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Abstract

We introduce a Python library, called jumpdiff, which includes all necessary func-
tions to assess jump-diffusion processes. This library includes functions which compute
a set of non-parametric estimators of all contributions composing a jump-diffusion pro-
cess, namely the drift, the diffusion, and the stochastic jump strengths. Having a set of
measurements from a jump-diffusion process, jumpdiff is able to retrieve the evolution
equation producing data series statistically equivalent to the series of measurements. The
back-end calculations are based on second-order corrections of the conditional moments
expressed from the series of Kramers-Moyal coefficients. Additionally, the library is also
able to test if stochastic jump contributions are present in the dynamics underlying a set
of measurements. Finally, we introduce a simple iterative method for deriving second-
order corrections of any Kramers-Moyal coefficient.

Keywords: stochastic differential equations, jump-diffusion processes, Kramers-Moyal expan-
sion, Kramers-Moyal coefficients, Python.

1. Introduction
Models of complex systems based on stochastic processes are ubiquitous across several research
fields. However, the complexity of the stochastic contributions lays often beyond pure diffusive
processes, such as Brownian motion and random walks, and might include contributions from
discontinuous jumps (Pascucci 2011). Jump-diffusion processes incorporate both diffusive
contributions as well as stochastic jumps, making them a natural extension of pure diffusive
processes (Aït-Sahalia 2004). These processes are well suited to describe data which exhibits
contributions from both continuous and discontinuous stochastic noise. However, there is a
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lack of reliable computational libraries oriented at estimating all necessary parameters that
quantitatively describe jump-diffusion processes. The problem of deriving jump-diffusion
equations has been scarcely addressed (Aït-Sahalia and Lo 1998; Friedrich, Peinke, Sahimi,
and Tabar 2011; Anvari, Tabar, Peinke, and Lehnertz 2016b). Moreover, proper numerical
routines which cover all different kinds of parameteric contributions are still lacking. The main
aim of this paper is to introduce and describe jumpdiff, a Python (Van Rossum et al. 2011)
library, which is able to derive the evolution equation governing specific series of measurements
from a jump-diffusion process without any a priori knowledge of the process.
In recent years, with the goal of going beyond the narrow scope of Gaussian processes, ex-
tensions of classical stochastic processes have included jumps, both with the practical aim of
better describing the natural world, or because of the riddling mathematical hardship and the
interesting results obtained. As a direct extension of the classical Langevin equation, jump-
diffusion processes came into focus via the Kramers-Moyal equation (Anvari et al. 2016b;
Rydin Gorjão, Heysel, Lehnertz, and Tabar 2019). This family of processes embodies both
a conventional Gaussian (diffusion) contribution as well as Poissonian jump contributions.
From a time series analysis point-of-view, jump-diffusion processes are particularly hard to
analyze and have required a revised interpretation under the classic Kramers-Moyal expan-
sion (Kramers 1940; Moyal 1949). This hardship is given by the simultaneous presence of
jumps and diffusion and required a revised interpretation under the classic Kramers-Moyal
expansion, particularly when the goal is to extract separately the continuous and the dis-
continuous contributions from a data set. Jump-diffusion processes have found application
in mathematical finance, particularly option pricing (Duffie, Pan, and Singleton 2000; An-
dersen, Benzoni, and Lund 2002; Johannes 2004; Aït-Sahalia and Jacod 2009), electricity
markets (Cartea and Figueroa 2005), early-warning signal identification (Dakos et al. 2012),
soil moisture dynamics (Daly and Porporato 2006), solar radiation and EEG recordings (An-
vari et al. 2016a,b; Lehnertz, Zabawa, and Tabar 2018), and neural activity (Giraudo and
Sacerdote 1997), amongst others.
In this paper we introduce the Python library jumpdiff, oriented towards non-parametric es-
timation of jump-diffusion processes via the Kramers-Moyal equation, which we will discuss
shortly. While being a new library, it incorporates some of the recent theoretical and nu-
merical achievements in stochastic methods (Anvari et al. 2016b; Rydin Gorjão et al. 2019;
Tabar 2019). For example, Langevin processes have been implemented in an R (R Core Team
2022) package and an Python library, cf. Rinn, Lind, Wächter, and Peinke (2016) and Rydin
Gorjão and Meirinhos (2019), respectively, enabling to model time series with drift and dif-
fusion strengths. These packages can similarly non-parametrically estimate the strength of
drift, diffusion, and other elements in data, but do not close the gap of directly evaluating
and extracting the parameters of the analyzed time series. Other packages, such as Julia’s
(Bezanson, Edelman, Karpinski, and Shah 2017) DiffEqJump.jl (Rackauckas and Nie 2017,
see https://github.com/SciML/DiffEqJump.jl), MATLAB’s (The MathWorks Inc. 2021)
PROJ_Option_Pricing_Matlab (Kirkby, Nguyen, Cui, Zhang, Deng, and Aguilar 2021), or
C++’s DerivativesPricing (Gosain 2020) focus primarily on generating time series. Library
jumpdiff allows not only to generate a series of values from a synthetic time series but also to
recover all terms composing the evolution equation governing empirical sets of measurements
from real jump-diffusion processes.
For the implementation of the jumpdiff library, we address two aspects in this paper. First, at
the theoretical level, we introduce a set of higher-order finite-time corrections to the Kramers-
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Moyal equation, which are particularly relevant for non-parametric estimation of jumps, and
in the presence of measurement noise (Böttcher, Peinke, Kleinhans, Friedrich, Lind, and Haase
2006; Lehle 2011, 2013; Scholz et al. 2017). Second, at the numerical level, we implement
a kernel density Nadaraya-Watson estimator (Nadaraya 1964; Watson 1964) to calculate the
Kramers-Moyal coefficients, employing the aforementioned developed finite-time higher-order
corrections in the library, and design a simple method to extract the jump contributions.
Library jumpdiff enables the extraction of the parameters of the system in a non-parametric
manner, as well as the distinction between pure diffusions and jump-diffusions. The library
is suited for the family of Poissonian jump processes and represents a step forward towards
more complex stochastic processes, namely Lévy-like processes (Siegert and Friedrich 2001;
Lubashevsky, Friedrich, and Heuer 2009; Zaburdaev, Denisov, and Klafter 2015; Zan, Xu,
Kurths, Chechkin, and Metzler 2020).
The paper is organized as follows: In Section 2 we introduce the main theoretical background
behind jump-diffusion processes and outline the numerical approximation of Kramers-Moyal
coefficients included in the jumpdiff library. In Section 3 a full description of all functions
composing the library is presented, as well as a simple how-to-use guide. Section 4 concludes
the paper, putting some aspects in perspective. Readers familiar with the theory and in-
terested in the implementation and usage of the library jumpdiff only may directly go to
Section 3. A more descriptive and hands-on explanation can be found in the documentation
of the library at https://jumpdiff.readthedocs.io/, and the repository of the library is
hosted at https://github.com/LRydin/jumpdiff.

