
JSS Journal of Statistical Software
January 2023, Volume 105, Issue 6. doi: 10.18637/jss.v105.i06

ergm 4: New Features for Analyzing
Exponential-Family Random Graph Models

Pavel N. Krivitsky
University of New South Wales

David R. Hunter
Penn State University

Martina Morris
University of Washington

Chad Klumb
University of Washington

Abstract

The ergm package supports the statistical analysis and simulation of network data. It
anchors the statnet suite of packages for network analysis in R introduced in a special issue
in Journal of Statistical Software in 2008. This article provides an overview of the new
functionality in the 2021 release of ergm version 4. These include more flexible handling of
nodal covariates, term operators that extend and simplify model specification, new models
for networks with valued edges, improved handling of constraints on the sample space of
networks, and estimation with missing edge data. We also identify the new packages in the
statnet suite that extend ergm’s functionality to other network data types and structural
features and the robust set of online resources that support the statnet development
process and applications.

Keywords: statnet, ERGM, exponential-family random graph models, valued networks.

1. Introduction
The statnet suite of packages for R (R Core Team 2022) was first introduced in 2008, in
volume 24 of Journal of Statistical Software, a special issue devoted to statnet. Together,
these packages, which had already gone through the maturing process of multiple releases,
provided an integrated framework for the statistical analysis of network data: from data
storage and manipulation, to visualization, estimation and simulation. Since that time the
existing packages have undergone continual updates to improve and add capabilities, and
many new packages have been added to extend the range of network data that can be modeled
(e.g., dynamic, valued, sampled, multilevel). It is the ergm package, however, that provides

https://doi.org/10.18637/jss.v105.i06
https://orcid.org/0000-0002-9101-3362
https://orcid.org/0000-0002-4976-9422
https://orcid.org/0000-0002-1191-3521

2 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

the statistical foundation for all of the other modeling packages in the statnet suite. Version 4
of ergm, released in 2021, is a major upgrade, representing more than a decade of changes and
improvements since Hunter, Handcock, Butts, Goodreau, and Morris (2008b). This article
describes many of the myriad new features available in ergm for more flexibly describing
and analyzing exponential-family random graph models. It is a companion to Krivitsky,
Hunter, Morris, and Klumb (2022), which discusses additional features and computational
improvements in ergm version 4.
The exponential-family random graph model (ERGM) is a general statistical framework for
modeling the probability of a link (or tie) between nodes in a network. It is implemented by
the ergm package and most of its related packages in the statnet suite. We consider networks
over a set of nodes N = {1, 2, . . . , n}. If Y ⊆ N × N denotes a set of potential pairwise
relationships among them, in the case of a binary network the sample space Y of all allowable
networks can be regarded as a subset of the power set 2Y of potential relationships. More
generally, if S is a (possibly multivariate) set of possible relationship values, the sample space
Y ⊆ SY is a set whose elements are of the form {Yi,j : (i, j) ∈ Y}, where each Yi,j , which we
will call a dyad, maps the node pair (i, j) ∈ Y into S and denotes the value of the relationship
of (i, j) ∈ Y.
We begin by briefly presenting the fully general ERGM framework, referring interested readers
to Schweinberger, Krivitsky, Butts, and Stewart (2020) for additional technical details. A
random network Y is distributed according to an ERGM, written Y ∼ ERGMY,h,η,g(θ), if

Pθ,Y,h,η,g(Y = y) = h(y) exp{η(θ)⊤g(y)}
κh,η,g(θ, Y) , y ∈ Y. (1)

In (1), θ is a q-dimensional parameter vector and η is a mapping from θ to the p-vector of
canonical parameters. In many cases we simply have η(θ) = θ, an exception being when
our model is curved (Hunter and Handcock 2006). The factor h(y) is a reference measure,
which is typically a constant and thus ignorable in the case of binary ERGMs. The value
κh,η,g(θ, Y) ensures that (1) defines a legitimate probability mass function, which implies∑

y′∈Y h(y′) exp{η(θ)⊤g(y′)}.
Many of the features of ergm and the related packages that comprise the statnet suite address
the statistical complications that arise from modeling network data using special cases of the
ERGM in (1). For instance, the statistical framework implemented in ergm is computation-
ally intensive for models that specify dyadic dependence, when Pθ,Y,h,η,g(Y = y) cannot be
decomposed into a product of simple functions of yi,j . In this case, the package relies on a
central Markov chain Monte Carlo (MCMC) algorithm for estimation and simulation, along
with maximum pseudo-likelihood estimation, contrastive divergence, and simulated annealing
(SAN) in some contexts. Substantial improvements have been made to all of these algorithms,
producing efficiency and speed gains of up to several orders of magnitude (Krivitsky et al.
2022). This article describes the most important new capabilities that have been added to
ergm and its related packages since volume 24 of Journal of Statistical Software appeared
in 2008. This includes both the capabilities introduced in the version 4 release itself and
in releases 2.2.0–3.10.4, which postdate the Journal of Statistical Software volume. Versions
in which each new capability was introduced can be obtained by running news(package =
"ergm").
In the examples throughout the article, we assume the reader is familiar with the basic syntax
and features of ergm included in the 2008 Journal of Statistical Software volume. In some

Journal of Statistical Software 3

cases we demonstrate new, more general, functionality by comparison, using the old syntax
and the new to produce the same result, then moving on with the new syntax to demonstrate
the additional utilities.
The source code for the latest version of the ergm package (Handcock, Hunter, Butts,
Goodreau, Krivitsky, and Morris 2023), along with the LICENSE information under GPL-
3, is available at https://github.com/statnet/ergm. The package is also available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
ergm. We have included ergm 4.4.0 with this manuscript, which uses Sweave along with the
knitr package (Xie 2022).

2. Extension packages in the statnet suite
The statistical models supported by the statnet suite have been extended by a growing number
of new packages that provide additional functionality in the general ERGM framework. While
the focus of this article is the base ergm package, in this section we provide a brief overview of
the extension packages and their specific applications. Open source package development is on
GitHub, accessible at https://statnet.org/. Online tutorials, found at https://statnet.
org/workshops/, exist for ergm and many of these extension packages, and most packages
also include extended vignettes. Some of the key extension packages, and the resources that
support them, include:

Building custom terms for models: One of the unique aspects of this modeling framework is
that each network statistic in an ERGM requires a specialized algorithm for computing
the value of the statistic from the data. The ergm package has over 150 of the most com-
mon terms encoded – see vignette("ergm-term-crossRef") or help("ergmTerm") for
the full list – but the existing terms are a small subset of the possible terms one can
use in an ERGM. For those who need a custom term, the package ergm.userterms
(Hunter, Goodreau, and Handcock 2013) is designed to simplify the process of coding
up new terms for use in ERG model specification. Online workshop materials provide an
overview of the process, and demonstrate the use of this package (Hunter and Goodreau
2019).

Modeling temporal (dynamic) network data: The statnet suite (Handcock, Hunter, Butts,
Goodreau, and Morris 2008) contains several packages that provide a robust frame-
work for storing, visualizing, describing and modeling temporal network data: The net-
workDynamic (Butts, Leslie-Cook, Krivitsky, and Bender-deMoll 2022) package extends
network (Butts 2008a) to provide data storage and management utilities, the tsna pack-
age (Bender-deMoll and Morris 2021) extends sna (Butts 2008b) to provide descriptive
statistics for network objects that change over time, the ndtv package (Bender-deMoll
2022) provides a wide range of utilities for visualizing dynamic networks and saving both
static and animated output in standard formats, and tergm (Krivitsky and Handcock
2022b) extends ergm to fit the class of separable temporal ERGMs, from both sampled
and fully observed network data (Krivitsky and Handcock 2014). There are two online
workshops that demonstrate these tools: one that demonstrates a typical workflow from
data inspection to temporal modeling (Morris and Krivitsky 2015), and another that
focuses on descriptive analyses and visualization (Bender-deMoll 2016).

https://github.com/statnet/ergm
https://CRAN.R-project.org/package=ergm
https://CRAN.R-project.org/package=ergm
https://statnet.org/
https://statnet.org/workshops/
https://statnet.org/workshops/

4 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

Modeling valued edges: The ergm package itself contains a framework for modeling real-
valued edges (see Section 6 and Section 4). Other packages provide specialized com-
ponents for specific types of valued edges: ergm.count for counts (Krivitsky 2022a)
and ergm.rank for ordered categories (Krivitsky 2022d). The relevant theory support-
ing these packages may be found in Krivitsky (2012) and Krivitsky and Butts (2017),
respectively. latentnet for latent space models (Krivitsky and Handcock 2022a) also
supports non-binary responses, although in a somewhat different manner (Krivitsky
and Handcock 2008; Krivitsky, Handcock, Raftery, and Hoff 2009). Package vignettes
and online workshop materials provide an overview of the theory, and demonstrate the
use of these packages (Krivitsky and Butts 2019).

Working with egocentrically sampled network data: In the social and health sciences, egocen-
trically sampled network data is the most common form of data available, because it can
be collected using standard sample survey methods. The ergm.ego package (Krivitsky
2022b) provides methods for estimating ERGMs from egocentrically sampled network
data, with a principled framework for statistical inference. The theory and an applica-
tion of these methods may be found in Krivitsky and Morris (2017). Online workshop
materials provide an overview of the framework and demonstrate the use of the package
(Morris and Krivitsky 2019).

Multimode, multilayer, and multilevel networks: In the social sciences, it is increasingly
common to collect and fit ERGMs on data on multiple relationship types (Wang 2012;
Krivitsky, Koehly, and Marcum 2020) and ensembles of networks (Slaughter and Koehly
2016). These capabilities are implemented in an extension package ergm.multi (Krivit-
sky 2022c).

Modeling diffusion and epidemics on networks: One of the most active application areas for
ERGMs and TERGMs (temporal exponential-family random graph models) is in the
field of epidemic modeling. The EpiModel package (Jenness, Goodreau, and Morris
2018) is built on the statnet platform, and provides a unique set of tools for statistically
principled modeling of epidemics on networks. A robust set of online training materials
is available at the EpiModel website (https://www.epimodel.org/).

3. Enhanced handling of nodal covariates
Version 4 of ergm standardizes and provides greater flexibility for handling covariates used by
terms in an ERGM. In particular, these covariates can be modified “on-the-fly” during model
specification. A vignette called nodal_attributes is included in the package and illustrates
some of the new capabilities.
Here, we describe some of these enhancements using ergm’s faux.mesa.high dataset, a sim-
ulated in-school friendship network based on data collected on 205 students. We will focus
on the Grade attribute, an ordinal categorical variable with values 7 through 12 that can be
accessed via the %v% operator:

R> data("faux.mesa.high", package = "ergm")
R> (faux.mesa.high %v% "Grade")[1:20]

[1] 7 7 11 8 10 10 8 11 9 9 9 11 9 11 8 10 10 7 10 7

https://www.epimodel.org/

Journal of Statistical Software 5

Grade level is typical of the kind of covariate used to model selective mixing in social networks:
different hypotheses lead to different model specifications. ergm 4 provides greater flexibility
than earlier versions of ergm to easily define and explore different specifications.
We will sometimes call summary() and other times call ergm() to demonstrate the function-
ality and output below.

3.1. Transformations of covariates
It is sometimes desirable to specify a transformation of a nodal attribute as a covariate in a
model term. Most ergm terms now support a new user interface, inspired by purrr (Henry and
Wickham 2020), to specify transformations on one or more nodal attributes. Terms typically
use this new interface via arguments called attr, attrs, by, or on; the interpretation of the
argument depends on its type:

Character string: Extract the vertex attribute with this name.

Character vector of length greater than 1 : Extract the vertex attributes and paste them
together, separated by dots if the term expects categorical attributes and (typically)
combine into a covariate matrix if it expects quantitative attributes.

Function: The function is called on the network on the left-hand side of the main ergm
formula and is expected to return a vector or matrix of appropriate dimension. Shorter
vectors and matrix columns will be recycled as needed.

Formula: Borrowing the interface from tidyverse (Wickham et al. 2019), the expression on
the right hand side of the formula is evaluated in an environment of the vertex attributes
of the network, expected to return a vector or matrix of appropriate dimension. Shorter
vectors and matrix columns will be recycled as needed. Within this expression, the
network itself is accessible as either . or .nw.

‘AsIs’ object created by I(): Use as is, checking only for correct length and type, with
optional attribute "name" providing the predictor’s name.

