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Abstract

Spatial seemingly unrelated regression (spatial SUR) models are a useful multiequa-
tional econometric specification to simultaneously incorporate spatial effects and corre-
lated error terms across equations. The purpose of the spsur R package is to supply a
complete set of functions to test for spatial structures in the residual of a SUR model;
to estimate the most popular specifications by applying different methods and test for
linear restrictions on the parameters. The package also facilitates the estimation of so-
called spatial impacts, conveniently adapted to a SUR framework. The package includes
functions to simulate datasets with the features decided by the user, which may be useful
in teaching activities or in more general research projects. The article concludes with
a real data application showing the potential that spsur has to examine the relation of
individual mobility over geographic areas and the incidence of COVID-19 in Spain during
the first lockdown.

Keywords: spatial seemingly unrelated regression models, Lagrange multipliers test, maximum
likelihood, instrumental variables, panel data, COVID-19, mobility, R package.

1. Introduction
Seemingly unrelated regression models (SUR from now on) are a type of multiequational
econometric formulation that gained popularity with the publication of the seminal paper by
Zellner (1962). The SUR framework assures increased efficiency by estimating the system
jointly rather than by processing each equation separately. These gains explain the relevant
position that SUR models occupy in the applied research agenda. However, spatial econo-
metrics is a particular exception: the applied literature in this area is limited, in spite of the
extensive methodological research on spatial SUR models (Anselin 1988a,b; Wang and Kock-
elman 2007; Baltagi and Bresson 2011; Baltagi and Pirotte 2011; Mur, López, and Herrera
2010; Anselin 2016; López, Mínguez, and Mur 2020).
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Anselin (1988a) introduced the term spatial SUR for the first time in reference to a model
made of “an equation for each time period, which is estimated for a cross section of spatial
units” (page 141). Anselin’s approach focuses on the problem of serial dependence in the
errors, where each equation stands for a time period. In this work he did not explore estima-
tion techniques, although the likelihood function, the information matrix, and some spatial
autocorrelation tests were presented. From this seminal reference in Anselin’s book (Anselin
1988a), a relevant number of methodological contributions have been made present, including
developing spatial autocorrelation tests and implementing estimation methods.
With respect to the tests of spatial autocorrelation developed in the residual, several pa-
pers have focused on this topic. For example, Anselin (1988b) develops a test based on the
Lagrange multiplier (LM) principle for spatial error SUR models. Mur et al. (2010) design
robust and non-robust LM tests including an extensive Monte Carlo exercise for small sample
sizes. Baltagi and Bresson (2011) propose joint and conditional LM tests for spatial autocor-
relation and random effects for a spatial SUR panel model, while López, Mur, and Angulo
(2014) address the problem of selecting the best specification for spatial SUR models using a
battery of LM tests.
Several papers have focused on estimation methods. The maximum likelihood (ML) approach
under the normality assumption is the most frequently used method, though other alterna-
tives have been proposed. The paper by Wang and Kockelman (2007) makes a significant
contribution to this literature, implementing a three-step estimation method combining fea-
sible generalized least squares (FGLS) and ML, which allows for heterogeneity among the
individuals by introducing unobserved random effects “à la KKP” (Kapoor, Kelejian, and
Prucha 2007). Baltagi and Bresson (2011) extend the results by Wang and Kockelman (2007)
by developing a collection of misspecification tests under an ML framework, whereas Bal-
tagi and Pirotte (2011) introduce the generalized method of moments (GMM) in a spatial
SUR with spatial autocorrelated errors, also “à la KKP”. Anselin (1988a, page 146) describes
the three-least-squares (3SLS) estimation method based on instrumental variables (IV) for
spatial lag SUR models and Anselin (2016) points out the choice of the instruments. López
et al. (2020) develop an extensive Monte Carlo exercise to compare ML and 3SLS (based
on IV) methods for spatial lag and spatial Durbin SUR models. The method of general-
ized spatial three-stage least squares (GS3SLS), developed by Kelejian and Prucha (2004)
in the more general framework of spatial simultaneous systems, has been used to estimate
spatial SUR Models. The GS3SLS method is based on an iterative process that uses IV and
GMM (Kelejian and Prucha 1999). Finally, Kakamu, Polasek, and Wago (2012) develop a
Bayesian approach for the estimation of spatial SUR models using a Markov chain Monte
Carlo (MCMC) method.
Simultaneously, an important number of empirical papers have implemented these method-
ological developments. Papers by Rey and Montouri (1999), Egger and Pfaffermayr (2004), Le
Gallo and Dall’erba (2006), Lundberg (2006), Fingleton (2007), Moscone, Tosetti, and Knapp
(2007), Le Gallo and Chasco (2008), Lauridsen, Bech, López, and Maté (2010), Kakamu et al.
(2012), Cotteleer and Van Kooten (2012), He, Páez, Liu, and Jiang (2015), Izón, Hand, Mc-
collum, Thacher, and Berrens (2016), López, Martínez-Ortiz, and Cegarra-Navarro (2017),
Franklin and Rey (2016), Tupy, Silva, Amaral, and Cavalcante (2021), and Páez, López,
Menezes, Cavalcanti, and Pitta (2021) are well-known examples in this line.
From the discussion above, it is clear that there is growing interest in Seemingly Unrelated
Regressions in a spatial context, although the lack of specific software has delayed its adoption
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in applied research. Empirical applications are still hindered by the lack of readily available
user-friendly software. Our purpose in this paper is to introduce the R package called spsur
to fill this gap. The spsur R package offers accessible tools for those researchers who need
to incorporate multiequational models into their research when spatial effects and correla-
tion between residuals are present. The spsur user has a powerful tool to test for spatial
autocorrelation in the residuals of a classic SUR model. This package can estimate spatial
SUR models by ML and 3SLS1, and it uses the Wald statistic to test hypotheses about the
stability of parameters, including the parameters of spatial dependence. It can even estimate
a restricted model when the parameters are equal in several equations. Direct, indirect, and
total impacts can be obtained for all the specifications. Finally, it can estimate uniequational
spatial models if it is necessary to compare the estimation of each equation with the result of
the multiequational model.
The structure of this paper is the following. Section 2 introduces the notation and presents
the main methodology developed on spatial SUR models in the literature. Section 3 presents
the structure of the package and some of the main functions included in spsur. It focuses on
the estimation methods, the misspecification tests, and the computation of spatial impacts
(direct, indirect, and total). Section 4 introduces an additional functionality that facilitates
simulation experiments that could be helpful in research and/or teaching activities. Section 5
presents an illustration of the spsur package using real data. Finally, Section 6 concludes
with a brief summary and prospects for the future.

2. Spatial SUR models
The SUR model consists of several equations, possibly with different regressors, where the
error terms are correlated. We focus on Anselin’s case with a single equation, G = 1, several
time periods, Tm, and N individuals in each cross section. Usually, N > Tm. Originally, the
spatial SUR specification assumes that the cross-sectional dimension N is large and that the
time dimension Tm is finite. For most regional studies, this assumption of short panels holds
true. Following the usual notation, we consider that each equation refers to a time period
although the model can be used to estimate different variables in the same cross section.
The baseline model without spatial effects is the following:

yt = Xtβt + ut ; E[ut] = 0 ; E[utu⊤
s ] = σtsIN t, s = 1, . . . , Tm (1)

where yt and ut are N × 1 vectors, Xt is an N × pt matrix, with pt the number of regressors
that appear in the t-th equation, and βt is the corresponding (pt × 1) vector of coefficients.
This model is spatially independent. Therefore, following the terminology in López et al.
(2014), we call it SUR-SIM.
The serial dependence in the errors of (1) is not parameterized but estimated in the Tm×Tm
covariance matrix, Σ = (σts; t, s = 1, . . . , Tm).
When we are dealing with spatial data, a frequent problem is spatial dependence, an unob-
servable feature that can appear in different ways. A general SUR model which includes most

1The GS3SLS estimation method has been added to the package in the most recent CRAN version 1.0.2.5.
We thank an anonymous referee for their suggestion.
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of the possible spatial effects of interest in applied research is the following (Elhorst 2014):

yt = ρtWy
t yt + Xtβt + Wx

t X∗
t θt + ut; ut = λtWu

t ut + εt ;

E[εt] = 0 ; E[εtε
⊤
s ] = σtsIN

(2)

where X∗
t is the matrix of regressors excluding the intercept term; Wy

t , Wx
t , and Wu

t are
N × N weighting matrices. The model in (2) is referred to as a general nesting model (SUR-
GNM, from now on). It is normal to assume that the weighting matrices are the same, Wx

t

= Wu
t = Wε

t = W. Moreover, the user should supply the exogenous W matrix based on a
priori knowledge (other alternatives appear in Harris, Moffit, and Kravtsova 2011; Kelejian
and Piras 2017). This matrix is vital in the specification and must conform to the requisites
described in Kelejian and Prucha (2004). The terms on the main diagonal are zero and the
row and column sums of W are uniformly bounded in absolute value, in the same way as
A−1

t = (IN − ρtW)−1 and B−1
t = (IN − λtW)−1, which must exist. The model of (2) can be

expressed in matrix form:

Ay = Xβ + (IT m ⊗ W)X∗θ + u; Bu = ε; ε ∼ N(0, Ω)

y =


y1
y2
· · ·

yT m


NT m×1

; X =


X1 0 · · · 0
0 X2 · · · 0

· · · · · · · · · · · ·
0 0 · · · XT m


NT m×p

β =


β1
β2
· · ·

βT m


p×1

; θ =


θ1
θ2
· · ·

θT m


(p−T m)×1

; u =


u1
u2
· · ·

uT m


NT m×1

; ε =


ε1
ε2
· · ·

εT m


NT m×1

(3)

where A = INT m − Γ ⊗ W with Γ = diag(ρ1, . . . , ρT m); B = INT m − Λ ⊗ W with Λ =
diag(λ1, . . . , λT m). Ω = Σ ⊗ IN , with Σ = [σij ; i, j = 1, . . . , Tm], ⊗ denotes the Kronecker
product and p = ∑

pt. Moreover, X∗ is an NTm × (p − Tm) that omits the columns of the
intercepts (these terms cannot be spatially lagged).
Several constrained specifications emerge from (3), such as:

1. The SUR-SIM spatially independent model, ρt = λt = 0; θt = 0 (∀t).

2. The SUR-SLX spatial lags in the Xs model, where ρt = λt = 0 (∀t).

3. The SUR-SLM spatial lag model, where λt = 0; θt = 0 (∀t).

4. The SUR-SEM spatial error model, where ρt = 0; θt = 0, (∀t).

5. The SUR-SDM spatial Durbin model, where λt = 0 (∀t).

6. The SUR-SDEM spatial Durbin error model, where ρt = 0 (∀t).

7. The SUR-SARAR spatial lag model with autoregressive errors, where θt = 0 (∀t).
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The spatial SUR model specified in (3) can be easily extended to multi-dimensional panels
with G > 1 (Wang and Kockelman 2007; López et al. 2014), which is omitted here for
simplicity. This multi-dimensional panel model with N > 1, Tm > 1, and G > 1 has been
used in López et al. (2014) to compare model selection strategies in the context of spatial SUR
models, in López et al. (2020) to compare ML and 3SLS (based on IV) methods to estimate
some types of spatial SUR models, and it has been applied by López et al. (2017) to analyze
spatial spillovers in the public expenditures of local governments at a municipal level.