2. Evolution and inference of jump-diffusion processes
In the following we introduce the stochastic differential equation describing a jump-diffusion
process. We describe it together with its counterpart, the Kramers-Moyal equation, a partial
differential equation that generalizes Langevin processes and can include discontinuous ele-
ments. Then we briefly explain how the terms, so-called coefficients, in the Kramers-Moyal
equation link to the parameters of the jump-diffusion process. This is central for two reasons:
First, the non-parametric technique employed in jumpdiff is based on the Kramers-Moyal
equation. Second, we present a set of corrective terms to the estimation of the parameters via
the Kramers-Moyal equation, which we include in jumpdiff to improve the estimation quality
of the parameters.

2.1. Theoretical aspects behind jump-diffusion processes
In this section we consider the stochastic evolution of a time-continuous Markov process,
X(t) ∈ R, that is governed by three independent contributions: one drift strength, one
diffusive strength, and one Poissonian (jump) strength. The evolution equation of such a
variable reads:

dX(t) = a(x, t) dt + b(x, t) dW (t) + ξdJ(t), (1)
where a(x, t) is the drift strength, b(x, t) is the diffusion or volatility, W (t) is a Wiener process,
and J(t) is a time-homogeneous Poisson jump process with rate λ(x, t) and an amplitude ξ,
which is normally distributed as ξ ∼ N (0, σ2

ξ ).
Jump-diffusion processes governed by (1) are a generalization of diffusion processes, since
one recovers the latter when σξ = 0 (similarly λ(x, t) = 0). Below, we make use of the
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Kramers-Moyal expansion to connect the orders of the expansion with each parameter of the
jump-diffusion process, thus enabling their estimation.
In order to link (1) to the evolution of the probability p(x, t+τ |x′, t), we employ the Kramers-
Moyal equation

∂

∂τ
p(x, t+τ |x′, t) = LKMp(x, t+τ |x′, t), (2)

where LKM denotes the Kramers-Moyal operator defined as (Risken 1996)

LKM =
∞∑

m=1

(
− ∂

∂x

)m

Dm(x). (3)

Functions Dm(x), called Kramers-Moyal coefficients, relate to the m-order conditional mo-
ment Mm(x, τ), given by

Mm(x, t, τ) =
∫ ∞

−∞
(x′ − x)mp(x′, t+τ |x, t) dx′. (4)

For simplicity we drop the t-dependency focusing on stationary processes. The Kramers-
Moyal coefficients Dm(x) are thus defined for any integer m as

Dm(x) = 1
m! lim

τ→0

Mm(x, τ)
τ

. (5)

The jump-diffusion process defined in (1) is linked to a particular case of the Kramers-Moyal
expansion defined in (2) and (3), namely

∂

∂τ
p(x, t+τ |x′, t) =

[
−a(x, t) ∂

∂x
+
(
b(x, t)2 + λ(x, t)σξ

) ∂2

∂x2 +
∞∑

k=2
σk

ξ λ
∂2k

∂x2k

]
p(x, t+τ |x′, t) .