For instance, here are three ways – as a string, formula, and function, respectively – to
compute the value of

g(y) =
∑

(i,j)∈Y
yi,j(Gradei + Gradej),

which in an ERGM may be interpreted as the linear effect of grade on overall activity of an
actor:

R> summary(faux.mesa.high ~ nodecov("Grade") + nodecov(~Grade) +
+ nodecov(function(nw) nw %v% "Grade"))

nodecov.Grade nodecov.Grade nodecov.nw%v%"Grade"
3491 3491 3491

Here is a more complicated formula-based use of nodecov that defines the statistic to be

g(y) =
∑

(i,j)∈Y
yi,j

(
|Gradei − Grade|

n
+ |Gradej − Grade|

n

)
, (2)

6 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

where n is the number of nodes, i.e., the network.size, of the network:

R> summary(faux.mesa.high ~ nodecov(~ abs(Grade - mean(Grade)) /
+ network.size(.)))

nodecov.abs(Grade-mean(Grade))/network.size(.)
2.856514

Removing the absolute values from (2) gives a different result:

R> summary(faux.mesa.high ~ nodecov(~ (Grade - mean(Grade)) /
+ network.size(.)))

nodecov.(Grade-mean(Grade))/network.size(.)
-0.2637716

The non-zero output of the statistic above may be counterintuitive at first. The value of
mean(Grade) is indeed equal to the mean of the faux.mesa.high %v% "Grade" vector, or
8.7317073, as we might expect. Yet for a given node i, the network statistic sums the value
of (Gradei − Grade) not once, but rather degree(i), times, giving in a non-zero result.
Taking advantage of nodecov’s new ability to take matrix-valued arguments, we might also
evaluate a polynomial effect of Grade, as in the following quadratic example:1

R> coef(summary(ergm(faux.mesa.high ~ edges +
+ nodecov(~ cbind(Grade, Grade2 = Grade^2)))))

Estimate Std. Error MCMC % z value Pr(>|z|)
edges 8.7297963 3.52880543 0 2.473867 0.0133659343
nodecov.Grade -1.4597723 0.39614405 0 -3.684953 0.0002287445
nodecov.Grade2 0.0768836 0.02154632 0 3.568294 0.0003593133

In the code above, the column for Gradeˆ2 is explicitly named Grade2 whereas the row for
Grade is named implicitly by R itself. Omitting the name for a row not otherwise named by
R would result in a warning, as it is good practice to name all variables in the model.
Alternatively, we can use stats::poly for orthogonal polynomials. Here, the test for signifi-
cance of the quadratic term is identical to the non-orthogonal example, up to rounding error
(though the estimate is different given the orthogonal specification):

R> coef(summary(ergm(faux.mesa.high ~ edges + nodecov(~ poly(Grade, 2)))))

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -4.662459 0.07309281 0 -63.788207 0.0000000000
nodecov.poly(Grade,2).1 -1.207241 0.68018706 0 -1.774866 0.0759199607
nodecov.poly(Grade,2).2 2.512615 0.70416949 0 3.568196 0.0003594477

1For this and other summaries, we omit the call information, deviances, and significance stars in the interests
of space. The full summary information can be obtained by omitting coef() around the summary() call.

Journal of Statistical Software 7

We can even pass a nodal covariate that is not already contained in the network object. This
example randomly generates a binary-valued nodal covariate and sets its name attribute to
be used as a label:

R> set.seed(123)
R> randomcov <- structure(rbinom(network.size(faux.mesa.high), 1, 0.5),
+ name = "random")
R> summary(faux.mesa.high ~ nodefactor(I(randomcov)))

nodefactor.random.1
199

This syntax therefore allows for simulation or estimation of models with inputs taken from
arbitrary R functions or data sources, facilitating the incorporation of ERGMs into more
general tool chains.

3.2. Coding categorical attributes
For model terms that use categorical attributes, ergm 4 has extended the methods for se-
lecting and/or transforming levels via the use of the argument levels. Some terms, such as
the sender and receiver statistics of the p1 model (Holland and Leinhardt 1981) and the
corresponding sociality statistics for undirected networks, treat the node labels themselves
as a categorical attribute. These terms use the nodes argument, rather than the levels
argument, to select a subset of the nodes.
Typically, levels or nodes has a default that is sensible for the term in question. (Information
about the defaults of a term [name] may be obtained by typing help("[name]-ergmTerm")
or ergmTerm?[name].) Interpretation of the possible values of the levels and nodes argu-
ments is available by typing help(nodal_attributes). This interpretation is summarized
as follows:

‘AsIs’ object created by I(): Use the given level, list of levels, or vector of levels as is.

Numeric or logical vector: Used for indexing of a list of all possible levels (typically, unique
values of the attribute) in default order (typically lexicographic). Logical values are
recycled to the length of the vector indexed. In particular, levels = TRUE retains all
levels. Negative values exclude. To specify numeric or logical levels literally, wrap them
in I().

NULL: Retain all possible levels; usually equivalent to passing TRUE.

Character vector : Use the given level(s) as is.

Function: The function is called in an environment in which the network itself is accessible
as .nw, the list of unique values of the attribute as . or as .levels, and the attribute
vector itself as .attr. Its return value is interpreted as above.

Formula: The expression on the right hand side of the formula is evaluated in an environment
in which the network itself is accessible as .nw, the list of unique values of the attribute as
. or as .levels, and the attribute vector itself as .attr. Its return value is interpreted
as above.

8 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

Predefined function: For convenience, a number of useful functions have been predefined.
LARGEST, which refers to the most frequent category, so, say, to set such a category as
the baseline, pass levels = -LARGEST. LARGEST(n) will refer to the n largest categories.
SMALLEST works analogously, and ties in frequencies are broken arbitrarily.

Returning to the faux.mesa.high example, we may treat Grade as a categorical variable
even though its values are numeric. We see that Grade has six levels, numbered from 7 to 12:

R> table(faux.mesa.high %v% "Grade")

7 8 9 10 11 12
62 40 42 25 24 12

We may exclude the three smallest levels or, equivalently, include levels 7, 8, and 9. Below
are five of the myriad ways to do this in the context of computing basic categorical effects
on node activity, implemented by nodefactor. In the second expression, I() is necessary so
that 7:9 is not treated as a vector of indices.

R> summary(faux.mesa.high ~ nodefactor(~ Grade, levels = -SMALLEST(3)))

nodefactor.Grade.7 nodefactor.Grade.8 nodefactor.Grade.9
153 75 65

R> summary(faux.mesa.high ~ nodefactor(~ Grade, levels = I(7:9)))

nodefactor.Grade.7 nodefactor.Grade.8 nodefactor.Grade.9
153 75 65

R> summary(faux.mesa.high ~ nodefactor(~ Grade,
+ levels = c("7", "8", "9")))

nodefactor.Grade.7 nodefactor.Grade.8 nodefactor.Grade.9
153 75 65

R> summary(faux.mesa.high ~ nodefactor("Grade",
+ levels = function(a) a %in% 7:9))

nodefactor.Grade.7 nodefactor.Grade.8 nodefactor.Grade.9
153 75 65

R> summary(faux.mesa.high ~ nodefactor("Grade", levels = ~. %in% 7:9))

nodefactor.Grade.7 nodefactor.Grade.8 nodefactor.Grade.9
153 75 65

Journal of Statistical Software 9

Any of the arguments of Section 3.1 may also be wrapped in COLLAPSE_SMALLEST(attr,
n, into), a convenience function that will transform the attribute by collapsing the n least
frequent categories into one, naming it according to the into argument where into must be
of the same type (numeric, character, etc.) as the vertex attribute in question. Consider
the Race factor of the faux.mesa.high network, where we use levels = TRUE to display all
levels since the default is levels = -1:

R> summary(faux.mesa.high ~ nodefactor("Race", levels = TRUE))

nodefactor.Race.Black nodefactor.Race.Hisp nodefactor.Race.NatAm
26 178 156

nodefactor.Race.Other nodefactor.Race.White
1 45

Because the Hisp and NatAm categories are so much larger than the other three categories
in this network, we may wish to combine the Black, White, and Other categories. The
code below accomplishes this using COLLAPSE_SMALLEST while also demonstrating how to use
the pipe function, %>%, from the magrittr package (Bache and Wickham 2022) for improved
readability:

R> library("magrittr")
R> summary(faux.mesa.high ~ nodefactor((~ Race) %>%
+ COLLAPSE_SMALLEST(3, "BWO"), levels = TRUE))

nodefactor.Race.BWO nodefactor.Race.Hisp nodefactor.Race.NatAm
72 178 156

3.3. Mixing matrices

Mixing matrices, which refer to the cross-tabulation of all edges by the categorical attributes
of the two nodes, are a common feature in models that seek to represent selective mixing.
The mm model term, which stands for “mixing matrix”, generalizes the familiar nodemix term
from the original ergm implementation for this purpose. Like nodemix, mm creates statistics
consisting of the cells of a matrix of counts in which the columns and rows correspond to the
levels of two categorical nodal covariates. For mm, however, these covariates may or may not
be the same, making it more general. We use it here to demonstrate the levels2 argument.
Typing help("mm-ergmTerm") or, equivalently, ergmTerm?mm, shows that the binary-network
version of the term takes the form mm(attrs, levels = NULL, levels2 = -1). The attrs
argument is a two-sided formula where the left and right sides are the rows and columns,
respectively, of the mixing matrix; if only a one-sided formula or attribute name is given then
the rows and columns are taken to be the same. The optional levels argument can similarly
be a one- or two-sided formula, and it specifies the levels of the row and column variables
to keep. Finally, the optional levels2 argument may be used to select only a subset of the
matrix of statistics resulting from attrs and levels.
Using this functionality, we may specify custom mixing patterns that depend upon attribute
values. For instance, if we believe that the break between junior high school (grades 7–9) and

10 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

high school (grades 10–12) creates a barrier to friendships across the boundary, we can create
an indicator variable Grade ≥ 10, then compute a mixing matrix on that variable using mm
using a single call

R> summary(faux.mesa.high ~ mm(~ Grade >= 10))

mm[Grade>=10=FALSE,Grade>=10=TRUE] mm[Grade>=10=TRUE,Grade>=10=TRUE]
27 43

R> summary(faux.mesa.high ~ mm(~ Grade >= 10, levels2 = NULL))

mm[Grade>=10=FALSE,Grade>=10=FALSE] mm[Grade>=10=FALSE,Grade>=10=TRUE]
133 27

mm[Grade>=10=TRUE,Grade>=10=TRUE]
43

The Grade >= 10 indicator variable is FALSE (for junior high school) and TRUE (for high
school), and with the undirected friendships, this produces three possible combinations of the
grade indicator – FALSE/FALSE, FALSE/TRUE, and TRUE/TRUE. For the default specification,
levels = NULL keeps all levels of the Grade >= 10 indicator variable and levels2 = -1
eliminates the first statistic (FALSE/FALSE) in the set of 3. For the modified specification, the
levels2 = NULL argument keeps all of the statistics.
We can also use the mm formula interface to filter out certain statistics from the full set of
potential comparisons. An example from the nodal_attributes vignette within the ergm
package using the unmodified Grade attribute defines levels2 as a one-sided formula whose
right side is a function that returns TRUE or FALSE, depending on whether both elements of
.levels – the list of values taken by a pair of nodes – are in the set c(7, 8). The example
therefore captures mixing statistics only involving students in grades 7 or 8:

R> summary(faux.mesa.high ~ mm("Grade", levels2 = ~ sapply(.levels,
+ function(pair) pair[[1]] %in% c(7, 8) && pair[[2]] %in% c(7, 8))))

mm[Grade=7,Grade=7] mm[Grade=7,Grade=8] mm[Grade=8,Grade=8]
75 0 33

Here is an equivalent formulation using both levels and levels2 in concert:

R> summary(faux.mesa.high ~ mm(~ Grade, levels = TRUE ~ c("7","8"),
+ levels2 = NULL))

mm[Grade=7,Grade=7] mm[Grade=7,Grade=8] mm[Grade=8,Grade=8]
75 0 33

Finally, we give an example using two covariates, allowing us to capture the tendency of sets
of individuals defined by values of Grade to mix with sets of individuals defined by values of
Race:

Journal of Statistical Software 11

R> summary(faux.mesa.high ~ mm(Grade >= 10 ~ Race,
+ levels = TRUE ~ c("Hisp", "NatAm", "White")))

mm[Grade>=10=TRUE,Race=Hisp] mm[Grade>=10=FALSE,Race=NatAm]
43 115

mm[Grade>=10=TRUE,Race=NatAm] mm[Grade>=10=FALSE,Race=White]
41 30

mm[Grade>=10=TRUE,Race=White]
15

With all values of Grade >= 10 (i.e., FALSE and TRUE) and three values of Race allowed accord-
ing to the levels argument, the full mixing matrix here would include 2×3 statistics, though
the default levels2 = -1 omits the first of these so there is no Grade>=10=FALSE,Race=Hisp
statistic. When interpreting mixing matrix effects of this type, bear in mind that two co-
variates need not partition the vertex set in the same ways. Here, for instance, there can be
students both above and below grade 10 with each race/ethnicity.
The nodemix term can do many of the same things that mm can do. For both terms, levels2
can take a matrix as input; in particular, for nodemix this argument can take character
matrices to map multiple cells to the same statistic. For instance, in the faux.mesa.high
dataset, if we want to group all sex-homophilous (male-male or female-female) ties together
in the same statistic while keeping the heterophilous (male-female) ties separate, we can pass
to levels2 a 2 × 2 matrix with matching non-blank entries along the diagonal and blanks off
the diagonal:

R> m <- matrix(c("homophilous", "", "", "homophilous"), 2, 2)
R> summary(faux.mesa.high ~ nodemix("Sex", levels2 = m))

mix.Sex.homophilous mix.Sex.F.M
132 71

4. Term operators
ergm 4 introduces a new way to augment an ergm function call that we call a term op-
erator, or simply operator. In mathematics, an operator is a function, like differentiation,
that takes functions as its inputs; analogously, a term operator takes one or more ERGM
formulas as input and transforms them by modifying their inputs and/or outputs. Most op-
erators therefore have a general form X(formula, ...) where X is the name of the operator,
typically capitalized, formula is a one-sided formula specifying the network statistics to be
evaluated, and the remaining arguments control the transformation applied to the network
before formula is evaluated and/or to the transformation applied to the network statistics
obtained by evaluating formula. Operators are documented alongside other terms, accessible
as help("[name]-ergmTerm") or ergmTerm?[name], and we describe some frequently used
operators below.

4.1. Network filters
Several operators allow the user to evaluate model terms on filtered versions of the network,
i.e., on particular subsets of the existing nodes and/or edges.