2.1. Testing for spatial effects

The Lagrange multipliers presented below test whether the simple nonspatial model of (1) is
misspecified due to omitted, unobserved spatial factors. All of them are obtained in an ML
framework. The general expression of the multipliers, including a detailed description of the
evaluation process, can be found in Mur et al. (2010). First, we present a global test for the
presence of spatial lags both in the SUR equation and in the errors:

H0 : ρt = λt = 0 (∀t) vs HA : ∃t with ρt ̸= 0 and λt ̸= 0 (4)

The model of the null is the SUR-SIM of (1), whereas the alternative is the SUR-SARAR.
The corresponding Lagrange multiplier is called LMSUR

SARAR. The next multiplier (LMSUR
SLM)

maintains the model of the null, which is the SUR-SIM, but that of the alternative is the
SUR-SLM, so:

H0 : ρt = 0 (∀t) vs HA : ∃t with ρt ̸= 0 (5)
Implicitly, it is assumed that the λ parameters are zero. Finally, the LMSUR

SEM places a SUR-
SEM model in the alternative against, once more, the SUR-SIM in the null (assuming that
the ρ parameters are zero):

H0 : λt = 0 (∀t) vs HA : ∃t with λt ̸= 0

Bera and Yoon (1993) show that the LMSUR
SLM and LMSUR

SEM multipliers are oversized in the
case of misspecifying the alternative hypothesis (i.e., we want to test the SUR-SIM model
in the null using the LMSUR

SLM of (5) when, in fact, the data have been generated by a SUR-
SEM). This lack of robustness makes the identification of the correct spatial specification
more complicated. The solution, as suggested in Anselin, Bera, Florax, and Yoon (1996), is
to robustify the raw multipliers using the so-called robust Lagrange multipliers, denoted as
LM∗SUR

SLM and LM∗SUR
SEM , respectively. The size of the robust multipliers is more balanced at the

cost of a slight loss of power.
The LM tests can be used as a guide to select the correct specification in the case of spatial
SUR models (López et al. 2014) similar to those that have been used in a cross section
framework (Mur and Angulo 2009), but problems can occur under certain conditions, as
explained by Piras and Prucha (2014). Alternatively, the user could decide on the most
suitable specification based on deep knowledge about the problem and not on the pre-test
results (for example, guided by economic theory).

2.2. Estimation of spatial SUR models

The estimations of spatial SUR models are a direct extension of the methodology used to
estimate single, spatial cross-section models. In the case of spatially lagged variables, the



6 spsur: Spatial Seemingly Unrelated Regression in R

endogeneity of the spatial lag must be dealt with and, in the case of spatially correlated errors,
the non-spherical nature of the covariance matrix must be accounted for. Several estimation
approaches have been suggested in the literature. The first is based on the ML principle under
the hypothesis of normality. The main problem with this method is that it is highly demanding
in terms of computational effort when the size of the cross section, N , increases due to the
Jacobian determinant in the concentrated likelihood function. The second approach is based
on the methods of 3SLS that use IV and on GMM. These methodologies are alternatives to
the often unrealistic assumption of normality, and they help to avoid computational problems
with big datasets. A review of these methodologies in the framework of spatial panel data,
including spatial SUR models, is found in Anselin, Le Gallo, and Jayet (2008), and we present
a condensed version for the specific case of spatial SUR models in this section.

The maximum likelihood estimation
Inference based on the ML method has been the most commonly used method to obtain the
estimation of the coefficients of a spatial SUR model (e.g., Wang and Kockelman 2007; Baltagi
and Bresson 2011; Lauridsen et al. 2010; Le Gallo and Dall’erba 2006; López et al. 2017). In
this case, assuming that the errors are normally distributed, the log-likelihood function of (3)
can be written as:

ℓ(y; η) = −NTm

2 ln(2π) − N

2 ln|Σ| + Tm
T m∑
t=1

ln|Bt| + Tm
T m∑
t=1

ln|At|

−

(
Ay − X̄[β; θ]⊤

)⊤
B⊤ Ω−1 B

(
Ay − X̄[β; θ]⊤

)
2 (6)

where X̄ = [X, (IT m ⊗ W)X∗] is an NTm × (2p − Tm) matrix.
The vector of parameters is η⊤ =

[
β⊤; θ⊤; ρ1; . . . ; ρT m; λ1; . . . ; λT m; σij

]
. In total, there

are P = (2p − Tm) + 2Tm + Tm(Tm + 1)/2 unknown coefficients. Wang and Kockelman
(2007) and López et al. (2014) use numerical optimization techniques to solve the maximum
likelihood estimation. Note that the log of the Jacobian terms, ln|Bt| and ln|At|, constrains
the spatial parameters, ρt and λt, to lie inside the so-called stability interval (if the weighting
matrix has been row-standardized, a rough approximation is

(
1

δ−
MIN

; +1
)

with δ−
MIN being

the greatest negative eigenvalue of W). In practice, estimation consists of applying a non-
linear optimization to the concentrated log-likelihood function. Under the assumption that
the spatial SUR model is correctly specified, the ML estimators will be consistent, efficient,
and asymptotically normally distributed (Davidson and MacKinnon 1993).
A main obstacle in the practical implementation of the ML estimation is the need to compute
a Jacobian determinant for an N -dimensional matrix. The classic solution to this problem is
to decompose the Jacobian in terms of the eigenvalues of the spatial weights matrix. Other
methods are based on Cholesky or lower-upper (LU) decomposition, which exploits the spar-
sity of the spatial weights matrix W (see the references included in Bivand, Hauke, and
Kossowski 2013a and Piras 2010 about this problem).

The 3SLS estimation method based on instrumental variables
Due to the highly intensive processing requirements of the ML method when N increases
and to the often unrealistic assumption of normality, other methods have been proposed to
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estimate spatial SUR models. In the case of SUR-SLM and SUR-SDM, the 3SLS method
based on instrumental variables (IV) can be used to estimate these models. In these models,
the presence of the spatially lagged dependent variables introduces a type of endogeneity that
calls for an instrumental variable approach. Anselin (1988a, page 147) and Anselin et al.
(2008) proposed this methodology, although it was not implemented. Anselin (2016) later
proposed this same estimation method and described the adequate instruments. López et al.
(2020), Tupy et al. (2021), and Páez et al. (2021) applied this methodology to estimate SUR-
SLM models. The list of proposed instruments for SUR-SLM and SUR-SDM, along with a
full description of the method, is available in López et al. (2020) where an extensive Monte
Carlo evaluates this method and compares the results with the ML estimation.
Note that this estimation procedure is almost linear, which simplifies computational effort.
On the negative side, we should keep in mind that the estimation of the ρ parameters is not
restricted by the Jacobian term, so we can receive estimates of ρ well outside the stability
interval (although the risk seems acceptable, see López et al. 2020).

2.3. Testing for linear restrictions in spatial SUR models
In this section we present the Wald test approach to test linear restrictions on the parameters
of an estimated spatial SUR model. Specifically, we present a Wald test to check linear
restrictions on the β parameters or to test linear restrictions on the spatial parameters (λ or
ρ). Several papers have used the Wald test in spatial SUR models. For example, this test is
applied in Cotteleer and Van Kooten (2012) and in He et al. (2015) to evaluate significant
differences in the β coefficients. Páez et al. (2021) apply the Wald test to evaluate the null
hypothesis of identical levels of spatial dependence in the ρt parameters.
Anselin (2016) describes the Wald test for β coefficients in a spatial SUR framework. Assum-
ing that the model is correctly specified (emphasizing the importance of the misspecification
tests discussed in Section 2.1), the ML and 3SLS estimates are asymptotically normally dis-
tributed. So, for the ML case, we can write (Lee 2004; Elhorst 2014):

η̂ ∼
as

N (η; V(η)) (7)

where η is the vector of the parameters, as defined in (6), and V(η) is the corresponding
covariance matrix, as described in López et al. (2014). A similar result can be stated for the
3SLS case, for which we need the orthogonality conditions defined in Section 2.2.2 and the
covariance matrix, whose details can be found in Wooldridge (2010, Chapter 7).
Using the asymptotic distribution of (7), we can test for any kind of linear restriction on
the parameter vectors of the model, such as exclusion restrictions or cross-equation linear
restrictions. The procedure is carried out in the usual way. First, we need to write down the
(r × P ) matrix R, with r = rank(R), which captures the linear restrictions:

H0 : Rη = b vs HA : Rη ̸= b (8)

The Wald statistic for testing (8) is

W = (Rη̂ − b)⊤
(
RV̂(η)R⊤

)−1
(Rη̂ − b) ∼

as
χ2

r

Note that the restrictions on (8) must involve only βs or spatial parameters. With slight
variations, we obtain a similar result for the 3SLS method. Alternatively, the LR approach
could be used but it is a bit more costly in terms of computing time than its Wald counterpart.
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2.4. Direct, indirect, and total impacts

A capital difference between time series and spatial models lies in the interpretation of the β
parameters. In a time series context, the β parameters have an unequivocal meaning: they
measure the expected increase in the explained variable as a consequence of a unitary change
in a given regressor. This impact is constant across time, ∂yt

∂xt
= βk, and its significance can

be checked by a simple t ratio.
In a spatial setting, there are feedback effects. This means that a change in a regressor in a
given location will trigger a chain of reactions that will spread all over the space, according
to matrix W. Consider the case of a SUR-SLM model with only one equation, G = 1, whose
reduced form can be written as:

y = A−1Xβ + A−1u = IT m ⊗
[
IN + Λ ⊗ W + Λ2 ⊗ W2 + . . .

]
Xβ + A−1u (9)

A is a block-diagonal matrix whose non-zero matrices are At = IN − ρtW; t = 1, 2, . . . Tm.
Assuming that all the ρ parameters pertain to the so-called stability interval, A−1

t admits a
power series expansion in terms of the spatial coefficients and the weighting matrix, which
leads us to expression (9). Clearly, if we change any regressor in any part of the space, its
effects will impact the explained variable wherever it is located. This is the key starting point
for the spatial multiplier analysis. Unfortunately, each type of spatial model produces its own
multiplier effects, (LeSage and Pace 2009), so it is difficult to offer general results apart from
basic notions and definitions.
Using the classic notation in LeSage and Pace (2009), we can write the following for the t-th
period of a SUR-SLM model:

yt =


yt1
yt2
· · ·
ytN

 =
p∑

h=1


Sh

t (W)11 Sh
t (W)12 · · · Sh

t (W)1N

Sh
t (W)21 Sh

t (W)22 · · · Sh
t (W)2N

· · · · · · · · · · · ·
Sh

t (W)N1 Sh
t (W)N2 · · · Sh

t (W)NN




xth1
xth2
· · ·

xthN

 +A−1


ut1
ut2
· · ·
utN


(10)

We assume that each equation has the same p regressors. Sh
t (W)ij is the (i, j) element of the

(N × N) matrix Sh
t (W) obtained as Sh

t (W) = βhA−1
t , βh is the h-th β parameter, and xthn

refers to regressor h in period t in region n, whereas ytn is the observed value of the explained
variable in period t and region n. Note that unless there are changes in the β parameters or
in the weighting matrices W, the multiplier matrices Sh

t (W) remain constant across time.
Expression (10) is crucial because it helps us to map the chain of feedback effects inherent in
the specification. For example, the impact of a marginal change in regressor h (h = 1, . . . , p)
in region n on the explained variable located in region s is the (n, s) element of this matrix,
∂yts

∂xthn
= Sh

t (W)ns.