(6)
With this, we can invert the problem and ask instead the question: If we have a single
realization of a stochastic process X(t), can we use the estimation of the Kramers-Moyal
coefficients to uncover the parameters of the analyzed realization? The answer for jump-
diffusion processes is straightforward, and the parameters defining (1) are given by:

a(x, t) = D1(x, t), (7a)
b2(x, t) = D2(x, t) − λ(x, t)σ2

ξ , (7b)

σ2
ξ = D6(x, t)

5D4(x, t) , (7c)

λ(x, t) = D4(x, t)
3σ4

ξ

. (7d)

Notice the relation of the parameters of the jump elements in (1) to the Kramers-Moyal
coefficients in (5) is given by higher-order terms D2m = (2m!) σm

ξ λ, for m ≥ 3 (Anvari et al.
2016b).
With this at hand, we can equate that estimating the drift strength a(x), the diffusion strength
b(x), and the jump element ξ, translates to estimating the Kramers-Moyal coefficients. The
job now is to provide an accurate estimation and to perform the inversion from Kramers-Moyal
coefficients to the aforementioned parameters, which is the task of library jumpdiff.
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It is important to notice that for purely diffusive processes, (2) reduces to the Fokker-Planck-
Kolmogorov equation (sometimes denoted solely Fokker-Planck or Smoluchowski equation;
Risken 1996), and the estimates of the two first Kramers-Moyal coefficients are sufficient
to fully describe a diffusive process. In the case of jump-diffusion processes, higher-order
Kramers-Moyal coefficients need to be taken into account as they are non-vanishing. For
instance, for the jump-diffusion processes in (1), one can invert the problem from Kramers-
Moyal coefficients to the stochastic parameters knowing the first six Kramers-Moyal coeffi-
cients (Anvari et al. 2016b).
Moreover, as we shall detail in the subsequent section, up to now, higher-order Kramers-
Moyal coefficients were estimated from first-order estimations of the conditional moments.
Here, we derive the second-order approximations, which imply a more cumbersome analytical
approach to the Kramers-Moyal equation 2. These second-order approximations are crucial
to improve the estimation of jump-diffusion processes.

2.2. Numerical computation of the Kramers-Moyal coefficients

The numerical computation of the Kramers-Moyal coefficients is based on the numerical
computation of conditional moments Mm(x, t), which can be estimated directly from a set of
measurements X(t). Indeed, the instantaneous time rate of the moment of order m for the
process X(t), conditioned to a specific value x, is given by

Mm(x, τ) = ⟨(X(t+τ) − X(t))m|X(t)=x⟩ , (8)

with ⟨X(t)⟩ denoting the average of X(t), for all measured t.
The conditional moments can be expressed as sums of products of Kramers-Moyal coefficients,
derived from the formal solution of (2), namely

p(x, t+τ |x′, t) = exp (τLKM)δ(x − x′) =
∞∑

k=0

(τLKM)k

k! δ(x − x′) . (9)

Depending on the number of terms used from the sum in (9) one obtains different orders of
approximation of the Kramers-Moyal operator. Here we will consider first- and second-order
approximations.

First-order approximation

The first-order approximation is given by

exp (τLKM) ∼ 1 + τLKM , (10)

where expressing the Kramers-Moyal coefficients from (5), via the moments in (4), yields

Dm(x) = 1
m! lim

τ→0

Mm(x, τ)
τ

. (11)

The full derivation is given in Appendix A. The derivation is not cumbersome and well known
to the community1, thus of little interest to show here.

1We point the reader to a textbook on stochastic processes, e.g., Risken (1996); Gardiner (2009); Tabar
(2019).
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Second-order approximation

Higher-order approximations of the conditional moment are especially relevant when handling
low-sampled data. The second-order approximation of the conditional moments takes in one
additional term from the sum in (9), namely

exp (τLKM) ∼ 1 + τLKM + τ2

2 LKMLKM, (12)

where naturally the first-order terms ∼ τ are present at the first-order of the approximation.
The derivation, found in full detail in Appendix A, involves a set of relations between the
moments Mm(x, τ) of a given order m and the Kramers-Moyal coefficients Dn(x) of all orders
0 < n ≤ m. Inverting these relations with respect to the Kramers-Moyal coefficients yields

Dm(x) = 1
m! lim

τ→0

Fm(x, τ)
τ

, (13)

where Fm(x, τ) denotes the second-order approximation, in comparison with the first-order
approximation given above in (11). The second-order approximations Fm(x, τ) are given by
(dependencies removed for clarity)

F1 = M1, (14a)
F2 = M2 − M2

1 , (14b)
F3 = M3 − 3M1M2 + 3M3

1 , (14c)
F4 = M4 − 4M1M3 + 18M2

1 M2 − 3M2
2 − 15M4

1 , (14d)
F5 = M5 − 5M1M4 + 30M2

1 M3 − 150M3
1 M2 + 45M1M2

2 − 10M2M3 + 105M5
1 , (14e)

F6 = M6 − 6M1M5 + 45M2
1 M4 − 300M3

1 M3 + 1575M4
1 M2 − 675M2

1 M2
2

+ 180M1M2M3 + 45M3
2 − 15M2M4 − 10M2

3 − 945M6
1 . (14f)

Here naturally the first term on each right-hand side is the first-order approximation. This
second-order approximation neglects terms including derivatives of the Kramers-Moyal co-
efficients, which enables one to express the nth Kramers-Moyal coefficient as a function of
conditional moments up to order n − 1. In this way, we provide a general formula for im-
proving the estimates of Kramers-Moyal coefficient, taken as linear approximations of the
corresponding conditional moment. The full derivation is given in Appendix A.