12 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

Filtering edges
The operator F(formula, filter) evaluates the terms in formula on a filtered network,
with filtering specified by filter. Here, filter is the right-hand side of a formula that must
contain one binary dyad-independent ergm term, having exactly one statistic with a dyadwise
contribution of 0 for a 0-valued dyad. That is, the term must be expressible as

g(y) =
∑

(i,j)∈Y
fi,j(yi,j), (3)

where for all possible (i, j), fi,j(0) = 0. One may verify that condition (3) implies that
an ERGM containing the single term g(y) has the property that the dyads Yi,j are jointly
independent, which is why such a term is called “dyad-independent”. Examples of such terms
include nodemix, nodematch, nodefactor, nodecov, and edgecov. Then, formula will be
evaluated on a network constructed by taking y and keeping only those edges for which
fi,j(yi,j) ̸= 0. This predicate can be modified slightly by very simple comparison or logical
expressions in the filter formula. In particular, placing ! in front of the term negates it
(i.e., keep (i, j) only if fi,j(yi,j) = 0) and comparison operators (==, <, etc.) allow comparing
fi,j(yi,j) to values other than 0.
Sampson’s Monks (Sampson 1968) can provide illustrative examples. ergm includes a version
of these data reporting cumulative liking nominations over the three time periods Sampson
asked a group of monks to identify those they liked. This directed, 18-node network is depicted
in Figure 1.

R> set.seed(2345)
R> data("sampson", package = "ergm")
R> lab <- paste0(1:18, " ", substr(samplike %v% "group", 1, 1), ": ",
+ samplike %v% "vertex.names")
R> plot(samplike, displaylabels = TRUE, label = lab)

As an example of the F operator, the code below uses four different methods to summarize
the number of ties between pairs of nodes in the Turks group in the samplike dataset:

R> summary(samplike ~ nodematch("group", diff = TRUE, levels = "Turks") +
+ F(~ nodematch("group"), ~ nodefactor("group", levels = "Turks"))
+ F(~ edges, ~ nodefactor("group", levels = "Turks") == 2)
+ F(~ edges, ~ !nodefactor(~ group != "Turks")))

nodematch.group.Turks
30

F(nodefactor("group",levels="Turks"))~nodematch.group
30

F(nodefactor("group",levels="Turks")==2)~edges
30

F(!nodefactor(~group!="Turks"))~edges
30

Here, the third method works because this particular fi,j(yi,j) counts how many of the two
nodes i and j are Turks, and so equals 2 if and only if both are; and the fourth method works
because the new fi,j(yi,j) is 0 only if neither i nor j is a non-Turks node.

Journal of Statistical Software 13

1 T: John Bosco

2 T: Gregory

3 O: Basil

4 L: Peter

5 L: Bonaventure

6 L: Berthold

7 T: Mark

8 L: Victor

9 L: Ambrose

10 L: Romauld

11 L: Louis

12 T: Winfrid

13 O: Amand

14 T: Hugh

15 T: Boniface16 T: Albert

17 O: Elias

18 O: Simplicius

Figure 1: The monks dataset, with edges indicating directed liking relationships at any of
three time points and nodes numbered from 1 to 18 and with group membership as assigned
by Sampson indicated by L for “Loyalists”, O for “Outcasts”, and T for “Young Turks”.

It is also possible to filter on a quantitative variable. For instance, an alternative way to count
the number of edges in faux.mesa.high that match on "Grade" is to report total edges after
filtering by node pairs whose absolute difference on the "Grade" variable is less than 1:

R> cbind(summary(faux.mesa.high ~ nodematch("Grade")),
+ summary(faux.mesa.high ~ F(~ edges, ~ absdiff("Grade") < 1)))

[,1] [,2]
nodematch.Grade 163 163

While filter must be dyad-independent, formula can have dyad-dependent terms as well.
For instance, we may count the transitive triples – i.e., triples (i, j, k) where yi,j = yj,k = yi,k =
1 – in the samplike network, then perform the same count on the subnetwork consisting only
of those edges connecting two monks not in attendance in the minor seminary of Cloisterville
before coming to the monastery:

R> summary(samplike ~ ttriple +
+ F(~ ttriple, ~ nodefactor("cloisterville") == 0))

ttriple
154

F(nodefactor("cloisterville")==0)~ttriple
12

14 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

Treating directed networks as undirected

The operator Symmetrize(formula, rule) evaluates the terms in formula on an undirected
network constructed by symmetrizing the underlying directed network according to rule.
The possible values of rule, which match the terminology of the symmetrize function of the
sna package, are (a) “weak”, (b) “strong”, (c) “upper”, and (d) “lower”; for any i < j, these
four values result in an undirected tie between i and j if and only if (a) either yi,j or yj,i

equals 1, (b) both yi,j and yj,i equal 1, (c) yi,j = 1, and (d) yj,i = 1. For example, the four
possible symmetrized values of the samplike ~ edges statistic are as follows:

R> cbind(summary(samplike ~ Symmetrize(~ edges, "weak") +
+ Symmetrize(~ edges, "strong") + Symmetrize(~ edges, "upper") +
+ Symmetrize(~ edges, "lower")))

[,1]
Symmetrize(weak)~edges 60
Symmetrize(strong)~edges 28
Symmetrize(upper)~edges 36
Symmetrize(lower)~edges 52

We may verify that both "weak" plus "strong" and "upper" plus "lower" yield the total
number of directed edges, which in this case equals 88.

Extracting subgraphs

The operator S(formula, attrs) evaluates the terms in formula on an induced subgraph
constructed from vertices identified by attrs. The attrs argument either takes a value as
explained in Section 3.2 for the nodes argument or, to obtain a bipartite network, a two-
sided formula with the left-hand side specifying the tails and the right-hand side specifying
the heads. For instance, suppose that we wish to model the density and mutuality dynamics
within the group “Young Turks” as different from those of the rest of the network:

R> coef(summary(ergm(samplike ~ edges + mutual +
+ S(~ edges + mutual, ~ (group == "Turks")),
+ control = snctrl(seed = 123))))

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.007074 0.2377493 0 -8.441979 3.120095e-17
mutual 2.351613 0.4996500 0 4.706519 2.519819e-06
S((group=="Turks"))~edges 2.812378 0.8650057 0 3.251282 1.148857e-03
S((group=="Turks"))~mutual -2.165222 1.1965294 0 -1.809585 7.036009e-02

Thus, the density within the group is statistically significantly higher, whereas the reciproca-
tion within the group is lower, though not statistically significantly at the 5% level.
As another example, illustrated in Figure 2, consider the directed edges from “non-Young
Turks” to “Young Turks”. Creating the induced subgraph from these edges results in a
bipartite network – which is always taken to be undirected even though the edges were
originally directed – we may count the number of four-cycles:

Journal of Statistical Software 15

1 2

3 4 5 6

7

8 9 10 11

12

13

14 15 16

1718Non-Turks

Turks

Figure 2: A bipartite induced subgraph between Turks (green) and Non-Turks (yellow). Edges
involved in at least one undirected 4-cycle are emphasized. When directed edges from “Non-
Turks” to “Turks” (black) are viewed as bipartite (undirected) edges, we obtain 4-cycles (3,
1, 18, 2), (3, 1, 8, 2), and (8, 1, 18, 2). When directed edges from “Turks” to “Non-Turks”
(dotted red) are also included, we obtain the additional 4-cycles (8, 1, 18, 7) and (8, 2, 18, 7).

R> summary(samplike ~ S(~ cycle(4), (group != "Turks") ~ (group == "Turks")))

S((group!="Turks"),(group=="Turks"))~cycle4
3

On the other hand, if we treat the original network as undirected using Symmetrize before
creating the induced bipartite subgraph, we see additional four-cycles. This example also
illustrates that term operators may be nested arbitrarily:

R> summary(samplike ~ Symmetrize(~S(~cycle(4), (group != "Turks") ~
+ (group == "Turks")), "weak"))

Symmetrize(weak)~S((group!="Turks"),(group=="Turks"))~cycle4
5

Finally, we illustrate a common use case in which Symmetrize is used to analyze mutuality in
a directed network as a function of a predictor. The faux.dixon.high dataset is a directed
friendship network of seventh through twelfth graders. Suppose we wish to check how strongly
the tendency toward mutuality in friendships is affected by students’ closeness in grade level.

R> data("faux.dixon.high", package = "ergm")
R> FDHfit <- ergm(faux.dixon.high ~ edges + mutual + absdiff("grade") +
+ Symmetrize(~ absdiff("grade"), "strong"), control = snctrl(seed = 321))
R> coef(summary(FDHfit))

Estimate Std. Error MCMC % z value
edges -3.2468082 0.05110162 0 -63.536313
mutual 3.2407587 0.12095858 0 26.792301
absdiff.grade -0.9145735 0.04309196 0 -21.223763
Symmetrize(strong)~absdiff.grade -0.4237874 0.18035755 0 -2.349707

Pr(>|z|)
edges 0.000000e+00
mutual 3.972740e-158
absdiff.grade 5.762326e-100
Symmetrize(strong)~absdiff.grade 1.878819e-02

16 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

After correcting for the overall network density, the propensity for friendships to be recip-
rocated, and the predictive effect of grade difference on friendship formation, the difference
in grade level has a statistically significant negative effect on the tendency to form mutual
friendships (p value = 0.019).

4.2. Interaction effects

For binary ERGMs, interactions between dyad-independent ergm terms can be specified in a
manner similar to lm and glm via the : and * operators. (See Section 4.1 for a definition of
dyad-independent.)
Let us first consider the colon (:) operator. Generally, if term A creates pA statistics and
term B creates pB statistics, then A:B will create pA × pB new statistics. If A and B are dyad-
independent terms, expressed for a = 1, . . . , pA and b = 1, . . . , pB as

gA(y) =
∑

(i,j)∈Y
xA

i,jyi,j and gB(y) =
∑

(i,j)∈Y
xB

i,jyi,j

for appropriate covariate matrices XA and XB, then the corresponding interaction term is

gA:B(y) =
∑

(i,j)∈Y
xA

i,jxB
i,jyi,j . (4)

As an example, consider the Grade and Sex effects, expressed as model terms via nodefactor,
in the faux.mesa.high dataset:

R> summary(faux.mesa.high ~
+ nodefactor("Grade"):nodefactor("Sex", levels = TRUE))

nodefactor.Grade.8:nodefactor.Sex.F nodefactor.Grade.9:nodefactor.Sex.F
51 67

nodefactor.Grade.10:nodefactor.Sex.F nodefactor.Grade.11:nodefactor.Sex.F
26 60

nodefactor.Grade.12:nodefactor.Sex.F nodefactor.Grade.8:nodefactor.Sex.M
30 99

nodefactor.Grade.9:nodefactor.Sex.M nodefactor.Grade.10:nodefactor.Sex.M
63 46

nodefactor.Grade.11:nodefactor.Sex.M nodefactor.Grade.12:nodefactor.Sex.M
38 26

In the call above, we deliberately include both Sex-factor levels via levels = TRUE, whereas
we employ the default behavior of nodefactor for the Grade factor, which leaves out one
level. Thus, the 6-level Grade factor and the 2-level Sex factor, with one level of the former
omitted, produce 5 × 2 interaction terms in this example.
The * operator, by contrast, produces all interactions in addition to the main effects or
statistics. Therefore, in the scenario described above, A * B will add pA + pB + pA × pB
statistics to the model. Below, we use the default behavior of nodefactor on both the 6-level
Grade factor and the 2-level Sex factor, together with an additional edges term, to produce
a model with 1 + 5 + 1 + 5 × 1 terms:

Journal of Statistical Software 17

R> m <- ergm(faux.mesa.high ~ edges + nodefactor("Grade") * nodefactor("Sex"))
R> print(summary(m), digits = 3)

Call:
ergm(formula = faux.mesa.high ~ edges + nodefactor("Grade") *

nodefactor("Sex"))

Maximum Likelihood Results:

Estimate Std. Error MCMC % z value
edges -3.028 0.173 0 -17.53
nodefactor.Grade.8 -1.424 0.263 0 -5.41
nodefactor.Grade.9 -1.166 0.229 0 -5.10
nodefactor.Grade.10 -1.633 0.357 0 -4.58
nodefactor.Grade.11 -0.328 0.237 0 -1.38
nodefactor.Grade.12 -0.794 0.324 0 -2.45
nodefactor.Sex.M -1.764 0.240 0 -7.36
nodefactor.Grade.8:nodefactor.Sex.M 1.386 0.202 0 6.86
nodefactor.Grade.9:nodefactor.Sex.M 1.012 0.211 0 4.79
nodefactor.Grade.10:nodefactor.Sex.M 1.347 0.264 0 5.11
nodefactor.Grade.11:nodefactor.Sex.M 0.419 0.240 0 1.75
nodefactor.Grade.12:nodefactor.Sex.M 1.059 0.290 0 3.65

Pr(>|z|)
edges < 1e-04 ***
nodefactor.Grade.8 < 1e-04 ***
nodefactor.Grade.9 < 1e-04 ***
nodefactor.Grade.10 < 1e-04 ***
nodefactor.Grade.11 0.16714
nodefactor.Grade.12 0.01429 *
nodefactor.Sex.M < 1e-04 ***
nodefactor.Grade.8:nodefactor.Sex.M < 1e-04 ***
nodefactor.Grade.9:nodefactor.Sex.M < 1e-04 ***
nodefactor.Grade.10:nodefactor.Sex.M < 1e-04 ***
nodefactor.Grade.11:nodefactor.Sex.M 0.08074 .
nodefactor.Grade.12:nodefactor.Sex.M 0.00026 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 28987 on 20910 degrees of freedom
Residual Deviance: 2189 on 20898 degrees of freedom

AIC: 2213 BIC: 2308 (Smaller is better. MC Std. Err. = 0)

Equation 4 implies that the change statistic corresponding to dyad (i, j) is given by xA
i,jxB

i,j ;
that is, the change statistic for the interaction is the product of the change statistics. One
may define interaction change statistics for arbitrary pairs of terms similarly – that is, by
taking the interaction change statistic as the product of the corresponding change statistics

18 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

– though in the case of dyad-dependent terms it is unclear that a change statistic obtained
as the product of change statistics corresponds to any ERGM sufficient statistic in the sense
of (1). Therefore, attempting to create interactions involving dyad-dependent terms will
create an error by default in ergm. If one wishes to create such interactions anyway, the
default behavior may be changed using the interact.dependent term option as described
in Section 8.6. Interactions involving curved ERGM terms are not supported in ergm 4.
Since interaction terms are defined by multiplying change statistics dyadwise and then (for
dyad-independent terms) summing over all dyads, interactions of terms are not the same
as products of those terms. For instance, given a nodal covariate "a", the interaction of
nodecov("a") with itself is different than the effect of the square of the covariate, as we
observe in the case of the wealth covariate of the (undirected) Florentine marriage dataset:

R> data("florentine", package = "ergm")
R> summary(flomarriage ~ nodecov("wealth"):nodecov("wealth") +
+ nodecov(~ wealth^2))

nodecov.wealth:nodecov.wealth nodecov.wealth^2
284058 187814

4.3. Reparametrizing the model

The term operator Sum(formulas, label) allows arbitrary linear combinations of existing
statistics to be added to the model. Suppose g1(y), . . . , gK(y) is a set of K vector-valued
network statistics, each corresponding to one or more ergm terms and of arbitrary dimension.
Also suppose that A1, . . . , AK is a set of known constant matrices, all having the same number
of rows, such that each matrix multiplication Akgk(y) is well-defined. Then we may define
the statistic

gSum(y) =
K∑

k=1
Akgk(y).