Applied literature distinguishes three types of impacts: The so-called direct impact, where all
the changes occur in the same region and coincide with the mean of the terms in the main
diagonal of the multiplier matrix of (10), indirect impact which measures spill-over effects,
evaluated as the mean of the off-diagonal terms of Sh

t (W), and total impact, as the sum of
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the two effects. In an obvious notation:

MT h
g

= 1
N

τ⊤
N Sh

.gτN

MDh
g

= 1
N

trSh
.g

MIh
g

= MT h
g

− MDh
g

; (h = 1, . . . , pg; g = 1, . . . , G)

(11)

with τN as an N × 1 unitary vector and tr() as the trace operator. The subindex g denotes
that these effects correspond to the g-th equation of the SUR (if G = 1, the subindex g should
be dropped).
Finally, for the case of G > 1, we can aggregate the multipliers in (11) to obtain overall
measures for each variable in the SUR:

MDh =
G∑

g=1
MDh

g
; MIh =

G∑
g=1

MIh
g

; MTotalh =
G∑

g=1
MTotalhg ; (h = 1, . . . p) (12)

The multipliers of (12) should be accompanied by measures of statistical significance to be
useful. To simplify, let us assume that the same list of regressors appears in the G equations
of the SUR. LeSage and Pace (2009) suggest two possibilities. The first is the Bayesian
MCMC approach, which draws samples of parameters from their posterior distribution and
computes random sequences of multipliers to calibrate the estimates. To our knowledge, there
are no results available on applying MCMC in a SUR framework. The second alternative,
implemented in spsur, is simulation using the maximum likelihood or 3SLS estimates, which
involves the following procedure:

• Estimate the spatial SUR model either by ML (preferably) or 3SLS.

• Draw B samples of the random vectors of the parameters for our spatial SUR, η, using
the estimated multivariate normal distribution, N

(
η̂; V̂(η̂)

)
, where η̂ and V̂(η̂) are

their respective estimates. ηb denotes the b-th draw.

• Re-evaluate the effects using the simulated vectors ηb and maintaining the data of the
regressors. In this way, a sequence of values: MTotalh(b)

g

, MDirecth(b)
g

and MIndirecth(b)
g

for
b = 1, . . . B is obtained.

• Finally, calculate the corresponding dispersion measure as the standard deviation of the
series of estimated multipliers:

σMEffecth
g

=

√√√√ 1
B

B∑
b=1

(
MEffecth(b)

g

−MEffectb
g

)2

with Effect = Total, Direct, Indirect.

2.5. Software review

In the field of quantitative analysis of spatial data, we can cite several R specialized packages.
The most popular are sf (Pebesma 2018), spdep (Bivand, Pebesma, and Gómez-Rubio 2013b),
spatialreg (Bivand and Piras 2015), sphet (Piras 2010), and splm (Millo and Piras 2012).
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spdep and spatialreg are two powerful packages with high functionalities for the spatial econo-
metric analysis of cross-sectional data, whereas spml is focused on the area of spatial panels.
On the other hand, the R package systemfit deals with SUR models but does not incorporate
spatial effects. To our knowledge, only the embryonic package, spse (Piras 2018), download-
able from the R-Forge repository in https://rdrr.io/rforge/spse, offers some functionali-
ties to estimate spatial SUR models (see Bivand, Millo, and Piras 2021 for a review of software
for spatial econometrics in R). A comparative vignette of the common functionalities of sp-
sur and spse is available in the GitHub repository at https://github.com/rominsal/spsur
for the development version of the spsur package. In summary, none of these packages are
well-equipped to deal with the overall inference problems of spatial SUR models.
The most similar antecedent to spsur is the beta version of SpaceStat (Anselin 1992) called
SpaceStat (version May91), with limited functionalities. Moreover, it requires Windows 98
(see the YouTube video: https://www.youtube.com/watch?v=6pM0tDWqt3o&t=53s). Of
course, nowadays it would be very difficult to do applied research using SpaceStat (ver-
sion May91). There is a second alternative in Python, in the PySAL library (Rey and Anselin
2009), which is the module spreg.sur. It provides SUR estimations of models with no spa-
tial impacts and diagnostic measures, among which we find the raw Lagrange multipliers.
Moreover, several functions provide the estimation of spatial SUR models with spatial errors
or spatial lags of the explained variable, respectively. The SUR-SEM model is estimated by
ML, while the SUR-SLM is estimated using spatial instrumental variables (3SLS based on
IV). Comparison of the results of an estimated spatial SUR model with PySAL and spsur
and spse is available in a vignette of spsur. Finally, there is some code in MATLAB connected
to the work by López et al. (2014), but the source is not free software.

3. Introducing the spsur package

spsur (López, Mínguez, and Mur 2022) is an open-source software for the R computing plat-
form (R Core Team 2022). The package can be freely downloaded from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=spsur. Users will
find complete assistance documentation and some vignettes to guide them through the func-
tionalities of the package, as well as examples of its use.
spsur is made of 10 different functions that allow for a thorough analysis of a spatial SUR
specification. Figure 1 presents a graphic description of the package. spsur includes one func-
tion to evaluate the Lagrange multipliers for the presence of spatial correlation in a SUR-SIM
model, lmtestspsur(). For the general case of G > 1, spsurml() and spsur3sls() allow
the estimation of the model by ML and 3SLS (based on IV). The function spsurtime() is
directed specifically toward spatial SUR models, where G = 1 and Tm > 1. Four func-
tions are designed to improve specification: anova(), wald_betas(), wald_deltas(), and
lr_betas(); while impactspsur() computes the direct, indirect, and total spatial effects.
Finally, dgp_spsur() allows the user to solve Monte Carlo experiments using spatial SUR
models.
The functions to estimate spatial SUR models spsurml() and spsur3sls() return an object
of the class ‘spsur’. This class has been specifically defined in the package and several
methods have been implemented to work with this object. The method summary() presents
a full output of the estimated model, print() presents a short output of the results of the

https://rdrr.io/rforge/spse
https://github.com/rominsal/spsur
https://www.youtube.com/watch?v=6pM0tDWqt3o&t=53s
https://CRAN.R-project.org/package=spsur
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Figure 1: Main functionalities of spsur package.

estimation, and plot() generates a plot with the coefficients. To conclude, it is important
to point out that spsur includes several vignettes to guide the user. One vignette shows the
main functionalities of the package and another presents some results from the use of spsur
for single equation and baseline models. Two additional vignettes, available in the GitHub
version, present a sort of Monte Carlo exercise and a comparison with spse and PySAL.
The package is installed from the CRAN repository and the dataset is loaded as usual,

R> if (!require("spsur")) install.packages("spsur")
R> library("spsur")

3.1. Datasets and baseline model

Three datasets have been included in the package; namely, spc, NCOVR and spain.covid.
The first two are well known in the spatial econometric literature and are used in this paper
to show the performance spsur. The third is included in Section 5 to illustrate an empirical
case where the spatial SUR approach is useful in econometric methodology. Each dataset
consists of an ‘sf’ object (Pebesma 2018), allowing the construction of a list of neighbors and
plot maps.

The spc dataset: The first dataset, spc, constitutes a classic example of a Phillips curve,
taken from Anselin (1988a, pages 203–211). This dataset includes an ‘sf’ object of 25 counties
in Southwest Ohio with information about different variables for two time periods, 1981
and 1983. The explained variable measures the changes in wage rates (WAGE), while the
regressors are unemployment rate (UN), net-migration rate (NMR), and a dummy variable
(SMSA) with a value of 1 for metropolitan counties.
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The SUR-SIM model estimated by Anselin (1988a) is:

WAGE83 = β10 + β11 UN83 + β12 NMR83 + β13 SMSA + ε83
WAGE81 = β20 + β21 UN80 + β22 NMR80 + β23 SMSA + ε81

(13)

We use the Formula package (Zeileis and Croissant 2010) to specify the multiequational SUR
model of (13):

R> spcformula <- WAGE83 | WAGE81 ~ UN83 + NMR83 + SMSA | UN80 + NMR80 + SMSA

Note that we first select the two dependent variables appearing in each equation, separated
by a vertical bar (|). Next, after the prime, we specify the regressors for each equation, once
more using a vertical bar to separate the two groups.

The NCOVR dataset: The second dataset (NCOVR) contains data downloaded from the GeoDa
Data and Lab collection about homicide rates in 3,085 continental US counties for four years
(1960, 1970, 1980, and 1990). The dataset includes a large number of socio-economic charac-
teristics for these counties. This dataset comes from the paper by Baller, Anselin, Messner,
Deane, and Hawkins (2001)2.

R> data("NCOVR", package = "spsur")

Following Baller et al. (2001), we choose a W matrix based on the k-nearest-neighbors, with
k = 10, using the geographic centroids of US counties.

R> library("spdep")
R> library("sf")
R> co <- sf::st_coordinates(sf::st_centroid(NCOVR.sf))
R> ncovrlw <- nb2listw(knn2nb(knearneigh(co, k = 10, longlat = TRUE)),
+ style = "W")

We consider the next SUR-SIM model with three equations and different numbers of regressors
in each one only to show the functionalities of spsur:

HR80 = β10 + β11 PS80 + β12 UE80 + εHR
DV80 = β20 + β21 PS80 + β22 UE80 + β23 SOUTH + εDV
FP79 = β30 + β31 PS80 + εFP

(14)

HR80 is the homicide rate per 100,000 inhabitants in 1980, PS80 measures the population
structure in 1980, UE80 is the unemployment rate, DV80 is the divorce rate, FP79 is the
percentage of families below the poverty line in 1980, and SOUTH is a dummy variable for
Southern counties. Note that the model of (14) has only one cross section.
To input this model into R, we write,

R> ncovrformula <- HR80 | DV80 | FP79 ~
+ PS80 + UE80 | PS80 + UE80 + SOUTH | PS80

old-style crs object detected; please recreate object with a recent sf::st_crs()
old-style crs object detected; please recreate object with a recent sf::st_crs()
old-style crs object detected; please recreate object with a recent sf::st_crs()
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Figure 2: Spatial distribution of homicide rates in US counties in 1980 (HR80).

Figure 2 shows the spatial distribution of homicide rates, in 1980, where a clear spatial
structure emerges. Therefore, we expect to find spatial autocorrelation at least in the first
equation.

3.2. Misspecification tests for omitted spatial effects

The generic function lmtestspur() computes five Lagrange multipliers for omitted spatial
dependence in a SUR-SIM model. The main advantage of the LM tests is that they only need
information of the null hypothesis, and it is therefore easy to obtain. The full syntax of the
first one is:

lmtestspsur(formula, data, listw, na.action, time = NULL, Tm = 1,
zero.policy = NULL, R = NULL, b = NULL, ...)

