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Abstract

synthACS is an R package that provides flexible tools for building synthetic micro-
datasets based on American Community Survey (ACS) base tables, allows data-extensibility
and enables to conduct spatial microsimulation modeling (SMSM) via simulated anneal-
ing. To our knowledge, it is the first R package to provide broadly applicable tools for
SMSM with ACS data as well as the first SMSM implementation that uses unequal prob-
ability sampling in the simulated annealing algorithm. In this paper, we contextualize
these developments within the SMSM literature, provide a hands-on user-guide to pack-
age synthACS, present a case study of SMSM related to population dynamics, and note
areas for future research.

Keywords: R, SMSM, ACS, spatial microsimulation modeling, simulation, synthetic data,
simulated annealing.

1. Introduction
Survey data helps local officials, community leaders, elected representatives, and researchers
understand the changes taking place in their communities. Survey data is also used to deter-
mine the equitable distribution of public funds and enables the design of public policy. In the
United States of America, the American Community Survey (ACS), which provides detailed
information on forty-six topics, is one of the premier sources of survey information on how
Americans live. It is therefore very important that the research community and community
officials have flexible and easy-to-use tools for accessing, manipulating, and using this data.
When examining survey data, it is important to keep two principles in mind. Firstly, re-
searchers should contextualize data spatially. Spatial characteristics of a population provide
a more comprehensive understanding of differences and inequities in patterns, trends, and
other impacts of community change. Secondly, community behavior is more realistically
modeled by examining individual behavior and individuals’ interaction than by looking at ag-
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gregated data directly. These two principles form the basic premise of spatial microsimulation
modeling (SMSM).
Despite the tremendous value of using SMSM, creating these simulations is a demanding exer-
cise: It is both computationally intensive and requires specialized knowledge of programming
simulation models. A general solution enabling researchers to easily create microsimulation
models with high quality, easily accessible data – such as the ACS – is currently lacking.
Spatial Microsimulation: A Reference Guide for Users (Tanton and Edwards 2013), which
provides an SMSM blueprint, provides a partial solution. However, there is still a shortage
of general software solutions for conducting SMSM.
In this paper, we introduce synthACS (Whitworth 2022), an R (R Core Team 2022) package
which takes advantage of the availability of reliable statistics on small area populations from
the ACS to enable SMSM at any desired United States geographic level. synthACS is thus,
to our knowledge, the first R package which provides a general SMSM toolkit for any user-
specified United States geography. synthACS is also data-extensible. It provides flexible tools
for users to add additional data elements, both from the ACS and otherwise, to their micro
data thereby enabling more targeted research questions. It is available from the Comprehen-
sive R Archive Network (CRAN) at https://CRAN.R-project.org/package=synthACS.
The remainder of the paper proceeds as follows: Section 2 explains the methodology more
clearly; Section 3 provides a hands-on user guide to the software; Section 4 provides a case
study utilizing synthACS and discusses areas for future research; and Section 5 concludes.

2. Research background and methodology
Spatial microsimulation fits within a broader literature concerned with spatial analysis. Per-
haps the best known subset of this literature concerns geographical information systems (GIS).
Existing software implementations for GIS within R are discussed by Bivand, Pebesma, and
Gomez-Rubio (2008) and enabled by the associated packages sp (Pebesma and Bivand 2005)
and maptools (Bivand and Lewin-Koh 2022). UScensus2010 (Almquist 2010) provides an ex-
tension to this framework with a suite of R packages enabling easy access to the US Decennial
Census. Similarly, the acs package (Glenn 2019) provides easy access to the American Com-
munity Survey. In addition to the above software for accessing, manipulating, and mapping
spatial data, UrbanSim (Waddell, Borning, Noth, Freier, Becke, and Ulfarsson 2003) provides
a modeling system designed to support metropolitan land use and transportation planning.
Methods for spatial microsimulation were first described by Orcutt, Greenberger, Korbel,
and Rivlin (1961); although it was not until 1984 that one of the first generally accepted
SMSM methods was developed (Clarke, Forte, Spowage, and Wilson 1984). While the general
procedure for conducting SMSM has several steps (see Tanton and Edwards 2013), the process
can be broadly categorized into two stages: collecting, or synthetically generating, micro
data; and fitting this micro data to the macro, or aggregate, data constraining tables.1 The
only open source spatial microsimulation software that we are aware of is sms (Kavroudakis
2015). sms includes tools for conducting SMSM with user-provided micro and macro datasets.
sms performs optimization between the micro and macro data using either hill-climbing or
simulated annealing algorithms.

1From this point forward, we will use the term ‘micro data’ to indicate the sample of low level data on
individuals and the term ‘macro data’ to indicate the aggregate constraining tables for each small area.

https://CRAN.R-project.org/package=synthACS


Journal of Statistical Software 3

Unlike sms, synthACS does not require external micro and macro datasets. Instead, it lever-
ages the high quality data available from the ACS and accessible in R via package acs. syn-
thACS also provides methods for data-extensibility so that users are not limited to ACS
data. But synthACS is explicitly targeted at users interested in modeling and analyzing
United States geographic data. By focusing on a single geographic region and choosing a
single primary data source, synthACS aims to ‘do one thing well.’ synthACS provides a
novel method of synthetic micro data creation, including thoughtful trade-offs around data
availability (see Section 2.2), that enables end-users to focus on their substantive research
questions instead of collecting survey data.
synthACS also has two computational improvements over sms. Firstly, synthACS makes full
use of a multicore architecture, while sms only uses some of the available computing cores.
Secondly, synthACS provides a more flexible simulated annealing algorithm than sms, which
is detailed in Section 2.2. In the remainder of this section, we review the methodological
background of SMSM and describe the design of synthACS in detail.