The first argument to Sum is a formula or a list of K formulas, each representing a vector
statistic. If a formula has a left-hand side, the left-hand side will be used to define the
corresponding Ak matrix: If it is a scalar or a vector, Ak will be a diagonal matrix thus
multiplying each element by its corresponding element; and if it is a matrix, Ak will be used
directly. When no left-hand side is given, Ak defaults to the identity matrix. To simplify this
function for some common cases, if the left-hand side is "sum" or "mean", the sum (or mean)
of the statistics in the formula is calculated.
As an example, consider a vector of statistics consisting of the numbers of friendship ties
received by each subgroup of Sampson’s monks:

R> summary(samplike ~ nodeifactor("group", levels = TRUE))

nodeifactor.group.Loyal nodeifactor.group.Outcasts
29 13

nodeifactor.group.Turks
46

Journal of Statistical Software 19

We may create a single statistic equal to the friendship ties received by both groups of “non-
Outcasts” by adding the first and third components of the nodefactor vector, either by
left-multiplying by

[
1 0 1

]
or by deselecting the second component at the nodeifactor

level and summing the remaining two:

R> summary(samplike ~
+ Sum(cbind(1, 0, 1) ~ nodeifactor("group", levels = TRUE), "nf.L_T") +
+ Sum("sum" ~ nodeifactor("group", levels = -2), "nf.L_T"))

Sum~nf.L_T Sum~nf.L_T
75 75

Whereas the Sum operator operates on network statistics, Parametrize(formula, params,
map, gradient = NULL, minpar = -Inf, maxpar = +Inf, cov = NULL) operates on the
parameters. The formula argument specifies a vector statistic gk(y) involving one or more
terms and, if curved terms are specified, a mapping ηk(θ). The remaining arguments follow
the curved ERGM template: The params argument is a vector of names whose length deter-
mines the dimension of the parameter vector. The function map must take arguments x, n,
and ... and map the parameter vector into the domain of ηk, transforming an ERGM term
ηk(θk)⊤gk(y) to ηk(η⋆(θk))⊤gk(y), where η⋆ is the function specified by map. The function
gradient must take the same arguments as map and return the gradient matrix, minpar and
maxpar specify the boundaries of the domain of map, and cov provides an optional argument
to map. If formula is not curved, ηk(θ) is simply the identity function.
To simplify this function for some common special cases, if map = "rep", the parameter
vector will simply be replicated to make it as long as required by ηk(θ), and the gradient will
be evaluated automatically. Similarly, if the user is certain that map is linear or affine, the
gradient will be calculated automatically if gradient = "linear" is specified.
To illustrate this, consider a simple model with the baseline edge effect and a single at-
tractiveness effect for monks who are not “Outcasts”. Following are four different ways to
parameterize this model when calling the ergm function. The first two examples use the
default parameterization while producing the two model statistics using different syntax:

R> f1 <- samplike ~ edges + nodeifactor(~ group != "Outcasts")
R> summary(f1)

edges nodeifactor.group!="Outcasts".TRUE
88 75

R> f2 <- samplike ~ edges +
+ Sum(cbind(1, 0, 1) ~ nodeifactor("group", levels = TRUE), "nf.L_T")
R> summary(f2)

edges Sum~nf.L_T
88 75

The next two examples each define a single vector of statistics g1(y), which we can see with
the summary function. In the first example, we use Parametrize with a 3-dimensional vector

20 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

of statistics, where we specify that the new parameter will be one-dimensional (by setting
params to be a single parameter name) and then define a map specifying that our single
parameter should multiply both the first and third statistics:

R> f3 <- samplike ~ edges + Parametrize(~ nodeifactor("group", levels = TRUE),
+ "nf.L_T", function(x, n, ...) c(x, 0, x), gradient = "linear")
R> summary(f3)

edges nodeifactor.group.Loyal
88 29

nodeifactor.group.Outcasts nodeifactor.group.Turks
13 46

Finally, the last example defines a 2-dimensional vector of statistics and then specifies (via
"rep") that the new single parameter should multiply each of these statistics:

R> f4 <- samplike ~ edges + Parametrize(~ nodeifactor("group", levels = -2),
+ "nf.L_T", "rep")
R> summary(f4)

edges nodeifactor.group.Loyal nodeifactor.group.Turks
88 29 46

All four fitted models return the same parameter estimates. Here, to save space we check only
the second parameter estimates in each model, which also reveals how each example assigns
parameter names:

R> cbind(c(coef(ergm(f1))[2], coef(ergm(f2))[2], coef(ergm(f3))[2],
+ coef(ergm(f4))[2]))

[,1]
nodeifactor.group!="Outcasts".TRUE 0.6661217
Sum~nf.L_T 0.6661217
nf.L_T 0.6661217
nf.L_T 0.6661217

Whereas the Sum operator calculates linear combinations of network statistics, the Prod oper-
ator calculates the products of their powers. As of this writing, it is implemented for positive
statistics only, by first applying the Log operator (which returns the natural logarithm, log
in R, of the statistics passed to it), then the Sum operator, and finally the Exp operator (which
returns the exponential function, exp in R). As a simple illustration, we may verify that the
Sum and Prod operators do in fact produce network statistics as expected if we simply use
each with a list of formulas having no left hand side:

R> summary(faux.dixon.high ~ edges + mutual +
+ Sum(list(~ edges, ~ mutual), "EdgesAndMutual")
+ Prod(list(~ edges, ~ mutual), "EdgesAndMutual"))

Journal of Statistical Software 21

edges mutual Sum~EdgesAndMutual
1197 219 1416

Exp~Sum~EdgesAndMutual
262143

5. Sample space constraints
In Section 1, we saw that the sample space Y is a subset of the power set 2Y, where Y is itself
a subset of all potential relationships. Many applications in fact take Y to be the set of all
relationships and Y = 2Y, but it is sometimes desirable to restrict the sample space by placing
constraints on which relationships (i, j) are allowed in Y and further which networks y ∈ 2Y
are allowed in Y. As a simple example, a bipartite network allows only edges connecting
nodes from one subset, or mode, to nodes from its complement. This particular constraint is
so commonly used that it is hard-coded into network and ergm. As another example, consider
the inverse of a bipartite setting, in which edges are only allowed within subsets of the node
set, a situation often called a block-diagonal constraint. As still another, some applications
impose a cap on the degree of any node, which constrains the sample space to include only
those networks in which every node has a permitted degree.
In all of the cases above, correct statistical inference for ERGMs depends on correctly in-
corporating constraints into the fitting process. They are specified using the constraints
argument, a one-sided formula whose terms specify the constraints on the sample space. For
example, constraints = ~ edges specifies Yedges = {y′ ∈ Y : |y′| = |y|}, where y is the
observed network, specified on the left-hand side. Some constraints, such as fixedas(y1,y0)
focus on constraining Y – in this case, as Yfixedas(y1,y0) = {(i, j) ∈ Y : (i, j) ∈ y1 ∧(i, j) /∈ y0}
– with Y ≡ 2Y.
Multiple constraints can be specified on a formula, separated by + to impose a new constraint
in additional to prior or (in some instances) - to relax preceding constraints. Earlier versions
of the ergm package implemented a number of constraints, as described for example in Sec-
tion 3 of Morris, Handcock, and Hunter (2008). Since that time, many additional types of
constraints and methods for imposing them have been added, some of which we describe in
this section. A full list of currently implemented constraints is obtained via ?ergmConstraint,
and a specific constraint [name] can be looked up with help("[name]-ergmConstraint")
or ergmConstraint?[name].

5.1. Arbitrary combinations of dyad-independent constraints

In general, every combination of constraints requires a somewhat different Metropolis–Hastings
proposal algorithm for efficient sampling, and so it may be impractical to support every possi-
ble combination of constraints. Dyad-independent constraints, which affect Y only through Y,
and do not induce stochastic dependencies among the dyad states, are an exception. These
include constraining specific dyads (such as the above-mentioned observed and fixedas
constraints), dyads incident on specific actors (such as the egocentric constraint), and
block-diagonal structure; and any combination of dyad-independent constraints is a dyad-
independent constraint. For some such combinations, ergm and other packages provide opti-
mized implementations. For the rest, ergm falls back to a general but efficient implementation

22 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

that uses run-length encoding tools provided by package rle (Krivitsky 2020) to efficiently
store sets of non-constrained dyads and rejection sampling to efficiently select a dyad for the
proposal.
Here, we illustrate some of ergm’s capabilities using a dataset due to Coleman (1964) that
is small enough that computational inefficiency will not present problems. These data are
self-reported friendship ties among 73 boys measured at two time points during the 1957–
1958 academic year and they are included as a 2 × 73 × 73 array and documented in the sna
package. We use the Coleman data to create a network object with 2 × 73 nodes:

R> library("sna")
R> data("coleman", package = "sna")
R> cole <- matrix(0, 2 * 73, 2 * 73)
R> cole[1:73, 1:73] <- coleman[1,,]
R> cole[73 + (1:73), 73 + (1:73)] <- coleman[2,,]
R> diag(cole[1:73, 73 + (1:73)]) <- diag(cole[73 + (1:73), 1:73]) <- 1
R> ncole <- network(cole)
R> ncole %v% "Semester" <- rep(c("Fall", "Spring"), each = 73)
R> ncole

Network attributes:
vertices = 146
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges= 652

missing edges= 0
non-missing edges= 652

Vertex attribute names:
Semester vertex.names

No edge attributes

By construction, the ncole network includes the Fall 1957 semester data and the Spring 1958
data as the upper left 73 × 73 and lower right 73 × 73 blocks, respectively. In addition, the
upper right and lower left blocks indicate which nodes are the same person; that is, yi,j = 1
whenever i and j are the same boy measured at two different times. This latter information
is redundant because the ordering of the 73 boys is the same in both fall and spring, yet we
include it to illustrate some techniques using entries that are not on the main block diagonal
and because in principle it might not always be the case that the same individuals are observed
at both time points.

5.2. Constraints via the Dyads operator
The Dyads(fix = NULL, vary = NULL) operator takes one or two ergm formulas that may
contain only dyad-independent terms. For the terms in the fix formula, dyads that affect the

Journal of Statistical Software 23

network statistic (i.e., have nonzero change statistic) for any the terms will be fixed at their
current values. For the terms in the vary formula, only those that change at least one of the
terms will be allowed to vary, and all others will be fixed. If both formulas are given, the dyads
that vary either for one or for the other will be allowed to vary. A formula passed without an
argument name will default to fix, for consistency with other constraints’ semantics.
The key to our treatment of the ncole network using the Dyads operator is the Semester
vertex attribute:

R> table(ncole %v% "Semester")

Fall Spring
73 73

In particular, the nodematch("Semester") term has a change statistic equal to one for ex-
actly those dyads representing boys measured during the same semester, and this change
statistic is zero otherwise. Therefore, in our 146-node directed network there are 146 × 145,
or 21,170, total dyads, of which 2 × 73 × 72, or 10,512, have nonzero change statistics for
nodematch("Semester"). We can easily see exactly how many total edges there are and how
many of these are in the upper left or lower right blocks:

R> summary(ncole ~ edges + nodematch("Semester"))

edges nodematch.Semester
652 506

We can now calculate directly the log-odds, or logit, for both the block diagonal and the off-
block diagonal subnetworks, then verify that the Dyads operator can accomplish these same
calculations using a constrained ERGM. First, we fix dyads with nonzero change statistics,
which yields the coefficient for block off-diagonal (non-matching) entries:

R> logit <- function(p) log(p / (1 - p))
R> cbind(logit((652 - 506) / (21170 - 10512)), coef(ergm(ncole ~ edges,
+ constraints = ~ Dyads(fix = ~ nodematch("Semester")))))

[,1] [,2]
edges -4.276666 -4.276666

Next, we allow dyads with nonzero change statistics to vary, which yields the coefficient for
block diagonal entries:

R> cbind(logit(506 / 10512), coef(ergm(ncole ~ edges,
+ constraints = ~ Dyads(vary = ~ nodematch("Semester")))))

[,1] [,2]
edges -2.984404 -2.984404

If we remove the constraints entirely, ncole has 652 edges out of a possible 21, 170:

24 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

R> cbind(logit(652/21170), coef(ergm(ncole ~ edges)))

[,1] [,2]
edges -3.449013 -3.449013

A significant limitation of this specific constraint is that its initialization requires testing every
possible dyad and therefore takes up time and memory in proportion to the square of the
number of nodes.