3. Implementation of the functions in library jumpdiff
In this section we introduce jumpdiff and some of its main functions and utilities. The simplest
way to install jumpdiff is via the Python Package Index (PyPI), simply using

$ pip install jumpdiff

or with the readers’ favorite Python package installation program. The library has three main
functionalities for addressing jump-diffusion processes, namely:

• Generate sample trajectories of jump-diffusion processes.
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Function Parameters Outputs Internal
libraries

External
libraries

jd_process() time, delta_t, drift a,
diffusion b, jump ampli-
tude xi, jump rate lamb

timeseries X None numpy

moments() timeseries, bins bins,
order power, time lag
lag, correction

space edges,
moments

binning,
kernels

numpy,
scipy

jump_amplitude() moments estimator xi_est None numpy

jump_rate() moments, jump ampli-
tude xi_est

estimator
lamb_est

None numpy

q_ratio() time lag lag,
timeseries

time lag lag, ra-
tio ratio

moments numpy

corrections() moments m, order power corrected moments None numpy

m_formula() order power symbolic term None sympy

f_formula() order power symbolic term None sympy

Table 1: Primary functions (top) and helping functions (bottom) implemented in the jumpdiff
library.

• Extract all parameters for a single trajectory of a jump-diffusion process.

• Evaluate if a trajectory is a purely diffusion process or a jump-diffusion process.

We note here that the user interested in evaluating their own data should start with the last
mentioned step, i.e., to firstly evaluate if their data is described by a jump-diffusion process.
In this section, we describe in detail each one of these functionalities, explaining how we
employ the most important functions in jumpdiff to estimate the parameters of a jump-
diffusion process. All functions included in library jumpdiff are listed in Table 1.
The library jumpdiff requires the staple Python libraries numpy (Van der Walt, Colbert, and
Varoquaux 2011), scipy (Virtanen et al. 2020), and sympy (Meurer et al. 2017), and a Python
version ≥ 3.4.

3.1. From equation to data: Generating sample trajectories

To start off, import the library into a working Python environment, using

>>> import jumpdiff as jd

Subsequently, all functions of jumpdiff can be access via jd. To generate a sample trajectory of
a jump-diffusion process, call the function jd_process(). We will generate a single trajectory
of the process, and subsequently employ the non-parametric estimators in jumpdiff to retrieve
the parameters of the jump-diffusion process generated, described in the following subsections.



8 jumpdiff: Jump-Diffusion Processes in Python

0.0 0.2 0.4 0.6 0.8 1.0

N 1e7

7.5

5.0

2.5

0.0

2.5

5.0

7.5

X(
t)

450 500 550 600 650

N +8.735e6

5

6

7

8

X(
t)

Figure 1: Illustration of a jump-diffusion process using function jd_process() which imple-
ments (15). (Left) the full extent of (15) with N = 107. (Right) an exemplary jump in the
integrated process. Here θ = 0.5, σ = 0.75, σ2

ξ = 1.5, and λ = 1.75.

Let us take a simple example and generate a trajectory of an Ornstein-Uhlenbeck process
with Poissonian jumps, given by equation

dX = −θx dt + σ dW (t) + ξ dJ(t) . (15)

Naturally we also need to specify the values of θ, the drift strength, σ, the diffusion strength,
and σξ and λ, the standard deviation of ξ and the jump rate of J(t). We can use jd_process()
for integrating a jump-diffusion process, with a number of points N = 1×107 (t = 104) and
a time-step of ∆t = 0.001.
This is implemented in the following way: First, specify the integration time and time sam-
pling:

>>> time = 10000
>>> delta_t = 0.001

Then define the drift function a(x) and the diffusion function b(x):

>>> def a(x):
... return -0.5*x
>>> def b(x):
... return 0.75

Define jump amplitude and rate

>>> xi = 1.5
>>> lamb = 1.75

and generate the jump-diffusion process:

>>> X = jd.jd_process(time, delta_t, a, b, xi, lamb)

In Figure 1 we plot the the trajectory generated with this code alongside with a zoomed
region where a jump can be distinctly seen.
While in this example an Ornstein-Uhlenbeck process, i.e., a linear drift strength and con-
stant diffusion strength, is chosen with a Poissonian jump strength, other higher polynomial
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Figure 2: Kramers-Moyal coefficients Dn(x) computed with first-order approximations
(dashed lines) and second-order approximations (solid lines). The data set used for comput-
ing Kramers-Moyal coefficients was generated by integrating (15) with the same parameter
values as in Figure 1. Three sampling rates are consider: (left) every integrated value, sf = 1,
(middle) sf = 0.05, (right) sf = 0.01. The dotted line indicates the theoretical result.

functions can be chosen for the different contributions by adjusting the drift and diffusion
functions.

3.2. From data to the jump-diffusion equation

Having described how to generate series of values from a jump-diffusion equation, using the
function jd_process(), we now consider the inverse problem: Starting from that series of
values, derive the parameters of the jump-diffusion equation. To that end, we extract the
Kramers-Moyal coefficients Dm(x) of this exact simulated process X, such that we can employ
the non-parametric estimation method and compare if the parameters extracted match the
parameters chosen.
We now employ the function moments() on the generated time series X to extract the Kramers-
Moyal coefficients. This we achieve using: First, we extract the Kramers-Moyal coefficients
and state-space without second-order corrections:

>>> edge, simple_mom = jd.moments(timeseries=X, correction=False)

and then with second-order corrections:

>>> edge, mom = jd.moments(timeseries=X, correction=True)