2.1. Spatial microsimulation literature

The process of spatial microsimulation can be broadly divided into two stages, one concern-
ing the collection of micro data and the other concerning fitting the micro data to the macro
data. Researchers have approached this problem from multiple angles in the literature, includ-
ing: conditional probabilities (Birkin and Clarke 1988; Clarke and Holm 1987), deterministic
reweighting (Harding, Lloyd, Bill, and King 2004; Ballas, Clarke, Dorling, Eyre, Thomas,
and Rossiter 2005), combinatorial optimization (Clarke, Kashti, McDonald, and Williamson
1997), and simulated annealing (Williamson, Birkin, and Rees 1998).
The conditional probabilities method was first introduced by Birkin and Clarke (1988). The
method creates a synthetic micro dataset from the probabilities implied by the macro data.
Attributes – such as gender, age, educational status, and race – are iteratively assigned for
each individual using a stochastic process. The decision criteria governing the stochastic
process for each individual are based on the macro data summary information. The method
is considered conditional because the decision criteria for each attribute after the first is
conditioned on previously assigned attributes. For instance, if we first assign an individual’s
‘gender’, the ‘age’ attribute would be assigned based on the conditional distribution of age
within the ‘Male’ and ‘Female’ populations respectively.
Deterministic reweighting was first introduced by Ballas et al. (2005). Unlike conditional
probability models, which build a synthetic micro population, deterministic reweighting re-
quires a sample micro population of individual records. The procedure then proportionally
reweights each individual record in the sample based on the macro data. For example, if the
researcher has a 1% sample of individuals, a crude reweighting scheme would be to simply
duplicate each record one hundred times. As with the conditional probabilities method, at-
tributes are reweighted iteratively, for instance, proceeding from ‘gender’ to ‘age’ as discussed
above.
Another approach the researcher may take is to view the sample micro population as a sub-
sample of a larger candidate population from which he or she draws samples for each small
area (e.g., census tract). Characterized in this manner, the problem can be thought of as
finding the best combination of individual records that fit the macro data. This characteri-
zation is thus solved via algorithms for combinatorial optimization. Williamson et al. (1998)
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Conditional Deterministic Simulated
probabilities reweighting annealing

Sensitive to constraint order Yes Yes No
Limited number of constraints Yes Yes No
Requires a sample population No Yes Yes
Can avoid local minima No No Yes
Stochastic Yes No Yes

Table 1: Summary comparison of algorithms for synthetic population construction; adapted
from Harland et al. (2012).

look at several strategies for combinatorial optimization: hill climbing, simulated annealing,
and genetic algorithms. Taking consideration of computing cost, they find that their modified
simulated annealing algorithm (SA2), which takes on some aspects of hill climbing, “emerges
as the single best solution.”
Each of the above methods has advantages and disadvantages as shown in Table 1 and further
discussed in Harland, Heppenstall, Smith, and Birkin (2012). For both conditional proba-
bility and deterministic reweighting methods, the order in which attributes are introduced is
important. Best results are achieved by starting with low entropy attributes, such as gender
and age, and then proceeding to higher entropy attributes such as education level, income,
and race. An additional concern with deterministic reweighting and current combinatorial
optimization methods, since each requires a sample micro population, is the representative-
ness of the sample micro population to each small area under study. Error is minimized by
only using sample populations which are relatively homogeneous to the small area in question.
This may be problematic when studying a large number of heterogeneous small areas. As
Clarke and Holm (1987) note, “in the worst but perhaps most typical case, no appropriate
micro-data will be available.” In this case, the only solution is to either conduct a large, and
therefore expensive, survey or to accept poor quality micro data fits.

2.2. Design of synthACS

Synthetic micro data

As with other SMSM methods, the methodology in synthACS can be broadly divided into two
stages: data generation at the individual level and optimization between the micro and macro
data. But synthACS creates synthetic micro data based on the ACS instead of conducting
an individual level survey. Therefore, one key contribution of synthACS is to provide fitting
via simulated annealing without requiring a micro dataset.
To do so, synthACS borrows ideas from both conditional probability and reweighting methods
in synthetic data generation. Specifically, we use the macro data to create synthetic individ-
uals2 and assign each individual a probability of being selected during the fitting procedure
via unequal probability sampling (Rao, Hartley, and Cochran 1962). As with the conditional
probabilities method, data attributes are added iteratively and are conditioned on prior at-
tributes. However, fitting is not conducted at this stage; instead, we only reweight individual

2synthACS only uses individual data, not households.
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Data attribute Conditioning attribute(s) ACS base table(s) used
1. Age and Gender Jointly Distributed B01001
2. Marital Status Age and Gender B12002
3. Educational Attainment Age and Gender B15001
4. Employment Status Age and Gender B23001
5. Nativity Status Age B06001
6. Poverty Status Gender and Employment Status B17005
7. Geographic Mobility Educational Attainment B07009
8. Income Poverty Status and Nativity Status B06010
9. Race Gender B01001B-I, B02001

Table 2: Attribute order and conditioning for synthetic micro data creation in synthACS.

sampling probabilities when each new attribute is added. synthACS uses attributes which
are widely available in the ACS base tables; and, attribute conditioning is influenced by data
availability in the ACS base tables. These attributes are described in Table 2.
Note that the order in which these attributes are added implies an indirect conditioning
between attributes. For example, while income is only explicitly conditioned on poverty and
nativity statuses, nativity status is itself conditioned on age, and poverty is conditioned on
both gender and employment. Income is therefore also implicitly conditioned on age, gender,
and employment status. The same logic can be applied to, for instance, geographic mobility.
Since simulated annealing is not conducted at this stage in synthACS, the order of attribute
creation does not impact constraints; however, it does impact the implicit conditioning of
data attributes. Therefore, the order in which data attributes are added does matter; and,
attribute order was carefully chosen.
In general, the detail of the ACS base tables is tremendously helpful. But ACS base tables do
not always define their populations and data attributes in exactly the same manner. A lack
of perfect match between micro and macro datasets has long bedeviled SMSM researchers
and synthACS is no different. synthACS makes the following assumptions:

• Marital status: Table B12002 reports on the population age 15 and over. All individuals
under age 15 are assumed to have never been married.

• Educational attainment: Table B15001 reports on the population age 18 and over.
Individuals under age 15 are assumed to have ‘less than high school’ attainment and
individuals aged 15–17 are assumed to have ‘some high school’ attainment.

• Employment status: Table B23001 reports on the population age 16 and over. Indi-
viduals under age 15 are assumed to not be in the labor force. Individuals aged 15–17
are assumed to be represented by reported employment status of those aged 16–19.
Individuals aged 18–24 are assumed to be represented by reported employment status
of those aged 20–24.

• Poverty status: Table B17005 reports on the civilian population 16 years and over for
whom poverty status is determined. Poverty status is assumed to be independent of age
conditional on employment status. Since the poverty rate for those not in the labor force
is roughly twice that of those in the labor force (21.8% vs. 9.4%; US Census Bureau
2015), this likely slightly overstates childhood poverty.
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• Geographic mobility: Table B07009 reports geographic mobility for the population age
25 and over. Geographic mobility is assumed to be independent of age conditional on
educational attainment. Additionally, Table B07009 does not have the same education
categories as B15001. ‘Some high school’ in B15001 is mapped to ‘less than high school’
in B07009, while ‘associate degree’ in B15001 is mapped to ‘some college’ in B07009.

• Income: Table B06010 reports on the population age 15 and over. Income is assumed
to be independent of age conditional on poverty status and nativity status.

