
JSS Journal of Statistical Software
September 2022, Volume 104, Issue 5. doi: 10.18637/jss.v104.i05

calculus: High-Dimensional Numerical and Symbolic
Calculus in R

Emanuele Guidotti
University of Neuchâtel

CREST, Japan Science and Technology Agency

Abstract

The R package calculus implements C++-optimized functions for numerical and sym-
bolic calculus, such as the Einstein summing convention, fast computation of the Levi-
Civita symbol and generalized Kronecker delta, Taylor series expansion, multivariate Her-
mite polynomials, high-order derivatives, ordinary differential equations, differential oper-
ators and numerical integration in arbitrary orthogonal coordinate systems. The library
applies numerical methods when working with functions, or symbolic programming when
working with characters or expressions. The package handles multivariate numerical cal-
culus in arbitrary dimensions and coordinates. It implements the symbolic counterpart
of the numerical methods whenever possible, without depending on external computer
algebra systems. Except for Rcpp, the package has no strict dependencies in order to
provide a stable self-contained toolbox that invites re-use.

Keywords: symbolic programming, finite difference, differential operators, numerical integra-
tion, coordinate systems, Einstein summation, Taylor series, Hermite polynomials, R.

1. Introduction
Multivariate calculus underlies a wide range of applications in the natural and social sci-
ences. In statistics, asymptotic expansion formulas for stochastic processes (Yoshida 1992)
can be obtained by solving high dimensional systems of ordinary differential equations. The
transition density of multivariate diffusions can be approximated using Hermite polynomials
(Aït-Sahalia 2002) or Taylor-like expansions (Li et al. 2013). Advances in medical imaging
technology as well as telecommunication data-collection have ushered in massive datasets that
make multidimensional data more commonplace (Li, Bien, and Wells 2018) and tensors – mul-
tidimensional arrays – have recently become ubiquitous in signal and data analytics at the
confluence of signal processing, statistics, data mining, and machine learning (Sidiropoulos,

https://doi.org/10.18637/jss.v104.i05
https://orcid.org/0000-0002-8961-6623

2 calculus: High-Dimensional Numerical and Symbolic Calculus in R

De Lathauwer, Fu, Huang, Papalexakis, and Faloutsos 2017). In Earth sciences, cartography,
quantum mechanics, relativity, and engineering, non-Cartesian coordinates are often chosen
to match the symmetry of the problem in two, three and higher dimensions.
R (R Core Team 2022) has shown to be a viable computing environment for implementing and
applying numerical methods (Borchers, Hankin, and Sokol 2022) as a practical tool for applied
statistics. However, such methods are seldom flexible enough to handle multivariate calculus
in arbitrary dimensions and coordinates. The package numDeriv (Gilbert and Varadhan 2019)
sets the standard for numerical differentiation in R, providing numerical gradients, Jacobians,
and Hessians, but does not support higher order derivatives or differentiation of tensor-valued
functions. tensorA (Van den Boogaart 2020) implements the Einstein summing convention
but does not support arbitrary expressions involving more than two tensors or tensors with
repeated indices. mpoly (Kahle 2013) implements univariate but not multivariate Hermite
polynomials. In a similar way, pracma (Borchers 2022) supports the computation of Taylor
series for univariate but not multivariate functions. cubature (Narasimhan, Johnson, Hahn,
Bouvier, and Kiêu 2022) provides an efficient interface for multivariate integration but limited
to Cartesian coordinates.
On the other hand, R is not designed for symbolic computing. Nevertheless, the advent of
algebraic statistics and its contributions to asymptotic theory in statistical models, experi-
mental design, multiway contingency tables, and disclosure limitation has increased the need
for R to be able to do some relatively basic operations and routines with multivariate symbolic
calculus (Kahle 2013). Although there exist packages to interface external computer algebra
systems, R still lacks a native support that invites re-use. The package Ryacas (Andersen
and Højsgaard 2019) interfaces the computer algebra system Yacas (Pinkus, Winnitzky, and
Mazur 2020), while caracas (Andersen and Højsgaard 2021) – based on reticulate (Ushey,
Allaire, and Tang 2022) – accesses the symbolic algebra system SymPy (Meurer et al. 2017).
This work presents the R package calculus for high dimensional numerical and symbolic cal-
culus in R. The contribution is twofold. First, the package handles multivariate numerical
calculus in arbitrary dimensions and coordinates via C++ (Stroustrup 2013) optimized func-
tions, improving the state-of-the-art both in terms of flexibility and efficiency. It achieves
approximately the same accuracy for numerical differentiation as the numDeriv (Gilbert and
Varadhan 2019) package but significantly reduces the computational time. It supports higher
order derivatives and the differentiation of possibly tensor-valued functions. Differential op-
erators such as the gradient, divergence, curl, and Laplacian are made available in arbitrary
orthogonal coordinate systems. The Einstein summing convention supports expressions in-
volving more than two tensors and tensors with repeated indices. Besides being more flexible,
the summation proves to be faster than the alternative implementation found in the tensorA
package (Van den Boogaart 2020) for advanced tensor arithmetic with named indices. Unlike
mpoly (Kahle 2013) and pracma (Borchers 2022), the package supports multidimensional
Hermite polynomials and Taylor series of multivariate functions. The package integrates
seamlessly with cubature (Narasimhan et al. 2022) for efficient numerical integration in C
and extends the numerical integration to arbitrary orthogonal coordinate systems. Second,
the symbolic counterpart of the numerical methods are implemented whenever possible to
meet the growing needs for R to handle basic symbolic operations. Although calculus is not
to be compared with general-purpose symbolic algebra systems, it provides, among others,
symbolic high order derivatives of possibly tensor-valued functions, symbolic differential op-
erators in arbitrary orthogonal coordinate systems, symbolic Einstein summing convention,

Journal of Statistical Software 3

and Taylor series expansion of multivariate functions. This is done entirely in R, without de-
pending on external software in order to provide a self-contained toolbox that invites re-use.
The remainder of the paper is organized as follows: Section 2 introduces the package and the
underlying philosophy, Section 3 presents basic operations that underlie the whole package,
Section 4 and 5 provide basic utilities for vector and matrix algebra, Section 6 presents tensor
algebra with particular focus on the Einstein summation, Section 7 provides fast and accurate
derivatives, Section 8 presents the Taylor series of possibly multivariate functions, Section 9
describes multidimensional Hermite polynomials, Section 10 solves ordinary differential equa-
tions, Section 11 and 12 introduce differential operators and integrals in arbitrary orthogonal
coordinate systems before Section 13 concludes.

2. The R package calculus
The R package calculus implements C++ optimized functions for numerical and symbolic
calculus, such as the Einstein summing convention, fast computation of the Levi-Civita symbol
and generalized Kronecker delta, Taylor series expansion, multivariate Hermite polynomials,
high-order derivatives, ordinary differential equations, differential operators and numerical
integration in arbitrary orthogonal coordinate systems.

2.1. Testing

Several unit tests are implemented via the standard framework offered by testthat (Wickham
2011) and run via continuous integration on GitHub Actions.

2.2. Dependencies

The package integrates seamlessly with cubature (Narasimhan et al. 2022) for efficient nu-
merical integration in C. However, except for Rcpp (Eddelbuettel and François 2011), the
package has no strict dependencies in order to provide a stable self-contained toolbox that
invites re-use.

2.3. Installation

The stable release version of calculus (Guidotti 2022) is hosted on the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=calculus and it can
be installed using:

R> install.packages("calculus")

2.4. Philosophy

The package provides a unified interface to work with mathematical objects in R. The library
applies numerical methods when working with functions, or symbolic programming when
working with characters or expressions. To describe multidimensional objects, such as vectors,
matrices, and tensors, the package uses the class ‘array’ regardless of the dimension. This is
done to prevent unwanted results due to operations among different classes, such as ‘vector’

https://CRAN.R-project.org/package=calculus

4 calculus: High-Dimensional Numerical and Symbolic Calculus in R

for unidimensional objects or ‘matrix’ for bidimensional objects. Particular attention is given
to correctly handle the dimensions of the arrays and differentiate between e.g., a 2 × 2 matrix
and a 2 × 2 × 1 tensor. In other words, the dimensions are not dropped by default as done in
base R.
The philosophy of the package is that of providing a consistent way to handle numerical
and symbolic calculus, unidimensional and multidimensional objects, and different coordinate
systems. To this end, the implementation is designed around three main concepts. First, the
functions should support both numerical and symbolic inputs, whenever possible, and return
the corresponding numerical or symbolic output. Second, vectors and matrices are seen as
special cases of generic tensors, so that operations between vectors, matrices, and tensors
should be written and implemented in generic Einstein notation. Third, the user should be
able to specify and use arbitrary orthogonal coordinate systems.
These principles translate in a set of implementation choices. First, the package implements
C++ templates that operate with generic types whenever needed. This makes easy for the
corresponding R wrappers to work both with numerical and symbolic calculations. In some
cases, the R functions behave differently depending on the data type to improve performance.
For instance, the function mx implements the matrix product for numerical and symbolic
matrices. If a numerical matrix is provided, then the function is basically a simple wrapper
for the matrix product available in base R. If a symbolic matrix is provided, the function
computes the symbolic matrix product in C++ via Einstein notation. In both cases, the
interface provided to the end user is the same. The second principle gives a central role to the
Einstein notation. The notation is at the core of many standard operations among vectors,
matrices, and tensors, and it is of particular usefulness in supporting the implementation of
the finite difference scheme for high-order derivatives as well as differential operators. The
third principle guides the implementation of the differential operators and numerical integra-
tion towards the adoption of scale factors, in that they provide a unified way to represent
arbitrary orthogonal coordinates systems. Therefore, no operation is hard coded for a partic-
ular coordinate system, but it is rather coded in terms of generic scale factors that the end
user will be able to define arbitrary with maximum flexibility.
Finally, the package does not define additional classes as it aims at integrating seamlessly
with base R and in particular with the class ‘array’. In the same way, the package avoids
depending on external computer algebra systems in order to provide a self-contained toolbox
that invites re-use.