The lmtestspur() function includes a ‘formula’ object, a data frame in data argument, a
list of neighbors in a ‘listw’ object (it could also be a W neighbor matrix), zero.policy,
and na.action for the treatment of missing values (see Bivand and Wong 2018, for details).
Check the help area of the function for the rest of the arguments.
Continuing with the NCOVR case above, we should write:

R> LMs.ncovr <- lmtestspsur(formula = ncovrformula, data = NCOVR.sf,
+ listw = ncovrlw)
R> pr.LMs.ncovr <- sapply(LMs.ncovr, print)

LM-SUR-SLM

data: NCOVR.sf
LM-stat = 8800.7, df = 3, p-value < 2.2e-16

2See https://geodacenter.github.io/data-and-lab/ncovr/ for more details about the database.

https://geodacenter.github.io/data-and-lab/ncovr/
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LM-SUR-SEM

data: NCOVR.sf
LM-stat = 9912.7, df = 3, p-value < 2.2e-16

LM*-SUR-SLM

data: NCOVR.sf
LM-stat = 19.774, df = 3, p-value = 0.0001891

LM*-SUR-SEM

data: NCOVR.sf
LM-stat = 1131.8, df = 3, p-value < 2.2e-16

LM-SUR-SARAR

data: NCOVR.sf
LM-stat = 9932.5, df = 6, p-value < 2.2e-16

The output of the lmtestspsur() function includes a list of ‘htest’ class objects for each
of the LM tests. The situation depicted by this battery of multipliers shows that the SUR-
SIM model of (14) is clearly misspecified, but the set of LMs do not reveal the type of
misspecifications that afflict the model.

3.3. Maximum Likelihood estimation of spatial SUR models

A spatial SUR model must be estimated in case the LM tests reject the SUR- SIM alternative.
The function spsurml() obtains the ML estimation of the different spatial SUR models listed
in Section 2. The general syntax for this function is:

spsurml(formula = NULL, data = NULL, na.action, listw = NULL, type = "sim",
Durbin = NULL, method = "eigen", zero.policy = NULL, interval = NULL,
trs = NULL, R = NULL, b = NULL, X = NULL, Y = NULL, G = NULL, N = NULL,
Tm = NULL, p = NULL, control = list() )

Example with spc

The symptoms of spatial misspecification in the Phillips curve are rather weak. The user can
obtain all the LM tests with the function lmtestspsur() shown in Section 3.2, which we
omit to save space. However, as an example, suppose we conclude that the SUR-SIM model
is misspecified because we have omitted a spatial lag of the explained variables on the right
side of the equation (that is, we interpret that the correct specification is a SUR-SLM model,
which is plausible if we fix the significance level at 10%).
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To estimate a SUR-SLM model for the spc dataset, the syntax is:

R> spcsur.slm <- spsurml(formula = spcformula, data = spc, type = "slm",
+ method = "eigen", listw = Wspc)

neighbourhood matrix eigenvalues
Computing eigenvalues ...

Initial point: log_lik: 113.198 rhos: -0.472 -0.446
Iteration: 1 log_lik: 114.088 rhos: -0.506 -0.482
Iteration: 2 log_lik: 114.098 rhos: -0.506 -0.482
Iteration: 3 log_lik: 114.099 rhos: -0.505 -0.482
Time to fit the model: 1.548 seconds
Time to compute covariances: 0.908 seconds

The listw argument allows the specification of neighbors either as a list or as a matrix. The
method argument (the same as the argument of the estimation functions in the spatialreg
package) permits the choice of method to compute the determinant of the spatial Jacobian
in the log-likelihood. For relatively small samples (hundreds of observations), the simplest
method is "eigen" (which is also the default). Nevertheless, the computation of the eigen-
values becomes very expensive for medium to large samples. The function spsurml() offers
other options to obtain the spatial determinant without computing the eigenvalues; for exam-
ple, the Cholesky or LU factorization ("Matrix" or "LU"), or the Chebyshev approximation
("Chebyshev"). See Bivand et al. (2013a) and Chapter 4 in LeSage and Pace (2009) for
details. The zero.policy, interval, and trs arguments are also similar to those available
in the spatialreg package (see ?spatialreg::lagsarlm for the details of each one).
The type argument selects the required spatial SUR specification among the available alter-
natives: "sim", "slx", "slm", "sem", "sdm", "sdem", "sarar", or "gnm" (see Section 2 for
details of each case). The Durbin argument allows the specification of "sdm" models, (in
addition to "slx", "sdem" and "gnm"), with only part of the regressors spatially lagged.
Finally, the options included in the control argument are almost identical to those available in
the lagsarlm() function of spatialreg (see ?spsurml for details of all of them). Some of these
options include the possibility of checking for intermediate results during the optimization
process using trace = TRUE, setting the threshold for the convergence of the log-likelihood
in tol, the maximum number of iterations in maxit, and the possibility of computing the
numerical covariances using fdHess = TRUE (the function computes analytical covariances
by default). Note that the computation of analytical covariances can be quite slow for large
samples (thousands of observations).
The output of the function spsurml() is an ‘spsur’ object and, consistent with the conven-
tions in the R environment, the summary() method prints the output equation by equation.

R> summary(spcsur.slm)

Call:
spsurml(formula = spcformula, data = spc, listw = Wspc, type = "slm",

method = "eigen")
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Spatial SUR model type: slm

Equation 1
Estimate Std. Error t value Pr(>|t|)

(Intercept)_1 1.4947178 0.2467450 6.0577 5.244e-07 ***
UN83_1 0.8053338 0.2558760 3.1474 0.003249 **
NMR83_1 -0.5165301 0.2590369 -1.9940 0.053557 .
SMSA_1 -0.0072526 0.0118566 -0.6117 0.544484
rho_1 -0.5048488 0.2405967 -2.0983 0.042763 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-squared: 0.622

Equation 2
Estimate Std. Error t value Pr(>|t|)

(Intercept)_2 1.7088173 0.2925087 5.8419 1.028e-06 ***
UN80_2 -0.6736472 0.3870209 -1.7406 0.09007 .
NMR80_2 0.7475735 0.3840119 1.9467 0.05919 .
SMSA_2 0.0013487 0.0241871 0.0558 0.95583
rho_2 -0.4816233 0.2557338 -1.8833 0.06754 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-squared: 0.4743

Variance-Covariance Matrix of inter-equation residuals:
0.0003091646 -0.0003578072

-0.0003578072 0.0015874436
Correlation Matrix of inter-equation residuals:

1.0000000 -0.5107461
-0.5107461 1.0000000

R-sq. pooled: 0.6601
Breusch-Pagan: 6.543 p-value: (0.0105)
LMM: 0.50474 p-value: (0.477)

The summary includes standard information for a SUR estimation, disaggregated by equation,
such as estimated coefficients, standard deviations, etc. The matrices of covariances and of
correlations between the SUR residuals appear next. Finally, spsurml() shows some measures
of goodness of fit (overall R2, log-likelihood), the usual Breusch-Pagan (BP) test of diagonality
(Breusch and Pagan 1980), and a marginal Lagrange multiplier (LMM) to test for the omitted
spatial effects arising from the model that we have estimated (that is, if the type is slm or
sdm, the LMM tests for omitted spatial errors; if the type is sem or sdem, the LMM tests for
omitted spatial lags).
Additional standard methods for spsur objects include anova, coef, fitted, logLik, print,
plot, residuals, and vcov. All of them work in the usual way for R standard methods.
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Example with NCOVR

Next, the NCOVR database is used to provide an example of a multiequational Durbin model
with a different set of spatially lagged regressors, LU factorization (since the weighting matrix
is not symmetric, Cholesky cannot be applied), and numerical covariances (to deal with 12,340
observations):

R> ncovrformulaD <- ~ PS80 + UE80 | PS80 | PS80
R> mlcontrol <- list(fdHess = TRUE, trace = FALSE)
R> ncovrsur.sdm <- spsurml(formula = ncovrformula, data = NCOVR.sf,
+ type = "sdm", Durbin = ncovrformulaD, listw = ncovrlw, method = "LU",
+ control = mlcontrol)
R> summary(ncovrsur.sdm)

Call:
spsurml(formula = ncovrformula, data = NCOVR.sf, listw = ncovrlw,

type = "sdm", Durbin = ncovrformulaD, method = "LU", control = mlcontrol)

Spatial SUR model type: sdm

Equation 1
Estimate Std. Error t value Pr(>|t|)

(Intercept)_1 2.268071 0.270906 8.3722 < 2.2e-16 ***
PS80_1 1.139491 0.152999 7.4477 1.035e-13 ***
UE80_1 0.185387 0.045721 4.0547 5.061e-05 ***
lag.PS80_1 -1.044969 0.208492 -5.0120 5.486e-07 ***
lag.UE80_1 -0.182819 0.058970 -3.1002 0.00194 **
rho_1 0.670546 0.017641 38.0110 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-squared: 0.3543

Equation 2
Estimate Std. Error t value Pr(>|t|)

(Intercept)_2 0.6826469 0.0460874 14.8120 <2e-16 ***
PS80_2 0.5112242 0.0277382 18.4303 <2e-16 ***
UE80_2 0.0519760 0.0056002 9.2810 <2e-16 ***
SOUTH_2 -0.0321020 0.0355176 -0.9038 0.3661
lag.PS80_2 -0.5477503 0.0377724 -14.5014 <2e-16 ***
rho_2 0.7812021 0.0141816 55.0858 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-squared: 0.5264

Equation 3
Estimate Std. Error t value Pr(>|t|)

(Intercept)_3 1.956636 0.065810 29.731 < 2.2e-16 ***
PS80_3 -1.824512 0.100259 -18.198 < 2.2e-16 ***
lag.PS80_3 1.292710 0.134545 9.608 < 2.2e-16 ***
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rho_3 0.845296 0.011038 76.583 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-squared: 0.6718

Variance-Covariance Matrix of inter-equation residuals:
31.014989 1.0687653 7.0673167
1.068765 1.0200470 -0.3444854
7.067317 -0.3444854 13.3581579

Correlation Matrix of inter-equation residuals:
1.0000000 0.19001437 0.34721258
0.1900144 1.00000000 -0.09332274
0.3472126 -0.09332274 1.00000000

R-sq. pooled: 0.6293
Breusch-Pagan: 510.2 p-value: (2.98e-110)

A comparison of spatial SUR specifications using likelihood ratios

As is well known (Elhorst 2014), the spatial models listed in Section 2 are related in a nesting
sequence. Given that spsurml() operates in an ML framework, we can easily compare two
nested models using the corresponding likelihood ratios (LRs) to select the best specification.
This is the purpose of the anova() method applied to ‘spsur’ objects. In the case of a Phillips
curve, we simply write:

R> spcsur.slm <- spsurml(formula = spcformula, data = spc, type = "slm",
+ listw = Wspc, control = list(trace = FALSE))
R> spcsur.sdm <- spsurml(formula = spcformula, data = spc, type = "sdm",
+ listw = Wspc, control = list(trace = FALSE))
R> anova(spcsur.slm, spcsur.sdm)

logLik df AIC BIC LRtest p.val
model 1: slm 114.10 13 -202.20 -219.19
model 2: sdm 116.78 19 -195.57 -220.40 5.3701 0.4973

The output of the function is an ‘anova’ object showing the value of the corresponding LR
test (if the lrtest argument is TRUE as is the default) and its associated p values, obtained
from a χ2 distribution with degrees of freedom equal to the number of restrictions in the
respective null hypothesis. Akaike information criterion (AIC) and log-likelihood (logLik)
values for each model are also included. The information provided by the likelihood ratios
may help the user define the spatial structure needed for the case under consideration.