Of all these assumptions, we find those related to individual income most troubling. In
addition to the implicit conditioning described above, the ACS reports top-coded individual
incomes where the maximum top coded value is “$75,000 and up”. Researchers for whom
income is a key variable in SMSM may find this unsatisfactory and may wish to add a
different measure of individual income. A generic method for doing so will be discussed in
Section 3.2. Another method is provided by Crimi and Eddy (2014).

Simulated annealing

Once the synthetic micro data is created, researchers can proceed to the problem of selecting
the set of individual records which best fit the macro data. The loss function chosen to
optimize is the total absolute error (TAE) defined by

TAE =
D∑

j=1

nj∑
i=1

|Sij − Eij |,

where Sij and Eij are the observed (i.e., simulated) and expected (i.e., census) counts for
attribute j; j = 1, . . . , D taking on category i; i = 1, . . . , nj .
TAE has the advantage of simplicity of calculation and interpretation, but we also note
two disadvantages. Firstly, TAE double counts misclassification, which is easily illustrated
using the case of one attribute with two categories. Given ten observations which are all
expected to be in category one but are misclassified as category two, the TAE is |10 − 0| +
|0 − 10| = 20. Secondly, we cannot calculate the gradient of TAE for any attributes. The
method chosen for optimization in synthACS is therefore simulated annealing (Metropolis,
Rosenbluth, Rosenbluth, and Teller 1953; Szu and Hartley 1987; Ingber 1989). As a heuristic
method, simulated annealing is designed to produce a good solution, although there is no
guarantee that the solution is optimal. We describe the typical simulated annealing algorithm
below.
Suppose that the solution space S is the finite set of all possible solutions and the loss function
f is a real-valued function defined on the members of S. The goal is to find a solution i ∈ S
that minimizes f over S. Simulated annealing starts with a random solution i0 ∈ S and
computes the loss of this solution f(i0). For each iteration, generate a candidate solution
j ∈ S, compute f(j) and compute the change in loss γ = f(j) − f(i) where i denotes
the current solution i ∈ S. If the candidate solution is better than the current solution
(γ < 0), always accept the candidate solution. Otherwise, accept the candidate solution with
acceptance probability proportional to γ and controlled by a control parameter T , which is
typically termed the temperature.
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Simulated annealing therefore always accepts downhill moves but also sometimes accepts
uphill moves. Small uphill moves are more likely to be accepted than large ones; and, when T
is high, most moves will be accepted, while when T is low, most uphill moves will be rejected.
The value of T therefore controls the trade-off between descent and avoiding local minima,
while decay in T , commonly termed the cooling schedule, controls the rate at which simulated
annealing favors descent relative to the possibility of being trapped in a local minimum.
In synthACS, the simulated annealing algorithm works to optimize a loss function across D
attributes, yielding a D-dimensional parameter space. Note that each parameter may have
a different number of categories and that TAE sensitivity may vary across parameters. For
simplicity, there is no consideration for sensitivities between parameters that might require
different cooling schedules. Instead, the cooling schedule chosen in synthACS is a simplified
version of that proposed by Ingber (1989):

Tk = T0 exp
(−1

20
k

D

)
, (1)

where k is the iteration and T0 is the initial temperature.
Uphill moves are accepted with probability proportional to the relative loss between iterations
k and k − 1 conditional on the temperature at iteration k:

P(accept|Tk) ∝ f(ik)
f(ik−1) .

Options in simulated annealing
It is important to carefully consider trade-offs between accuracy of fit and computation time of
the simulated annealing algorithm. In synthACS, we considered three standard options. We
firstly examined the initial acceptance probability and the number of allowable iterations by
examining final TAE for several datasets across a test-grid of initial acceptance probabilities
and maximum allowable iterations. We have chosen defaults of 10,000 iterations and a 40%
initial acceptance probability based on these results.
Secondly, we considered how to move from one candidate state it ∈ S to the future candidate
states it+1 ∈ S. It is typically advisable to initially take large jumps in the solution space
and in later iterations to mostly move to nearby candidate solutions. This is controlled by
both the cooling schedule and by how candidate solutions are generated. In synthACS, these
choices are guided by understanding that candidate solutions generally improve over time as
simulated annealing mostly moves downhill. For a more thorough treatment of this, please
see Ingber (2000).
synthACS initially explores the candidate space by choosing new candidate solutions that
replace 10% of the current solution’s observations for the first 100 iterations. It then generates
new candidate solutions by replacing max(500, n * .005) observations in each iteration,
where n is the number of observations in the dataset. In addition, a large jump in the candidate
space, n * 0.2 observations, is proposed every 500 iterations to increase the probability of
avoiding local minima. These choices were guided by experimental results, similar to the
choice of initial acceptance probability and maximum iterations.
Thirdly, synthACS allows for early stopping. To be clear, early stopping is defined here as
taking fewer iterations than the maximum allowable iterations because the loss criterion has
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fallen below a given threshold. Cross-validation on a test data set, typical of many early
stopping regularization techniques, is not used. The goal of this early stopping choice is to
reduce computation time, not to reduce generalization error. By default, the rule for early
stopping used for a small area with n individuals and D constraining attributes is to stop
if TAE falls below n

2000D, e.g., a misclassification rate of 1 individual per thousand for each
constraining attribute.

3. User guide
We now turn to the use of synthACS, which is available as a package for the statistical
software R and can be run in any environment that R can. R is freely available from https:
//www.R-project.org/. To install synthACS from a CRAN mirror, simply type the following
command in the R command prompt,

R> install.packages("synthACS")

If you wish to use the most current development version, you can install it from GitHub. This
is most easily done using the devtools package (Wickham, Hester, Chang, and Bryan 2022),
via

R> devtools::install_github("alexWhitworth/synthACS")

To keep your copy of synthACS up to date, you may use the R command update.packages().
Before using synthACS, users must setup access to ACS data via the Census API. Data is
accessed via the acs package (Glenn 2019), on which synthACS depends. Specifically, users
need to request a Census Developer Key at http://api.census.gov/data/key_signup.html
and install it via acs::api.key.install. This installation is saved in the system and thus
only required once.

R> acs::api.key.install(key = "...<redacted>...")

3.1. The ‘macroACS’ class

To use synthACS, researchers first define the geography to work with, via acs::geo.make.
Researchers next pull data on this geography. For pulling data, synthACS extends acs by
providing wrapper functions to a curated set of US Census base tables which we think may be
of interest to researchers. Table 3 enumerates these wrapper functions; detailed descriptions
for each function can be found via the R help documenation. Researchers, who are interested
in alternative tables, can still use the acs::acs.fetch function to access them.
The functions in Table 3 share a common syntax, illustrated below. First, we load some
packages which are also imported by synthACS and then load package synthACS. Next, we
define all counties in California as our geography of interest and then we pull rolling five-
year data on bachelor’s degrees awarded with end year 2014. Each function uses endyear to
specify the end year of the data collection period, span to indicate the length in years of data
collection, and geography to specify their geography.

https://www.R-project.org/
https://www.R-project.org/
http://api.census.gov/data/key_signup.html
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synthACS function Data attributes available
pull_bachelors Degrees awarded by major.
pull_edu Educational enrollment and attainment.
pull_geo_mobility Cross sectional data on geographic mobility.
pull_household Housing stock, occupancy, and rental rates.
pull_inc_earnings Income, hours worked, measures of income distribution.
pull_mar_status Cross sectional data on marital status.
pull_population Cross sectional data on population.
pull_pov_inc Income and poverty metrics.
pull_transit_work Method and length of transit and type of work.