2.5. Intended use

This package is not designed for didactic purposes, nor it is intended to offer a feature-
complete computer algebra system. The reader may refer to the package mosaic (Pruim,
Kaplan, and Horton 2017) to teach calculus in R, and to Ryacas (Andersen and Højsgaard
2019), or caracas (Andersen and Højsgaard 2021), to access general-purpose computer algebra
systems within R.
This package is conceived for academic research. It is intended to be used as a low-level
toolbox to implement academic papers and novel methodologies in R.
As an example, calculus is used by the difNLR package (Hladka and Martinkova 2020) for
detection of so-called differential item functioning, a situation when respondents from different
groups but the same overall ability (or other latent trait) have different probability to answer

Journal of Statistical Software 5

correctly to an item (or to endorse an item) in multi-item measurement (Drabinova and
Martinkova 2017). difNLR implements nonlinear regression models to detect between-group
differences in item characteristic curves. Function hessian of the package calculus is used for
calculation of sandwich estimator for covariance matrix, which is then used to obtain more
precise standard errors and confidence intervals of item parameters.
Another use case is the implementation of asymptotic expansion formulas for diffusion pro-
cesses in yuima (Brouste et al. 2014). Here it is possible to expand the characteristic function
of arbitrary diffusions by solving a system of thousands of ordinary differential equations. The
high-dimensional system needs to be generated symbolically by recursive differentiation of the
drift and diffusion terms. The solution of the system is then used to generate a representa-
tion of the transition density in terms of multivariate Hermite polynomials. calculus is used
to generate the symbolic system, to solve it numerically, and to produce the corresponding
Hermite polynomials.

2.6. Contributing

All the code is open source and the development version of the package is hosted on GitHub
at https://github.com/eguidotti/calculus. Contributions are welcome both in terms of
bug reports and feature enhancements, via the standard mechanism of GitHub issues and pull
requests.

3. Basic operations

3.1. Arithmetic

Basic arithmetic is supported for arrays of the same dimensions with the following data types:
numeric, complex, character, expression. Automatic type conversion is supported and
string manipulation is performed in C++ to improve performance. Below a unidimensional
example on the sum, difference, product, and division among the different data types.

R> ("a + b" %prod% 1i) %sum% (0 %prod% "c") %diff% (expression(d + e) %div% 3)

[1] "((a + b) * (0+1i)) - ((d + e) / 3)"

A minimal simplification algorithm is included to simplify operations involving zeros. No
other simplification rule is implemented, as such rules typically come at the cost of longer
computational times. The user may consider applying simplification engines on top of calculus
when this is needed. The same user may refer to the function Simplify in the Deriv package
(Clausen and Sokol 2021) for a dependency-free simplification engine in R, or e.g., caracas to
access a feature-complete computer algebra system. However, there exist cases, such as re-
cursive calculations, where the simplification of intermediate results leads to significant speed
gains. In this cases, calculus does implement ad-hoc simplification schemes. See e.g., Section 9
for the calculation of multivariate Hermite polynomials.

https://github.com/eguidotti/calculus

6 calculus: High-Dimensional Numerical and Symbolic Calculus in R

3.2. Evaluation

To evaluate a symbolic result in base R, the typical approach is to convert a character into
an expression and to evaluate the expression:

R> eval(parse(text = "a" %sum% "a"), list(a = 1))

[1] 2

However, the standard eval in base R only supports the evaluation of one single element.
For an expression vector this is the result of evaluating the last element. To simplify the
evaluation of symbolic objects, the package calculus implements the function evaluate. The
function takes care of the type conversion, evaluates all the elements, and reshapes the output
in order to preserve the dimensions of the input object.

R> x <- array(letters[1:6], dim = c(2, 3))
R> evaluate(x, var = c(a = 1, b = 2, c = 3, d = 4, e = 5, f = 6))

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

To evaluate the object multiple times at once, a data.frame can be used instead of a named
vector for the argument var. In this case, the return is a matrix with columns corresponding
to the (coalesced) entries of the input and rows corresponding to the rows of var.

R> x <- array(letters[1:6], dim = c(2, 3))
R> var <- data.frame(a = 1:2, b = 2:3, c = 3:4, d = 4:5, e = 5:6, f = 6:7)
R> evaluate(x, var = var)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 4 5 6
[2,] 2 3 4 5 6 7

As the function is vectorized, this allows for fast evaluation of the object at multiple points.
See e.g., Section 5.1 for a speed test.

3.3. Options

When performing symbolic operations, the input is automatically sanitized by wrapping all
its elements in parentheses, e.g., "a" becomes "(a)". This is done to prevent unwanted
results, e.g., a + b · c + d instead of (a + b) · (c + d). To disable this behavior, the user
can set options(calculus.auto.wrap = FALSE). This is a global option that affects all the
functions in the package. Disabling the option may lead to small speed gains and avoid
redundant parentheses, but the user would need to make sure that the input is properly
sanitized. For instance, if a matrix contains the element "a + b", this should be converted
to "(a + b)" before applying a matrix multiplication or a generic Einstein summation, while
there would be no need to convert "a * b" into "(a * b)".

Journal of Statistical Software 7

4. Vector algebra
A vector can be regarded as a 1-dimensional tensor. In R, it can be regarded as a 1-dimensional
array so that the methods presented for multidimensional tensors in Section 6 are available
for vectors. The package also implements a few vector-specific utilities, such as the cross
product.

4.1. Cross product

The cross product or vector product is an operation on n − 1 vectors in n-dimensional space.
The results is a n-dimensional vector that is perpendicular to the n − 1 vectors. For example
in R3:

R> cross(c(1, 0, 0), c(0, 1, 0))

[1] 0 0 1

And in R4:

R> cross(c(1, 0, 0, 0), c(0, 1, 0, 0), c(0, 0, 0, 1))

[1] 0 0 1 0

The implementation for numerical vectors is based on matrix determinants as in pracma
(Borchers 2022). Consistently with the philosophy of the package, the same interface is
provided for character vectors, where determinants are computed symbolically (Section 5.1).

R> cross(c("a", "b", "c"), c("d", "e", "f"))

[1] "(b*(f) + -e*(c)) * 1" "(a*(f) + -d*(c)) * -1" "(a*(e) + -d*(b)) * 1"

5. Matrix algebra
A matrix can be regarded as a 2-dimensional tensor. In R, it can be regarded as a 2-
dimensional array so that the methods presented for multidimensional tensors in Section 6
are available for matrices. The package also implements a few matrix-specific utilities, such
as the symbolic determinant, inverse, and matrix product.

5.1. Determinant

The function mxdet computes the numerical or symbolic determinant of matrices depending
on the data type. If the elements of the matrix are of type numeric, then the determinant is
computed via the function det available in base R.

R> mxdet(matrix(1:4, nrow = 2))

[1] -2

8 calculus: High-Dimensional Numerical and Symbolic Calculus in R

If the elements are of type character, then the symbolic determinant is computed recursively
in C++ via Laplace expansion (Wikipedia 2022j).

R> mxdet(matrix(letters[1:4], nrow = 2))

[1] "a*(d) + -b*(c)"

The symbolic determinant offers a significant gain in performance when computing determi-
nants for a large number of matrices. The following test compares the performance of two
different approaches to compute the determinant of 216 4 × 4-matrices. Method numeric:
compute the numeric determinant for each matrix. Method symbolic: compute the symbolic
determinant of a 4 × 4-matrix and evaluate it for each matrix.

R> n <- 4
R> e <- letters[1:n^2]
R> grid <- expand.grid(lapply(1:n^2, function(e) runif(2)))
R> colnames(grid) <- e
R> microbenchmark(
+ "numeric" = {
+ x <- apply(grid, 1, function(e) det(matrix(e, nrow = n)))
+ },
+ "symbolic" = {
+ x <- evaluate(mxdet(matrix(e, nrow = n)), grid)
+ }
+)

Unit: milliseconds
expr min lq mean median uq max neval

numeric 314.3092 326.0248 345.3065 345.1600 354.4539 411.874 100
symbolic 2.7434 3.0642 4.3564 3.3349 4.8917 42.609 100

5.2. Matrix inverse

The function mxinv computes the numerical or symbolic inverse of matrices depending on the
data type. If the elements of the matrix are of type numeric, then the inverse is computed
via the function solve available in base R.

R> mxinv(matrix(1:4, byrow = TRUE, nrow = 2))

[,1] [,2]
[1,] -2.0 1.0
[2,] 1.5 -0.5

If the elements are of type character, then the symbolic inverse is computed based on the
determinants in Section 5.1 via the analytical solution obtained with Cramer’s rule (Wikipedia
2022h). This recursive method is an efficient way to calculate the inverse of small symbolic
matrices, but inefficient for large matrices.

Journal of Statistical Software 9

R> mxinv(matrix(letters[1:4], byrow = TRUE, nrow = 2))

[,1] [,2]
[1,] "(d) / (a*(d) + -c*(b))" "-(b) / (a*(d) + -c*(b))"
[2,] "-(c) / (a*(d) + -c*(b))" "(a) / (a*(d) + -c*(b))"

The symbolic inverse offers a gain in performance when inverting a large number of matrices,
as shown by replicating the test in Section 5.1 and replacing the determinant with the inverse.

R> n <- 4
R> e <- letters[1:n^2]
R> grid <- expand.grid(lapply(1:n^2, function(e) runif(2)))
R> colnames(grid) <- e
R> microbenchmark(
+ "numeric" = {
+ x <- apply(grid, 1, function(e) solve(matrix(e, nrow = n)))
+ },
+ "symbolic" = {
+ x <- evaluate(mxinv(matrix(e, nrow = n)), grid)
+ }
+)

Unit: milliseconds
expr min lq mean median uq max neval

numeric 577.56 609.486 635.178 630.98 653.74 727.72 100
symbolic 58.15 68.664 99.692 100.13 125.72 196.49 100

5.3. Matrix product

The matrix product can be expressed in Einstein notation as shown in Section 6, thus inher-
iting the support for symbolic calculations.