5.3. Constraints via blocks

The blocks operator constrains changes to any dyads that involve certain pairs of categories
defined by a particular nodal covariate. We may reproduce the examples of Section 5.2 using
blocks. First, consider the full complement of statistics produced by the nodemix model
term:

R> summary(ncole ~ nodemix("Semester", levels = TRUE, levels2 = TRUE))

mix.Semester.Fall.Fall mix.Semester.Spring.Fall
243 73

mix.Semester.Fall.Spring mix.Semester.Spring.Spring
73 263

The levels = TRUE argument ensures that nodemix considers every value of "group" in
constructing a mixing matrix of possible dyad combinations. The levels2 = TRUE argument
ensures that, from the full complement of such possible combinations, every one is included
as a statistic. By default, levels = TRUE whereas levels2 = -1, since we frequently want
to exclude at least one possible mixing combination to avoid collinearity in a model that also
includes the edges term.
We may now use levels2 in conjunction with blocks to select exactly which of the nodemix
combinations should be constrained as fixed to reproduce the examples of Section 5.2. First,
we fix all dyads where the group values match:

R> coef(ergm(ncole ~ edges,
+ constraints = ~ blocks("Semester", levels2 = c(1, 4))))

edges
-4.276666

Second, we fix the dyads where group values do not match:

R> coef(ergm(ncole ~ edges,
+ constraints = ~blocks("Semester", levels2 = c(2, 3))))

edges
-2.984404

Journal of Statistical Software 25

Additional examples using levels2, among other nodal attribute features, are contained in
the nodal_attributes vignette within the ergm package.

5.4. Additional constraints

Multiple different constraints on the sample space of possible networks, as defined by the
values of certain network statistics, may be implemented beyond those discussed already in
this section. The bd constraint, for instance, may be used to enforce a maximum allowable
degree for any node, via the maxout argument. A comprehensive list of available constraints
is available via ?ergmConstraint. The handling of various constraints by MCMC proposals
in the ergm package is addressed in Krivitsky et al. (2022).

6. Modeling networks with valued edges
Starting with version 3.1, the ergm package can handle some types of networks whose ties
are not merely binary, indicating presence or absence, but may have nonzero values other
than unity. For example, the value of a tie might represent a count, such as the number of
times a particular relationship has occurred; or it might represent an ordinal variable, if node
i ranks a subset of its neighbors. Valued ties can increase complexity relative to binary ties
in, for example, specifying the model and ensuring that the chosen statistics are meaningful
for the types of edge values being modeled. Whether the scale of measurement of tie values
is ordinal, interval, or ratio, it becomes necessary to specify the distribution of these values
and to create functions to aggregate these values into ERGM statistics.
In the ergm(), simulate(), and summary() functions, the valued mode is typically activated
by passing a response argument, giving the name of the edge attribute containing the value
of the response. Non-edges are assumed to have value 0. The argument may also be a formula
whose right-hand side is an expression in terms of the edge attributes that evaluates to the
response value and whose left-hand side, if present, gives the name to be used. If it evaluates
to a logical (TRUE/FALSE) value (e.g., response = threeContacts ~ (contacts >= 3)), a
binary ERGM is used.

6.1. Reference specification

Krivitsky (2012) pointed out that sufficient statistics alone do not suffice to specify an ERGM
on a network whose relations are valued. Consider a simple ERGM of the form

P(Y = y; θ) ∝ h(y) exp

θ
∑

(i,j)∈Y
yi,j

 ,

where yi,j ∈ {0, 1, . . .} is an unbounded count. If h(y) is any constant, then
Yi,j

i.i.d.∼ Geometric[p = 1 − exp (θ)]. On the other hand, if h(y) = 1/
∏

(i,j)∈Y yi,j !, then
Yi,j

i.i.d.∼ Poisson[µ = exp (θk)]. For this reason, Krivitsky (2012) called a distribution with
h(y) = 1 and a sample space of nonnegative integers a Geometric-reference ERGM and one
with h(y) = 1/

∏
(i,j)∈Y yi,j ! a Poisson-reference ERGM.

For ergm(), simulate(), and other functions, reference distributions are specified with a
reference argument, which is a one-sided formula with one term. The ergm package allows

26 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

Unif(a, b) and DiscUnif(a, b) references, specifying h(y) = 1, the former on a dyad space
yi,j ∈ [a, b], the latter on yi,j ∈ {a, a+1, . . . , b}. A companion package, ergm.count, allows the
additional references Poisson and Geometric, described above, as well as Binomial(trials)
for h(y) = ∏

(i,j)∈Y
(ntrials

yi,j

)
in the case yi,j ∈ {0, . . . , ntrials}. For rank-order relational data,

a CompleteOrder reference distribution is implemented in the ergm.rank package for situ-
ations where rankings are complete. Where ties are permitted, DiscUnif() can be used as
a reference. See Krivitsky and Butts (2019) for further details on both the ergm.count and
ergm.rank packages, and their vignettes.
Reference distributions are explained in more detail in Section 3 of Krivitsky and Butts
(2019). This reference also illustrates how the network package may be used to visualize
some kinds of valued networks (Section 2) and even how the latentnet package can handle
latent-space models with valued ties (Section 4). Online help on the reference distributions
that are implemented by all packages currently loaded in an R session can be obtained by
typing help("ergm-references").

6.2. Dyad-independent statistics

As in Section 4.1, a component of the vector g(y) is called a dyad-independent statistic if,
when one builds an ERGM using it as the only model statistic, the joint distribution (1) of the
network factors into the product of its marginal dyad distributions. That is, the univariate
version of (1) may be written

P(Y = y; θ) =
∏

(i,j)∈Y
P(Yi,j = yi,j) = h(y)

κh,η,g(θ, Y)
∏

(i,j)∈Y
exp{η(θ)gi,j(y)}

for y ∈ Y and for some appropriately chosen gi,j(y). Equation 6.1 shows that the sum of the
values yi,j , which implies gi,j(y) = yi,j , is one such example. Another example is the sum
of the nonzero indicators that arises if we define gi,j(y) = I{yi,j > 0}. Each of these basic
dyad-independent statistics is implemented in ergm:

sum(pow = 1) Sum of edge values: This is simply the summation of edge values. For
most valued ERGMs, this is the natural intercept term. In particular, for reference
distributions such as Poisson and Binomial, using this term produces intercept effects
of Poisson log-linear and binomial logistic regressions, respectively. Optionally, the dyad
values can be raised to a power before being summed.

nonzero Number of nonzero edge values: This term counts nonzero edge values. It can be
used to model zero-inflation that is common in networks: It is often the case that a
network is sparse but has edges with relatively high weights when they are present.

Binary ERGM statistics cannot be used directly for valued networks nor vice versa, but most
dyad-independent binary ERGM statistics have been generalized by imposing a covariate on
one of the two above forms. They have the same arguments as their binary ERGM counter-
parts, with an additional argument: form, which has two possible values: "sum" (the default)
and "nonzero". The former creates a statistic of the form ∑

(i,j)∈Y xi,jyi,j , where yi,j is the
value of dyad (i, j) and xi,j is the term’s covariate associated with it. The latter computes a
sum of indicator variables, one for each dyad, indicating whether the corresponding edge has
a nonzero value. When form = "sum" is used, typically a GLM-like effect results, whereas

Journal of Statistical Software 27

form = "nonzero" can be used to model sparsity effects (Krivitsky 2012). Krivitsky and
Butts (2019) gives an example of the form argument with the nodematch term.
Other terms that control a dyad’s distribution are atleast(threshold = 0),
atmost(threshold = 0), equalto(value = 0, tolerance = 0), greaterthan(threshold
= 0), ininterval(lower = -Inf, upper = +Inf, open = c(TRUE, TRUE)), and
smallerthan(threshold = 0). Each of these terms counts the dyad values that satisfy
the criterion identified by its name.

6.3. Mutuality

The binary mutual term in ergm counts the number of pairs of mutual ties. Its valued
counterpart is mutual(form), which permits the following values of form. For each of these,
a higher coefficient will tend to increase the similarity of reciprocating dyad values.

"product" Sum of products of reciprocating edge values: This is the most direct general-
ization. However, for a Poisson-reference ERGM in particular, a positive coefficient
on this term produces an infinite normalizing constant and therefore lies outside the
parameter space.

"geometric" Sum of geometric mean of reciprocating edge values: This form solves the
product form’s problem by taking a square root of the product. It can be viewed as
the uncentered covariance of variance-stabilized counts.

"min" Minimum of reciprocating edge values: This effect is, perhaps, the easiest to interpret,
at the cost of statistical power.

"nabsdiff" Absolute difference of reciprocating edge values: This effect is more symmetrical
than min.

We refer the reader to Krivitsky (2012) for a further discussion of the effects.

6.4. Actor heterogeneity

Different actors may have different overall propensities to interact. This has been modeled
using random effects, as in the p2 model, and using degeneracy-prone terms like k-star counts.
For valued ERGMs, the following term, also introduced by Krivitsky (2012) and discussed in
more detail there, models actor heterogeneity:

nodesqrtcovar(center, transform) Covariance between yi,j incident on same actor : The
default transform = "sqrt" will take a square root of dyad values before calculating,
and the default center = TRUE will center the transformed values around their global
mean, gaining stability at the cost of locality.

6.5. Triadic effects

To generalize the notion of triadic closure, ergm implements very flexible
transitiveweights(twopath, combine, affect) and similar cyclicalweights statistics.

28 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

The transitive weight statistic has the general form

gv(y) =
∑

(i,j)∈Y
vaffect

(
yi,j , vcombine

(
v2-path(yi,k, yk,j)k∈N\{i,j}

))
,

which can be customized by varying three functions:

v2-path: Given yi,k and yk,j , what is the strength of the two-path they form? The options are
"min", to take the minimum of the two-path’s constituent values, and "geomean", to
take their geometric mean, gaining statistical power at a greater risk of model instability.

vcombine: Given the strengths of the two-paths yi→k→j for all k ̸= i, j, what is the combined
strength of these two-paths between i and j? The choices are "max", for the strength
of the strongest of the two-paths – analogous to transitiveties or gwesp(0) binary
ERGM effects – and "sum", the sum of the path strengths. The latter choice is better
able to detect effects but is more subject to degeneracy; it is analogous to triangles.

vaffect: Given the combined strength of the two-paths between i and j, how should they
affect Yi,j? The choices are "min", the minimum of the combined strength and the
focus two-path, and "geomean", again more able to detect effects but more likely to
cause degeneracy.

Usage of the transitiveweights and cyclicalweights terms is illustrated in Section 3.1 of
Krivitsky and Butts (2019).

6.6. Using binary ERGM terms in valued ERGMs

ergm also allows general binary terms to be passed to valued models. The mechanism that
allows this is the term operator B(formula, form), which is further described in the ergm
online help under help("B-ergmTerm") or the shorthand ergmTerm?B. Here, formula is a one-
sided formula whose right hand side contains the binary ergm terms to be used. Allowable
values of the form argument are form = "sum" and form = "nonzero", which have the effects
described in Section 6.2, with form = "sum" only valid for dyad-independent formula terms;
or a one-sided formula may be passed to form, containing one valued ergm term, with the
following properties:

• dyadic independence;

• dyadwise contribution of either 0 or 1;

• dyadwise contribution of 0 for a 0-valued dyad.

That is, it must be expressible as

g(y) =
∑

(i,j)∈Y
gi,j(yi,j),

where for all i, j, and y, gi,j(yi,j) ∈ {0, 1} and gi,j(0) ≡ 0. Such terms include nonzero,
ininterval(), atleast(), atmost(), greaterthan(), lessthan(), and equalto(). The
operator will then construct a binary network yB such that yB

i,j = 1 if and only if gi,j(yi,j) = 1,
and evaluate the binary terms in formula on it.

Journal of Statistical Software 29

6.7. Modeling ordinal values using binary term operators
To illustrate the use of binary ergm terms on a valued network as described above, we con-
struct an example that uses the B (for “binary”) operator. The code snippet below gives an
example of a valued ergm that uses the DiscUnif, or discrete uniform, reference distribution,
which is included in the ergm package itself; that is, there is no need to load the ergm.count
or ergm.rank packages to run the following example. The example fits a multinomial logis-
tic regression model that assumes that the edge values are independent of one another and
take ordinal values that have the same interpretation for each dyad. (In general, rating and
ranking data may not allow edge values to be compared across egos (Krivitsky and Butts
2017); the ergm.rank package contains terms that remain valid in this more complex setting.)
Models for independently observed ordinal random variables have a long history in the statis-
tical literature; relevant references specific to network models include Robins, Pattison, and
Wasserman (1999) and, in a Bayesian framework, Caimo and Gollini (2020).
First, we build a valued network by pooling the three binary friendship nomination networks
due to Sampson (1968), exactly as in Section 2.1 of Krivitsky and Butts (2019).