In the case above we include the estimation of the Kramers-Moyal coefficients both with
and without the corrective terms we designed. Figure 2 shows the derived results for the
inverse problem, using first-order (dashed lines) and second-order corrections (solid lines).
The theoretical values are indicated by the dotted lines.
In order to showcase the importance of the corrective terms (correction = True), we show,
for the generated process X, the estimation of the Kramers-Moyal coefficients while down-
sampling data. We consider different sampling rates, namely sf = 1, 0.05, and 0.01, i.e.,
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taking the full data, only every 20th datapoint, and only every 100th datapoint. As can be
seen in Figure 2, the second-order corrective term improves the estimate of all Kramers-Moyal
coefficients Dm(x), m ≥ 2, especially in the cases with lowest sampling rates. We can see
in Figure 2 that the function moments() has estimated up to six Kramers-Moyal coefficients
Dn(x). We will now turn – after a short paragraph – to two specific functions in jumpdiff
that allow us to directly extract the jump amplitude σ2

ξ and the jump rate λ, as these are the
contributions from the discontinuous part to the process.
Before we turn to the estimation of the jump elements, note that technically, the func-
tion moments() performs a kernel-density estimation employing a Nadaraya-Watson esti-
mator (Nadaraya 1964; Watson 1964) of the different orders of the moments. By default it
employs an Epanechnikov kernel and uses a convolution method to perform the kernel-density
estimation of the moments. Four other kernels are also available, namely Gaussian, uniform,
triangular, and quartic kernels. Moreover, the function moments() includes the input param-
eter lag, which is a time-lag that enables one to estimate the conditional moments at different
time-lags τ . If left unspecified, it assumes the shortest increment of the time series, i.e., the
time series sampling rate τ = 1/sf . This is especially suited for evaluating the conditional
moments in the limiting case of τ → 0, since numerical accuracy is bounded by the sampling
rate sf . This evaluation is done by plotting a few time-lags, e.g., τ = 1/sf , . . . , 10/sf , and
extrapolate the limit τ → 0 (Böttcher et al. 2006; Lind, Haase, Böttcher, Peinke, Kleinhans,
and Friedrich 2010).
In Figure 2 we can see the estimation of the Kramers-Moyal coefficients, with first- and second-
order corrections. The results reproduce well the theoretical values (dotted lines), allowing us
to extract the parameters of our process via (7). Retrieving the drift and diffusion functions,
a(x, t) and b(x, t) respectively, are known problems, which imply studying the first and second
Kramers-Moyal coefficients.
From (7) one recovers also the jump amplitude σ2

ξ and the jump rate λ of the time series,
by considering higher-order conditional moments. In jumpdiff, functions jump_rate() and
jump_amplitude() implement (7d) and (7c), respectively. To estimate the jump amplitude
σ2

ξ and the jump rate λ of the time series, use

>>> xi_est = jd.jump_amplitude(moments=simple_mom)

to estimate the jump amplitude and

>>> lamb_est = jd.jump_rate(moments=simple_mom)

to estimate the jump rate. This yields a numerical estimation of each of the parameters. The
user can as well utilize mom instead of simple_mom.
Here we leave an important note for the user, regarding the impact of a low number of data
points in a time series. The estimation of the jump amplitude σ2

ξ and the jump rate λ is
strongly dependent on the number of data points in each time series. In Figure 3 we numer-
ically integrate (15), as before, and employ the estimators of the jump amplitude and jump
rate, i.e., functions jump_rate() and jump_amplitude(), for a time series with increasing
number of data points N . The estimators converge to the theoretical values (dashed line) with
increasing accuracy with the average number on jumps ⟨λ⟩ in the time series. It is central
to understand that short time series cause an under-estimation of σ2

ξ and simultaneously an
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a(x) b(x) σ2
ξ λ

Theoretical −0.5x 0.75 1.5 1.75
Estimated −0.496x 0.760 1.524 1.802

Table 2: Parameter estimation for the process (15) in Figure 1, generated with jd_process(),
with indicated parameters.
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Figure 3: Estimation of the jump amplitude σ̂2
ξ (left) and the jump rate λ̂ (right) from 20

numerically simulated jump-diffusion processes with increasing time lengths N . The data was
generated by integrating (15), with the σ2

ξ = 1.5 and λ = 1.75 (dashed lines), and each term
was estimated using the functions jump_amplitude() and jump_rate(). The estimates are
shown as a function of the number of points N ∈ [1×105, 5 × 107], always with a time-step
∆t = 0.001. Top axis denotes the average number of jumps ⟨λ⟩ in the respective numerically
integrated time series. Each point is an average over 10 iterations. Standard deviations
depicted in the shaded areas.

over-estimation of λ. This also springboard us to the next important question: How can we
know our time series is a jump-diffusion?
Before we move on, we can compare the theoretical values used in (15) and estimated param-
eters via fitting the slopes of D1(x) and the constant values of D2(x) in Figure 2, as well as
the used functions jump_rate() and jump_amplitude(). The values can be found in Table 2
and agree with our constructed model. For a general method to recover all Kramers-Moyal
coefficients, for stochastic processes of any dimension, see Rydin Gorjão and Meirinhos (2019).