R> a <- matrix(1:4, nrow = 2, byrow = TRUE)
R> b <- matrix(letters[1:4], nrow = 2, byrow = TRUE)
R> a %mx% b

[,1] [,2]
[1,] "1 * (a) + 2 * (c)" "1 * (b) + 2 * (d)"
[2,] "3 * (a) + 4 * (c)" "3 * (b) + 4 * (d)"

6. Tensor algebra
A tensor may be represented as a multidimensional array. Just as a vector in an n-dimensional
space is represented by a 1-dimensional array with n components, a matrix is represented by
a 2-dimensional array with n1 × n2 components, and a generic tensor can be represented by a

10 calculus: High-Dimensional Numerical and Symbolic Calculus in R

d-dimensional array with n1 × · · · × nd components. This makes the class ‘array’ available in
base R an ideal candidate to represent mathematical tensors. In particular, the class stores its
dimensions in the attribute dim that contains a vector giving the length for each dimension.

R> A <- array(1:24, dim = c(2, 3, 4))
R> attributes(A)

$dim
[1] 2 3 4

The package calculus reads this attribute to represent tensors in index notation, such as Aijk.
In particular, the function index is used to assign indices to the dimensions of the tensor by
setting names to the attribute dim.

R> index(A) <- c("i", "j", "k")
R> attributes(A)

$dim
i j k
2 3 4

In this way, a tensor with named indices is represented by an array with named dim. The
package calculus builds a set of tools to work with tensors on top of this class and provides the
implementation of the Levi-Civita symbol and generalized Kronecker delta that often appears
in tensor algebra. At the time of writing, the package makes no distinction between upper
and lower indices, i.e., vectors and covectors (Wikipedia 2022d).

Levi-Civita symbol

In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the
Levi-Civita symbol represents a collection of numbers; defined from the sign of a permutation
of the natural numbers 1, 2, . . . , n, for some positive integer n. It is named after the Italian
mathematician and physicist Tullio Levi-Civita. Other names include the permutation sym-
bol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property
and definition in terms of permutations (Wikipedia 2022l). In the general n-dimensional case,
the Levi-Civita symbol is defined by:

εi1i2...in =

+1 if (i1, i2, . . . , in) is an even permutation of (1, 2, . . . , n)
−1 if (i1, i2, . . . , in) is an odd permutation of (1, 2, . . . , n)

0 otherwise

The function epsilon determines the parity of the permutation in C++ via efficient cycle
decomposition (GeeksforGeeks 2022b) and constructs the Levi-Civita symbol in arbitrary
dimension. For example the 2-dimensional Levi-Civita symbol is given by:

εij =

+1 if (i, j) = (1, 2)
−1 if (i, j) = (2, 1)

0 if i = j

Journal of Statistical Software 11

R> epsilon(2)

[,1] [,2]
[1,] 0 1
[2,] -1 0

And in 3 dimensions:

εijk =

+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

0 if i = j, or j = k, or k = i

R> epsilon(3)

, , 1

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 1
[3,] 0 -1 0

, , 2

[,1] [,2] [,3]
[1,] 0 0 -1
[2,] 0 0 0
[3,] 1 0 0

, , 3

[,1] [,2] [,3]
[1,] 0 1 0
[2,] -1 0 0
[3,] 0 0 0

Generalized Kronecker delta

The generalized Kronecker delta or multi-index Kronecker delta of order 2p is a type (p, p)
tensor that is a completely antisymmetric in its p upper indices, and also in its p lower indices
(Wikipedia 2022i). In terms of the indices, the generalized Kronecker delta is defined as
(Frankel 2011):

δµ1...µp
ν1...νp

=

+1 if (ν1 . . . νp) is an even permutation of (µ1 . . . µp)
−1 if (ν1 . . . νp) is an odd permutation of (µ1 . . . µp)
0 otherwise

12 calculus: High-Dimensional Numerical and Symbolic Calculus in R

When p = 1, the definition reduces to the standard Kronecker delta that corresponds to the
n × n identity matrix Iij = δi

j where i and j take the values 1, 2, . . . , n. The implementation
is based on efficient cycle decomposition to determine the parity of the permutations as done
for the Levi-Civita symbol.

R> delta(n = 3, p = 1)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

6.1. Tensor contraction

Tensor contraction can be seen as a generalization of the trace for a square matrix. In the
general case, a tensor can be contracted by summing over pairs of repeated indices that share
the same dimensions. This is achieved via the C++ optimized function contraction. For
each set of repeated indices, the function first permutes the array to move the repeated
indices to the end, e.g., Aiji → Ajii. Then, the array is coalesced into a vector and passed to
C++. As the dummy dimensions have been sorted, C++ only needs the length of the dummy
dimension in order to identify the elements to sum up. This is done via simple and efficient
for loops. The result is returned to R and the next set of repeated indices is processed.
Consider the following 2 × 2 × 2 tensor:

R> x <- array(1:8, dim = c(2, 2, 2))
R> print(x)

, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8

The trace of the tensor T =
∑

i Tiii is obtained with:

R> contraction(x)

[1] 9

The contraction on the first and third dimension Tj =
∑

i Tiji can be computed with:

Journal of Statistical Software 13

R> index(x) <- c("i", "j", "i")
R> contraction(x)

[1] 7 11

Finally, it is possible to preserve the dummy dimensions Tij = Tiji by setting the argument
drop = FALSE:

R> index(x) <- c("i", "j", "i")
R> contraction(x, drop = FALSE)

[,1] [,2]
[1,] 1 6
[2,] 3 8

In this way, it is possible to compute arbitrary contraction of tensors such as Tklm =
∑

ij Tikiiljjm

or Tijklm = Tikiiljjm to preserve the dummy dimensions.

6.2. Einstein summation

In mathematics, the Einstein notation or Einstein summation convention is a notational
convention that implies summation over a set of repeated indices. When an index variable
appears twice, it implies summation over all the values of the index (Wikipedia 2022d). For
instance the matrix product can be written in terms of Einstein notation as:

Cij = AikBkj ≡
∑

k

AikBkj

An arbitrary summation of the kind

Dk = AijjBiijkCj ≡
∑
ij

AijjBiijkCj =
∑

j

(∑
i

AijjBiijk

)
Cj

is implemented as follows:

1. Contract the first tensor and preserve the dummy dimensions: Aijj → Aij .

2. Contract the second tensor and preserve the dummy dimensions: Biijk → Bijk.

3. Permute and move the summation indices to the end: Aij → Aij , Bijk → Bkij .

4. Compute the elementwise product on the repeated indices: (AB)kij = AijBkij .

5. Sum over the summation indices that do now appear in the other tensors:

(AB)kj =
∑

i

(AB)kij

6. Contract the third tensor and preserve the dummy dimensions: Cj → Cj .

7. Permute and move the summation indices to the end: (AB)kj → (AB)kj , Cj → Cj .

14 calculus: High-Dimensional Numerical and Symbolic Calculus in R

8. Compute the elementwise product on the repeated indices: (ABC)kj = (AB)kjCj .

9. Sum over the summation indices that do now appear in the other tensors:

Dk = (ABC)k =
∑

j

(ABC)kj

10. Iterate until all the tensors in the summation are considered.

The function einstein provides a convenient way to compute general Einstein summations
among two or more tensors, with or without repeated indices appearing in the same tensor.
The function supports both numerical and symbolical calculations implemented via the usage
of C++ templates that operate with generic types and allow the function to work on the
different data types without being rewritten for each one. The following example illustrates
a sample Einstein summation with mixed data types:

Djk = AijBkiCii

R> A <- array(1:6, dim = c(i = 2, j = 3))
R> print(A)

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

R> B <- array(1:4, dim = c(k = 2, i = 2))
R> print(B)

[,1] [,2]
[1,] 1 3
[2,] 2 4

R> C <- array(letters[1:4], dim = c(i = 2, i = 2))
R> print(C)

[,1] [,2]
[1,] "a" "c"
[2,] "b" "d"

R> einstein(A, B, C)

[,1] [,2]
[1,] "1 * (a) + 6 * (d)" "2 * (a) + 8 * (d)"
[2,] "3 * (a) + 12 * (d)" "6 * (a) + 16 * (d)"
[3,] "5 * (a) + 18 * (d)" "10 * (a) + 24 * (d)"

Journal of Statistical Software 15

In the particular case of Einstein summations between two numeric tensors that, after proper
contraction and permutation, can be rewritten as

Ci1...ia,j1...jb
= Ai1...ia,k1...knBk1...kn,j1...jb

the function implements the following scheme:

1. Reshape the tensor Ai1...ia,k1...kn in the matrix AI,K where the dimension of I is the
product of the dimensions of i1 . . . ia and the dimensions of K is the product of the
dimensions of k1 . . . kn.

2. Reshape the tensor Bk1...kn,j1...jb
in the matrix BK,J where the dimension of K is the

product of the dimensions of k1 . . . kn and the dimensions of J is the product of the
dimensions of j1 . . . jb.

3. Compute the matrix product CIJ = AIKBKJ .

4. Reshape the matrix CIJ in the tensor Ci1...ia,j1...jb
.

In this way, it is sufficient to change the attribute dim of the arrays and the Einstein sum-
mation is written in terms of a matrix product that can be computed efficiently in base R.
This approach is almost twice as fast as the alternative implementation for the Einstein sum-
mation in the R package tensorA for advanced tensor arithmetic with named indices (Van
den Boogaart 2020).

