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1 Defining Accumulators

MFSS supports two types of accumulators: sum and averages. For details on how these are set up, see “A
Practitioner’s Guide and Matlab Toolbox for Mixed Frequency State Space Models”.

This section describes how to implement these accumulators with a model. To do so, set up the model (likely
a StateSpaceEstimation or MFVAR object, but possibly a StateSpace object if all parameters are known)
as if the data were observed at the base frequency, define an Accumulator object, and use the accumulator
to augment the model to respect the mixed-frequency nature of the observe data.

An accumulator has 3 defining properties:

1. The index of the observation in yt that is observed at a lower frequency than the state (an integer)

2. The calendar of when observations occur (a vector with an integer for each period)

3. The horizon over which observed values have been determined (a vector with an integer for each period)

The manner in which these properties are set depends on the nature of the mixed-frequency data.

1.1 Regular Accumulators

Most mixed-frequency models are built around data observed at regular intervals. For example, in a monthly
model where quarterly data is observed, every quarterly observation occurs every 3rd month.

For regular accumulators, the only things that needs to be specified are the type of accumulator (sum or
average) and the horizon over which the data are determined. For a panel of four series where the first is a
sum over 3 periods, the second is a simple average, the third is a triangle average of 3 periods, and the last
is observed at the base frequency, the Accumulator would be defined as:

accum = Accumulator.GenerateRegular(y, {’sum’, ’avg’, ’avg’, ’’}, [3 1 3 0]);
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1.2 Custom Accumulators

Accumulators where the observation period changes throughout the sample are called “custom” accumu-
lators. Most commonly, these cases arise due to either the nature of the data - for example, monthly
observations from a weekly model occur every 4th or 5th week, depending on the month. It’s also possible
to handle data that changes frequency mid-sample - for example, data that was collected quarterly at one
point but is now reported monthly.

Both sum and average accumulators treatment of index are similar but calendar and horizon are different.

For sum accumulators, the calendar ought to be either 0 or 1. In the first high-frequency period of a low-
frequency period (i.e., the first month of a quarter), the calendar ought to be 0, otherwise it should be 1.
The horizon of a sum accumulator is not used - it is ignored by Accumulator.

For average accumulators, the calendar runs from 1 to the number of high-frequency periods within the low-
frequency period before restarting at 1 (i.e., cycling through {1, 2, 3, 1, 2, 3, . . . } for a quarterly observation
from a monthly model). The horizon of the average accumulator should be a vector of ones unless the data
are a “long-difference.” For such series (i.e., observed quarterly log-differences from a monthly model), the
horizon is set equal to the number of base-frequency periods occurring between differences of the data. For
example, in a monthly model with observed Q4/Q4 data, the calendar would cycle as earlier and the horizon
would be specified as 12 for each period.

To create a custom accumulator, use the Accumulator constructor. For a sample with T periods, we can
create an average accumulator for the first series in yt as a quarterly difference with the following 4 lines:

index = 1;

calendar = repmat([1; 2 3], [T/3 1]);

horizon = repmat(3, [T 1]);

accum = Accumulator(index, calendar, horizon);

2 Examples

Each example should be self-contained and able to be run from the examples subfolder. The examples
detailed here come from “A Practitioner’s Guide and Matlab Toolbox for Mixed Frequency State Space
Models” by Scott Brave, Andrew Butters, and David Kelley. Other examples included with MFSS in the
examples folder include

� The local-level model of the Nile data

� An ARMA(2,1) model of GDP

These examples hopefully show how to use the toolbox more fully. For details on how to

2.1 Example 1: Dynamic Factor Model

See examples/pgmtmfss1 dfm.m.

We estimate a mixed-frequency dynamic factor model on a panel of 5 time series:

� The quarterly log-difference of Real Gross Domestic Product

� The monthly log-difference of All Employees: Total Nonfarm Payrolls

� The monthly log-difference of Real personal income excluding current transfer receipts

� The monthly log-difference of Industrial Production Index

� The monthly log-difference of Real Manufacturing and Trade Industries Sales

The monthly series are normalized have a mean of zero and a standard deviation of one. Data retreived from
FRED as of August 2, 2018. Identification requires a sign and scale normalization which is accomplished
through setting the loading on GDP (in the Z matrix) to 1.
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2.2 Example 2: Vector Autoregression

See examples/pgmtmfss2 var.m.