3.4. 3SLS based on IV estimation of SUR-SLM and SUR-SDM models

The function spsur3sls() estimates spatial SUR models by spatial IVs in a 3SLS framework,
as described in Section 2.2.2. The syntax of the function is similar to spsurml().
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spsur3sls(formula = NULL, data = NULL, na.action, R = NULL, b = NULL,
listw = NULL, zero.policy = NULL, X = NULL, Y = NULL, G = NULL,
N = NULL, Tm = NULL, p = NULL, type = "slm", Durbin = NULL,
maxlagW = NULL, trace = TRUE)

The main differences between the two are: (i) the argument type now only supports two
spatial SUR models, slm and sdm, and (ii) a new argument is needed, maxlagW, to set the
maximum order of the spatial lags of the regressors and obtain the matrix of IVs. The default
value is NULL, which chooses maxlagW = 2 for SUR-SLM models and maxlagW = 3 for the
SUR-SDM variant.

Example with NCOVR

The 3SLS method is especially adequate in cases of large datasets or when the Jacobian
matrix is very dense. The NCOVR dataset including 3,085 US counties is a good candidate for
spsur3sls(), for which we simply need:

R> ncovrsur.slm.3sls <- spsur3sls(formula = ncovrformula, data = NCOVR.sf,
+ type = "slm", listw = ncovrlw, trace = FALSE)

As an alternative to summary, the user can apply the print method to get an abbreviated
version of the results,

R> print(ncovrsur.slm.3sls)

coeff_1 pval_1 coeff_2 pval_2 coeff_3 pval_3
(Intercept) 9.7711 0.000 2.7205 0.000 7.2895 0
PS80 0.9497 0.000 0.2415 0.000 -1.6132 0
UE80 -0.2083 0.000 0.0891 0.000 NA NA
SOUTH NA NA 0.1603 0.000 NA NA
rho -0.2067 0.417 0.2630 0.002 0.4176 0

If a variable is not included in an equation, the print method shows an NA value. As in the
case of spsurml(), the output of the function spsur3sls() is an ‘spsur’ class object.

3.5. Testing the spatial SUR estimation and re-estimating models

An important feature of spsur is its ability to thoroughly test the specification. spsurml()
routinely reports the BP diagonality test as well as a Lagrange marginal multiplier for
omitted spatial effects. To these basic measures, we add three functions, wald_betas(),
wald_deltas(), and lr_betas(), which improve specification.

Testing for linear restrictions on coefficients

The function wald_betas() is used to test linear restrictions in the β parameters. This func-
tion needs three arguments. The first is an ‘spsur’ class object obtained with the functions
spsurml() or spsur3sls(), the second is a matrix that must reflect the restrictions on the
β parameters that we want to test, and the third is a vector with the values of the restrictions
under the null hypothesis.
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For example, to test whether the intercepts of the two equations of the SUR-SLM model of
the Phillips curve (13) are equal:

H0 : β10 = β20 vs HA : β10 ̸= β20

It is necessary to write the code,

R> R1 <- matrix(c(1, 0, 0, 0, -1, 0, 0, 0), nrow = 1)
R> b1 <- matrix(0, ncol = 1)
R> wald_betas(spcsur.slm, R = R1, b = b1)

Wald test on beta parameters

data: spc
Wald test = 0.39767, df = 1, p-value = 0.5283

The output of the test is an ‘htest’ object. In this case, the two intercepts are not statisti-
cally different from each other, and the correct specification must therefore include the same
intercept in both equations. The constrained version of the spatial Phillips curve is:

WAGE83 = β0 + β11 UN83 + β12 NMR83 + β13 SMSA + λ1WAGE83 + ε83
WAGE81 = β0 + β21 UN80 + β22 NMR80 + β23 SMSA + λ2WAGE81 + ε81

(15)

Both functions, spsurml() and spsur3sls(), allow for a restricted ML or 3SLS estimation
of the SUR model, using the arguments R = R1 and b = b1, which expedites the estimation
problem. The output of the constrained ML estimation appears below.

R> R1 <- matrix(c(1, 0, 0, 0, -1, 0, 0, 0), nrow = 1)
R> b1 <- matrix(0, ncol = 1)
R> spcsur.slm.restricted <- spsurml(formula = spcformula, data = spc,
+ type = "slm", listw = Wspc, R = R1, b = b1,
+ control = list(trace = FALSE))
R> print(spcsur.slm.restricted)

coeff_1 pval_1 coeff_2 pval_2
(Intercept) 1.5786 0.000 1.5786 0.000
UN83 0.7946 0.003 NA NA
NMR83 -0.4873 0.064 NA NA
SMSA -0.0056 0.632 0.0029 0.906
UN80 NA NA -0.6193 0.120
NMR80 NA NA 0.7083 0.079
rho -0.5856 0.006 -0.3705 0.052

Testing for linear restrictions on the spatial parameters

Similarly, the purpose of the function wald_deltas() is to obtain a Wald test to evaluate
linear restrictions on the spatial parameters of the model (λ or ρ parameters). The use of the
function is totally analogous to wald_betas() and extends to the ML and 3SLS methods. For
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example, the user may be interested in testing whether the λ parameters of the two equations
of the constrained version of the previous Phillips curve are equal; that is:

H0 : ρ1 = ρ2 vs HA : ρ1 ̸= ρ2 (16)

R> R2 <- matrix(c(1,-1), nrow = 1)
R> b2 <- matrix(0, ncol = 1)
R> wald_deltas(spcsur.slm.restricted, R = R2, b = b2)

Wald test on spatial delta parameters

data: spc
Wald test = 16.932, df = 1, p-value = 3.874e-05

In this case, the Wald test clearly rejects the hypothesis of (16), confirming that the specifi-
cation (15) with two different parameters of spatial dependence is correct.

3.6. Spatial impacts in the SUR framework
spsur includes the function impactspsur() to evaluate spatial effects. The function is a
wrapper in a multiequational context of the impacts() function available in3 spatialreg (see
Bivand and Piras 2015, for details). As a consequence, the arguments of impactspsur()
are a subset of the corresponding arguments in impacts(). Specifically, the full syntax of
impactspsur() is:

impactspsur(obj, ..., tr = NULL,R = NULL, listw = NULL, evalues = NULL,
tol = 1e-06, empirical = FALSE, Q = NULL)

The argument obj includes an ‘spsur’ object (the output of spsurml(), spsur3sls() or
spsurtime()). The rest of the arguments can be checked using either the help of impacts()
or the help of impactspsur().

Example with spc

Below, an example of how to compute the impacts using the previous Durbin model estimated
for NCOVR.sf data is shown. We also compute the vector of traces of powers of the spatial
weights matrix (using the trW() function of spatialreg) to speed up the computations.

R> ncovrw <- as(spdep::listw2mat(ncovrlw), "CsparseMatrix")
R> ncovrtrw <- spatialreg::trW(ncovrw, type = "MC")
R> ncovrsur.sdm.impacts <- impactspsur(ncovrsur.sdm, tr = ncovrtrw, R = 1000)

3Recently Kelejian and Piras (2020) have developed a formula to compute the variance for spatial impacts
in two contexts: when there is no endogenous regressor in each equation (apart from the spatial lag) and when
there are endogenous regressors and the general system of equations is not fully specified. We believe that in
our spatial SUR contexts, the first approach is quite promising because it would allow users to make inferences
about spatial impacts without resorting to simulations. In fact, it can also be applied when the distribution
of the error term is nonparametric but heteroskedastic and autocorrelated consistent covariances are available
from the estimation process. On the other hand, the second approach (allowing for endogenous regressors
in a multiequational context) is especially interesting for spatial simultaneous equation systems and, to our
knowledge, it is best suited for the spse package, which is specialized in this type of model (see Piras 2018, for
details). We will leave these promising lines of research for future updates of the spsur package.
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For model types "slm", "sdm", "sarar", or "gnm", the output of the function is a list of
‘lagImpact’ objects, including the impacts for each equation of the model. Each element of
the list can be printed in the usual way:

R> summary(ncovrsur.sdm.impacts[[1]], zstats = TRUE, short = TRUE)

Impact measures (mixed, trace):
Direct Indirect Total

PS80_1 1.1090557 -0.8221535 0.286902202
UE80_1 0.1790469 -0.1712532 0.007793673
========================================================
Simulation results ( variance matrix):
========================================================
Simulated standard errors

Direct Indirect Total
PS80_1 0.14804029 0.4662831 0.4532275
UE80_1 0.04400361 0.1204696 0.1137512

Simulated z-values:
Direct Indirect Total

PS80_1 7.535948 -1.805916 0.60357246
UE80_1 4.065629 -1.417654 0.07136721

Simulated p-values:
Direct Indirect Total

PS80_1 4.8406e-14 0.070931 0.54613
UE80_1 4.7903e-05 0.156292 0.94311

Users can obtain the the impacts for the second equation in the same way,

R> summary(ncovrsur.sdm.impacts[[2]], zstats = TRUE, short = TRUE)

The impactspsur() function also allows us to estimate impacts of the slx or sdem models.
These models do not include a spatial lag of the dependent variable, so the impacts can be
directly computed from the estimated coefficients (no simulation is needed). To compute the
variances for the impacts, we use the function estimable() from the gmodels package. The
output of impactspsur() for models "slx" or "sdem" is a list of ‘mixedImps’ objects (one
for each equation) and can be printed in the usual way. Below, an example is provided for
NCOVR.sf data:

R> ncovrsur.slx <- spsurml(formula = ncovrformula, data = NCOVR.sf,
+ type = "slx", listw = ncovrlw, control = list(trace = FALSE))
R> ncovrsur.slx.impacts <- impactspsur(ncovrsur.slx)

The output is omitted to save space.
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4. Simulated spatial SUR datasets
This section describes an additional function included in spsur that offers the possibility of
generating random datasets with the required dimensions and spatial structure. This function,
dgp_spsur(), has great flexibility and may be of particular interest in two cases: (i) as part
of a larger simulation where the users need random datasets with specific features (i.e., for
their own research projects) or (ii) with the aim of showing specific properties of spatial SUR
models and that inferential procedures related to them (i.e., for teaching activities).
dgp_spsur() is a data generating process (DGP) where the user decides the dimensions of the
required dataset, specifies the values of the parameters that intervene in the corresponding
SUR model, and selects the distribution functions from which the regressors and the random
terms are to be drawn. The syntax of the function is the following:

dgp_spsur(Sigma, Tm = 1, G, N, Betas, Thetas = NULL, rho = NULL,
lambda = NULL, p = NULL, listw = NULL, X = NULL,
type = "matrix", pdfU = "nvrnorm", pdfX = "nvrnorm")