R> a <- array(1:1000000, dim = c(a = 2, i = 5, j = 100, k = 50, d = 20))
R> b <- array(1:100000, dim = c(a = 2, j = 100, i = 5, l = 100))
R> Ta <- tensorA::to.tensor(a)
R> Tb <- tensorA::to.tensor(b)
R> microbenchmark(
+ "calculus" = calculus::einstein(a, b),
+ "tensorA" = tensorA::einstein.tensor(Ta, Tb)
+)

Unit: milliseconds
expr min lq mean median uq max neval

calculus 39.078 39.644 41.976 40.189 41.476 66.10 100
tensorA 126.918 129.155 132.025 130.104 131.315 156.18 100

6.3. Inner product

The inner product is computed in base R for numeric arrays or via Einstein summation for
character arrays:

Ai1...inBi1...in

R> 1:3 %inner% letters[1:3]

[1] "1 * (a) + 2 * (b) + 3 * (c)"

16 calculus: High-Dimensional Numerical and Symbolic Calculus in R

Dot product

The dot product between arrays with different dimensions is computed by taking the inner
product on the last dimensions of the two arrays. It is written in Einstein notation as:

Ai1...iaj1...jnBj1...jn

R> matrix(1:6, byrow = TRUE, nrow = 2, ncol = 3) %dot% letters[1:3]

[1] "1 * (a) + 2 * (b) + 3 * (c)" "4 * (a) + 5 * (b) + 6 * (c)"

6.4. Outer product

The outer product is computed in base R for numeric arrays or via Einstein summation for
character arrays:

Ai1...iaBj1...jb

R> 1:3 %outer% letters[1:3]

[,1] [,2] [,3]
[1,] "1 * (a)" "1 * (b)" "1 * (c)"
[2,] "2 * (a)" "2 * (b)" "2 * (c)"
[3,] "3 * (a)" "3 * (b)" "3 * (c)"

6.5. Kronecker product

The package extends the generalized kronecker product available in base R with support for
arrays of type character.

R> 1:3 %kronecker% letters[1:3]

[1] "1 * (a)" "1 * (b)" "1 * (c)" "2 * (a)" "2 * (b)" "2 * (c)" "3 * (a)"
[8] "3 * (b)" "3 * (c)"

7. Derivatives
The function derivative performs high-order symbolic and numerical differentiation for
generic tensors with respect to an arbitrary number of variables. The function behaves differ-
ently depending on the arguments order, the order of differentiation, and var, the variable
names with respect to which the derivatives are computed.
When multiple variables are provided and order is a single integer n, then the n-th order
derivative is computed for each element of the tensor with respect to each variable:

D = ∂(n) ⊗ F

Journal of Statistical Software 17

that is:
Di,...,j,k = ∂

(n)
k Fi,...,j

where F is the tensor of functions and ∂
(n)
k denotes the n-th order partial derivative with

respect to the k-th variable.
When order matches the length of var, it is assumed that the differentiation order is provided
for each variable. In this case, each element is derived nk times with respect to the k-th
variable, for each of the m variables.

Di,...,j = ∂
(n1)
1 · · · ∂(nm)

m Fi,...,j

The same applies when order is a named vector giving the differentiation order for each
variable. For example, order = c(x = 1, y = 2) differentiates once with respect to x and
twice with respect to y. A call with order = c(x = 1, y = 0) is equivalent to order = c(x
= 1).
To compute numerical derivatives or to evaluate symbolic derivatives at a point, the function
accepts a named vector for the argument var; e.g., var = c(x = 1, y = 2) evaluates the
derivatives in x = 1 and y = 2. For functions where the first argument is used as a parameter
vector, var should be a numeric vector indicating the point at which the derivatives are to
be calculated.

7.1. Symbolic derivatives

Symbolic derivatives are computed via the D function available in base R. The function is
iterated multiple times for second and higher order derivatives.

7.2. Numerical derivatives

Numerical derivatives are computed via the scheme described in Eberly (2008) for central
finite differences. In particular, the derivative of a function f with respect to one or more
variables is approximated up to the degree O(hp

1 . . . hp
m) by:

∂n1,...,nmf = ∂(n1)
x1 . . . ∂(nm)

xm
f(x1, . . . , xm) =

= n1! . . . nm!
hn1

1 . . . hnm
m

i(n1)∑
j1=−i(n1)

· · ·
i(nm)∑

jm=−i(nm)

C
(n1)
j1

· · · C
(nm)
jm

f(x1 + j1h1, . . . , xm + jmhm)

where nk is the order of differentiation with respect to the k-th variable, h are the step sizes,
i are equal to i(n) = ⌊(n + p − 1)/2⌋, and the coefficients C

(n)
j are computed by solving the

following linear system for each n:

C−i

C−i+1
C−i+2

...
C−i+n+1

...
Ci

=

(−i)0 . . . (−1)0 0 10 . . . i0

(−i)1 . . . (−1)1 0 11 . . . i1

(−i)2 . . . (−1)2 0 12 . . . i2

...
...

...
...

...
(−i)n+1 . . . (−1)n+1 0 1n+1 . . . in+1

...
...

...
...

...
(−i)2i . . . (−1)2i 0 12i . . . i2i

−1

0
0
0
...
1
...
0

18 calculus: High-Dimensional Numerical and Symbolic Calculus in R

The summation is computed via Einstein notation by setting:

C
(n1)
j1

· · · C
(nm)
jm

Fj1,...,jm ≡
i(n1)∑

j1=−i(n1)

· · ·
i(nm)∑

jm=−i(nm)

C
(n1)
j1

· · · C
(nm)
jm

f(x1 + j1h1, . . . , xm + jmhm)

7.3. Examples

Symbolic derivatives of univariate functions: ∂x sin(x).

R> derivative(f = "sin(x)", var = "x")

[1] "cos(x)"

Evaluation of symbolic and numerical derivatives: ∂x sin(x)|x=0.

R> sym <- derivative(f = "sin(x)", var = c(x = 0))
R> num <- derivative(f = function(x) sin(x), var = c(x = 0))

Symbolic Numeric
1 1

High order symbolic and numerical derivatives: ∂
(4)
x sin(x)|x=0.

R> sym <- derivative(f = "sin(x)", var = c(x = 0), order = 4)
R> num <- derivative(f = function(x) sin(x), var = c(x = 0), order = 4)

Symbolic Numeric
0.0000e+00 -2.922023e-11

Symbolic derivatives of multivariate functions: ∂
(1)
x ∂

(2)
y y2 sin(x).

R> derivative(f = "y^2 * sin(x)", var = c("x", "y"), order = c(1, 2))

[1] "2 * cos(x)"

Numerical derivatives of multivariate functions: ∂
(1)
x ∂

(2)
y y2 sin(x)|x=0,y=0 with degree of accu-

racy O(h6).

R> f <- function(x, y) y^2 * sin(x)
R> derivative(f, var = c(x = 0, y = 0), order = c(1, 2), accuracy = 6)

[1] 2

Symbolic gradient of multivariate functions: ∂x,yx2y2.

R> derivative("x^2 * y^2", var = c("x", "y"))

Journal of Statistical Software 19

[,1] [,2]
[1,] "2 * x * y^2" "x^2 * (2 * y)"

High order derivatives of multivariate functions: ∂
(6)
x,yx6y6.

R> derivative("x^6 * y^6", var = c("x", "y"), order = 6)

[,1] [,2]
[1,] "6 * (5 * (4 * (3 * 2))) * y^6" "x^6 * (6 * (5 * (4 * (3 * 2))))"

Numerical gradient of multivariate functions: ∂x,yx2y2|x=1,y=2.

R> f <- function(x, y) x^2 * y^2
R> derivative(f, var = c(x = 1, y = 2))

[,1] [,2]
[1,] 8 4

Numerical Jacobian of vector valued functions: ∂x,y[xy, x2y2]|x=1,y=2.

R> f <- function(x, y) c(x*y, x^2 * y^2)
R> derivative(f, var = c(x = 1, y = 2))

[,1] [,2]
[1,] 2 1
[2,] 8 4

Numerical Jacobian of vector valued functions where the first argument is used as a parameter
vector: ∂X [

∑
i xi,

∏
i xi]|X=0.

R> f <- function(x) c(sum(x), prod(x))
R> derivative(f, var = c(0, 0, 0))

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 0 0 0

7.4. Performance
Table 1 compares the accuracy of Richardson extrapolation (Wikipedia 2022n) implemented
in the package numDeriv (Gilbert and Varadhan 2019) with central finite differences imple-
mented in calculus using accuracy = 4 by default. 104 derivatives have been computed for
the four functions: x2ex, x sin(x2), x log(x2), esin(x). The table shows the mean relative error
and the corresponding standard deviation.
Although it is known that Richardson extrapolation is usually more accurate than finite
differences, the results of the two packages are very similar. Both packages produce accurate
derivatives with relative errors close to the precision of the machine (10−16). On the other
hand, calculus proves to be significantly faster than numDeriv for multivariate functions as
shown in the following benchmarking.

20 calculus: High-Dimensional Numerical and Symbolic Calculus in R

Package N Mean SD

x2 exp(x) calculus 1.0 × 104 9.3 × 10−14 1.0 × 10−11

numDeriv 1.0 × 104 −3.1 × 10−15 5.3 × 10−12

x sin(x2) calculus 1.0 × 104 3.9 × 10−13 1.8 × 10−11

numDeriv 1.0 × 104 −1.5 × 10−13 1.2 × 10−11

x log(x2) calculus 1.0 × 104 4.4 × 10−14 1.3 × 10−11

numDeriv 1.0 × 104 −5.0 × 10−15 6.1 × 10−12

exp(sin(x)) calculus 1.0 × 104 −7.3 × 10−13 6.0 × 10−11

numDeriv 1.0 × 104 −1.8 × 10−13 3.1 × 10−11

Table 1: Comparison between Richardson extrapolation (numDeriv) and finite differences
(calculus) for four test functions. The table reports the number of derivatives computed for
each function (N), the mean relative error (Mean), and the standard deviation of the error
(SD).