3.3. Distinguishing between purely diffusive and jump-diffusion processes

As mentioned at the start of this section, when analyzing real measurements or observational
data, the following steps are crucial to understand whether the data at hand fall into the
category of a jump-diffusion process or not.
The presence of a discontinuous term in (1) is the fundamental addition to a general diffusion
process. However, assuming such Ansatz for purely diffusive process may lead to spurious
jump terms. To avoid this, one fundamental question to ask is whether we are in the presence
of a pure diffusion or a jump-diffusion process, in order to choose ab initio the proper Ansatz.
To differentiate diffusive from jump-diffusion processes, Lehnertz et al. (2018) introduced a
simple criterion, which is based on the scaling of the ratio of the fourth- and sixth-order
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Figure 4: Illustration of the Q-ratio, defined in (16), for the process in (1) with a(x) = −x
and b(x) = 1 and varying jump amplitudes σ2

ξ ∈ [0, 1] with a fixed jump rate λ = 0.1. The
equation was numerically integrated with t = 1000 and time step 0.001. Each line is an
average of 20 iterations.

conditional moments with the scale τ , denoted the Q-ratio, given by

Q(x, τ) = M6(x, τ)
5M4(x, τ) . (16)

If the process is purely diffusive Q(x, τ) = τ(b(x))2 (linear function in τ), whereas if the
process has a jump term, Q(x, τ) = σ2

ξ (constant, independent of τ). This criterion can
be employed directly for any time series and is implemented as the function q_ratio() in
jumpdiff.
To analyze the scaling of the Q-ratio, follow the recipe: First import numpy for generating
logarithmic spaced arrays and matplotlib for plotting in double logarithmic scale

>>> import numpy as np
>>> import matplotlib.pyplot as plt

Then take a sequence of integer lags

>>> lag = np.logspace(0, 4, 25, dtype=int)

and recover the Q-ratio of the time series X using

>>> lag, Q = jd.q_ratio(lag, X)

before plotting in a log-log scale

>>> plt.loglog(lag, Q)

Figure 4 showcases how the Q-ratio changes between purely diffusive to jump-diffusion pro-
cesses. In this manner, we consider the same process we have introduced in (15), but we will
vary the the amplitude of the jumps σ2

ξ ∈ [0, 1]. Figure 4 illustrates the implementation of
the function q_ratio(), plotting it for several time-lags τ in a log-log plot. If there is a linear
dependence on τ the time series X(t) is a pure diffusive process, whereas if the plot is ap-
proximately flat, showing a constant Q-ratio the time series should have a jump term. Notice
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that increasing the jump rate from ξ = 0 (pure diffusion) to ξ = b(x) = 1 (same amplitude
as diffusion strength), the Q-ratio changes from linearly depending on τ to a constant. The
different relation between the Q-ratio and τ should help the user distinguish which type of
data they are analyzing, and thus help assert whether their data follows a purely diffusive
process or is better described by a jump-diffusion.

4. Discussion and conclusions
Jump-diffusion processes are stochastic models able to describe processes riddled with jumps.
Alongside with regular diffusion processes, their elegance lies in the possibility of estimating,
non-parametrically, the parameters via the Kramers-Moyal equation. Access to higher-order
moments of the Kramers-Moyal equation is computationally feasible, and thus permits a one-
to-one correspondence between model parameters and the estimators (cf. (7)). These, on
the other hand, are hampered by the scarcity of jumps. Where the diffusive strengths are
ubiquitous, the jumps take place sparsely in time. To this effect, the set of second-order
corrections to the Kramers-Moyal operator implemented here are crucial in improving the
estimation of the parameters of the model.
The use of jump-diffusion models as descriptives of processes beyond diffusions have seen
application across different research fields. The elegance of these processes lies not only in
their general applicability, but also in the ease of using non-parametric parameter estimation.
In this sense, the presented second-order corrections are of substantial relevance, especially
taking into account that jumps occur sparsely. Here we present a two-fold project, developing
second-order corrections of the Kramers-Moyal expansion of jump-diffusion processes and de-
signing an easy-to-employ Python library. jumpdiff requires minimal mathematical knowledge
to be used, and thus can find application even in non-mathematically oriented research fields.
The limitations and finite scope of the library here described motivate further development,
namely towards more general jump types, having amplitudes and rates which are time (and
space) dependent. Moreover, beyond Poissonian jumps, new libraries can be developed, for
instance to approach Lévy-like processes.
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A. Second-order corrections of Kramers-Moyal coefficients

For the first-order approximation of conditional moments Mn, we substitute in (4) the first-
order approximation of the exponential operator, namely

exp (τLKM) ∼ 1 + τLKM,

yielding

Mn(x′, τ) ∼
∫ ∞

−∞
(x − x′)n(1 + τLKM)δ(x − x′) dx

=
∫ ∞

−∞
(x − x′)nδ(x − x′) dx + τ

∫ ∞

−∞
(x − x′)n

[ ∞∑
m=1

(
− d

dx

)m

Dm(x)
]

δ(x − x′) dx

= 0 + τ
∞∑

m=1
(−1)mDm(x′)

∫ ∞

−∞
(x − x′)n

( d
dx

)m

δ(x − x′) dx. (17)

The last integral is given by:

I1 =
∫ ∞

−∞
(x − x′)n

( d
dx

)m

δ(x − x′) dx

=
[
(x − x′)n

( d
dx

)m−1
]∞

−∞
−
∫ ∞

−∞
n(x − x′)n−1

( d
dx

)m−1
δ(x − x′) dx

= 0 −
∫ ∞

−∞
n(x − x′)n−1

( d
dx

)m−1
δ(x − x′) dx

=


(−1)n(n!)