R> data("samplk", package = "ergm")
R> samplk.tot.m <- as.matrix(samplk1) + as.matrix(samplk2) +
+ as.matrix(samplk3)
R> samplk.tot <- as.network(samplk.tot.m, directed = TRUE,
+ matrix.type = "a", ignore.eval = FALSE, names.eval = "nominations")

We will use the B operator to construct new statistics consisting of the number of edges with
value k or higher, where k is 1, 2, or 3.

R> summary(samplk.tot ~ B(~ edges, ~ atleast(1)) +
+ B(~ edges, ~ atleast(2)) +
+ B(~ edges, ~ atleast(3)), response = "nominations")

B(atleast(1))~edges B(atleast(2))~edges B(atleast(3))~edges
88 50 30

Since there are 18 × 17, or 306, possible edges, the summary statistics above tell us that
the valued network we have constructed has 30 edges with value 3, 50 − 30 = 20 edges with
value 2, 88 − 50 = 38 edges with value 1, and the remaining 218 edges with value 0. The
ERGM with these statistics has independent edges, where the probabilities an edge takes the
values 0, 1, 2, or 3 are given by 1/D, exp{θ1}/D, exp{θ1 + θ2}/D, and exp{θ1 + θ2 + θ3}/D,
respectively, where

D = 1 + exp{θ1} + exp{θ1 + θ2} + exp{θ1 + θ2 + θ3}.

We may verify that ergm’s stochastic fitting algorithm obtains maximum likeilhood estimates
(MLEs) very close to the exact values:

R> mod <- ergm(samplk.tot ~ B(~ edges, ~ atleast(1)) +
+ B(~ edges, ~ atleast(2)) +
+ B(~ edges, ~ atleast(3)), response = "nominations",
+ reference = ~ DiscUnif(0, 3), control = snctrl(seed = 123))
R> coef(mod)

30 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

B(atleast(1))~edges B(atleast(2))~edges B(atleast(3))~edges
-1.7481166 -0.6365629 0.4054433

R> true <- c(EdgeVal0 = 218, EdgeVal1 = 38, EdgeVal2 = 20, EdgeVal3 = 30)
R> est <- c(1, exp(cumsum(coef(mod))), use.names = FALSE)
R> rbind(True_Proportions = true / sum(true),
+ Estimated_Proportions = est / sum(est))

EdgeVal0 EdgeVal1 EdgeVal2 EdgeVal3
True_Proportions 0.7124183 0.1241830 0.06535948 0.09803922
Estimated_Proportions 0.7120505 0.1239691 0.06559302 0.09838739

This example could have used the equalto terms in place of all the atleast terms above.
Then, the estimated proportions would have been proportional to 1, exp{θ1}, exp{θ2}, and
exp{θ3} instead of 1, exp{θ1}, exp{θ1 + θ2}, and exp{θ1 + θ2 + θ3}. Such a model does not
assume ordinality of the edge values, so it could be used for a multinomial logit model in
which the edges take categorical non-ordered values.

7. Estimation in the presence of missing edge data
It is quite common that network data are incomplete in various ways. The ergm package
includes the capability to handle missing edge data, whereas other types of missingness such
as missing nodal information are not addressed. Early versions of ergm allowed the R object
NA to be treated as though it were a regular value of a nodal covariate; however, since this
behavior can lead to misleading results, more recent ergm packages return an error when a
nodal covariate with missing values is used in an ergm term.
Handcock and Gile (2010) formulated a framework for modeling networks with missing edges
and expressed the log-likelihood as

ℓ(θ) = log P(Y ∈ Y(yobs); θ) = log
∑

y′∈Y(yobs)
P(Y = y′; θ), (5)

where Y(yobs) is defined as the set of networks whose partial observation could have produced
yobs: essentially, all of the ways to impute the missing ties in yobs. (When there are no missing
ties in yobs, Y(yobs) contains only yobs.) They then proposed to maximize this likelihood by
taking advantage of the fact that, if

κY ′(θ) def=
∑

y′∈Y ′

h(y′) exp{η(θ)⊤g(y′)},

the log-likelihood can be expressed as ℓ(θ) = log κY(yobs)(θ)− log κY(θ), resulting in the score
equation

∇θℓ(θ̂) = η′(θ̂)⊤[EY(yobs){g(Y); θ̂} − EY{g(Y); θ̂}] = 0,

with MCMLE (Markov chain maximum likelihood estimate) approximation also possible for
the first term by fixing a particular θt and drawing a sample from ERGMY(yobs)(θt) as ex-
plained in Section 3 of Krivitsky et al. (2022).

Journal of Statistical Software 31

The ergm package invokes the above approach automatically when a network has missing edge
variables. The simplest way to encode a missing edge is to set its value to NA. The network
package natively supports missing edge variables coded in this way, and network objects with
missingness are thus handled without additional intervention. ergm’s methods for assessing
goodness of fit of a model by comparing observed values of certain network statistics to the
distribution of their simulated values under the model (Hunter, Goodreau, and Handcock
2008a, Hunter et al. (2008b)) have also been adapted to missing edge data: the (unavailable)
observed values of the statistics of interest t(y) are replaced by their conditional expectations
EY(yobs){t(Y); θ̂}.
Here we fit a simple model with edges, mutuality (reciprocated dyads), transitive ties, and
cyclical ties to the Sampson Monks dataset depicted in Figure 1. For the sake of comparison,
we first fit the model assuming no missing edge data, which may be quickly verified using the
output of the print(samplike) command:

R> print(samplike)

Network attributes:
vertices = 18
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
total edges= 88

missing edges= 0
non-missing edges= 88

Vertex attribute names:
cloisterville group vertex.names

Edge attribute names:
nominations

R> summary(full.fit <- ergm(samplike ~ edges + mutual + transitiveties +
+ cyclicalties, eval.loglik = TRUE), control = snctrl(seed = 321))

Call:
ergm(formula = samplike ~ edges + mutual + transitiveties + cyclicalties,

eval.loglik = TRUE)

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -1.9372 0.3745 0 -5.172 <1e-04 ***
mutual 2.4684 0.4467 0 5.525 <1e-04 ***
transitiveties 0.5387 0.3063 0 1.759 0.0786 .
cyclicalties -0.4543 0.2522 0 -1.802 0.0716 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

32 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

Null Deviance: 424.2 on 306 degrees of freedom
Residual Deviance: 329.0 on 302 degrees of freedom

AIC: 337 BIC: 351.9 (Smaller is better. MC Std. Err. = 0.624)

Now, suppose that Monk #1 (John Bosco) refused to respond during all three waves, rendering
his replies missing:

R> samplike1 <- samplike
R> samplike1[1,] <- NA
R> print(samplike1)

Network attributes:
vertices = 18
directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
total edges= 99

missing edges= 17
non-missing edges= 82

Vertex attribute names:
cloisterville group vertex.names

Edge attribute names:
nominations

If we pass this modified object to ergm, it will automatically calculate the MLE under the
assumption that the monk’s refusal is unrelated to his choice of relations, i.e., that the data
are ignorably missing with respect to the specified model:

R> summary(m1.fit <- ergm(samplike1 ~ edges + mutual + transitiveties +
+ cyclicalties, eval.loglik = TRUE), control = snctrl(seed = 321))

Call:
ergm(formula = samplike1 ~ edges + mutual + transitiveties +

cyclicalties, eval.loglik = TRUE)

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.0324 0.3847 0 -5.283 <1e-04 ***
mutual 2.4025 0.4672 0 5.143 <1e-04 ***
transitiveties 0.4631 0.4190 0 1.105 0.269
cyclicalties -0.2741 0.3806 0 -0.720 0.471

Journal of Statistical Software 33

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 400.6 on 289 degrees of freedom
Residual Deviance: 313.4 on 285 degrees of freedom

AIC: 321.4 BIC: 336 (Smaller is better. MC Std. Err. = 0.5569)

The degrees of freedom associated with the missing data fit have decreased because unobserved
dyads do not carry information. For details regarding the ignorability assumption for edge
variables, see Handcock and Gile (2010).
The estimation approach above can be extended to other types of incomplete network obser-
vation. Karwa, Krivitsky, and Slavković (2017) applied it to fit arbitrary ERGMs to networks
whose dyad values had been stochastically perturbed – ties added and removed at random,
with known probabilities – in order to preserve privacy. Another use case is multiple imputa-
tion for networks with missing data, in which multiple random versions of the full network are
constructed by randomly inserting values for unobserved dyads according to probabilities that
are determined based on, say, some type of logistic regression model. These mechanisms may
be invoked by passing an obs.constraints formula, specifying how the network of interest
was observed. Of particular interest are the following constraints:

observed: Restricts the proposal to changing only those dyads that are recorded as missing.

egocentric(attr = NULL, direction = c("both", "out", "in")): Restricts the pro-
posal to changing only those dyads that would not be observed in an egocentric sample.
That is, dyads cannot be modified that are incident on vertices for which attribute
specification attr has value TRUE or, if attr is NULL, the vertex attribute "na" has
value FALSE. For directed networks, direction == "out" only preserves the out-dyads
of those actors, and direction == "in" preserves their in-dyads.

dyadnoise(p01, p10): Unlike the others, this is a soft constraint to adjust the sampled
distribution for dyad-level noise with known perturbation probabilities, which can arise
in a variety of contexts (Karwa et al. 2017). It is assumed that the observed LHS (left-
hand side) network is a noisy observation of some unobserved true network, with p01
giving the dyadwise probability of erroneously observing a tie where the true network
had a non-tie and p10 giving the dyadwise probability of erroneously observing a nontie
where the true network had a tie. p01 and p10 can be either both be scalars or both
be adjacency matrices of the same dimension as that of the LHS network giving these
probabilities.

We may use the obs.constraints argument to re-fit the model above:

R> samplike2 <- samplike
R> samplike2[1,] <- 0
R> samplike2 %v% "responded" <- rep(c(FALSE,TRUE),c(1,17))
R> print(samplike2)

Network attributes:
vertices = 18

34 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

directed = TRUE
hyper = FALSE
loops = FALSE
multiple = FALSE
total edges= 82

missing edges= 0
non-missing edges= 82

Vertex attribute names:
cloisterville group responded vertex.names

Edge attribute names:
nominations

R> summary(m2.fit <- ergm(samplike2 ~ edges + mutual + transitiveties +
+ cyclicalties, obs.constraints = ~ egocentric(~ responded, "out"),
+ control = snctrl(seed = 123)))

Call:
ergm(formula = samplike2 ~ edges + mutual + transitiveties +

cyclicalties, obs.constraints = ~egocentric(~responded, "out"),
control = snctrl(seed = 123))

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.0090 0.3867 0 -5.196 <1e-04 ***
mutual 2.3890 0.4764 0 5.015 <1e-04 ***
transitiveties 0.4401 0.4353 0 1.011 0.312
cyclicalties -0.2660 0.3918 0 -0.679 0.497

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 400.6 on 289 degrees of freedom
Residual Deviance: 313.9 on 285 degrees of freedom

AIC: 321.9 BIC: 336.6 (Smaller is better. MC Std. Err. = 0.4579)

Finally, since the observational process can be viewed as a part of the network dataset, we
may specify it using the %ergmlhs% operation, giving a third way to fit the model above:

R> samplike2 %ergmlhs% "obs.constraints" <- ~ egocentric(~ responded, "out")
R> summary(m3.fit <- ergm(samplike2 ~ edges + mutual + transitiveties +
+ cyclicalties), control = snctrl(seed = 231))

Call:
ergm(formula = samplike2 ~ edges + mutual + transitiveties +

cyclicalties)

Journal of Statistical Software 35

Monte Carlo Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|)
edges -2.0288 0.3945 0 -5.142 <1e-04 ***
mutual 2.4047 0.4694 0 5.123 <1e-04 ***
transitiveties 0.4685 0.4034 0 1.161 0.246
cyclicalties -0.2844 0.3660 0 -0.777 0.437

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 400.6 on 289 degrees of freedom
Residual Deviance: 313.1 on 285 degrees of freedom

AIC: 321.1 BIC: 335.8 (Smaller is better. MC Std. Err. = 0.4385)

8. Other enhancements
We close this paper by highlighting a number of miscellaneous enhancements to the ergm
package since the Hunter et al. (2008b) article.

8.1. Exact calculations for small networks

For small networks, it is possible to obtain full enumeration of all possible network statistic
vectors over the entire sample space of possible networks. This enumeration enables exact
calculations of such quantities as the log-likelihood function, the MLE, or the normalizing
constant. If we consider only binary networks on an unconstrained sample space, the total
number of networks is 2n(n−1)/2 for undirected networks and 2n(n−1) for directed networks,
which imposes a practical limit of n = 8 nodes in the undirected case or n = 6 in the directed
case unless the user wants to compute for a long time, and the functions described in this
section return an error for larger networks than these unless the force = TRUE option is
invoked.
The ergm.allstats function, added to the ergm more than a decade ago in version 2.4,
performs an efficient, “brute-force” tabulation of all possible network statistic vectors for
an arbitrary ERGM by visiting every possible network. The ergm.exact function uses
ergm.allstats to calculate exact likelihood values. Due to the computationally intractable
normalizing constant κh,η,g(θ, Y) of (1), except in the case of dyadic independence models,
ergm.exact and ergm.allstats may only be used for small networks. In a test, the code
below took about 254 times as long on a 9-node network as it did on an 8-node network,
which is not surprising because the 9-node sample space has 236−28, or 256, times as many
networks.