R> x <- rep(0, 1000)
R> f <- function(x) sum(x)
R> microbenchmark(
+ "calculus O(2)" = calculus::derivative(f, x, accuracy = 2),
+ "calculus O(4)" = calculus::derivative(f, x, accuracy = 4),
+ "calculus O(6)" = calculus::derivative(f, x, accuracy = 6),
+ "calculus O(8)" = calculus::derivative(f, x, accuracy = 8),
+ "numDeriv" = numDeriv::grad(f, x)
+)

Unit: milliseconds
expr min lq mean median uq max neval

calculus O(2) 11.883 12.628 14.415 13.102 16.066 43.296 100
calculus O(4) 19.853 20.731 22.484 22.997 23.807 25.663 100
calculus O(6) 28.001 31.235 31.967 31.796 32.393 57.650 100
calculus O(8) 38.242 39.133 39.983 39.757 40.395 43.658 100

numDeriv 68.153 72.075 75.907 73.408 75.944 103.168 100

8. Taylor series
Based on the derivatives in the previous section, the function taylor provides a convenient
way to compute the Taylor series of arbitrary unidimensional or multidimensional functions.
The mathematical function can be specified both as a character string or as a function.
Symbolic or numerical methods are applied accordingly. For univariate functions, the n-th
order Taylor approximation centered in x0 is given by:

f(x) ≃
n∑

k=0

f (k)(x0)
k! (x − x0)k

Journal of Statistical Software 21

where f (k)(x0) denotes the k-th order derivative evaluated in x0. By using multi-index nota-
tion, the Taylor series is generalized to multidimensional functions with an arbitrary number
of variables:

f(x) ≃
n∑

|k|=0

f (k)(x0)
k! (x − x0)k

where now x = (x1, . . . , xd) is the vector of variables, k = (k1, . . . , kd) gives the order of
differentiation with respect to each variable f (k) = ∂(|k|)f

∂
(k1)
x1 ···∂(kd)

xd

, and:

|k| = k1 + · · · + kd k! = k1! · · · kd! xk = xk1
1 · · · xkd

d

The summation runs for 0 ≤ |k| ≤ n and identifies the set

{(k1, · · · , kd) : k1 + · · · kd ≤ n}

that corresponds to the partitions of the integer n. These partitions can be computed with
the function partitions that is included in the package and optimized in C++ for speed
and flexibility. The implementation computes the next partition using the values in the
current partition (GeeksforGeeks 2022a), permutes them and fills them with zeros if needed.
For example, the following call generates the partitions needed for the 2-nd order Taylor
expansion for a function of 3 variables:

R> partitions(n = 2, length = 3, fill = TRUE, perm = TRUE, equal = FALSE)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 1 0 0 2 0 1 1
[2,] 0 0 1 0 0 2 0 1 0 1
[3,] 0 1 0 0 2 0 0 1 1 0

Based on these partitions, the function taylor computes the corresponding derivatives and
builds the Taylor series. The output is a list containing the Taylor series, the order of the
expansion, and a data.frame containing the variables, coefficients and degrees of each term
in the Taylor series.

R> taylor("exp(x)", var = "x", order = 2)

$f
[1] "(1) * 1 + (1) * x^1 + (0.5) * x^2"

$order
[1] 2

$terms
var coef degree

0 1 1.0 0
1 x^1 1.0 1
2 x^2 0.5 2

22 calculus: High-Dimensional Numerical and Symbolic Calculus in R

By default, the series is centered in x0 = 0 but the function also supports x0 ̸= 0, the
multivariable case, and the approximation of user defined R functions.

R> f <- function(x, y) log(y) * sin(x)
R> taylor(f, var = c(x = 0, y = 1), order = 2)

$f
[1] "(0.999999999969436) * x^1*(y-1)^1"

$order
[1] 2

$terms
var coef degree

0,0 1 0 0
0,1 (y-1)^1 0 1
1,0 x^1 0 1
0,2 (y-1)^2 0 2
2,0 x^2 0 2
1,1 x^1*(y-1)^1 1 2

9. Hermite polynomials
Hermite polynomials are obtained by differentiation of the Gaussian kernel:

Hν(x, Σ) = exp
(1

2xiΣijxj

)
(−∂x)ν exp

(
−1

2xiΣijxj

)
where Σ is a d-dimensional square matrix and ν = (ν1 . . . νd) is the vector representing the
order of differentiation for each variable x = (x1 . . . xd). In the case where Σ = 1 and x = x1
the formula reduces to the standard univariate Hermite polynomials:

Hν(x) = e
x2
2 (−1)ν dν

dxν
e− x2

2

High order derivatives of the kernel e− x2
2 cannot performed efficiently in base R. The following

example shows the naive calculation of d2

dx2 e− x2
2 via the function D:

R> D(D(expression(exp(-x^2 / 2)), "x"), "x")

-(exp(-x^2/2) * (2/2) - exp(-x^2/2) * (2 * x/2) * (2 * x/2))

The resulting expression is not simplified and this leads to more and more iterations of the
chain rule to compute higher order derivatives. The expression grows fast and soon requires
long computational times and gigabytes of storage.

Journal of Statistical Software 23

R> f <- expression(exp(-x^2 / 2))
R> for (i in 1:14) f <- D(f, "x")
R> object.size(f)

7925384376 bytes

To overcome this difficulty, the function hermite implements the following scheme. First, it
differentiates the Gaussian kernel. Then, the kernel is dropped from the resulting expression.
In this way, the expression becomes a polynomial of degree 1. The taylor series of order
1 is computed in order to extract the coefficients of the polynomial and rewrite it compact
form. The polynomial is now multiplied by the Gaussian kernel and differentiated again.
The kernel is dropped so that the expression becomes a polynomial of degree 2. The taylor
series of order 2 is computed and the scheme is iterated until reaching the desired degree
ν. The same applies when ν = (ν1 . . . νd) represents the multi index of multivariate Hermite
polynomials. The scheme allows to reduce the computational time and storage, return a well
formatted output, and generate recursively all the Hermite polynomials of degree ν ′ where
|ν ′| ≤ |ν|. The output is a list of Hermite polynomials of degree ν ′, where each polynomial
is represented by the corresponding taylor series.

10. Ordinary differential equations
The function ode provides solvers for systems of ordinary differential equations of the type:

dy

dt
= f(t, y), y(t0) = y0

where y is the vector of state variables. Two solvers are available: the simpler and faster Euler
scheme (Wikipedia 2022f) or the more accurate 4-th order Runge-Kutta method (Wikipedia
2022o). Although many packages already exist to solve ordinary differential equations in R
(Petzoldt and Soetaert 2022), they usually represent the function f either with an R function
– see e.g., deSolve (Soetaert, Petzoldt, and Setzer 2010), odeintr (Keitt 2017), and pracma
(Borchers 2022) – or with characters – see e.g., yuima (Brouste et al. 2014). While the
representation via R functions is usually more efficient, the symbolic representation is easier
to adopt for beginners and more flexible for advanced users to handle systems that might
have been generated via symbolic programming. The package calculus supports both the
representations and uses hashed environments to accelerate symbolic evaluations. Consider
the following system:

d

dt

[
x
y

]
=
[

x
x(1 + cos(10t))

]
,

[
x0
y0

]
=
[
1
1

]

The vector-valued function f representing the system can be specified as a vector of characters,
or a function returning a numeric vector, giving the values of the derivatives at time t. The
initial conditions are set with the argument var and the time variable can be specified with
timevar.

R> sim <- ode(f = c("x", "x * (1 + cos(10 * t))"), var = c(x = 1, y = 1),
+ times = seq(0, 2 * pi, by = 0.001), timevar = "t")

24 calculus: High-Dimensional Numerical and Symbolic Calculus in R

0 1 2 3 4 5 6

0
10

0
30

0
50

0

Time

V
al

ue

x
y

Figure 1: Solution to the system of ordinary differential equations in Section 10 obtained with
the function ode using the Runge-Kutta method.

The solution to the system is represented in Figure 1.

11. Differential operators
Orthogonal coordinates are a special but extremely common case of curvilinear coordinates
where the coordinate surfaces all meet at right angles. The chief advantage of non-Cartesian
coordinates is that they can be chosen to match the symmetry of the problem. For exam-
ple, spherical coordinates are the most common curvilinear coordinate systems and are used
in Earth sciences, cartography, quantum mechanics, relativity, and engineering (Wikipedia
2022b). These coordinates may be derived from a set of Cartesian coordinates by using a
transformation that is locally invertible (a one-to-one map) at each point. This means that
one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates
and back. Differential operators such as the gradient, divergence, curl, and Laplacian can be
transformed from one coordinate system to another via the usage of scale factors (Table 2)
(Wikipedia 2022m). The package implements these operators in Cartesian, polar, spherical,
cylindrical, parabolic coordinates, and supports arbitrary orthogonal coordinates systems de-
fined by custom scale factors.

11.1. Gradient

The gradient of a scalar-valued function F is the vector (∇F)i whose components are the
partial derivatives of F with respect to each variable i. In arbitrary orthogonal coordinate
systems, the gradient is expressed in terms of the scale factors hi as follows:

(∇F)i = 1
hi

∂iF

The function gradient implements the symbolic and numeric gradient for R functions, ex-
pressions, and characters. In Cartesian coordinates:

Journal of Statistical Software 25

Curvilinear coordinates (q1, q2, q3) Transformation from Scale factors
cartesian (x, y, z)

Spherical polar coordinates (r, θ, ϕ)
x = r sin θ cos ϕ

y = r sin θ sin ϕ

z = r cos θ

h1 = 1
h2 = r

h3 = r sin θ

Cylindrical polar coordinates (r, ϕ, z)
x = r cos ϕ

y = r sin ϕ

z = z

h1 = h3 = 1
h2 = r

Parabolic coordinates (u, v, ϕ)

x = uv cos ϕ

y = uv sin ϕ

z = 1
2(u2 − v2)

h1 = h2 =
√

u2 + v2

h3 = uv

Parabolic cylindrical coordinates (u, v, z)
x = 1

2(u2 − v2)

y = uv

z = z

h1 = h2 =
√

u2 + v2

h3 = 1

Table 2: Example of scale factors for common coordinate systems.