Table 3: Summary of functions in synthACS accessing ACS base tables.

R> library("data.table")
R> library("acs")
R> library("retry")
R> library("synthACS")
R> ca_geo <- geo.make(state = "CA", county = "*")
R> ca_bachelors <- pull_bachelors(endyear = 2014, span = 5,
+ geography = ca_geo)

All of the functions noted in Table 3 return an S3 object of class ‘macroACS’, which has
a very similar structure to the S4 class ‘acs’ from the acs package. The elements endyear,
span, and geography are the same as the corresponding elements from ‘acs’ objects, while the
estimates and standard_error elements are lists of data.frames instead of matrix objects
as in ‘acs’ objects. There is an additional element as well, geo_title, which gives summary
information on the geography set. The ‘macroACS’ class also provides several methods, which
are discussed below.

R> methods(class = "macroACS")

[1] fetch_data gen_attr_vectors get_dataset_names get_endyear
[5] get_geography get_span split
see '?methods' for accessing help and source code

split and gen_attr_vectors will be described in Section 3.2. The other methods are de-
scribed here:

• The methods get_span, get_endyear, and get_geography return information on the
data collection span, data collection end year, and the geography of the ‘macroACS’
object.

• get_dataset_names is used to return the names of the datasets which can be supplied
to fetch_data.

• fetch_data returns macro data from either the estimates or standard_error elements
of the ‘macroACS’ object for a subset of the object’s geographies.
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An example of these methods is provided. Assume users want to know the median age by sex
for Los Angeles and San Diego Counties. Or, alternatively, they may be interested in standard
errors for median age by sex for all counties. To do so, users first use the pull_population
function to pull the appropriate ACS data and then fetch_data on the resulting ‘macroACS’
object.

R> ca_county_pop <- pull_population(2014, 5, geography = ca_geo)
R> get_span(ca_county_pop)

[1] 5

R> get_endyear(ca_county_pop)

[1] 2014

R> get_geography(ca_county_pop)

[[1]]
"geo" object: [1] "All counties, California"

R> get_dataset_names(ca_county_pop)

[1] "sex_by_age" "median_age_by_sex" "pop_by_race"
[4] "place_birth_by_lang_at_home" "place_birth_by_mar_status"
[6] "place_birth_by_edu_attain" "place_birth_by_income"
[8] "median_income_by_place_birth" "place_birth_by_pov_status"

fetch_data takes four arguments. The first, acs, supplies the ‘macroACS’ class object. The
second, geography, takes a character vector and uses regular expression pattern matching
to return the requested subset of geographies. The special character "*" may be used to
indicate the full set of geographies. The third argument, dataset, indicates that either the
ACS data estimates or the estimates’ associated standard errors should be returned. And the
final argument, choice, specifies the dataset of interest.

R> fetch_data(ca_county_pop, geography = c("Los Ang", "San Diego"),
+ dataset = "estimate", choice = "median_age_by_sex")
R> fetch_data(ca_county_pop, geography = "*", dataset = "st.err",
+ choice = "median_age_by_sex")

total male female
Los Angeles County, California 35.3 34.1 36.5
San Diego County, California 34.9 33.5 36.4
## standard errors

total male female
Alameda County, California 0.06079027 0.06079027 0.06079027
Alpine County, California 3.64741641 2.06686930 2.55319149



Journal of Statistical Software 11

Amador County, California 0.24316109 0.24316109 0.36474164
... output truncated ...
Ventura County, California 0.12158055 0.06079027 0.12158055
Yolo County, California 0.12158055 0.12158055 0.18237082
Yuba County, California 0.12158055 0.24316109 0.18237082

3.2. Generating synthetic micro data

In addition to the functions listed in Table 3, there is one special function for pulling data.
pull_synth_data is used to pull the default data used for synthetic data generation, as
outlined in Table 2, and marks our entry into SMSM.

R> ca_dat_SMSM <- pull_synth_data(2014, 5, ca_geo)

pull_synth_data returns data from the macro constraining tables that will be used to both
derive the sample of synthetic micro data and to constrain the simulated annealing algorithm
(Section 2.2).
Deriving the sample synthetic micro data is a very memory intensive process. For the Cal-
ifornia county data illustrated here, the 20th percentile county’s synthetic sample contains
2.9 million rows and takes roughly 140 MB of memory. It is therefore best to use synthACS
on a high performance computing cluster (e.g., AWS). If such a machine is not available, the
‘macroACS’ class offers the split method.
split allows users to split the task of SMSM into sets of tasks which your machine’s memory
can handle. Recombining the output will be discussed in Section 3.4. split has straight-
forward syntax. The below command splits ca_dat_SMSM, which contains fifty-eight counties
into ten subsets, eight containing six counties and two containing five counties. An extended
example is provided in vignette("split_combine", package = "synthACS").

R> split_ca_dat <- split(ca_dat_SMSM, n_splits = 10)

We now return to the main topic of conducting the SMSM. The next step in this process is to
derive the sample synthetic micro datasets. This is accomplished via derive_synth_datasets,
which operates in parallel by default, and returns an object with the S3 class ‘synthACS’.

R> library("parallel")
R> ca_synthetic <- derive_synth_datasets(ca_dat_SMSM, leave_cores = 0)

The argument leave_cores allows users to optionally leave one or more of the cores on their
multicore machine available for other tasks.

Flexible tools for new data attributes

synthACS provides ten default attributes for each individual as described in Table 2. These
attributes should be sufficient for most research questions; and, if so, users can proceed
immediately to fitting the data to the macro constraining tables via simulated annealing
(see Section 3.3). But many users’ research questions will not be properly served by the
defaults. synthACS provides flexible tools for both adding new data attributes to the default
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elements and for removing unneeded attributes. For example, users might wish to use an
alternative income metric such as data from the Current Population Survey (CPS), found at
http://www.census.gov/programs-surveys/cps/data-detail.html. Or they may not be
interested in the race, pov_status, or other default attributes.
Marginalizing attributes is straightforward and accomplished by marginalize_attr. Users
simply provide the object with which they wish to work, the attribute list to marginalize, and
whether they wish to keep the specified attributes or to remove them.