∫ ∞

−∞

( d
dx

)m−n

δ(x − x′) dx ⇐ m ≥ n

(−1)m n!
(n−m−1)!

∫ ∞

−∞
(x − x′)n−m−1δ(x − x′) dx ⇐ m < n

= (−1)n(n!)δnm

yielding

Mn(x′, τ) ∼ (n!)τDn(x′). (18)

This approximation is the one used in Anvari et al. (2016b).
For the second-order approximation of conditional moments Mn, we substitute in (4) the
second-order approximation of the exponential operator, namely

exp (τLKM) ∼ 1 + τLKM + τ2

2 LKMLKM, (19)
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yielding

Mn(x′, τ) ∼
∫ ∞

−∞
(x − x′)n

(
1 + τLKM + τ2

2 LKMLKM

)
δ(x − x′) dx

= (n!)τDn(x′) + τ2

2

∫ ∞

−∞
(x − x′)nLKMLKMδ(x − x′) dx

= (n!)τDn(x′) + τ2

2

∫ ∞

−∞
(x − x′)n

 ∞∑
p=1

(
− d

dx

)p

Dp(x)

[ ∞∑
m=1

(
− d

dx

)m

Dm(x)
]

δ(x − x′) dx

= (n!)τDn(x′) + τ2

2

∞∑
p=1

∞∑
m=1

∫ ∞

−∞
(x − x′)n

(
− d

dx

)p

Dp(x)
(

− d
dx

)m

Dm(x)δ(x − x′) dx

= (n!)τDn(x′) + τ2

2

∞∑
p=1

∞∑
m=1

(−1)p+mDm(x′)
∫ ∞

−∞
(x − x′)n

( d
dx

)p

Dp(x)
( d

dx

)m

δ(x − x′) dx.

The last integral is derived as follows:

I2 =
∫ ∞

−∞
(x − x′)n

( d
dx

)p

Dp(x)
( d

dx

)m

δ(x − x′) dx

=
∫ ∞

−∞
(x − x′)n

p∑
s=0

(
p

s

)[( d
dx

)p−s

Dp(x)
] [( d

dx

)m+s

δ(x − x′)
]

dx

=
p∑

s=0

(
p

s

)∫ ∞

−∞
G(x)

( d
dx

)m+s

δ(x − x′) dx (20)

with

G(x) = (x − x′)n
( d

dx

)p−s

Dp(x).

The last member of (20) is computed in a similar way as integral I1, yielding

I2 =
p∑

s=0

(
p

s

)
(−1)m+s

[
dm+s

dxm+s
F (x)

]
x=x′

=
p∑

s=0

(
p

s

)
(−1)m+s

m+s∑
q=0

(
m+s

q

)[
dm+s−q

dxm+s−q
(x − x′)n

]
x=x′

[
dp−s+q

dxp−s+q
Dp(x)

]
x=x′

. (21)

If m+s− q > n, the derivative of (x−x′)n is zero; if m+s− q < n, the derivative of (x−x′)n

is proportional to (x − x′)n−m−s+q which also vanishes for x = x′. Thus, the only term in
the sum in (21) which is not zero is the one for which m + s − q = n. The integral I2 thus is
given by

I2 =
p∑

s=0

(
p

s

)
(−1)m+s

(
m+s

m+s−n

)
(n!)

[
dp+m−n

dxp+m−n
Dp(x)

]
x=x′

, (22)
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yielding

Mn(x′, τ) ∼ (n!)τDn(x′) +
τ2

2

∞∑
p=1

∞∑
m=1

(−1)p+mDm(x′)
p∑

s=0

(
p

s

)
(−1)m+s(n!)

(
m+s

m+s−n

)( d
dx′

)p+m−n

Dp(x′)

= (n!)τDn(x′) + τ2

2

∞∑
m=1

Dm(x′)

 ∞∑
p=1

p∑
s=0

(−1)p+s p!(m+s)!
s!(p−s)!(m+s−n)!

( d
dx′

)p+m−n

Dp(x′)

 .

The last derivative within parenthesis is of a non-negative order, i.e., p ≥ n − m. Moreover,
factorials are of non-negative integers, i.e., s ≥ n−m. With both these conditions one arrives
at a final approximation of each conditional moment as a function of the Kramers-Moyal
coefficients and their derivatives, namely

Mn(x′, τ) ∼ (n!)τDn(x′) + τ2

2

∞∑
m=1

Dm(x′)
∞∑

p=p0

p∑
s=s0

(−1)p+s p!(m+s)!
s!(p−s)!(m+s−n)!