R> gradient("x * y * z", var = c("x", "y", "z"))

[1] "y * z" "x * z" "x * y"

and in spherical coordinates:

R> gradient("x * y * z", var = c("x", "y", "z"), coordinates = "spherical")

[1] "1/1 * (y * z)" "1/x * (x * z)" "1/(x*sin(y)) * (x * y)"

To support arbitrary orthogonal coordinate systems, it is possible to pass custom scale factors
to the argument coordinates. For instance, the following call is equivalent to the previous
example in spherical coordinates where the scale factors are now explicitly specified:

R> gradient("x * y * z", var = c("x", "y", "z"),
+ coordinates = c(1, "x", "x * sin(y)"))

[1] "1/(1) * (y * z)" "1/(x) * (x * z)" "1/(x*sin(y)) * (x * y)"

Numerical methods are applied when working with functions with the same sintax introduced
for derivatives in Section 7:

R> f <- function(x, y, z) x * y * z
R> gradient(f, var = c(x = 1, y = pi/2, z = 0), coordinates = "spherical")

26 calculus: High-Dimensional Numerical and Symbolic Calculus in R

[1] 0.0000 0.0000 1.5708

or in vectorized form:

R> f <- function(x) x[1] * x[2] * x[3]
R> gradient(f, var = c(1, pi/2, 0), coordinates = "spherical")

[1] 0.0000 0.0000 1.5708

When the function F is a tensor-valued function Fd1,...,dn , the gradient is computed for each
scalar component.

(∇Fd1,...,dn)i = 1
hi

∂iFd1,...,dn

In particular, this reduces to the Jacobian matrix for vector-valued functions Fd1 :

R> f <- function(x) c(prod(x), sum(x))
R> gradient(f, var = c(3, 2, 1))

[,1] [,2] [,3]
[1,] 2 3 6
[2,] 1 1 1

that may be expressed in arbitrary orthogonal coordinate systems.

R> f <- function(x) c(prod(x), sum(x))
R> gradient(f, var = c(3, 2, 1), coordinates = "cylindrical")

[,1] [,2] [,3]
[1,] 2 1.00000 6
[2,] 1 0.33333 1

Jacobian

The function jacobian is a wrapper for gradient that always returns the Jacobian as a
matrix, even in the case of unidimensional scalar-valued functions.

R> f <- function(x) x^2
R> jacobian(f, var = c(1))

[,1]
[1,] 2

Hessian

In Cartesian coordinates, the Hessian of a scalar-valued function F is the square matrix of
second-order partial derivatives:

(H(F))ij = ∂ijF

Journal of Statistical Software 27

It might be tempting to apply the definition of the Hessian as the Jacobian of the gradient
to write it in terms of the scale factors. However, this results in a Hessian matrix that is not
symmetric and ignores the distinction between vector and covectors in tensor analysis (see
e.g., Masi 2007). The generalization to arbitrary coordinate system is out of the scope of this
paper and only Cartesian coordinates are supported in this case:

R> f <- function(x, y, z) x * y * z
R> hessian(f, var = c(x = 3, y = 2, z = 1))

[,1] [,2] [,3]
[1,] 1.222284e-11 1.00000e+00 2.000000e+00
[2,] 1.000000e+00 2.75014e-11 3.000000e+00
[3,] 2.000000e+00 3.00000e+00 1.100056e-10

When the function F is a tensor-valued function Fd1,...,dn , the hessian is computed for each
scalar component.

(H(Fd1,...,dn))ij = ∂ijFd1,...,dn

In this case, the function returns an array of Hessian matrices:

R> f <- function(x, y, z) c(x * y * z, x + y + z)
R> h <- hessian(f, var = c(x = 3, y = 2, z = 1))

that can be extracted with the corresponding indices.

R> h[1,,]

[,1] [,2] [,3]
[1,] 1.222284e-11 1.00000e+00 2.000000e+00
[2,] 1.000000e+00 2.75014e-11 3.000000e+00
[3,] 2.000000e+00 3.00000e+00 1.100056e-10

R> h[2,,]

[,1] [,2] [,3]
[1,] -1.833426e-11 7.883472e-12 -3.627321e-12
[2,] 7.883472e-12 -6.416993e-11 1.090683e-11
[3,] -3.627321e-12 1.090683e-11 9.167132e-11

11.2. Divergence

The divergence of a vector-valued function Fi produces a scalar value ∇ · F representing the
volume density of the outward flux of the vector field from an infinitesimal volume around a
given point (Wikipedia 2022c). In terms of scale factors, it is expressed as follows:

∇ · F = 1
J

∑
i

∂i

(
J

hi
Fi

)

28 calculus: High-Dimensional Numerical and Symbolic Calculus in R

where J =
∏

i hi. When F is an array of vector-valued functions Fd1,...,dn,i, the divergence
is computed for each vector:

(∇ · F)d1,...,dn = 1
J

∑
i

∂i

(
J

hi
Fd1,...,dn,i

)
= 1

J

∑
i

∂i(Jh−1
i)Fd1,...,dn,i + Jh−1

i ∂i(Fd1,...,dn,i)

where the last equality is preferable in practice as the derivatives of the scale factor can be
computed symbolically and the computation of the derivatives of F is more efficient than the
direct computation of ∂i

(
J
hi

Fd1,...,dn,i

)
via finite differences. In Cartesian coordinates:

R> f <- c("x^2", "y^2", "z^2")
R> divergence(f, var = c("x","y","z"))

[1] "2 * x + 2 * y + 2 * z"

In polar coordinates:

R> f <- c("sqrt(r) / 10", "sqrt(r)")
R> divergence(f, var = c("r", "phi"), coordinates = "polar")

[1] "(0.5 * r^-0.5/10 * r + (sqrt(r)/10)) / (1*r)"

And for tensors of vector-valued functions:

R> f <- matrix(c("x^2", "y^2", "z^2", "x", "y", "z"),
+ nrow = 2, byrow = TRUE)
R> divergence(f, var = c("x", "y", "z"))

[1] "2 * x + 2 * y + 2 * z" "1 + 1 + 1"

The same syntax holds for functions where numerical methods are automatically applied:

R> f <- function(x,y,z) {
+ matrix(c(x^2, y^2, z^2, x, y, z), nrow = 2, byrow = TRUE)
+ }
R> divergence(f, var = c(x = 0, y = 0, z = 0))

[1] 0 3

11.3. Curl

The curl of a vector-valued function Fi at a point is represented by a vector whose length and
direction denote the magnitude and axis of the maximum circulation (Wikipedia 2022a). In
2 dimensions, the curl is written in terms of the scale factors h and the Levi-Civita symbol ϵ
as follows:

∇ × F = 1
h1h2

∑
ij

ϵij∂i (hjFj) = 1
h1h2

(∂1 (h2F2) − ∂2 (h1F1))

Journal of Statistical Software 29

In 3 dimensions:
(∇ × F)k = hk

J

∑
ij

ϵijk∂i (hjFj)

where J =
∏

i hi. This suggests to implement the curl in m + 2 dimensions in such a way
that the formula reduces correctly to the previous cases:

(∇ × F)k1...km = hk1 · · · hkm

J

∑
ij

ϵijk1...km∂i (hjFj)

And in particular, when F is an array of vector-valued functions Fd1,...,dn,i the curl is com-
puted for each vector:

(∇ × F)d1...dn,k1...km = hk1 · · · hkm

J

∑
ij

ϵijk1...km∂i (hjFd1...dn,j)

=
∑
ij

1
hihj

ϵijk1...km∂i (hjFd1...dn,j)

=
∑
ij

1
hihj

ϵijk1...km (∂i(hj)Fd1...dn,j + hj∂i(Fd1...dn,j))

where the last equality is preferable in practice as the derivatives of the scale factor can be
computed symbolically and the computation of the derivatives of F is more efficient than
the direct computation of ∂i (hjFd1...dn,j) via finite differences. In 2-dimensional Cartesian
coordinates:

R> f <- c("x^3 * y^2","x")
R> curl(f, var = c("x", "y"))

[1] "(1) * 1 + (x^3 * (2 * y)) * -1"

In 3 dimensions, for an irrotational vector field:

R> f <- c("x", "-y", "z")
R> curl(f, var = c("x", "y", "z"))

[1] "0" "0" "0"

And for tensors of vector-valued functions:

R> f <- matrix(c("x", "-y", "z", "x^3 * y^2", "x", "0"),
+ nrow = 2, byrow = TRUE)
R> curl(f, var = c("x", "y", "z"))

[,1] [,2] [,3]
[1,] "0" "0" "0"
[2,] "0" "0" "(1) * 1 + (x^3 * (2 * y)) * -1"

30 calculus: High-Dimensional Numerical and Symbolic Calculus in R

The same syntax holds for functions where numerical methods are automatically applied and
for arbitrary orthogonal coordinate systems as shown in the previous sections.

11.4. Laplacian

The Laplacian is a differential operator given by the divergence of the gradient of a scalar-
valued function F , resulting in a scalar value giving the flux density of the gradient flow
of a function. The Laplacian occurs in differential equations that describe many physical
phenomena, such as electric and gravitational potentials, the diffusion equation for heat and
fluid flow, wave propagation, and quantum mechanics (Wikipedia 2022k). In terms of the
scale factor, the operator is written as:

∇2F = 1
J

∑
i

∂i

(
J

h2
i

∂iF

)

where J =
∏

i hi. When the function F is a tensor-valued function Fd1,...,dn , the laplacian
is computed for each scalar component:

(∇2F)d1...dn = 1
J

∑
i

∂i

(
J

h2
i

∂iFd1...dn

)
= 1

J

∑
i

∂i

(
Jh−2

i

)
∂iFd1...dn + Jh−2

i ∂2
i Fd1...dn

where the last equality is preferable in practice as the derivatives of the scale factor can be
computed symbolically and the computation of the derivatives of F is more efficient than the
direct computation of ∂i

(
J
h2

i
∂iF

)
via finite differences. In Cartesian coordinates:

R> f <- "x^3 + y^3 + z^3"
R> laplacian(f, var = c("x", "y", "z"))

[1] "3 * (2 * x) + 3 * (2 * y) + 3 * (2 * z)"

And for tensors of scalar-valued functions:

R> f <- array(c("x^3 + y^3 + z^3", "x^2 + y^2 + z^2", "y^2", "z * x^2"),
+ dim = c(2, 2))
R> laplacian(f, var = c("x", "y", "z"))

[,1] [,2]
[1,] "3 * (2 * x) + 3 * (2 * y) + 3 * (2 * z)" "2"
[2,] "2 + 2 + 2" "z * 2"

The same syntax holds for functions where numerical methods are automatically applied and
for arbitrary orthogonal coordinate systems as shown in the previous sections.