R> ca_marg <- marginalize_attr(ca_synthetic, varlist = c("race",
+ "ind_income", "nativity", "geog_mobility"), marginalize_out = TRUE)

Here, we remove the attributes race, ind_income, nativity, and geog_mobility from the
synthetic datasets, where marginalize_out indicates that we wish to remove the listed at-
tributes instead of keeping them. By default, marginalize_out is FALSE.
Adding attributes is more difficult. To add attributes, users must first get the data on the
new attribute(s) they wish to add and also specify the conditional model with which the
new attribute should be added. There are four different conditional models which may be
considered for each new attribute. The models have increasing complexity, moving from
attribute independence to the general case of complete joint dependence.

1. Independence: Each of the attributes is independent of the others. That is, the new
attribute is unconditional on prior attributes.

2. Pairwise conditional independence: Attributes are related to only one other attribute
and independent of all others.

3. Conditional independence: Attributes are dependent on some subset of other attributes
and independent of the rest.

4. General case: In the most general case, all attributes are jointly interrelated.

All four conditional models are supported by synthACS, via synthetic_new_attribute for
a single small area and all_geog_synthetic_new_attribute for a set of small areas.
To illustrate, we utilize mode of transit to work data from the ACS assuming a conditional
independence model. Mode of transit to work is dependent on both employment status and
age and independent of all other attributes.

R> ca_transit <- pull_transit_work(2014, 5, ca_geo)
R> get_dataset_names(ca_transit)

[1] "time_to_work_by_sex" "mode_transit_by_age"
[3] "median_earnings_by_mode_transit" "median_age_by_mode_transit"
[5] "mode_transit_by_occ" "place_of_work_metroSA"
[7] "place_of_work_microSA"

R> mode_levels <- c("no_work", "drove_alone", "carpool", "transit",
+ "walk", "other", "work_at_home")
R> transit_work <- gen_attr_vectors(ca_transit,
+ choice = "mode_transit_by_age")

http://www.census.gov/programs-surveys/cps/data-detail.html
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mode_levels, specified above, represents the possible values of the new attribute. The ACS
records that individuals either do not work, or get to work via driving alone, carpooling, taking
public transit, walking, other methods, or work at home. transit_work, also specified above,
is ACS data on the counts of individuals in each county where counts are tabulated by age and
method of transport to work. An example of the raw data is provided below.3 transit_work
will be used to reweight the existing synthetic records when deriving the new attribute.

R> round(transit_work[[1]], 0)

cnt_all drove_alone_all drove_alone_16_19 drove_alone_20_24
701525 451989 7094 33272

drove_alone_25_44 drove_alone_45_54 drove_alone_55_59 drove_alone_60_64
207478 110652 43689 30728

drove_alone_65up carpool_all carpool_16_19 carpool_20_24 carpool_25_44
19076 71593 2068 5885 37891

carpool_45_54 carpool_55_59 carpool_60_64 carpool_65up transit_all
15011 5270 3481 1987 89723

transit_16_19 transit_20_24 transit_25_44 transit_45_54 transit_55_59
1679 8469 49523 16419 6926

transit_60_64 transit_65up walk_all walk_16_19 walk_20_24 walk_25_44
4338 2369 25802 2046 5301 10552

walk_45_54 walk_55_59 walk_60_64 walk_65up other_all other_16_19
3781 1697 1296 1129 23420 448

other_20_24 other_25_44 other_45_54 other_55_59 other_60_64 other_65up
2365 12405 4362 1789 1227 824

work_home_all work_home_16_19 work_home_20_24 work_home_25_44
38998 605 1644 15725

work_home_45_54 work_home_55_59 work_home_60_64 work_home_65up
9571 4618 3461 3374

Users must manipulate their raw input data, in this case transit_work, to fit the input
requirements of synthACS. Often, this will also require one or more simplifying assumptions
due to inexact data availability (e.g., see Section 2.2).
Readers should immediately notice two things when looking at transit_work: (1) the ages
specified do not exactly match the ages in the synthetic micro data; and (2) employment
status is not explicitly stated. For the first issue, users have to make intelligent choices to
map differences in age groupings; for the second, note that transit to work implicitly assumes
that the individual is employed.4 For the second issue, the data must be augmented to account
for individuals not employed; and, for the first, we assume the following:

1. Ages 15–17 can be best represented by the age 16–19 transit to work data.

2. Ages 18–24 can be best represented by the age 20–24 transit to work data.
3Calculated percentages have been removed from the displayed output to simplify presentation and ease

comprehension.
4This can also be seen in the counts. The transit vector counts 701,525 individuals; but there are 1,559,308

individuals in the county population.
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3. A loss of data granularity for the transit attribute is unavoidable. Ages 25–85+ in
the existing synthetic data, which are in 5-year age buckets, will be mapped to their
associated bucket in the transit to work data: 24–44, 45–54, 60–64, 65+.

We now manipulate transit_work, via an anonymous function passed to lapply, so that it
is an acceptable input to all_geog_synthetic_new_attribute.

R> transit_work <- lapply(transit_work, function(x, lev) {
+ unemp <- data.frame(emp_status = "unemployed", age = NA, pct = 1,
+ level = "no_work")
+ NI_LF <- data.frame(emp_status = "not_in_labor_force", age = NA,
+ pct = 1, level = "no_work")
+
+ x <- x[!grepl(paste(c("_all", "pct_"), collapse = "|"), names(x))]
+ emp_status <- rep("employed", length = length(x))
+ age <- substr(names(x), nchar(names(x)) - 4, nchar(names(x)))
+ age <- ifelse(substr(age, 1, 1) == "_", substr(age, 2, nchar(age)),
+ age)
+ age <- ifelse(age == "16_19", "15_17",
+ ifelse(age == "20_24", "18_24", age))
+
+ levels <- substr(names(x), 1, nchar(names(x)) - 5)
+ levels <- ifelse(substr(levels, nchar(levels), nchar(levels)) == "_",
+ substr(levels, 1, nchar(levels) - 1), levels)
+
+ employed <- data.frame(emp_status = emp_status, age = age, pct = x,
+ level = levels)
+ rownames(employed) <- NULL
+ employed <- split(employed, employed$age)
+ employed <- list(employed[["15_17"]], employed[["18_24"]],
+ replicate(n = 4, employed[["25_44"]], simplify = FALSE),
+ replicate(n = 2, employed[["45_54"]], simplify = FALSE),
+ employed[["55_59"]], employed[["60_64"]],
+ replicate(n = 5, employed[["65up"]], simplify = FALSE))
+
+ employed[[3]][[1]]$age <- "25_29"
+ employed[[3]][[2]]$age <- "30_34"
+ employed[[3]][[3]]$age <- "35_39"
+ employed[[3]][[4]]$age <- "40_44"
+ employed[[4]][[1]]$age <- "45_49"
+ employed[[4]][[2]]$age <- "50_54"
+ employed[[7]][[1]]$age <- "65_69"
+ employed[[7]][[2]]$age <- "70_74"
+ employed[[7]][[3]]$age <- "75_79"
+ employed[[7]][[4]]$age <- "80_84"
+ employed[[7]][[5]]$age <- "85up"
+ employed[[3]] <- do.call("rbind", employed[[3]])
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+ employed[[4]] <- do.call("rbind", employed[[4]])
+ employed[[7]] <- do.call("rbind", employed[[7]])
+
+ return(rbindlist(list(unemp, NI_LF, rbindlist(employed))))
+ }, lev = mode_levels)