R> system.time({
+ EmptyNW <- network.initialize(8, directed = FALSE)
+ a <- ergm.allstats(EmptyNW ~ edges + triangle + isolates + degree(4),
+ force = TRUE)
+ })

36 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

user system elapsed
46.288 0.061 46.391

Naturally, many networks of interest are too large to utilize ergm.allstats and ergm.exact.
Yet calculations on small networks can still provide useful test cases; for instance, see Schmid
and Hunter (2020) or Vega Yon, Slaughter, and de la Haye (2021).

8.2. Estimation based only on sufficient statistics

In exponential family parlance, g(yobs) is often called the vector of sufficient statistics. Since
the likelihood function of (5) depends on yobs only via these sufficient statistics, it is not
actually necessary to observe yobs in order to calculate an MLE. The MLE-finding algorithm
in ergm exploits this fact by implementing the idea of Hummel, Hunter, and Handcock (2012)
to replace g(yobs) by a vector of statistics that is closer to the sample mean generated by a
current fixed, known parameter value. Maximizing the resulting version of the loglikelihood
function yields a parameter value which may then be used to generate a new random sample
of networks, and the process is repeated to give a sequence of parameter values approaching
the desired MLE.
In some applications, such as when data are egocentrically sampled, it is possible to observe
or estimate the vector g(yobs) of statistics that would in principle have been observed in the
network, even if other information about the network itself is absent. Estimation may still
proceed by passing a target.stats argument containing a vector of network statistics. For
example, we may reproduce (up to the stochasticity of the fitting algorithm) the analysis
of the full.fit example in Section 7 by passing the vector of statistics on the samplike
network via target.stats even though the network used in the ergm function call has no
edges at all:

R> ts <- summary(samplike ~ edges + mutual + transitiveties + cyclicalties)
R> emptynw <- network.initialize(network.size(samplike), directed = TRUE)
R> ts.fit <- ergm(emptynw ~ edges + mutual + transitiveties + cyclicalties,
+ target.stats = ts, control = snctrl(seed = 123))
R> rbind(coef(full.fit), coef(ts.fit))

edges mutual transitiveties cyclicalties
[1,] -1.937163 2.468433 0.5387231 -0.4542983
[2,] -1.911295 2.459711 0.5375529 -0.4642011

8.3. Predicting individual edge probabilities

The predict method, which may be called on either formula or ergm objects, calculates
model-predicted conditional or unconditional edge probabilities for dyads in a binary network.
In the conditional case, we require not only a fitted ERGM but also a full network. For every
possible i and j, the model-based conditional probability that Yij = 1, given the status of all
other edges in the full network, is easily calculated based on (1). Indeed, this is exactly what
the ergmMPLE function does in order to calculate an MPLE (maximum pseudo-likelihood
estimator) (see Krivitsky et al. 2022, Section 3.1). Thus, when conditional = TRUE, the
predict method produces exact calculations for any model.

Journal of Statistical Software 37

By contrast, setting conditional = FALSE always results in simulation-based estimates of
the edge probabilities – despite the fact that for any dyad-independent model, edges are inde-
pendent of one another. This independence means that conditional and unconditional prob-
abilities coincide, so exact unconditional probability calculations are possible as explained
in the previous paragraph. On the other hand, for dyad-dependent models, it is gener-
ally computationally intractable to calculate exact unconditional edge probabilities, so only
simulation-based estimates are possible.
The difference between conditional = TRUE and conditional = FALSE is best illustrated
by a very simple dyad-independent model. Here, we consider ergm’s g4 network with 4 nodes
and 5 directed ties. We add a simple nodal covariate that indicates the first node, then fit a
two-term dyad-independence model:

R> data("g4", package = "ergm")
R> g4 %v% "First" <- c(TRUE, FALSE, FALSE, FALSE)
R> SimpleERGM <- ergm(g4 ~ edges + nodecov("First"))
R> as.matrix(g4)

V1 V2 V3 V4
V1 0 1 1 1
V2 0 0 0 0
V3 1 0 0 0
V4 0 0 1 0

Our model estimates one edge probability for node 1 and a second edge probability for all
other nodes. The adjacency matrix above makes clear that 4 of the 6 possible edges incident
on node 1 are present, while only 1 of the remaining 6 possible edges is present. This makes the
exact edge probabilities according to this maximum likelihood-fitted model easy to calculate,
and they coincide with those obtained using predict with conditional = TRUE:

R> predict(SimpleERGM, conditional = TRUE, output = "matrix")

V1 V2 V3 V4
V1 0.0000000 0.6666667 0.6666667 0.6666667
V2 0.6666667 0.0000000 0.1666667 0.1666667
V3 0.6666667 0.1666667 0.0000000 0.1666667
V4 0.6666667 0.1666667 0.1666667 0.0000000

On the other hand, conditional = FALSE forces a simulation-based estimate of the uncon-
ditional probabilities:

R> set.seed(123)
R> predict(SimpleERGM, conditional = FALSE, output = "matrix", nsim = 1000)

V1 V2 V3 V4
V1 0.000 0.673 0.649 0.677
V2 0.662 0.000 0.178 0.154
V3 0.683 0.165 0.000 0.185
V4 0.641 0.173 0.173 0.000

38 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

8.4. Flattened control arguments via a single list

Many of the core functions of ergm and related packages have control arguments that
control various aspects of their working. Within just ergm, for instance, the functions ergm,
simulate (for simulating a random network from a Markov chain with a specified ERGM as
its stationary distribution), and san (for creating a network whose statistics match a given set
of values) all require various control parameters. Packages such as ergm.ego include additional
core functions like ergm.ego requiring control parameters. Moreover, it is not unusual that,
say, a call to ergm will invoke simulate and possibly san implicitly. This means that a single
ergm (or ergm.ego) call could have multiple lists of control parameters, sometimes passed as
nested lists. ergm 4 implements a method that flattens these nested lists, allowing users to
enter all control parameters in a single list. Furthermore, this method allows for the usual
tab-completion of available arguments when using most R environments.
The key to entering control arguments for all of the various functions requiring them is the
single function snctrl(), which is shorthand for “StatNet ConTRoL”. The snctrl() function
is used as the single value of the control argument in a function such as ergm. For instance,
if we wish to force Monte-Carlo-based estimation in a simple ERGM that could be estimated
exactly – because it is a dyadic independence model in which the pseudo-likelihood is the
same as the likelihood – we might type

R> coef(ergm(g4 ~ edges, control = snctrl(force.main = TRUE, seed = 321)))

edges
-0.349256

If the code above is entered in RStudio, then pressing the tab key after typing ...control =
snctrl(will reveal the various possible control parameters, including force.main. Additional
illustrations of this method of entering control parameters are in Krivitsky et al. (2022).
ergm 4 is backwards-compatible with the previous method of passing control parameters via
control.ergm, control.simulate, control.san, and others.

8.5. Improved help for model terms, constraints, and reference measures

As alluded to at several points earlier in this article, online help for model terms, which
include term operators, may be obtained by typing either help("[name]-ergmTerm") or the
shorthand version ergmTerm?[name], where [name] is the name of the term or operator.
A full list of terms is available via ?ergmTerm, indexed by type and keywords. This list
is updated dynamically as extension packages are loaded and unloaded. Similarly, help on
sample space constraints or reference measures may be obtained by typing ?ergmConstraint
or ?ergmReference, respectively. Available keywords and their meanings can be obtained by
typing ?ergmKeywords. When using RStudio, it is possible to press the tab key after starting
a line with ?ergm to view the wide range of possible help options beginning with the letters
ergm.

8.6. Setting package options

ergm 4 has a number of options that affect ERGM estimation as well as the behavior of some
terms, explained below as global options and term options, respectively. A current list of avail-
able options may be obtained via help("ergm-options") or the shorthand options?ergm.

Journal of Statistical Software 39

Global options

A number of ergm behaviors can be set globally using the familiar options() command. For
example, whether ergm() and similar functions evaluate the likelihood of the fitted model
– a very computationally intensive process, particularly for valued networks – by default is
controlled by option ergm.eval.loglik, which itself defaults to TRUE. Running

R> options(ergm.eval.loglik = FALSE)

instructs ergm() to skip likelihood calculation unless overridden in the call via ergm(...,
eval.loglik = TRUE).
Other global options currently implemented are

ergm.loglik.warn_dyads: Whether log-likelihood evaluation should issue a warning when
the effective number of dyads that can vary in the sample space is poorly defined, such
as if the degree sequence is constrained.

ergm.cluster.retries: ergm’s parallel routines implement rudimentary fault-tolerance.
This option controls the number of retries for a cluster call before giving up.

ergm.term: This allows the default term options list, described below, to be set globally.

Term options

ergm 4 implements an interface for setting certain options for ERGM term behavior. The
global setting is controlled via options(ergm.term = list(...)) where ... are key-value
pairs specifying the options. Individual options can be overwritten on an ad hoc basis
within a function call. For functions that have a control argument, such as ergm() and
simulate(), this is done via a term.options control parameter, and for those that do not,
such as summary(), it is done by passing the options directly or by passing a term.options
argument with the list.
Options used as of this writing include:

version: A string that can be interpreted as an R package version. If set, the term will
attempt to emulate its behavior as it was that version of ergm. Not all past version
behaviors are available.

gw.cutoff: In geometrically weighted terms (gwesp, gwdegree, etc.) the highest number of
shared partners, degrees, etc. for which to compute the statistic. This usually defaults
to 30.

cache.sp: Whether the gwesp, dgwesp, and similar terms should use a cache for the dyad-
wise number of shared partners. This usually improves performance significantly and
therefore defaults to TRUE, but it can be disabled.

interact.dependent: How to handle attempts to use interaction terms : and * with dyad-
dependent terms. Possible values are "error" (the default), "message", "warning",
and "silent". Each of the last three will allow such terms, defined as described in
Section 4.2 via their change statistics.

40 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

9. Discussion
Since version 2.1 of the ergm package was released concurrently with Hunter et al. (2008b),
the package has undergone substantial changes. This paper describes the changes that are
most likely to be of general interest, including – but not limited to – those that are new with
the release of major version 4 (Handcock et al. 2023). Development of ergm and the growing
list of related packages, many of which are described in Section 2 of this article, is ongoing.
Thus, while this article describes many new features, it represents a snapshot of the evolving
code comprising the statnet suite of packages for R (R Core Team 2022).

Acknowledgments
Many individuals have contributed code for version 4 of ergm, particularly Mark Handcock,
who wrote most of the code upon which missing data inference and diagnostics are based, and
Michał Bojanowski, who produced the predict method, among many other contributions by
both of them. Carter Butts is the main developer of the network package, upon which ergm
depends; in addition, he provided numerous suggestions for computational improvements and
new terms, and provided numerous helpful comments about this manuscript. Skye Bender-
deMoll wrote a vignette that automatically cross-references ergm model terms, Joyce Cheng
wrote the dynamic documentation system and miscellaneous enhancements, and Christian
Schmid contributed code improving MPLE standard error estimation. Other important con-
tributors are Steven Goodreau, Ayn Leslie-Cook, Li Wang, and Kirk Li. We are grateful to all
these individuals as well as the many users of ergm who have aided the package’s development
through the many questions and suggestions they have posed over the years.
This work was supported by the National Institutes of Health under Grant R01-AI138783.
Partial support for this research came from a Eunice Kennedy Shriver National Institute of
Child Health and Human Development research infrastructure Grant, P2C HD042828, to the
Center for Studies in Demography and Ecology at the University of Washington; and from
the US Army Research Office W911NF-21-1-0335 (79034-NS).

References

Bache SM, Wickham H (2022). magrittr: A Forward-Pipe Operator for R. R package ver-
sion 2.0.3, URL https://CRAN.R-project.org/package=magrittr.

Bender-deMoll S (2016). Temporal Network Tools in statnet: networkDynamic, ndtv and
tsna. statnet Development Team. URL https://statnet.org/workshop-ndtv/.

Bender-deMoll S (2022). ndtv: Network Dynamic Temporal Visualizations. R package ver-
sion 0.13.3, URL https://CRAN.R-project.org/package=ndtv.

Bender-deMoll S, Morris M (2021). tsna: Tools for Temporal Social Network Analysis. R pack-
age version 0.3.5, URL https://CRAN.R-project.org/package=tsna.

Butts CT (2008a). “network: A Package for Managing Relational Data in R.” Journal of
Statistical Software, 24(2). doi:10.18637/jss.v024.i02.

https://CRAN.R-project.org/package=magrittr
https://statnet.org/workshop-ndtv/
https://CRAN.R-project.org/package=ndtv
https://CRAN.R-project.org/package=tsna
https://doi.org/10.18637/jss.v024.i02

Journal of Statistical Software 41

Butts CT (2008b). “Social Network Analysis with sna.” Journal of Statistical Software, 24(6),
1–51. doi:10.18637/jss.v024.i06.

Butts CT, Leslie-Cook A, Krivitsky PN, Bender-deMoll S (2022). networkDynamic: Dynamic
Extensions for Network Objects. R package version 0.11.2, URL https://CRAN.R-project.
org/package=networkDynamic.

Caimo A, Gollini I (2020). “A Multilayer Exponential Random Graph Modelling Approach
for Weighted Networks.” Computational Statistics & Data Analysis, 142, 106825. doi:
10.1016/j.csda.2019.106825.

Coleman JS (1964). Introduction to Mathematical Sociology. The Free Press of Glencoe, New
York.