12. Integrals
The package integrates seamlessly with cubature (Narasimhan et al. 2022) for efficient nu-
merical integration in C. The function integral provides the interface for multidimensional

Journal of Statistical Software 31

integrals of functions, expressions, and characters in arbitrary orthogonal coordinate systems.
If the package cubature is not installed, the package implements a naive Monte Carlo integra-
tion by default. The function returns a list containing the value of the integral as well as
other information on the estimation uncertainty. The integration bounds are specified via the
argument bounds: a list containing the lower and upper bound for each variable. If the two
bounds coincide, or if a single number is specified, the corresponding variable is not integrated
and its value is fixed. For arbitrary orthogonal coordinates q1 . . . qn the integral is computed
as: ∫

J · f(q1 . . . qn)dq1 . . . dqn

where J =
∏

i hi is the Jacobian determinant of the transformation and is equal to the product
of the scale factors h1 . . . hn.

12.1. Examples

Univariate integral
∫ 1

0 xdx:

R> i <- integral(f = "x", bounds = list(x = c(0, 1)))
R> i$value

[1] 0.5

that is equivalent to:

R> i <- integral(f = function(x) x, bounds = list(x = c(0, 1)))
R> i$value

[1] 0.5

Univariate integral
∫ 1

0 yxdx|y=2:

R> i <- integral(f = "y * x", bounds = list(x = c(0, 1), y = 2))
R> i$value

[1] 1

Multivariate integral
∫ 1

0
∫ 1

o yxdxdy:

R> i <- integral(f = "y * x", bounds = list(x = c(0, 1), y = c(0, 1)))
R> i$value

[1] 0.25

Area of a circle
∫ 2π

0
∫ 1

0 dA(r, θ)

R> i <- integral(f = 1, bounds = list(r = c(0, 1), theta = c(0, 2 * pi)),
+ coordinates = "polar")

32 calculus: High-Dimensional Numerical and Symbolic Calculus in R

R> i$value

[1] 3.1416

Volume of a sphere
∫ π

0
∫ 2π

0
∫ 1

0 dV (r, θ, ϕ)

R> i <- integral(f = 1, bounds = list(r = c(0, 1), theta = c(0, pi),
+ phi = c(0, 2 * pi)), coordinates = "spherical")
R> i$value

[1] 4.1888

As a final example consider the electric potential in spherical coordinates arising from a
unitary point charge V = 1

4πr :

R> V <- "1 / (4 * pi * r)"

The electric field is determined by the gradient of the potential (Wikipedia 2022e): E = −∇V :

R> var <- c("r", "theta", "phi")
R> E <- -1 %prod% gradient(V, var = var, coordinates = "spherical")

Then, by Gauss’s law (Wikipedia 2022g), the total charge enclosed within a given volume
is equal to the surface integral of the electric field q =

∫
E · dA where · denotes the scalar

product between the two vectors. In spherical coordinates, this reduces to the surface integral
of the radial component of the electric field

∫
ErdA. The following code computes this surface

integral on a sphere with fixed radius r = 1:

R> i <- integral(E[1], bounds = list(r = 1, theta = c(0, pi),
+ phi = c(0, 2 * pi)), coordinates = "spherical")
R> i$value

[1] 1.0000

As expected q =
∫

E · dA =
∫

ErdA = 1, the unitary charge generating the electric potential.

13. Summary
This work has presented the calculus package for high dimensional numerical and symbolic
calculus in R. The library applies numerical methods when working with functions or symbolic
programming when working with characters or expressions. To describe multidimensional
objects such as vectors, matrices, and tensors, the package uses the class ‘array’ regardless
of the dimension. This is done to prevent unwanted results due to operations among different
classes such as ‘vector’ for unidimensional objects or ‘matrix’ for bidimensional objects.
The package handles multivariate numerical calculus in arbitrary dimensions and coordinates
via C++ optimized functions. It achieves approximately the same accuracy for numerical

Journal of Statistical Software 33

differentiation as the numDeriv (Gilbert and Varadhan 2019) package but significantly re-
duces the computational time. It supports higher order derivatives and the differentiation
of possibly tensor-valued functions. Differential operators such as the gradient, divergence,
curl, and Laplacian are made available in arbitrary orthogonal coordinate systems. The Ein-
stein summing convention supports expressions involving more than two tensors and tensors
with repeated indices. Besides being more flexible, the summation proves to be faster than
the alternative implementation found in the tensorA (Van den Boogaart 2020) package for
advanced tensor arithmetic with named indices. Unlike mpoly (Kahle 2013) and pracma
(Borchers 2022), the package supports multidimensional Hermite polynomials and Taylor se-
ries of multivariate functions. The package integrates seamlessly with cubature (Narasimhan
et al. 2022) for efficient numerical integration in C and extends the numerical integration to
arbitrary orthogonal coordinate systems.
The symbolic counterpart of the numerical methods are implemented whenever possible to
meet the growing needs for R to handle basic symbolic operations. Although calculus is not
to be compared with general-purpose symbolic algebra systems, it provides, among others,
symbolic high order derivatives of possibly tensor-valued functions, symbolic differential oper-
ators such as the gradient, divergence, curl, and Laplacian in arbitrary orthogonal coordinate
systems, symbolic Einstein summing convention and Taylor series expansion of multivari-
ate functions. This is done entirely in R, without depending on external computer algebra
systems.
Except for Rcpp (Eddelbuettel and François 2011), the calculus package has no strict depen-
dencies in order to provide a stable self-contained toolbox that invites re-use.

14. Computational details
The results in this paper were obtained using R 4.2.1 (R Core Team 2022) with the pack-
ages numDeriv 2016.8-1.1 (Gilbert and Varadhan 2019), tensorA 0.36.2 (Van den Boogaart
2020), cubature 2.0.4.4 (Narasimhan et al. 2022), microbenchmark 1.4-9 (Mersmann 2021),
calculus 1.0.0. R itself and all packages used are available from CRAN at https://CRAN.
R-project.org/.

Acknowledgments
This work was in part supported by Japan Science and Technology Agency CREST JPMJCR14D7,
JPMJCR2115.

References

Aït-Sahalia Y (2002). “Maximum Likelihood Estimation of Discretely Sampled Diffusions: A
Closed-Form Approximation Approach.” Econometrica, 70(1), 223–262.

Andersen MM, Højsgaard S (2019). “Ryacas: A Computer Algebra System in R.” Journal of
Open Source Software, 4(42). doi:10.21105/joss.01763.

https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://doi.org/10.21105/joss.01763

34 calculus: High-Dimensional Numerical and Symbolic Calculus in R

Andersen MM, Højsgaard S (2021). “caracas: Computer Algebra in R.” The Journal of Open
Source Software, 6(63), 3438. doi:10.21105/joss.03438.

Borchers HW (2022). pracma: Practical Numerical Math Functions. R package version 2.3.8,
URL https://CRAN.R-project.org/package=pracma.

Borchers HW, Hankin R, Sokol S (2022). CRAN Task View: Numerical Mathematics. Ver-
sion 2022-08-08, URL https://CRAN.R-project.org/view=NumericalMathematics.

Brouste A, Fukasawa M, Hino H, Iacus SM, Kamatani K, Koike Y, Masuda H, Nomura R,
Ogihara T, Shimuzu Y, Uchida M, Yoshida N (2014). “The YUIMA Project: A Com-
putational Framework for Simulation and Inference of Stochastic Differential Equations.”
Journal of Statistical Software, 57(4), 1–51. doi:10.18637/jss.v057.i04.

Clausen A, Sokol S (2021). Deriv: Symbolic Differentiation. R package version 4.1.3, URL
https://CRAN.R-project.org/package=Deriv.

Drabinova A, Martinkova P (2017). “Detection of Differential Item Functioning with Non-
linear Regression: A Non-IRT Approach Accounting for Guessing.” Journal of Educational
Measurement, 54(4), 498–517. doi:10.1111/jedm.12158.

Eberly D (2008). Derivative Approximation by Finite Differences. Magic Software, Inc. URL
https://www.geometrictools.com/Documentation/FiniteDifferences.pdf.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Frankel T (2011). The Geometry of Physics: An Introduction. Cambridge University Press.

GeeksforGeeks (2022a). “Generate All Unique Partitions of an Integer — GeeksforGeeks
| A Computer Science Portal for Geeks.” URL https://www.geeksforgeeks.org/
generate-unique-partitions-of-an-integer/, accessed 2022-09-05.

GeeksforGeeks (2022b). “Number of Transpositions in a Permutation — GeeksforGeeks
| A Computer Science Portal for Geeks.” URL https://www.geeksforgeeks.org/
number-of-transpositions-in-a-permutation/, accessed 2022-09-05.

Gilbert P, Varadhan R (2019). numDeriv: Accurate Numerical Derivatives. R package ver-
sion 2016.8-1.1, URL https://CRAN.R-project.org/package=numDeriv.

Guidotti E (2022). calculus: High Dimensional Numerical and Symbolic Calculus. R package
version 1.0.0, URL https://CRAN.R-project.org/package=calculus.