We run 3 VAR models, each containing 4 series. In the quarterly and mixed-frequency VARs, these are

� The log-level of Real Gross Domestic Product

� The log-level of Consumer Price Index for All Urban Consumers: All Items

� The log-level of Producer Price Index for All Commodities

� The level of the effective federal funds rate.

For a monthly VAR, GDP is replaced by the log-level of All Employees: Total Nonfarm Payrolls. Data
retrieved from FRED as of October 10, 2018.

2.3 Example 3: Trend-Cycle Decomposition

See examples/pgmtmfss3 trend cycle.m.

We estimate a trend-cycle decomposition on the log-level of GDP. The stochastic trend-cycle decomposition
model is as follows:

yt = µt + ψt

µt = µt−1 + φt−1

φt = φt−1 + ξt[
ψt
ψ∗t

]
= ρ

[
cosλ sinλ
− sinλ cosλ

] [
ψt−1
ψ∗t−1

]
+

[
κt
κ∗t

]
,

where ξt is normally distributed and κt and κ∗t are independently normally distributed with a common
variance. The structural parameters ρ and λ are restricted so that the cyclical component remains stationary
with an expected period between 1.5 and 12 years. Casting the system into state space form, we have

yt =
[
1 0 1 0

]
αt =


1 1 0 0
0 1 0 0
0 0 ρ cosλ ρ sinλ
0 0 −ρ sinλ ρ cosλ

αt−1 +


0
ξt
κt
κ∗t

 .

2.4 Example 4: Natural Rate of Interest

See examples/pgmtmfss4 r star.m.

The data used in this model are

� The log-level of Real Gross Domestic Product (GDPt)

� The percent change in the PCE Price Index (πt), its lag (πt−1), the 2nd lag of its 3-month average
(πt−2,4), and the 5th lag of its 4-month average (πt−5,8)

� Import price inflation (πI,t)

� Energy import price inflation (πO,t)

� The level of the effective federal funds rate less 1-year expected inflation derived from rolling autore-
gressive forecasts (rt)
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The model is comprised of several parts:

� Trend GDP (y∗t ) growing according to a smooth trend growth rate (gt)

� A trend real interest rate (r∗t ) that follows trend growth and other determinants of the natural rate of
interest (zt)

� Actual GDP (ỹt) determined by its own lags and the difference of the actual real interest rate from
the natural rate of interest

� Actual inflation, determined by its own lags, adjustments for import and energy inflation, and the
difference of GDP from its trend

In equations:

ỹt = a1ỹt−1 + a2ỹt−2 +
ar
2

2∑
j=1

(
rt−j − r∗t−j

)
+ εyt

πt = b1πt−1 + b2πt−2,4 + (1− b1 − b2)πt−5,8 + by ỹt−1

+ bI(πI,t−1 − πt−1) + bO(πO,t−1 − πt−1) + επt

ỹt = 100× (GDPt − y∗t )

r∗t = 12cgt + zt

zt = zt−1 + εzt

y∗t = y∗t−1 + gt−1 + εy
∗

t

gt = gt−1 + εgt

Defining the data and state as

yt =
[
GDPt πt

]>
xt =

[
πt−1 πt−2,4 πt−5,8 πI,t−1 − πt−1 πO,t−1 − πt−1

]>
wt =

[
rt rt−1

]>
αt =

[
yt yt−1 y∗t y∗t−1 gt gt−1 zt zt−1 r∗t

]>
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the parameters in state space notation (prior to augmentation for mixed-frequency consistency) are

Z =

[
0 0 1 0 0 0 0 0 0
−by 0 by 0 0 0 0 0 0

]
β =

[
0 0 0 0 0
b1 b2 1− b1 − b2 bI bO

]
H =

[
0 0
0 σ2

π

]

T =



1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0

1− a1 −a2 a1 a2 1− 12car/2 −12car/2 −ar/2 −ar/2 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 12c 0 1 0 0



γ =



0 0
0 0

ar/2 ar/2
0 0
0 0
0 0
0 0
0 0
0 0



R =



1 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0
0 λg/3 0 0
0 0 0 0
0 0 0 λz/(3ar)
0 0 0 0
0 0 0 0



Q =


σ2
y 0 0 0

0 σ2
y 0 0

0 0 σ2
π 0

0 0 0 σ2
π


where λg and λz are the ratio of variances set according to the Stock & Watson median-unbiased treatment es-
timated by Laubach & Williams, available at https://www.newyorkfed.org/research/policy/rstar/overview.
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