The dimensions of the dataset are defined by the arguments Tm, N , and G. The argument
Sigma specifies the covariance matrix among the residuals of the G equations, which is the
core of the SUR model. Of course, a (N × N) spatial weighting matrix should be uploaded
in the argument listw.
A fundamental piece of information is the argument p, which defines the number of regressors
(X variables) that appear in each equation. If p is a scalar, every equation has the same
number of regressors, whereas a 1×G vector indicates that the G equations contain a different
number of regressors. Subsequently, the user should specify the parameters that intervene
in the equations of the SUR. This is the purpose of the arguments Betas, Thetas, rho, and
lambda, which are defined as row vectors of the adequate dimensions. Betas is a row vector
of the order 1 × K, where K is equal to pG, or to K = ΣG

j=1pj if p is a row vector. The values
assigned to these parameters determine the type of spatial model required. For example, if
Thetas = NULL, rho = NULL but lambda and Betas are not NULL, this means that the user is
specifying a SUR-SEM model, or a SUR-SDEM model in the case of rho = NULL but Thetas,
Betas, and lambda are different from NULL.
There are two possibilities to build the matrix X of regressors. In Monte Carlo experiments,
it is usual to maintain the values of the regressors fixed and draw random matrices only for
the error terms. If this is the case, the user should upload the required X matrix in the
argument X, which must be consistent with the dimensions of the SUR model. If X = NULL,
the user randomly draws this matrix using the function dgp_spsur(). This is the purpose of
the argument pdfX, which uses a multivariate standard normal distribution. The alternative
is a Uniform [0, 1] distribution for each regressor. In both cases, the regressors are generated
independently. Finally, the argument dfU selects the multivariate probability distribution
function to draw the values of the error terms.
Output types can be selected using the type argument. By defect, the output of dgp_spsur()
is a vector called Y of the order (NTmG × 1), with the values generated for the explained
variable in the G equations of the spatial SUR model. If the argument X is set to NULL, the
user will receive another matrix called X with the values generated for the regressors of the
SUR.
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4.1. A toy example. How to create random datasets

In this section, we present a toy example of a spatial SUR process with two equations for 537
individuals defined on a regular hexagonal lattice. The geometry of the lattice is defined on
a 1 × 1 square using the sf package.

R> sfc <- st_sfc(st_polygon(list(rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 1),
+ c(0, 0)))))
R> hexs <- st_make_grid(sfc, cellsize = 0.049, square = FALSE)
R> hexs.sf <- st_sf(hexs)

The weight matrix that defines the neighborhood structure, W, is obtained using the rook
criteria (common border).

R> W <- nb2listw(poly2nb(as(hexs.sf, "Spatial"), queen = FALSE))

For the DGP example, we consider two equations and 2 regressors, plus the intercepts. We
generate a SUR-SLM model with different levels of spatial dependence in each equation, as
shown in (17)).

Y1 = 1 + 0.2 WY1 + 2 X11 + 3 X12 + ϵ1
Y2 = 1 + 0.8 WY2 − X21 + 0.5 X22 + ϵ2

cor(ϵ1, ϵ2) = 0.5
(17)

The function dgp_spsur() produces the simulated data for the two variables using this simple
set of arguments

R> Sigma <- matrix(c(1,0.5,0.5,1),nrow = 2)
R> Betas <- c(1,2,3,2,-1,0.5)
R> rho <- c(0.2,0.8)
R> set.seed(123)
R> dgp.spatial.sur <- dgp_spsur(Sigma = Sigma, Betas = Betas, Thetas = NULL,
+ lambda = NULL, rho = rho, Tm = 1, G = 2, N = 537, p = 3, listw = W)

The output of this function is a list with the data, dependent variables, and regressors in
matrix forms. Next, we estimate a SUR-SIM model using the method residuals to obtain
the residuals.

R> sur.dgp.sim <- spsurml(Y = dgp.spatial.sur$Y, X = dgp.spatial.sur$X,
+ type = "sim", G = 2, Tm = 1, N = 537, p = 3, listw = W,
+ control = list(trace = FALSE))
R> res <- residuals(sur.dgp.sim)

Figure 3 plots them. Note that the residuals of the second equation in (17) show a stronger
spatial structure. Finally, we estimate the true model, a SUR-SLM model, as usual,

R> sur.dgp.slm <- spsurml(Y = dgp.spatial.sur$Y, X = dgp.spatial.sur$X,
+ type = "slm", G = 2, Tm = 1, N = 537, p = 3, listw = W,
+ control = list(trace = FALSE))
R> summary(sur.dgp.slm)
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Figure 3: Spatial pattern of the SUR-SIM residuals, ϵ1 (left) ϵ2 (right).

Call:
spsurml(listw = W, type = "slm", X = dgp.spatial.sur$X, Y = dgp.spatial.sur$Y,

G = 2, N = 537, Tm = 1, p = 3, control = list(trace = FALSE))

Spatial SUR model type: slm

Equation 1
Estimate Std. Error t value Pr(>|t|)

Intercep_1 1.050658 0.052887 19.866 < 2.2e-16 ***
X1_1 2.009105 0.038119 52.706 < 2.2e-16 ***
X1_2 2.984680 0.035863 83.225 < 2.2e-16 ***
rho_1 0.161010 0.021984 7.324 4.746e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-squared: 0.9292

Equation 2
Estimate Std. Error t value Pr(>|t|)

Intercep_2 2.066812 0.219397 9.4204 < 2.2e-16 ***
X2_1 -0.978890 0.038798 -25.2304 < 2.2e-16 ***
X2_2 0.469211 0.036570 12.8305 < 2.2e-16 ***
rho_2 0.791277 0.021862 36.1946 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-squared: 0.8029

Variance-Covariance Matrix of inter-equation residuals:
0.9994753 0.5283877
0.5283877 1.0096595

Correlation Matrix of inter-equation residuals:
1.0000000 0.5259921
0.5259921 1.0000000
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R-sq. pooled: 0.9632
Breusch-Pagan: 148.6 p-value: (3.56e-34)
LMM: 6.4689 p-value: (0.011)

As expected, the results are quite satisfactory. All the estimated parameters are within
the interval (theoretical value plus/minus two standard deviations). The Breusch-Pagan test
(with a value of 148.57) clearly rejects the assumption of diagonality. The correlation obtained
for the SUR equations are slightly inflated (0.516 on average for an expected value of 0.5),
whereas the marginal multiplier (6.47) clearly confirms the adequacy of the spatial lag model.

5. spsur application to mobility due to COVID-19
There is broad consensus that this pandemic has been one of the most relevant events that
has occurred during recent decades with impacts (social, medical, economic, etc.) that will
last for a long time. However, in spite of the dramatic consequences, social distancing and
the reduction of individual mobility are seen as the most effective strategies to slow down the
spread of the disease.
This section illustrates the practical use of the spsur package to develop a spatial SUR model
and explain the effect of COVID-19 on two types of individual mobility (controlling for several
factors). In particular, we focus on the case of Spain, using data at a provincial level (NUTS3
in Eurostat terminology) during the first weeks of the pandemic4. The hypotheses that we
explore is that the high incidence of COVID-19 dissuades individuals from leaving their homes
and therefore reduces mobility.
For this illustration, we consider two different indicators of individual mobility: “Within”
and “Exits”. The first is defined by the ratio between the number of intra-provincial trips
within province “i” in week “t” compared to a pre-COVID week (February, 14–21, 2020).
The second is defined in the same way but for inter-provincial trips (see Table 1). Figure 4
shows the weekly evolution of these mobility indices; Figures 4A for intra-provincial and 4B
for inter-provincial trips. Note the sharp reduction of the mobility indices, both intra and
inter, occurring in week 4. This is not accidental, since week 4 is the beginning of the state
of emergency (StEm) declared by the Spanish Government. Weeks 6 and 7 (in orange),
correspond to the tightening of restrictive measures when no essential economic activities
were allowed. The StEm remained in effect until June 21, the end of week 17.
Several variables could have impact on both mobility indices (Table 1). We consider three
categories of variables: government restriction orders, socio-economic characteristics, and

4In response to the rapidly growing number of COVID-19 cases, the Spanish Government (like many
others) enacted orders to reduce individual mobility, declaring a state of emergency (StEm) on March 14,
2020. In practice, the StEm implied a lockdown of the population. Many non-essential service activities, such
as education, leisure and entertainment, commerce (except for food, health or electronics) were suspended.
On March 28, 2020, the lockdown also reached the sectors of manufacturing and construction, with grave
implications for the Spanish economy. On April 10, 2020, both sectors were allowed to resume their activities, as
there was a clear indication that the lockdown had been successful, and on June 23, the StEm was lifted. During
the same time, the Spanish Government initiated a big data project with the purpose of collect information
about the mobility of the population by monitoring the location of all the cell phones in national territory
(in fact, 80% of mobile phones are under control). The daily collection began on February 14 and includes
all movements exceeding 500 meters. This information also distinguishes short range or intra-provincial trips
whose origin and destination are both inside the same province, inter-provincial, or long range trips, where
the province of origin differs from that of the destination.
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Figure 4: (A) Weekly intra-province changes in mobility compared to pre-COVID-19 week
(February 14–20); (B) Weekly inter-province changes in mobility compared to pre-COVID-19
week (February 14–20). In orange, total lockdown, weeks 6 and 7 (from March 28 to April 10).
The red line marks the mobility level = 1 (the reference week).

COVID-19 incidence. With respect to government restriction orders, the Spanish Government
declared a partial lockdown with stay-at-home orders for citizens for 10 weeks (weeks 4–13),
but essential economic activities were permitted. In the middle of this period (two weeks),
the lockdown was total, and essential economic activities were not permitted. Therefore, it
is expected that during this period, mobility would decrease. Therefore, the expected sign of
these variables explaining mobility is negative.
Even though mobility restrictions were dictated for the entire country, the Government’s
orders were unevenly followed in different provinces. Several factors related with the socio-
economic characteristics can explain these regional differences.
In the first place, differences in population density have an impact on mobility (Brodeur,
Grigoryeva, and Kattan 2021). In this case, high levels of population density (the provinces
of Madrid or Barcelona) can change individual behavior due to the fact that the virus spreads
mainly through interpersonal interactions (expected negative sign). In the second place,
something similar occurs in provinces with a high proportion of older people, whose ability
to move is more restricted (Brodeur et al. 2021).They are also more responsive to restriction
orders (Páez et al. 2021, Engle, Stromme, and Zhou (2020)). In the third place, provinces
with high levels of essential services reduce mobility less than provinces with low levels of
essential services (expected negative sign, Abdullah, Dias, Muley, and Shahin 2020). Lastly,
the incidence of COVID-19 could influence movement in the sense that evidence of the disease
dissuades individuals from leaving their homes, and therefore mobility is reduced (Engle
et al. 2020, Abdullah et al. (2020)). Table 1 summarizes all the variables considered in this
illustration and their expected signs.
Figure 5A represents the weekly incidence of the pandemic (log of cases detected per 100,000
inhabitants). The incidence has an inverted-V shape that peaks on week 6. Looking at
this figure, it is apparent that the incidence of COVID-19 has a strong impact on mobility,
since movement decreases considerably as the virus intensifies. Figure 5B shows the spatial
distribution of COVID-19. A strong spatial pattern emerges, confirming the spatial diffusion
of the pandemic and therefore, spatial effects in the model are expected.
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Figure 5: (A) Weekly incidence, total positive PCR cases per 100,000 inhabitants (in logs).
In gray, partial lockdown weeks 4–5 and 8–13 (from March 14–27 and April 11–23). In
orange, total lockdown, weeks 6 and 7 (from March 28 to April 10). The blue line marks
zero incidence. (B) Quartiles of provincial COVID-19 incidence for week 6 (in log). Similar
spatial pattern in other weeks.