Hladka A, Martinkova P (2020). “difNLR: Generalized Logistic Regression Models for DIF
and DDF Detection.” The R Journal, 12(1), 300–323. doi:10.32614/rj-2020-014.

Kahle D (2013). “mpoly: Multivariate Polynomials in R.” The R Journal, 5(1), 162–170.
doi:10.32614/rj-2013-015.

Keitt TH (2017). odeintr: C++ ODE Solvers Compiled On-Demand. R package version 1.7.1,
URL https://CRAN.R-project.org/package=odeintr.

https://doi.org/10.21105/joss.03438
https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/view=NumericalMathematics
https://doi.org/10.18637/jss.v057.i04
https://CRAN.R-project.org/package=Deriv
https://doi.org/10.1111/jedm.12158
https://www.geometrictools.com/Documentation/FiniteDifferences.pdf
https://doi.org/10.18637/jss.v040.i08
https://www.geeksforgeeks.org/generate-unique-partitions-of-an-integer/
https://www.geeksforgeeks.org/generate-unique-partitions-of-an-integer/
https://www.geeksforgeeks.org/number-of-transpositions-in-a-permutation/
https://www.geeksforgeeks.org/number-of-transpositions-in-a-permutation/
https://CRAN.R-project.org/package=numDeriv
https://CRAN.R-project.org/package=calculus
https://doi.org/10.32614/rj-2020-014
https://doi.org/10.32614/rj-2013-015
https://CRAN.R-project.org/package=odeintr

Journal of Statistical Software 35

Li C, et al. (2013). “Maximum-Likelihood Estimation for Diffusion Processes via Closed-Form
Density Expansions.” The Annals of Statistics, 41(3), 1350–1380.

Li J, Bien J, Wells MT (2018). “rTensor: An R Package for Multidimensional Array (Tensor)
Unfolding, Multiplication, and Decomposition.” Journal of Statistical Software, 87(1), 1–31.
doi:10.18637/jss.v087.i10.

Masi M (2007). “On Compressive Radial Tidal Forces.” American Journal of Physics, 75(2),
116–124. doi:10.1119/1.2366736.

Mersmann O (2021). microbenchmark: Accurate Timing Functions. R package version 1.4-9,
URL https://CRAN.R-project.org/package=microbenchmark.

Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S,
Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H,
Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka v, Saboo A, Fernando I,
Kulal S, Cimrman R, Scopatz A (2017). “SymPy: Symbolic Computing in Python.” PeerJ
Computer Science, 3, e103. doi:10.7717/peerj-cs.103.

Narasimhan B, Johnson SG, Hahn T, Bouvier A, Kiêu K (2022). cubature: Adaptive Mul-
tivariate Integration over Hypercubes. R package version 2.0.4.4, URL https://CRAN.
R-project.org/package=cubature.

Petzoldt T, Soetaert K (2022). CRAN Task View: Differential Equations. Version 2022-03-08,
URL https://CRAN.R-project.org/view=DifferentialEquations.

Pinkus A, Winnitzky S, Mazur G (2020). Yacas: Yet Another Computer Algebra System,
Version 1.9.1. URL http://www.yacas.org/.

Pruim R, Kaplan DT, Horton NJ (2017). “The mosaic Package: Helping Students to “Think
with Data” Using R.” The R Journal, 9(1), 77–102. doi:10.32614/rj-2017-024.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Sidiropoulos ND, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos C (2017).
“Tensor Decomposition for Signal Processing and Machine Learning.” IEEE Transactions
on Signal Processing, 65(13), 3551–3582. doi:10.1109/tsp.2017.2690524.

Soetaert K, Petzoldt T, Setzer RW (2010). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software, 33(9), 1–25. doi:10.18637/jss.v033.i09.

Stroustrup B (2013). The C++ Programming Language. 4th edition. Addison-Wesley.

Ushey K, Allaire JJ, Tang Y (2022). reticulate: Interface to Python. R package version 1.25,
URL https://CRAN.R-project.org/package=reticulate.

Van den Boogaart KG (2020). tensorA: Advanced Tensor Arithmetic with Named Indices.
R package version 0.36.2, URL https://CRAN.R-project.org/package=tensorA.

Wickham H (2011). “testthat: Get Started with Testing.” The R Journal, 3(1), 5–10. doi:
10.32614/rj-2011-002.

https://doi.org/10.18637/jss.v087.i10
https://doi.org/10.1119/1.2366736
https://CRAN.R-project.org/package=microbenchmark
https://doi.org/10.7717/peerj-cs.103
https://CRAN.R-project.org/package=cubature
https://CRAN.R-project.org/package=cubature
https://CRAN.R-project.org/view=DifferentialEquations
http://www.yacas.org/
https://doi.org/10.32614/rj-2017-024
https://www.R-project.org/
https://doi.org/10.1109/tsp.2017.2690524
https://doi.org/10.18637/jss.v033.i09
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=tensorA
https://doi.org/10.32614/rj-2011-002
https://doi.org/10.32614/rj-2011-002

36 calculus: High-Dimensional Numerical and Symbolic Calculus in R

Wikipedia (2022a). “Curl (Mathematics) — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/Curl_(mathematics), accessed 2022-09-05.

Wikipedia (2022b). “Curvilinear Coordinates — Wikipedia, The Free Encyclopedia.” URL
https://en.wikipedia.org/wiki/Curvilinear_coordinates, accessed 2022-09-05.

Wikipedia (2022c). “Divergence — Wikipedia, The Free Encyclopedia.” URL https://en.
wikipedia.org/wiki/Divergence, accessed 2022-09-05.

Wikipedia (2022d). “Einstein Notation — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/Einstein_notation, accessed 2022-09-05.

Wikipedia (2022e). “Electric Potential — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/Electric_potential, accessed 2022-09-05.

Wikipedia (2022f). “Euler Method — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/Euler_method, accessed 2022-09-05.

Wikipedia (2022g). “Gauss’s Law — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/Gauss%27s_law, accessed 2022-09-05.

Wikipedia (2022h). “Invertible Matrix — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/Invertible_matrix, accessed 2022-09-05.

Wikipedia (2022i). “Kronecker Delta — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/Kronecker_delta, accessed 2022-09-05.

Wikipedia (2022j). “Laplace Expansion — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/Laplace_expansion, accessed 2022-09-05.

Wikipedia (2022k). “Laplace Operator — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/Laplace_operator, accessed 2022-09-05.

Wikipedia (2022l). “Levi-Civita Symbol — Wikipedia, The Free Encyclopedia.” URL https:
//en.wikipedia.org/wiki/Levi-Civita_symbol, accessed 2022-09-05.

Wikipedia (2022m). “Orthogonal Coordinates — Wikipedia, The Free Encyclopedia.” URL
https://en.wikipedia.org/wiki/Orthogonal_coordinates, accessed 2022-09-05.

Wikipedia (2022n). “Richardson Extrapolation — Wikipedia, The Free Encyclopedia.” URL
https://en.wikipedia.org/wiki/Richardson_extrapolation, accessed 2022-09-05.

Wikipedia (2022o). “Runge-Kutta Methods — Wikipedia, The Free Encyclopedia.” URL
https://en.wikipedia.org/wiki/Runge-Kutta_methods, accessed 2022-09-05.

Yoshida N (1992). “Asymptotic Expansion for Statistics Related to Small Diffusions.” Journal
of the Japan Statistical Society, Japanese Issue, 22(2), 139–159. doi:10.11329/jjss1970.
22.139.

https://en.wikipedia.org/wiki/Curl_(mathematics)
https://en.wikipedia.org/wiki/Curl_(mathematics)
https://en.wikipedia.org/wiki/Curvilinear_coordinates
https://en.wikipedia.org/wiki/Divergence
https://en.wikipedia.org/wiki/Divergence
https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Electric_potential
https://en.wikipedia.org/wiki/Electric_potential
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Gauss%27s_law
https://en.wikipedia.org/wiki/Gauss%27s_law
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Kronecker_delta
https://en.wikipedia.org/wiki/Kronecker_delta
https://en.wikipedia.org/wiki/Laplace_expansion
https://en.wikipedia.org/wiki/Laplace_expansion
https://en.wikipedia.org/wiki/Laplace_operator
https://en.wikipedia.org/wiki/Laplace_operator
https://en.wikipedia.org/wiki/Levi-Civita_symbol
https://en.wikipedia.org/wiki/Levi-Civita_symbol
https://en.wikipedia.org/wiki/Orthogonal_coordinates
https://en.wikipedia.org/wiki/Richardson_extrapolation
https://en.wikipedia.org/wiki/Runge-Kutta_methods
https://doi.org/10.11329/jjss1970.22.139
https://doi.org/10.11329/jjss1970.22.139

Journal of Statistical Software 37

Affiliation:
Emanuele Guidotti
University of Neuchâtel
Institute of Financial Analysis
Rue Abram-Louis-Breguet 2, 2000 Neuchâtel, Switzerland
and
CREST, Japan Science and Technology Agency
E-mail: emanuele.guidotti@unine.ch

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

September 2022, Volume 104, Issue 5 Submitted: 2021-02-08
doi:10.18637/jss.v104.i05 Accepted: 2022-03-29

mailto:emanuele.guidotti@unine.ch
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v104.i05

	Introduction
	The R package calculus
	Testing
	Dependencies
	Installation
	Philosophy
	Intended use
	Contributing

	Basic operations
	Arithmetic
	Evaluation
	Options

	Vector algebra
	Cross product

	Matrix algebra
	Determinant
	Matrix inverse
	Matrix product

	Tensor algebra
	Levi-Civita symbol
	Generalized Kronecker delta

	Tensor contraction
	Einstein summation
	Inner product
	Dot product

	Outer product
	Kronecker product

	Derivatives
	Symbolic derivatives
	Numerical derivatives
	Examples
	Performance

	Taylor series
	Hermite polynomials
	Ordinary differential equations
	Differential operators
	Gradient
	Jacobian
	Hessian

	Divergence
	Curl
	Laplacian

	Integrals
	Examples

	Summary
	Computational details