The resulting output is a symbol table, where the key in the symbol table’s key-value pair
is the set of conditioning variables and their values; and the value is the new attribute’s
conditional counts and the associated new attribute value. To satisfy the general case of joint
attribute dependence, synthACS allows for any number of conditioning variables; however,
data is rarely available for more than a handful. Also note that conditional counts can be
specified as counts or as percentages. Both cases are used here: percentages for emp_status in
c("unemployed", "not_in_labor_force"), while emp_status == "employed" uses counts.
With the raw data properly cleaned, we now proceed to adding the attribute, which is accom-
plished via all_geog_synthetic_new_attribute. Here attr_name is a string specifying the
name of the new attribute, conditional_vars is a character vector specifying the variables
we wish to condition the new attribute upon, and st_list is the list of symbol tables created
above.

R> ca_and_transit <- all_geog_synthetic_new_attribute(ca_marg,
+ attr_name = "transit_work", conditional_vars = c("emp_status", "age"),
+ st_list = transit_work)

We now return to the unmodified synthetic micro data to continue our discussion of SMSM.

3.3. SMSM via simulated annealing

There are three steps to conducting SMSM on the now generated synthetic micro data in
synthACS. Firstly, the researcher must decide which data attributes to optimize against; a
choice which should be driven by the research question. In certain cases, for instance, having
an accurate representation of age, gender, and marital status may be critically important; in
others, gender may be unimportant but income and educational status may be critical. After
determining which attributes to optimize against, the researcher then builds constraints from
the macro tables and maps them between the micro and macro data. Finally, the researcher
conducts simulated annealing. These steps are illustrated below.
We optimize against age, gender, mar_status, race, and edu_attain for our example. We
now build constraints and map them to the data. For the ten default data attributes provided
in pull_synth_data, synthACS provides user friendly methods for building constraints and
for mapping constraints between the micro and macro dataset.

R> methods(class = "synthACS")

[1] all_geog_constraint_age all_geog_constraint_edu
[3] all_geog_constraint_employment all_geog_constraint_gender
[5] all_geog_constraint_geog_mob all_geog_constraint_income
[7] all_geog_constraint_marital_status all_geog_constraint_nativity
[9] all_geog_constraint_poverty all_geog_constraint_race
[11] marginalize_attr

see '?methods' for accessing help and source code



16 synthACS: Spatial Microsimulation Modeling

Each of the constraint methods has the same syntax. The first argument takes an object of
class ‘synthACS’ and the second indicates if we wish to build the constraints from the sample
synthetic data or from the macro constraining tables. There is very little difference in results;
but the differences that do exist are the results of the assumptions outlined in Section 2.2
describing differences in the populations on which the ACS base tables are defined.

R> a <- all_geog_constraint_age(ca_synthetic, method = "macro.table")
R> g <- all_geog_constraint_gender(ca_synthetic, method = "macro.table")
R> m <- all_geog_constraint_marital_status(ca_synthetic,
+ method = "macro.table")
R> r <- all_geog_constraint_race(ca_synthetic, method = "synthetic")
R> e <- all_geog_constraint_edu(ca_synthetic, method = "synthetic")

These constraints are then mapped to the data via all_geogs_add_constraint.

R> cll <- all_geogs_add_constraint(attr_name = "age",
+ attr_total_list = a, macro_micro = ca_synthetic)
R> cll <- all_geogs_add_constraint(attr_name = "gender",
+ attr_total_list = g, macro_micro = ca_synthetic,
+ constraint_list_list = cll)
R> cll <- all_geogs_add_constraint(attr_name = "marital_status",
+ attr_total_list = m, macro_micro = ca_synthetic,
+ constraint_list_list = cll)
R> cll <- all_geogs_add_constraint(attr_name = "race",
+ attr_total_list = r, macro_micro = ca_synthetic,
+ constraint_list_list = cll)
R> cll <- all_geogs_add_constraint(attr_name = "edu_attain",
+ attr_total_list = e, macro_micro = ca_synthetic,
+ constraint_list_list = cll)

Here, attr_name provides the attribute name in the micro data, attr_total_list provides
the previously generated constraints, macro_micro provides the dataset on which we will
conduct SMSM, and constraint_list_list is used to indicate that we are updating an
existing constraint set.
We are finally ready for simulated annealing, performed via all_geog_optimize_microdata.

R> opt_ca <- all_geog_optimize_microdata(ca_synthetic, seed = 6550L,
+ constraint_list_list = cll, p_accept = 0.4, max_iter = 10000L,
+ verbose = TRUE)

Beginning parallel optimization...
... Optimization complete

The most important arguments are to specify the dataset and constraint_list_list. Sev-
eral defaults are also illustrated above. Firstly, we choose a specific seed for reproducibility
and a maximum number of allowable iterations (max_iter). An initial probability of ac-
ceptance (p_accept) for uphill moves is also specified. This acceptance probability will be
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(a) Santa Clara County, CA. (b) Yuba County, CA.

Figure 1: Plots of TAE paths from simulated annealing.

controlled throughout the annealing process through the cooling schedule (Equation 1). Fi-
nally, the verbose option is specified for intermediate outputs.

3.4. Examining the SMSM output

all_geog_optimize_microdata returns an ‘smsm_set’ class object. The optimized micro
populations for each small area and their associated final TAE are in the named best_fit
and tae elements of an ‘smsm_set’ object respectively. They can be accessed individually via
get_best_fit and get_final_tae. In a similar manner to get_data in Section 3.1, these
methods work by specifying a character string that identifies a geography by name.

R> LA_fit <- get_best_fit(opt_ca, geography = "Los Ang")
R> LA_tae <- get_final_tae(opt_ca, geography = "Los Ang")

It is also possible to visually examine the path of TAE during the simulated annealing algo-
rithm for each geography. This is done via plot_TAEpath, which again uses string matching
on geography names.