Handcock MS, Gile KJ (2010). “Modeling Social Networks from Sampled Data.” The Annals
of Applied Statistics, 4(1), 5–25. doi:10.1214/08-aoas221.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Krivitsky PN, Morris M (2023). ergm:
Fit, Simulate and Diagnose Exponential-Family Models for Networks. The statnet Project
(https://statnet.org/). R package version 4.4.0, URL https://CRAN.R-project.org/
package=ergm.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2008). “statnet: Software
Tools for the Representation, Visualization, Analysis and Simulation of Network Data.”
Journal of Statistical Software, 24(1), 1–11. doi:10.18637/jss.v024.i01.

Henry L, Wickham H (2020). purrr: Functional Programming Tools. R package version 0.3.4,
URL https://CRAN.R-project.org/package=purrr.

Holland PW, Leinhardt S (1981). “An Exponential Family of Probability Distributions for
Directed Graphs.” Journal of the American Statistical Association, 76(373), 33–50. doi:
10.1080/01621459.1981.10477598.

Hummel RM, Hunter DR, Handcock MS (2012). “Improving Simulation-Based Algorithms
for Fitting ERGMs.” Journal of Computational and Graphical Statistics, 21(4), 920–939.
doi:10.1080/10618600.2012.679224.

Hunter DR, Goodreau SM (2019). Extending ergm Functionality Within statnet: Building
Custom User Terms. URL https://statnet.org/workshop-ergm-userterms/.

Hunter DR, Goodreau SM, Handcock MS (2008a). “Goodness of Fit for Social Network
Models.” Journal of the American Statistical Association, 103(481), 248–258. doi:10.
1198/016214507000000446.

Hunter DR, Goodreau SM, Handcock MS (2013). “ergm.userterms: A Template Package
for Extending statnet.” Journal of Statistical Software, 52(2), 1–25. doi:10.18637/jss.
v052.i02.

Hunter DR, Handcock MS (2006). “Inference in Curved Exponential Family Models for
Networks.” Journal of Computational and Graphical Statistics, 15(3), 565–583. doi:10.
1198/106186006x133069.

https://doi.org/10.18637/jss.v024.i06
https://CRAN.R-project.org/package=networkDynamic
https://CRAN.R-project.org/package=networkDynamic
https://doi.org/10.1016/j.csda.2019.106825
https://doi.org/10.1016/j.csda.2019.106825
https://doi.org/10.1214/08-aoas221
https://statnet.org/
https://CRAN.R-project.org/package=ergm
https://CRAN.R-project.org/package=ergm
https://doi.org/10.18637/jss.v024.i01
https://CRAN.R-project.org/package=purrr
https://doi.org/10.1080/01621459.1981.10477598
https://doi.org/10.1080/01621459.1981.10477598
https://doi.org/10.1080/10618600.2012.679224
https://statnet.org/workshop-ergm-userterms/
https://doi.org/10.1198/016214507000000446
https://doi.org/10.1198/016214507000000446
https://doi.org/10.18637/jss.v052.i02
https://doi.org/10.18637/jss.v052.i02
https://doi.org/10.1198/106186006x133069
https://doi.org/10.1198/106186006x133069

42 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). “ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks.” Journal of Statistical
Software, 24(3), 1–29. doi:10.18637/jss.v024.i03.

Jenness SM, Goodreau SM, Morris M (2018). “EpiModel: An R Package for Mathematical
Modeling of Infectious Disease over Networks.” Journal of Statistical Software, 84(8), 1–47.
doi:10.18637/jss.v084.i08.

Karwa V, Krivitsky PN, Slavković AB (2017). “Sharing Social Network Data: Differentially
Private Estimation of Exponential-Family Random Graph Models.” Journal of the Royal
Statistical Society C, 66(3), 481–500. doi:10.1111/rssc.12185.

Krivitsky PN (2012). “Exponential-Family Random Graph Models for Valued Networks.”
Electronic Journal of Statistics, 6, 1100–1128. doi:10.1214/12-ejs696.

Krivitsky PN (2020). rle: Common Functions for Run-Length Encoded Vectors. R package
version 0.9.2, URL https://CRAN.R-project.org/package=rle.

Krivitsky PN (2022a). ergm.count: Fit, Simulate and Diagnose Exponential-Family Models
for Networks with Count Edges. The statnet Project (https://statnet.org/). R package
version 4.1.1, URL https://CRAN.R-project.org/package=ergm.count.

Krivitsky PN (2022b). ergm.ego: Fit, Simulate and Diagnose Exponential-Family Random
Graph Models to Egocentrically Sampled Network Data. The statnet Project (https://
statnet.org/). R package version 1.0.1, URL https://CRAN.R-project.org/package=
ergm.ego.

Krivitsky PN (2022c). ergm.multi: Fit, Simulate and Diagnose Exponential-Family Models for
Multiple or Multilayer Networks. The statnet Project (https://statnet.org/). R package
version 0.1.2, URL https://CRAN.R-project.org/package=ergm.multi.

Krivitsky PN (2022d). ergm.rank: Fit, Simulate and Diagnose Exponential-Family Models
for Rank-Order Relational Data. The statnet Project (https://statnet.org/). R package
version 4.1.0, URL https://CRAN.R-project.org/package=ergm.rank.

Krivitsky PN, Butts CT (2017). “Exponential-Family Random Graph Models for Rank-
Order Relational Data.” Sociological Methodology, 47(1), 68–112. doi:10.1177/
0081175017692623.

Krivitsky PN, Butts CT (2019). Modeling Valued Networks with statnet. statnet Development
Team. URL https://statnet.org/workshop-valued/.

Krivitsky PN, Handcock MS (2008). “Fitting Position Latent Cluster Models for Social
Networks with latentnet.” Journal of Statistical Software, 24(5), 1–23. doi:10.18637/
jss.v024.i05.

Krivitsky PN, Handcock MS (2014). “A Separable Model for Dynamic Networks.” Journal
of the Royal Statistical Society B, 76(1), 29–46. doi:10.1111/rssb.12014.

Krivitsky PN, Handcock MS (2022a). latentnet: Latent Position and Cluster Models for Sta-
tistical Networks. The statnet Project (https://statnet.org/). R package version 2.10.6,
URL https://CRAN.R-project.org/package=latentnet.

https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.18637/jss.v084.i08
https://doi.org/10.1111/rssc.12185
https://doi.org/10.1214/12-ejs696
https://CRAN.R-project.org/package=rle
https://statnet.org/
https://CRAN.R-project.org/package=ergm.count
https://statnet.org/
https://statnet.org/
https://CRAN.R-project.org/package=ergm.ego
https://CRAN.R-project.org/package=ergm.ego
https://statnet.org/
https://CRAN.R-project.org/package=ergm.multi
https://statnet.org/
https://CRAN.R-project.org/package=ergm.rank
https://doi.org/10.1177/0081175017692623
https://doi.org/10.1177/0081175017692623
https://statnet.org/workshop-valued/
https://doi.org/10.18637/jss.v024.i05
https://doi.org/10.18637/jss.v024.i05
https://doi.org/10.1111/rssb.12014
https://statnet.org/
https://CRAN.R-project.org/package=latentnet

Journal of Statistical Software 43

Krivitsky PN, Handcock MS (2022b). tergm: Fit, Simulate and Diagnose Models for Net-
work Evolution Based on Exponential-Family Random Graph Models. The statnet Project
(https://statnet.org/). R package version 4.1.1, URL https://CRAN.R-project.org/
package=tergm.

Krivitsky PN, Handcock MS, Raftery AE, Hoff PD (2009). “Representing Degree Distribu-
tions, Clustering, and Homophily in Social Networks with Latent Cluster Random Effects
Models.” Social Networks, 31(3), 204–213. doi:10.1016/j.socnet.2009.04.001.

Krivitsky PN, Hunter DR, Morris M, Klumb C (2022). “ergm 4: Computational Improve-
ments.” arXiv 2203.08198, arXiv.org E-Print Archive. doi:10.48550/arxiv.2203.08198.

Krivitsky PN, Koehly LM, Marcum CS (2020). “Exponential-Family Random Graph
Models for Multi-Layer Networks.” Psychometrika, 85, 630–659. doi:10.1007/
s11336-020-09720-7.

Krivitsky PN, Morris M (2017). “Inference for Social Network Models from Egocentrically-
Sampled Data, with Application to Understanding Persistent Racial Disparities in HIV
Prevalence in the US.” The Annals of Applied Statistics, 11(1), 427–455. doi:10.1214/
16-aoas1010.

Morris M, Handcock MS, Hunter DR (2008). “Specification of Exponential-Family Random
Graph Models: Terms and Computational Aspects.” Journal of Statistical Software, 24(4),
1–24. doi:10.18637/jss.v024.i04.

Morris M, Krivitsky PN (2015). Temporal Exponential Random Graph Models (TERGMs)
for Dynamic Network Modeling in statnet. statnet Development Team. URL https:
//statnet.org/workshop-tergm/.

Morris M, Krivitsky PN (2019). Introduction to Egocentric Network Data Analysis with
ERGMs Using statnet. statnet Development Team. URL https://statnet.org/
workshop-ergm-ego/.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robins G, Pattison P, Wasserman S (1999). “Logit Models and Logistic Regressions for
Social Networks: III. Valued Relations.” Psychometrika, 64(3), 371–394. doi:10.1007/
bf02294302.

Sampson SF (1968). A Novitiate in a Period of Change: An Experimental and Case Study
of Social Relationships. Ph.D. Thesis (University Micofilm, No 69-5775), Department of
Sociology, Cornell University, Ithaca, New York.

Schmid CS, Hunter DR (2020). “Improving ERGM Starting Values Using Simulated Anneal-
ing.” arXiv 2009.01202, arXiv.org E-Print Archive. doi:10.48550/arxiv.2009.01202.

Schweinberger M, Krivitsky PN, Butts CT, Stewart JR (2020). “Exponential-Family Models
of Random Graphs: Inference in Finite, Super and Infinite Population Scenarios.” Statistical
Science, 35(4), 627–662. doi:10.1214/19-sts743.

https://statnet.org/
https://CRAN.R-project.org/package=tergm
https://CRAN.R-project.org/package=tergm
https://doi.org/10.1016/j.socnet.2009.04.001
https://doi.org/10.48550/arxiv.2203.08198
https://doi.org/10.1007/s11336-020-09720-7
https://doi.org/10.1007/s11336-020-09720-7
https://doi.org/10.1214/16-aoas1010
https://doi.org/10.1214/16-aoas1010
https://doi.org/10.18637/jss.v024.i04
https://statnet.org/workshop-tergm/
https://statnet.org/workshop-tergm/
https://statnet.org/workshop-ergm-ego/
https://statnet.org/workshop-ergm-ego/
https://www.R-project.org/
https://doi.org/10.1007/bf02294302
https://doi.org/10.1007/bf02294302
https://doi.org/10.48550/arxiv.2009.01202
https://doi.org/10.1214/19-sts743

44 ergm 4: New Features for Analyzing Exponential-Family Random Graph Models

Slaughter AJ, Koehly LM (2016). “Multilevel Models for Social Networks: Hierarchical
Bayesian Approaches to Exponential Random Graph Modeling.” Social Networks, 44,
334–345. doi:10.1016/j.socnet.2015.11.002.

Vega Yon GG, Slaughter A, de la Haye K (2021). “Exponential Random Graph Models for
Little Networks.” Social Networks, 64, 225–238. doi:10.1016/j.socnet.2020.07.005.

Wang P (2012). “Exponential Random Graph Model Extensions: Models for Multiple Net-
works and Bipartite Networks.” In D Lusher, J Koskinen, G Robins (eds.), Exponential
Random Graph Models for Social Networks: Theory, Methods, and Applications, Struc-
tural Analysis in the Social Sciences, pp. 115–129. Cambridge University Press. doi:
10.1017/cbo9780511894701.012.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, Francois R, Grolemund G, Hayes
A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J,
Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H
(2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:
10.21105/joss.01686.

Xie Y (2022). knitr: A General-Purpose Package for Dynamic Report Generation in R.
R package version 1.39, URL https://yihui.org/knitr/.

Affiliation:
David R. Hunter
Department of Statistics
Pennsylvania State University
University Park, PA 16802, United States of America
E-mail: dhunter@stat.psu.edu
URL: https://personal.psu.edu/drh20/

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
January 2023, Volume 105, Issue 6 Submitted: 2022-03-01
doi:10.18637/jss.v105.i06 Accepted: 2022-09-22

https://doi.org/10.1016/j.socnet.2015.11.002
https://doi.org/10.1016/j.socnet.2020.07.005
https://doi.org/10.1017/cbo9780511894701.012
https://doi.org/10.1017/cbo9780511894701.012
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://yihui.org/knitr/
mailto:dhunter@stat.psu.edu
https://personal.psu.edu/drh20/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v105.i06

	Introduction
	Extension packages in the statnet suite
	Enhanced handling of nodal covariates
	Transformations of covariates
	Coding categorical attributes
	Mixing matrices

	Term operators
	Network filters
	Filtering edges
	Treating directed networks as undirected
	Extracting subgraphs

	Interaction effects
	Reparametrizing the model

	Sample space constraints
	Arbitrary combinations of dyad-independent constraints
	Constraints via the Dyads operator
	Constraints via blocks
	Additional constraints

	Modeling networks with valued edges
	Reference specification
	Dyad-independent statistics
	Mutuality
	Actor heterogeneity
	Triadic effects
	Using binary ERGM terms in valued ERGMs
	Modeling ordinal values using binary term operators

	Estimation in the presence of missing edge data
	Other enhancements
	Exact calculations for small networks
	Estimation based only on sufficient statistics
	Predicting individual edge probabilities
	Flattened control arguments via a single list
	Improved help for model terms, constraints, and reference measures
	Setting package options
	Global options
	Term options

	Discussion
	Acknowledgments