( d
dx′

)p+m−n

Dp(x′) ,

(23)

with p0 = max (1, n − m) and s0 = max (0, n − m). Equation 23 yields the Equations 13a
and 13b in Gottschall and Peinke (2008) for n = 1 and n = 2 respectively.
Equation 23 holds a set of equations relating the conditional moments as functions of the
Kramers-Moyal coefficients and their respective derivatives. In practice, one numerically
computes the conditional moments and from these estimates the Kramers-Moyal coefficients.
However, inverting (23) is not feasible, and a further approximation is required. Therefore,
similarly to what was done for the second-order correction of the first two Kramers-Moyal
coefficients (Gottschall and Peinke 2008; Rinn et al. 2016), we approximate (23) neglecting
terms having derivatives, which implies p + m − n = 0, i.e., p = n − m. Furthermore, since
p ≥ max (1, n − m) and p ≥ s ≥ max (0, n − m), one has additionally m ≤ n−1 and s = n−m
respectively. Introducing these conditions in (23) yields our final approximation:

Mn(x′, τ) ∼ (n!)τDn(x′) + (n!)τ2

2

n−1∑
m=1

Dm(x′)Dn−m(x′). (24)

Notice that the approximation of the conditional moments, as given in (24), has the practical
advantage of expressing the conditional moment of order nth from the Kramers-Moyal coef-
ficients up to order n, which enables computing recursively the Kramers-Moyal coefficients
from the numerical computation of the conditional moments.
For jump processes we will need to estimate the first six Kramers-Moyal coefficients (Anvari
et al. 2016b), which, from (24), read

M1(x, τ) = τD1(x), (25a)
M2(x, τ) = 2τD2(x) + τ2D2

1(x), (25b)
M3(x, τ) = 6τD3(x) + 6τ2D1(x)D2(x), (25c)

M4(x, τ) = 24τD4(x) + 12τ2
(
2D1(x)D3(x) + D2

2(x)
)

, (25d)

M5(x, τ) = 120τD5(x) + 120τ2 (D1(x)D4(x) + D2(x)D3(x)) , (25e)

M6(x, τ) = 720τD6(x) + 360τ2
(
2D1(x)D5(x) + 2D2(x)D4(x) + D2

3(x)
)

. (25f)
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Finally, inverting (25) yields (14).
The formulas for the relations (25) and the corrections Fn given by (14) are given in symbolic
Python by the functions m_formula and f_formula, respectively. This numerical procedure
is generalized to any maximal order N needed for the data analysis. For jump-diffusion
processes N = 6 is sufficient.

B. Higher-order corrections and Kramers-Moyal coefficients
A more accurate approximation is possible by combining (23) and (24). More precisely, the
steps to solve numerically (23) are the following ones:

• Solve (14) introducing the conditional moments, extracted directly from the data, up
to order N , and derive the Kramers-Moyal coefficients Dn(x) as in (13).

• Compute the derivatives up to order Nd (see discussion below).

• Introduce the derivatives of the Kramers-Moyal coefficients and the empirical condi-
tional moments in (23) and solve it with respect to the Kramers-Moyal coefficients.

• Repeat steps S1 and S2 until the Kramers-Moyal coefficients converge within a pre-given
numerical accuracy.

Moreover, since the Kramers-Moyal coefficients are typically polynomials of lower order, not
larger than five or six, the derivative order Nd is a finite number, which leads to a simplification
of (23). Namely, the derivative in the sum obeys 0 ≤ p + m − n ≤ Nd. Thus, p0 ≤ p ≤
Nd + n − m. Since p0 = max (1, n − m) one has Nd + n − m ≥ 1 and therefore the sum over
m is bounded by 1 ≤ m ≤ Nd + n − 1. Since Nd > 1, p0 = 1 and therefore the sum over p is
also bounded by 1 ≤ p ≤ Nd + n − m.
Introducing these bounds in (23) and following steps S0-S3 above, yields the second-order
approximation of the Kramers-Moyal coefficients.
Lastly, we present a general framework for obtaining all moments and Kramers-Moyal coeffi-
cients. Equation 24 can be written as

Mn(x′, τ) ∼ (n!)τB̂n,1
(
D1(x′), D2(x′), . . . , Dn(x′)

)
+

(n!)τ2

2 B̂n,2
(
D1(x′), D2(x′), . . . , Dn−1(x′)

)
, (26)

where B̂n,2 are ordinary Bell polynomials, given by

B̂n,k(x1, x2, . . . , xn−k+1) =
∑ k!

j1!j2! · · · jn−k+1!x
j1
1 xj2

2 · · · x
jn−k+1
n−k+1 . (27)

In the case of (26) we have k = 2.
The ordinary Bell’s polynomials fulfill a reciprocal relation, namely any sum of ordinary Bell’s
polynomials of the form

yn =
n∑

k=1
Bn,k(x1, . . . , xn−k+1) (28)
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can be inverted as

xn =
n∑

k=1
(−1)k−1(k − 1)!Bn,k(y1, . . . , yn−k+1). (29)

Consequently, substituting xn and yn by Mn and Dn, respectively, and applying (29), the
inverse relation for Dn in (26) reads

Dn(x′) = 1
τ(n!)

[
B̂n,1

(
M1(x′, τ), M2(x′, τ), . . . , Mn(x′, τ)

)
−

τ

2 B̂n,2
(
M1(x′, τ), M2(x′, τ), . . . , Mn−1(x′, τ)

)]
. (30)

This relation simply requires an iterative process for obtaining the n−1 conditional moments
to retrieve the Kramers-Moyal coefficient Dn, which is computationally inexpensive.
This formula and its reciprocal, which accounts for the relation of the conditional moments
Mm(x, τ) with the Kramers-Moyal coefficients Dm(x), are implemented in jumpdiff in the
functions f_formula() and m_formula(), respectively, where Python’s symbolic language
SymPy is used.
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