Variable Sort Description Sign
Within Number of trips in week “t” within province “i” (compared to

the pre-COVID reference week)
Exit Number of trips in week “t” with origin in province “i” and

arrival to another (compared to the pre-COVID reference week)
Emergence Dummy variable. 1 if StEm is active in week “t”. Essential

activities (e.g. food, health) are allowed. 0 otherwise
(−)

EmergenceTotal Dummy variable. 1 if StEm is active in week “t”. Essential
activities are not allowed. 0 otherwise

(−)

Density Inhabitants (in thousands) per km2 in province “i” (−)
Old65 Percentage of population aged 65 and older in province “i” (−)
Essential Percentage of firms in province “i” with essential activities (+)
Incidence Weekly incidence in the week “t − 1” in the province “i” (in

logs)
(−)

Table 1: List of dependent and independent variables for the spatial SUR model and expected
sign. See the help facility in the spsur package for details and formal definitions.

5.1. The SUR approach

The dataset with the two mobility indices and the control variables for the 50 spatial units
(provinces) and 17 temporal periods (weeks from February 14 to June 21, 2020) is available
in the spsur package,

R> data("spain.covid", package = "spsur")

A baseline SUR-SIM model with G = 2 equations (for inter and intra movements, respec-
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tively), which does not include spatial effects can be specified as follows:

Withini,t = β10 + β11Emergencet + β12EmergenceTotalt + β13Densityi + β14Old65i+
β15Essentiali + β16Incidencei,t−1 + ϵW

i,t

Exitsi,t = β20 + β21Emergencet + β22EmergenceTotalt + β23Densityi + β24Old65i+
β25Essentiali + β26Incidencei,t−1 + ϵE

i,t

cor(ϵW
i,t , ϵE

j,t) = σi,j ; t = 1, . . . , 17; i = 1, . . . , 50
(18)

To estimate this model using the spsur package, first, the two equations of model (18) can
be specified using the Formula package. In this case, only a single sequence of explanatory
variables is included on the right-hand side of the formula because these factors are the same
for both equations.

R> formula <- Within | Exits ~ Emergence + EmergenceTotal + Density +
+ Old65 + Essential + Incidence

This specification can be estimated for maximum likelihood with the function spsurml()

R> Tm <- 17
R> covid.sim <- spsurml(formula = formula, data = spain.covid, type = "sim",
+ Tm = Tm, control = list(trace = FALSE))
R> summary(covid.sim)

Call:
spsurml(formula = formula, data = spain.covid, type = "sim",

Tm = Tm, control = list(trace = FALSE))

Spatial SUR model type: sim

Equation 1
Estimate Std. Error t value Pr(>|t|)

(Intercept)_1 0.75220735 0.04712812 15.9609 < 2.2e-16 ***
Emergence_1 -0.24061703 0.00593652 -40.5316 < 2.2e-16 ***
EmergenceTotal_1 -0.05211290 0.00795879 -6.5478 7.731e-11 ***
Density_1 -0.04233591 0.01700889 -2.4890 0.012905 *
Old65_1 0.34461164 0.06352238 5.4250 6.636e-08 ***
Essential_1 0.00177808 0.00066556 2.6716 0.007623 **
Incidence_1 -0.03576960 0.00219800 -16.2737 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-squared: 0.8643

Equation 2
Estimate Std. Error t value Pr(>|t|)

(Intercept)_2 0.4349503 0.1135108 3.8318 0.0001319 ***
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Emergence_2 -0.3132801 0.0142985 -21.9101 < 2.2e-16 ***
EmergenceTotal_2 -0.0585423 0.0191692 -3.0540 0.0022937 **
Density_2 -0.0513039 0.0409669 -1.2523 0.2106254
Old65_2 0.6620623 0.1529974 4.3273 1.598e-05 ***
Essential_2 0.0035088 0.0016030 2.1888 0.0287457 *
Incidence_2 -0.0405096 0.0052940 -7.6519 3.312e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-squared: 0.6338

Variance-Covariance Matrix of inter-equation residuals:
0.004261810 0.007104235
0.007104235 0.024723421

Correlation Matrix of inter-equation residuals:
1.0000000 0.6920954
0.6920954 1.0000000

R-sq. pooled: 0.7505
Breusch-Pagan: 407.1 p-value: (1.53e-90)

The residuals of both equations are highly correlated (0.69), and the Breush-Pagan test
(407.1) confirms the adequacy of the SUR specification. All the variables, with the exception
of Density in the second equation, are significant. The signs of the two dummy variables,
(Emergence and EmergenceTotal) are negative, as expected. Population density (Density)
is significant and negative in the first equation and not significant in the second one. The
variable for older people, Old65, contrary to expectations, has a positive sign, which is difficult
to justify in this first model. The percentage of essential services (Essential) has a positive
impact on movement in the sense that greater economic activity promotes mobility. Finally,
a strong incidence of the disease in previous weeks, Incidence, has a negative sign, showing
that a high incidence of COVID-19 discourages individuals from moving.
Given the framework that supports our research and using Spanish provinces as observation
units, it is advisable to test for the presence of (omitted) spatial effects, especially spatial
autocorrelation. We consider a weighting matrix based on the queen criteria to test the
hypothesis of spatial independence in the residuals. The spdep package can be used at this
moment. Note that there are three provinces with no neighbors (in the Balearic and Canary
islands), so the option zero.policy = TRUE will be necessary, as appears in the code below.

R> listw <- spdep::nb2listw(listw, style = "W", zero.policy = TRUE)

The spsur function lmtestspsur() helps test the SUR-SIM model against any other specifi-
cation through the corresponding Lagrange multipliers. The results, as shown below, detect
a strong spatial structure that has been omitted in the SUR-SIM: all the LM tests, robust
and non-robust, reject their corresponding null hypotheses.

R> covid.lmtest <- lmtestspsur(formula = formula, data = spain.covid,
+ Tm = Tm, listw = listw, zero.policy = TRUE)
R> pr.covid.lmtest <- sapply(covid.lmtest, broom::tidy)
R> print(as.data.frame(t(pr.covid.lmtest)))
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Figure 6: Nesting structure for the spatial models. The model to the left of the arrow is
nested in the model to the right of the arrow.

statistic p.value parameter method
1 547.8406 1.091246e-119 2 LM-SUR-SLM
2 1187.091 1.684355e-258 2 LM-SUR-SEM
3 143.2781 7.718816e-32 2 LM*-SUR-SLM
4 782.5287 1.191412e-170 2 LM*-SUR-SEM
5 1330.369 8.661217e-287 4 LM-SUR-SARAR

5.2. Spatial SUR models. Selection strategy.
The next question is obvious: if the SUR-SIM model is not appropriate, which is the best
specification, from a spatial perspective, to model the relation between mobility and COVID-
19? Since the LM tests don’t give an a priori specification preference, we can estimate all
the possible spatial SUR models listed in Figure 6 and obtain several statistical measures –
LogLik, AIC, BIC (Bayesian information criterion) – to select the most suitable model.
The spsur user can estimate all the models by changing the type argument. For SUR-SLX,
SUR-SDM, SUR-SDEM, and SUR-GNM specifications, we consider only spatial lags for a
subset of the independent variables. The Durbin option can be used for this purpose.

R> formulaD <- ~ Essential + Incidence
R> covid.slx <- spsurml(formula = formula, data = spain.covid, type = "slx",
+ Tm = Tm, Durbin = formulaD, listw = listw, zero.policy = TRUE)
R> covid.slm <- spsurml(formula = formula, data = spain.covid, type = "slm",
+ Tm = Tm, listw = listw, zero.policy = TRUE)
R> covid.sem <- spsurml(formula = formula, data = spain.covid, type = "sem",
+ Tm = Tm, listw = listw, zero.policy = TRUE)
R> covid.sdm <- spsurml(formula = formula, data = spain.covid, type = "sdm",
+ Tm = Tm, Durbin = formulaD, listw = listw, zero.policy = TRUE)
R> covid.sdem <- spsurml(formula = formula, data = spain.covid, type = "sdem",
+ Tm = Tm, Durbin = formulaD, listw = listw, zero.policy = TRUE)
R> covid.sarar <- spsurml(formula = formula, data = spain.covid,
+ type = "sarar", Tm = Tm, listw = listw, zero.policy = TRUE)
R> covid.gnm <- spsurml(formula = formula, data = spain.covid, type = "gnm",
+ Tm = Tm, Durbin = formulaD, listw = listw, zero.policy = TRUE)

At this point, the anova method can be applied to objects of the ‘spsur’ class to get infor-
mation about the LogLik of each model and the information criteria AIC and BIC. Note that
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the lrtest = FALSE must be selected because the eight models are not nested.

R> anova(covid.sim, covid.slx,covid.slm, covid.sem,covid.sdm, covid.sdem,
+ covid.sarar, covid.gnm, lrtest = FALSE)

logLik df AIC BIC
model 1: sim 1758.1 17 -3482.2 -3504.4
model 2: slx 1851.0 21 -3660.1 -3687.5
model 3: slm 2076.9 19 -4115.8 -4140.6
model 4: sem 2437.8 19 -4837.6 -4862.5
model 5: sdm 2297.6 23 -4549.1 -4579.2
model 6: sdem 2487.0 23 -4927.9 -4958.0
model 7: sarar 2472.6 21 -4903.3 -4930.7
model 8: gnm 2491.8 25 -4933.7 -4966.3

The results show a clear decrease in both AIC and BIC for the most complex models. More-
over, models SUR-SDEM and SUR-GNM show the best performance in the information
criteria. In cross-section, the criteria of AIC and BIC have been used to select the correct
specification (Agiakloglou and Tsimpanos 2021). Given that both models are nested (see
Figure 6), we can use the LR test to choose between them. Again, the anova() method can
be used, but in this case with lrtest = TRUE to show the LR test of both nested models.

R> anova(covid.sdem, covid.gnm, lrtest = TRUE)

logLik df AIC BIC LRtest p.val
model 1: sdem 2487.0 23 -4927.9 -4958.0
model 2: gnm 2491.8 25 -4933.7 -4966.3 9.7482 0.007642

At this point, it is necessary to note that although in terms of likelihood, the SUR-GNM is
a higher model than SUR-SDEM, the SUR-GNM could lead to an overestimated model and
to problems identifying spatial dependence parameters (e.g. Burridge, Elhorst, and Zigova
2016; Vega and Elhorst 2015). Therefore, the alternative SUR-SDEM is finally selected. For
example, for spatial cross-section models Elhorst (2014, page 33) points out his preference
for SDEM versus GNM. In contrast, Vega and Elhorst (2015, page 341) claim that “only
the parameters of a spatial econometric model with all possible spatial interaction effects
based on arbitrary spatial weights matrices have not been proved to be free of this type
of identification problem”. Finally, we decide to follow the specific-to-general strategy and
consider the SUR-GNM as the final model.
The print() method showing the coefficients and p values of this specification follows.