R> plot_TAEpath(opt_ca, geography = "Santa Cl")
R> plot_TAEpath(opt_ca, geography = "Yuba")

plot_TAEpath uses solid black circles to represent the current best solution and empty red
circles to represent candidate solutions. Here we see that the simulated annealing procedure
for Santa Clara County, CA converged in a relatively quick 237 iterations. We also see several
uphill moves during the first 90 iterations of simulated annealing followed by a consistently
downward trajectory in TAE after that. For Yuba County, CA, we see a rapid descent in
TAE over the first few hundred iterations followed by relative constant values in TAE being
interrupted by the occasional better candidate solution.
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Users may also be interested in assessing the fit of all small area geographies simultaneously.
The summary method is available for this purpose. In this case we see that 65.5% of the
California counties reached an acceptable TAE before the maximum allowable iterations were
reached and that the median percentage TAE was 0.000496.

R> summary(opt_ca)

Call:
all_geog_optimize_microdata(macro_micro = ca_syn, prob_name = "p",

constraint_list_list = cll, p_accept = 0.4, max_iter = 10000L,
seed = 6550L)

Seed: 6550
n-Constraints: 5

Maximum Iterations: 10000
%-Early Stop: 0.6552

Mean %-TAE: 0.001063
Median %-TAE: 0.000496
Max %-TAE: 0.008319
%-TAE quantiles:

0% 25% 50% 75% 90% 95%
0.000425 0.000487 0.000496 0.000804 0.002329 0.002911

Lastly, recall that in Section 3.2 we noted that synthetic data creation in synthACS is very
memory intensive. We proposed the split method to work with objects of manageable size.
To recombine objects which were split, users should use combine_smsm. This function inputs
a list of ‘smsm_set’ objects and outputs a single combined ‘smsm_set’ object.

4. Case study
We now present a case study related to population dynamics to illustrate how synthACS and
the microsimulation modeling framework can be used in practice. We look at both fertil-
ity and mortality in Los Angeles County, California, and examine the spatial distribution of
both demographic events. Examining fertility and mortality within a spatial framework en-
ables policy makers and community health officials to assess whether existing health facilities
are sufficient to support the community, whether a geographic region provides equal access
to health facilities, and to examine the future need for healthcare facilities based on likely
population changes over time.
Fertility and mortality also form the basis of population projection, which distills to the basic
demographic identity that the population at the next time point is equal to the population
at the current time point plus births and immigrants and minus deaths and emigrants as in
Equation 2.

Pt+1 = Pt + Bt − Dt + Mt (2)
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Here, P is the population, B is the aggregate births, D is the aggregate deaths, and M is
net migration. The provided case study can thus also be considered a population projection
method holding net migration equal to zero.
The standard framework for population projection involves the so-called cohort component
method. The basic idea of the cohort component method is that populations change because
individuals experience demographic events (e.g., births, deaths, and migration) and that
these events can be generalized by age, gender, and event type. For each group, or cohort,
the impact on population for a given event is determined by the size of the cohort and the
incidence rate among that cohort.
In the macro deterministic approach, the change in population is calculated by multiplying
the incidence rate for each cohort and event by the cohort size and then summing across both
event type and cohort. In the SMSM framework, the deterministic approach is replaced by a
random experiment for each individual using the Monte Carlo method. While SMSM methods
do exist for population projection (Van Imhoff and Post 1998), most population projections
are currently done deterministically using the cohort component method (e.g., Raftery, Li,
Ševčíková, and Heilig 2012; Department of Economic and Social Affairs: Population Division
2013; Colby and Ortman 2014).

4.1. Fertility and mortality in Los Angeles County
The data examined in this case study is of Los Angeles County, California at the census tract
level. We use five-year data with end year 2014. As historic data, the data does not account
for population changes that have occurred between the time of data collection and present
day. For instance, the California State Demographic Research Unit estimates that population
has grown from 9,889,520 in 2012, the median year of data collection, to 10,136,559 in 2015
(an annual growth rate of 0.8%).5 The total population from the five-year ACS data used in
this simulation is 9,997,939.
Data on fertility and mortality rates comes from the National Vital Statistics System (Hamil-
ton, Martin, Osterman, Curtin, and Mathews 2015; Xu, Murphy, and Kochanek 2015). For
fertility, data on female birth rate by age, race and Hispanic origin, and marital status are
used. Additionally, we include an adjustment for multiple births (e.g., twins and triplets) and
birth rates are adjusted for the difference between the state of California and the US as a
whole. Mortality data used includes death rate by gender, age, and race and Hispanic origin.
These datasets have been made available in the synthACS package.
To prepare the data for population projection, we conduct SMSM for all census tracts in Los
Angeles County, California as outlined in Section 3. The following attributes were used to con-
strain the simulated annealing algorithm: age, race, gender, mar_status, and edu_attain.
The resulting misclassification rate across the 2,319 census tracts in Los Angeles County
was 2.19 individuals per 1,000 at the 25th percentile, 2.51 individuals per 1,000 at the 50th
percentile, and 3.40 individuals per 1,000 at the 90th percentile.
One thousand simulations were run for both fertility and mortality in each census tract.
Summary data for both demographic events are provided in Table 4. The fertility data is
broken out by major racial groups and the mortality data is broken out by major age brackets.
We note that the choice of racial and age groups is arbitrary, reporting can be done by any

5Table po04 courtesy of Los Angeles Almanac (http://www.laalmanac.com/population/po04.htm; ac-
cessed 2016-07-12).

http://www.laalmanac.com/population/po04.htm
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Fertility 10th percentile 50th percentile 90th percentile
All 114,493 134,579 155,743
Asian 10,970 16,508 23,161
Black or African American 6,635 10,344 15,318
Hispanic or Latino 56,038 69,207 83,461
White (non-Hispanic) 24,194 32,311 41,638
Mortality 10th percentile 50th percentile 90th percentile
All 46,033 59,560 74,256
0–1 0 49 2,314
1–4 0 0 74
5–9 0 0 2
10–14 0 0 7
15–17 0 0 425
18–24 9 79 2,389
25–29 0 48 2,176
30–34 0 56 2,275
35–39 0 81 2,484
40–44 0 400 3,160
45–59 9 1,202 4,349
50–54 133 2,264 5,853
55–59 409 3,066 7,107
60–64 728 3,808 8,130
65–69 930 4,114 8,531
70–74 1,310 4,600 9,227
75–79 2,109 5,815 10,760
80–84 3,490 7,670 13,054
85+ 12,146 18,693 21,190

Table 4: Summary of expected fertility and mortality in Los Angeles County, California. Sums
of the cross sections will not sum to the totals as quantiles are calculated independently. Some
racial groups are omitted.

