retained; if it’s 0, all draws are kept. Default: 0;

seed, integer: random number generator seed. Default: none;
display, Boolean: prints directly the output via bma_printout. Default: 1.

threshold, scalar: defines the number of best models in the related output bundle
and it primarily applies to the printout of the procedure. Sets a threshold for printing
out “significant” modes. Only models whose posterior probability exceeds threshold
will be stored and printed. Default: 0.1.

5.3 Auxiliary functions

The package provides three auxiliary functions for further processing: bma_printout and
marginal_graph are used for displaying the output, while diagn_check offers a selection of
diagnostic procedures.

The bma_printout function takes as its only input the bundle created by the main
function bma_glm and prints it out. Note that the printout is enabled by default when you
run bma_glm but can be switched off by using the display extra option (see Section .
The bma_printout can be useful if you decide to estimate the model quietly, store it away
and print out the results at a later time.

The public function marginal_graph is used to plot the marginal posterior distribution

of the chosen parameter (3; the syntax is the following:

10

function void marginal_graph(bundle b, list X, string save)

where b is the output bundle from bma_glm; X the list of variables for which the plot is
wanted; save is a string used for saving the plot to a file. If save is an empty string or is
omitted, the plot will be displayed on screen; otherwise, the plot will be saved under file
name specified by save. Note that the format will be dictated by the file extension.® This
function computes the kernel density estimate using Gaussian kernels as well as histograms
of the sampled parameter [for the variables contained in X: notice that the results are
obtained conditioning the sample upon the inclusion of the variable in the specifications.

Finally, the function mcmc_checks provides additional diagnostics: the main function
bma_glm provides directly only the Brooks and Gelman statistics for convergence, which
of course are of interest in case of parallel computing, but often need to be supported by
additional measures. The function signature is

function bundle memc_checks(bundle b, string what, bundle opt)

where, again, b is the output bundle from bma_glm; what indicates which diagnostic
procedure is desired: at present, the available choices are "plot", "ESS", "Geweke",
"Heidelberg". See later in this Section for a description.

The opt argument may contain a bundle for additional options, such as the opt.chain
option, i.e., a Boolean flag which takes the value 1 for computing the desired statistic on
each parallel chain separately.

The "plot" diagnostic option produces a plot of the sequence of sampled parameters
for the variables contained in opt.plotlist, along with their autocorrelation function plot
(ACF) and their running mean plot. Note that although visual inspection can be a useful
tool to detect stationarity, convergence and autocorrelation of the parameters, it should be
noted that, in RIMCMC experiments of this kind, autocorrelation tends to be “artificially”
high. This is due to the fact that the primary target of the sampling scheme are models, and
their parameters follow in a second step; in this way it is quite common for a parameter to
remain stuck on a single value for many iterations. This can happen in two cases: first, when
the related variable is included in the model but the parameter is not changing because model
moves are rejected (this is common when few models dominate the posterior probability);
the second one, instead, when the variable is excluded and its parameter is thus set implicitly
to 0. While in the first case enabling thinning or within moves is sufficient, in the second
case an alternative solution may be inspecting the same plots, conditional on parameter
inclusion. The available options for the "plot" command are:

e opt.condition, Boolean flag: produce a conditional plot if 1;
e opt.lag, lag order for ACF plot;
e opt.display, display plot on screen if 1;

e opt.namesave: if opt.display is 0, this is a string which identifies the file name and
format for the plot file; by default it is saved in the current working directory using
the variable name and the pdf extension.

Note that in order to produce the plots, the gretl multiplot package (Schreiber and Taras-
sow, [2020)) is required.

The ESS yields the numerical standard errors, the effective sample size for each parameter
as well as the multivariate version. The computation follows the batch mean approach by
Vats et al.| (2019)). Notice that effective sample size is inversely related to autocorrelation, so
similar arguments to the ones above apply here too. The option available for this command
is opt.batchsize which, as its name suggests, is used to set the batch size. The default
value is the square root of the number of replications.

8Tor the list of recognised formats, see the reference to the gretl command plot.

11

The option Geweke computes Geweke’s convergence diagnostic (Geweke, [1992). By de-
fault the statistic is computed for each parameter and the p-value, using a standardised
normal distribution, is provided. It is possible to change the fraction of starting and ending
sample to use, which is by default set to 0.1 and 0.5, via opt.Gewekesample.”