R> print(covid.gnm)

coeff_1 pval_1 coeff_2 pval_2
(Intercept) 0.9016 0.000 0.4831 0.000
Emergence -0.2858 0.000 -0.3621 0.000
EmergenceTotal -0.0846 0.000 -0.0592 0.043
Density -0.1045 0.000 -0.0758 0.000
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Old65 0.0165 0.784 -0.3266 0.013
Essential 0.0005 0.222 0.0021 0.015
Incidence -0.0160 0.000 -0.0108 0.017
lag.Essential 0.0010 0.011 0.0025 0.000
lag.Incidence -0.0211 0.000 -0.0069 0.561
rho -0.0827 0.024 0.1086 0.016
lambda 0.8242 0.000 0.7964 0.000

The parameters of spatial error dependence λ1, λ2 take values close to 1 (the maximum value)
and are highly significant as a symptom of the strong spatial structure in the residuals of this
model, probably due to the omission of relevant variables.
On the other hand, the parameters of substantive spatial dependence ρ1, ρ2 take values
close to zero but are significant, with p values lower than 0.05. In the first equation, the ρ1
parameter has an opposite sign to λ1. This might be a symptom of the erroneous identification
of the spatial dependence parameters. However, the signs of ρ2 and λ2 are both positive in
the second equation. Again, the possibility of selecting the SUR-SDEM specification as an
alternative to SUR-GNM is on the table.

5.3. Testing linear restrictions on the parameters of the model
Several tests can be used to reduce the model specification and simplify the model. In the
first place, it is possible to test whether government restrictions have had the same impact on
reducing mobility when people stay inside and when they leave the province. The function
wald_betas() can be used to obtain the Wald test of coefficient equality. Following the
notation of (18), the null hypothesis is,

H0 : β11 = β21 vs HA : β11 ̸= β21

The code to test this hypothesis is (see ?spspur::wald_betas)

R> R <- matrix(0, ncol = Tm + 1, nrow = 1)
R> R[2] <- 1
R> R[11] <- -1
R> wald_betas(covid.gnm, R = R, b = 0)

Wald test on beta parameters

data: spain.covid
Wald test = 16.79, df = 1, p-value = 4.174e-05

The test for the second restriction is the following,

H0 : β12 = β22 vs HA : β12 ̸= β22 (19)

The code to test the hypothesis (19) is,

R> R <- matrix(0, ncol = Tm + 1 , nrow = 1)
R> R[3] <- 1
R> R[12] <- -1
R> wald_betas(covid.gnm, R = R, b = 0)
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Wald test on beta parameters

data: spain.covid
Wald test = 0.97674, df = 1, p-value = 0.323

Based on the previous results, the model can be estimated by imposing the same coefficient
for EmergenceTotal in both equations. The user can obtain the restricted model including
the arguments R = R and b = 0 in the spsurml() function,

R> R <- matrix(0, ncol = Tm + 1, nrow = 1)
R> R[3] <- 1
R> R[12] <- -1
R> covid.gnm.r <- spsur::spsurml(formula = formula, data = spain.covid,
+ type = "gnm", Tm = Tm, Durbin = formulaD, R = R, b = 0, listw = listw,
+ zero.policy = TRUE, control = list(trace = FALSE))
R> print(covid.gnm.r)

coeff_1 pval_1 coeff_2 pval_2
(Intercept) 0.9017 0.000 0.4850 0.000
Emergence -0.2857 0.000 -0.3588 0.000
EmergenceTotal -0.0847 0.000 -0.0847 0.000
Density -0.1046 0.000 -0.0760 0.000
Old65 0.0166 0.783 -0.3325 0.011
Essential 0.0005 0.225 0.0021 0.016
Incidence -0.0160 0.000 -0.0100 0.025
lag.Essential 0.0010 0.013 0.0025 0.000
lag.Incidence -0.0209 0.000 -0.0069 0.562
rho -0.0806 0.027 0.1062 0.018
lambda 0.8234 0.000 0.7963 0.000

In this model, the variable Old65 in the first equation, and lag.Incidence in the second
one can be removed because they are not significant. To obtain a new model excluding these
variables, we can rewrite the formula with different variables on the right-hand side of the
formula. The R vector must also be adapted to the new dimension of the model,

R> formula <- Within | Exits ~
+ Emergence + EmergenceTotal + Density + Essential + Incidence |
+ Emergence + EmergenceTotal + Density + Old65 + Essential + Incidence
R> formulaD <- ~ Essential + Incidence | Essential
R> R <- matrix(0, ncol = 16 , nrow = 1)
R> R[3] <- 1
R> R[11] <- -1
R> covid.gnm.rr <- spsurml(formula = formula, data = spain.covid,
+ type = "gnm", Tm = Tm, Durbin = formulaD, R = R, b = 0, listw = listw,
+ zero.policy = TRUE, control = list(trace = FALSE))
R> print(covid.gnm.rr)
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coeff_1 pval_1 coeff_2 pval_2
(Intercept) 0.9003 0.000 0.4749 0.000
Emergence -0.2857 0.000 -0.3585 0.000
EmergenceTotal -0.0849 0.000 -0.0849 0.000
Density -0.1046 0.000 -0.0744 0.000
Essential 0.0005 0.145 0.0022 0.006
Incidence -0.0158 0.000 -0.0098 0.027
lag.Essential 0.0010 0.013 0.0024 0.000
lag.Incidence -0.0199 0.000 NA NA
Old65 NA NA -0.3468 0.002
rho -0.0795 0.029 0.1097 0.014
lambda 0.8236 0.000 0.7959 0.000

Finally, continuing with the case of the restricted SUR-GNM model, we can test whether the
coefficients of spatial dependence are equal. The spsur user can use the function wald_deltas()
to test the hypothesis,

H0 : ρ1 = ρ2 vs HA : ρ1 ̸= ρ2

So, we would write

R> R2 <- matrix(c(1,0,-1,0), nrow = 1)
R> b2 <- matrix(0, ncol = 1)
R> wald_deltas(covid.gnm.rr, R = R2, b = b2)

Wald test on spatial delta parameters

data: spain.covid
Wald test = 289.76, df = 1, p-value < 2.2e-16

In the case of the hypothesis,

H0 : λ1 = λ2 vs HA : λ1 ̸= λ2

the wald_deltas() code is similar,

R> R2 <- matrix(c(0, 1, 0, -1), nrow = 1)
R> b2 <- matrix(0, ncol = 1)
R> wald_deltas(covid.gnm.rr, R = R2, b = b2)

Wald test on spatial delta parameters

data: spain.covid
Wald test = 105.15, df = 1, p-value < 2.2e-16

In both cases, the tests confirm that the coefficients of spatial dependence are different, and
therefore, the restricted SUR-GNM model is correctly specified.
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5.4. Impacts of increased COVID-19 incidence on mobility

To finish the application, it is necessary to interpret the way that changes in the explanatory
variables impact both mobility types (inter- and intra-provincial). These impacts can be
obtained from the restricted SUR-GNM model. The spsur package implements the function
impactspsur() to compute direct, indirect, and total impacts. The output of this function
is a list where each element shows the impacts of one equation,

R> impacts.covid.gnm.rr <- impactspsur(covid.gnm.rr, listw = listw, R = 1000)

The impacts of inter-provincial mobility are (standard errors, z statistics, and p values, are
not included here to save space, they can be obtained by changing zstats = TRUE),

R> summary(impacts.covid.gnm.rr[[1]], zstats = FALSE, short = TRUE)

Impact measures (mixed, exact):
Direct Indirect Total

Emergence_1 -0.2860967469 0.0214117578 -0.264684989
EmergenceTotal_1 -0.0849966310 0.0063612302 -0.078635401
Density_1 -0.1047278569 0.0078379343 -0.096889923
Essential_1 0.0005168015 0.0008922296 0.001409031
Incidence_1 -0.0155224499 -0.0175721755 -0.033094625
========================================================
Simulation results ( variance matrix):

We will focus the discussion only on the impact of incidence rates on mobility. Similar analysis
could be made for the rest of the variables. In the case of the first equation, an increase of
one percent in incidence has a direct impact on intra-provincial mobility, with a reduction
of 1.55%. This increase in incidence also has an indirect impact (overflow effect), and this
effect represents an average reduction of 1.65%. Both direct and indirect impacts involve a
total impact of 3.20% on intra-provincial mobility. The summary of the impacts of the second
equation for inter-provincial mobility can be obtained with,

R> summary(impacts.covid.gnm.rr[[2]], zstats = FALSE, short = TRUE)

Impact measures (mixed, exact):
Direct Indirect Total

Emergence_2 -0.359389128 -0.043270624 -0.402659752
EmergenceTotal_2 -0.085105845 -0.010246785 -0.095352629
Density_2 -0.074596508 -0.008981455 -0.083577963
Old65_2 -0.347684325 -0.041861360 -0.389545685
Essential_2 0.002301866 0.002936126 0.005237992
Incidence_2 -0.009785371 -0.001178163 -0.010963534
========================================================
Simulation results ( variance matrix):

In this case, the impact of a one-percent increase in the COVID-19 incidence rate on intra-
provincial mobility is lower than the previous case for inter-provincial mobility. The direct
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impact has a reduction on average of 0.98% and the indirect impact, an average of 0.11%.
Therefore, the total impact of an increase of one unit in the incidence rate on inter-provincial
mobility is 1.09%.

6. Conclusions and directions for future research
This article introduces a new R package, spsur, to estimate and make inferences on spa-
tial SUR models. Our intention is to supply researchers interested in spatial econometric
methodologies with free, user-friendly software to estimate these types of specifications. sp-
sur completes the ecosystem of the R packages, spdep, sphet, spse, spatialreg, and splm,
oriented to deal with spatial econometric specifications.
The package consists of 10 inter-related functions. lmtestspsur() tests for the existence of
spatial effects in a specified model without spatial mechanisms; the so-called SUR-SIM model.
Assuming that some of these tests are statistically significant, three functions, spsurml(),
spsur3sls(), and spsurtime() allow the estimation, by ML or 3SLS based on IV, of the
preferred spatial specification. The usual methods of extracting information from estimated
models, such as coef(), fitted(), logLik(), plot(), print(), residuals(), and vcov(),
are also included. Four additional functions, wald_betas(), wald_deltas(), lr_betas(),
and anova() can be used to improve the specification of the model if necessary. The function
impactspsur() is useful to obtain the spatial multipliers of the variables in the estimated
model, and it comes with a collection of measures of statistical significance. Finally, the
function dgp_sur() is intended to illustrate particular features of spatial SUR specifications
as an aid for teaching activities or to implement the results of the Monte Carlo in a more
general research project.
Of course, this version of the package should be improved in the future. Included in a list
of actions already on the coauthors’ table are: (i) the extension of 3SLS to treat endogenous
regressors other than the spatial lag of the explained variable and the use of external instru-
ments; (ii) new tests to improve specification; e.g., testing for the instability of the spatial
dependence coefficients between equations; (iii) more efficient treatment of the unobserved
effects, allowing their estimation, expanding the options to demean the data, (iv) the in-
troduction of time dynamics in a strictly stationary framework; and (v) the consideration
of more general SUR models with different types of spatial effects in each equation. Some
of this work is already underway and a development version is available from the GitHub
repository, including a new function named spsurgs3sls() to estimate several spatial SUR
models using the GS3SLS. This function is a wrapper of spreg() from the sphet package,
and it implements the GS3SLS estimation method in a SUR framework following the steps
explained in Kelejian and Piras (2017, pages 304–305). This function also allows the inclusion
of additional endogenous regressors other than the spatial lag of the explained variable.
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