cross sectional attribute the researcher desires. It is clear from examining Table 4 that most
census tracts will have either no deaths or one death in many age groups. This leads to
asymmetric distributions about the median for these age groups.
Simulation accuracy can also be assessed. Los Angeles County, California had 131,697 births
in 2012 and 128,523 in 2013 vs. the median birth simulation of 134,579. This discrepancy
can be almost completely explained by the difference in fertility rate between Los Angeles
County and California, which is not controlled for in the simulation. Los Angeles County
had a fertility rate of 60.6 and 59.3 in 2012 and 2013 respectively (California Department of
Public Health 2013) versus 62.4 for California as a whole in 2014 – the fertility rate used in
the simulations. Similarly, there were 57,988 deaths in Los Angeles County in 2011 and 58,498
in 2012 (Office of Health Assessment and Epidemiology 2015) versus the median simulation
of 59,560. Differences in the mortality data may be due to differences in the 2014 end year
population from the census or from differences in death rates in Los Angeles County relative
to the United States of America.



Journal of Statistical Software 21

Figure 2: The 50th percentile simulation of births in Los Angeles County, CA.

Figure 3: The 90th percentile simulation of births in Los Angeles County, CA.
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Figure 4: The 50th percentile simulation of births in Los Angeles County, CA with overlay
of hospital locations (NAICS: 622110).

Figure 5: The 90th percentile simulation of births in Los Angeles County, CA with overlay
of hospital locations (NAICS: 622110).
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Figure 6: The 50th percentile simulation of deaths in Los Angeles County, CA.

Figure 7: The 90th percentile simulation of deaths in Los Angeles County, CA.
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Figure 8: The 50th percentile simulation of deaths in Los Angeles County, CA with overlay
of hospital locations (NAICS: 622110).

Figure 9: The 90th percentile simulation of deaths in Los Angeles County, CA with overlay
of hospital locations (NAICS: 622110).
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Figure 10: The 50th percentile simulation of births to Hispanic mothers in Los Angeles
County, CA.

Figure 11: The 50th percentile simulation of deaths of individuals aged 65 or older in Los
Angeles County, CA.
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In addition to examining simulation accuracy, different quantiles of the simulations can be
contextualized spatially. This is illustrated in the Figures 2–11.6 These figures show that
both fertility and mortality in Los Angeles County, California is concentrated in the Southern
half of the county. This is not surprising since the Northern half of Los Angeles County is
predominantly composed of Angeles National Forest, Los Padres National Forest, and the
Western edge of the Mojave Desert. However, this region also includes the cities of Lancaster
and Palmdale, which have a combined population of roughly 320,000 individuals (US Census
Bureau 2015), as well as several smaller towns.
Looking at Figures 8 and 9 in particular, it appears that the Northern region of Los Angeles
County may be underserved with health facilities. Specifically, we observe an elevated number
of deaths relative to the number of hospitals, where hospitals are businesses with NAICS code
622110. In addition, when looking at Figure 10, we observe that the area of East Los Angeles
County has a high rate of births to Hispanic mothers, corresponding to the large Hispanic
population there. However, as can be seen in Figure 4, there appears to be a relative dearth
of hospitals in this area.
While policy suggestions are beyond the scope of this paper, we note that, based on this
limited case study, health officials in Los Angeles County may wish to examine the equality
of access to health facilities in the Northern half of Los Angeles County as well as in East Los
Angeles County. We acknowledge that more substantial study would be needed to validate
these observations.

4.2. Discussion of SMSM for population projection
One critique of the macro-based deterministic approach to population projection is that it
does not provide any estimate of uncertainty. The standard approach is to use a total fertility
rate that is one-half child lower for a ‘low’ projection and one-half child higher for a ‘high’ pro-
jection. These alternative scenarios have no probabilistic interpretation. Raftery et al. (2012)
and Ševčíková, Li, Kantorová, Gerland, and Raftery (2016) describe an alternative method
for communicating uncertainty in population projection by probabilistically projecting the
period total fertility rates (TFR) and life expectancies for all countries using Bayesian hierar-
chical models. Azose, Ševčíková, and Raftery (2016) improve these methods to also take into
account uncertainty of migration patterns. Their methods enable probabilistic projections
with cohorts defined by age and sex.
In contrast to the standard macro-based approach, SMSM for population projection provides
a natural estimate of uncertainty because SMSM is based on Monte Carlo simulation. An-
alysts can run multiple simulations and provide uncertainty estimates via quantiles of the
bootstrapped simulations. Of course, an obvious drawback of SMSM is that running a simu-
lation for every individual requires substantially more computation and memory.
Another critique of the standard cohort-component model is that cohorts are defined solely
by age and gender. This leaves out a richness of attributes, such as education levels and
race, which may be of interest to researchers. Another potential benefit of using SMSM for
population projection is therefore the possibility to model these extra individual attributes.
We expect that population projection methods with estimates that ‘carry along’ these addi-
tional individual attributes would be very useful to researchers. This is especially true in the
case where researchers wish to examine the behavior of future populations where individuals

6Catalina Island has been excluded from the figures.
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express differential actions and preferences based on these attributes; for example, differential
preferences in housing markets due to education level, income, nativity status, and race. Fur-
ther research should be directed towards estimating the change in levels of these attributes
among population subgroups within an SMSM framework.

5. Conclusion
In this paper, we introduced synthACS, an R package which provides a general toolkit for
conducting SMSM with any user-specified US geography. synthACS conducts SMSM by first
creating synthetic micro data and then using simulated annealing with unequal probability
sampling for optimization. The choice to use synthetic data is guided by the availability of
high quality ACS data, while simulated annealing is chosen for accurate optimization.
synthACS provides intelligent default attributes for synthetic individuals. But, recognizing
that researchers will have diverse data needs, synthACS is also data-extensible. It provides
tools for both adding new synthetic attributes and marginalizing undesired default attributes.
synthACS also provides wrappers to the acs package enabling users to quickly access a curated
selection of ACS data without requiring detailed knowledge of the ACS data structure.
This paper also provided a motivating example for synthACS, which examined the use of
SMSM for population projection and to assess the geographic equality of healthcare access.
Specifically, we showed that SMSM can simulate births and deaths in Los Angeles County,
California with a very high degree of accuracy. We also note that SMSM, unlike the stan-
dard deterministic cohort-component method, naturally provides a measure of uncertainty
in demographic events. We suggest that further research on the use of SMSM for popula-
tion projection should explore Monte Carlo methods for estimating and projecting individual
attributes beyond just age and gender. These more comprehensive population projection
methods would be very useful to researchers aiming to estimate future outcomes of individu-
als who exhibit differential preferences based on common attributes such as education level,
income, and race.
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