The Heidelberg option, instead, computes the Heidelberg and Welch convergence diag-
nostic: the p-values for each sample proportion are displayed for the parameters.

The Geweke and Heidelberg options rely on the computation of the long-run variance
(also known as the spectral density at 0); internally, this is handled via the built-in function
lrvar, which uses a Bartlett kernel with an adjustable window size.

6 Changelog
0.9 Initial release

0.91 Added the diagnostic function memc_checks; note that this introduces a dependency
on multiplot.

References

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference, pages 483-485. Association for Computing Machinery.

Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of
iterative simulations. Journal of Computational and Graphical Statistics, 7(4):434-455.

Brown, P. J., Vannucci, M., and Fearn, T. (1998). Multivariate bayesian variable selection
and prediction. Journal of the Royal Statistical Society B, 60(3):627—641.

Fernandez, C., Ley, E., and Steel, M. F. (2001). Benchmark priors for bayesian model
averaging. Journal of Econometrics, 100(2):381-427.

Gamerman, D. (1997). Sampling from the posterior distribution in generalized linear mixed
models. Statistics and Computing, 7(1):57-68.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, pages 457—472.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation
of posterior moments. In Bayesian Statistics (J.M. Bernardo, J.O. Berger, A.P. Dawid
and A.F.M. Smith eds.), volume 4, pages 169-193. Clarendon Press, Oxford, UK.

Green, P. J. (1995). Reversible jump markov chain monte carlo computation and bayesian
model determination. Biometrika, 82(4):711-732.

Green, P. J. (2003). Trans-dimensional markov chain monte carlo. In Highly Structured
Stochastic System, pages 179-198. Oxford University Press.

Hastie, D. I. and Green, P. J. (2012). Model choice using reversible jump markov chain
monte carlo. Statistica Neerlandica, 66(3):309-338.

Heidelberger, P. and Welch, P. D. (1983). Simulation run length control in the presence of
an initial transient. Operations Research, 31(6):1109-1144.

"In order to preserve the idea of the test even when it is performed on the whole chain made by the
aggregation of the parallel ones, the proportion of the samples to use is built using the initial and ending
parts of the single chains and then aggregated.

12

Holmes, C. C. and Held, L. (2006). Bayesian auxiliary variable models for binary and
multinomial regression. Bayesian Analysis, 1(1):145-168.

Kass, R. E. and Wasserman, L. (1995). A reference bayesian test for nested hypotheses and
its relationship to the schwarz criterion. Journal of the American Statistical Association,
90(431):928-934.

Lamnisos, D., Griffin, J. E., and Steel, M. F. (2009). Transdimensional sampling algorithms
for bayesian variable selection in classification problems with many more variables than
observations. Journal of Computational and Graphical Statistics, 18(3):592—612.

Lamnisos, D., Griffin, J. E., and Steel, M. F. (2013). Adaptive monte carlo for bayesian
variable selection in regression models. Journal of Computational and Graphical Statistics,
22(3):729-748.

Madigan, D. and Raftery, A. E. (1994). Model selection and accounting for model uncer-
tainty in graphical models using occam’s window. Journal of the American Statistical
Association, 89(428):1535-1546.

Madigan, D., York, J., and Allard, D. (1995). Bayesian graphical models for discrete data.
International Statistical Review, 63(2):215-232.

Rosenthal, J. S. (2000). Parallel computing and monte carlo algorithms. Far East Journal
of Theoretical Statistics, 4(2):207-236.

Schreiber, S. and Tarassow, A. (2020). multiplot. gretl package version 0.2.

Sha, N.; Vannucci, M., Tadesse, M. G., Brown, P. J., Dragoni, I., Davies, N., Roberts, T. C.,
Contestabile, A., Salmon, M., Buckley, C., et al. (2004). Bayesian variable selection in
multinomial probit models to identify molecular signatures of disease stage. Biometrics,
60(3):812-819.

Vats, D., Flegal, J. M., and Jones, G. L. (2019). Multivariate output analysis for markov
chain monte carlo. Biometrika, 106(2):321-337.

13

	Introduction
	Statistical background
	GLMs
	The RJMCMC framework
	Prior choices and other technicalities
	The RJMCMC sampler ``in a nutshell''

	Algebraic representation of models
	Parallelisation in MCMCs
	Convergence in parallel

	Using the package
	The main function
	Additional options
	Auxiliary functions

	Changelog

