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Abstract

This paper introduces the logitr R package for fast maximum likelihood estimation of
multinomial logit and mixed logit models with unobserved heterogeneity across individu-
als, which is modeled by allowing parameters to vary randomly over individuals according
to a chosen distribution. The package is faster than other similar packages such as mlogit,
gmnl, mixl, and apollo, and it supports utility models specified with “preference space” or
“willingness-to-pay (WTP) space” parameterizations, allowing for the direct estimation of
marginal WTP. The typical procedure of computing WTP post-estimation using a prefer-
ence space model can lead to unreasonable distributions of WTP across the population in
mixed logit models. The paper provides a discussion of some of the implications of each
utility parameterization for WTP estimates. It also highlights some of the design features
that enable logitr’s performant estimation speed and includes a benchmarking exercise
with similar packages. Finally, the paper highlights additional features that are designed
specifically for WTP space models, including a consistent user interface for specifying
models in either space and a parallelized multi-start optimization loop, which is partic-
ularly useful for searching the solution space for different local minima when estimating
models with non-convex log-likelihood functions.

Keywords: logit, utility, preference, willingness to pay, discrete choice models, R, maximum
likelihood estimation.

1. Introduction
Choice modeling is a well-established statistical method for assessing consumer preferences
across a wide variety of fields. One of the most common approaches for modeling choice is
the maximum likelihood estimation of multinomial logit models (McFadden 1974), which is
rooted in the theory of random utility models (Louviere, Hensher, and Swait 2000; Train
2009). The central assumption of these models is that individual consumers make choices
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that maximize an underlying random utility model, which can be parameterized as a function
of a product’s observed attributes and a random variable representing the portion of utility
unobservable to the modeler. These models produce estimates of the marginal utility for
changes in each attribute relative to one another.
In many applications, modelers are interested in estimating marginal “willingness to pay”
(WTP) for changes in product attributes. The typical procedure to obtain these estimates is
to divide the estimated parameters of a “preference space” utility model by the negative of
the price parameter. Despite this common practice, it can yield unreasonable distributions of
WTP across the population in heterogeneous random parameter (or “mixed logit”) models
(Train and Weeks 2005; Sonnier, Ainslie, and Otter 2007; Helveston, Feit, and Michalek
2018). For example, if the parameters for the price attribute and another non-price attribute
are both assumed to be normally distributed across the population, then the resulting WTP
estimate follows a Cauchy distribution, implying that WTP has an infinite variance across
the population.
An alternative approach is to re-parameterize the utility model into the “WTP space” prior
to estimation. Estimating a WTP space model allows the modeler to directly specify assump-
tions of how WTP is distributed, which has been found to yield more reasonable estimates
of WTP (Train and Weeks 2005; Sonnier et al. 2007; Daly, Hess, and Train 2012). WTP
space models have also been found to be more consistent with respondent’s true underlying
preferences (Crastesa, Beaumaisb, Mahieud, Martinez-Camblore, and Scarpa 2014). Finally,
since WTP estimates are independent of error scaling, they can be conveniently compared
across different models estimated on different data.
Several statistical packages support the estimation of multinomial and mixed logit models
with WTP space utility parameterizations. One of the most common approaches involves
an adaptation of the generalized multinomial logit (GMNL) model (Fiebig, Keane, Louviere,
and Wasi 2010) to fit WTP space models via an implementation of the scaled multinomial
logit (SMNL) model, though this requires that the price parameter estimate and standard
error be calculated post-estimation. Estimation of WTP space models via GMNL has been
implemented in R with the gmnl package (Sarrias and Daziano 2017) and in Stata (StataCorp
2019) with the gmnl package (Gu, Hole, and Knox 2013). WTP space models can also
be estimated using the apollo (Hess and Palma 2019) and mixl (Molloy, Becker, Schmid,
and Axhausen 2021) R packages as they allow the user to hand-specify any valid utility
model. Finally, Professor Arne Rise Hole developed two Stata packages that share a common
syntax for estimating mixed logit models in the preference space (mixlogit) and WTP space
(mixlogitwtp, Hole 2007). Many other packages exist for estimating a wider variety of logit
models, but they are limited to preference space models. Of these, package mlogit (Croissant
2020) is perhaps the most complete and widely used for estimating multinomial logit and
mixed logit models in R via maximum likelihood estimation.
The logitr package is designed specifically to support the estimation of multinomial logit
and mixed logit models models with either preference space or WTP space utility param-
eterizations. While logitr is less general in scope compared to more flexible packages like
mixl and apollo, it offers other functionality that is particularly useful for estimating WTP
space models and conveniently switching between preference and WTP space models. For
example, given their non-linear utility specification, WTP space models often diverge dur-
ing estimation and can be sensitive to starting parameters. To address this, the package
includes a parallelized multi-start optimization loop to search for different local minima from
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different random starting points when minimizing the negative log-likelihood. The user inter-
face is also more streamlined and simplified for estimating models in either space. Package
logitr (Helveston 2023) is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=logitr.
Package logitr is also computationally efficient and faster than other similar packages, includ-
ing the mixl package which uses high performance C++ (Stroustrup 2013) code to compile
the log-likelihood function (Molloy et al. 2021), though mixl can be accelerated considerably
via multi-core processing. The performance gains are the result of a combination of design
features, including how the choice probabilities are specified, avoiding redundant computation
by pre-computing constant intermediate variables, and the use of analytic gradients that are
optimized for efficiency.
The rest of the article is organized as follows: Section 2 provides an overview of the models
supported by logitr, including multinomial and mixed logit models with preference space and
WTP space utility parameterizations. Section 3 discusses several important implications of
preference versus WTP space utility parameterizations on WTP estimates. Section 4 describes
the software architecture and performance. Section 5 then introduces the logitr package,
including examples of estimating multinomial and mixed logit models in both preference and
WTP spaces as well as additional functionality for estimating weighted models and making
predictions. Section 6 explains some limitations of WTP space models. Finally, Section 7
concludes the paper.

2. Models

2.1. The random utility model in two spaces

Random utility models assume that consumers choose the alternative j from a set of al-
ternatives that has the greatest utility uj . Utility is a random variable that is modeled as
uj = vj + εj , where vj is the “observed utility” (a function of the observed attributes such
that vj = f(xj)) and εj is a random variable representing the portion of utility unobservable
to the modeler.
Adopting the same notation as in Helveston et al. (2018), consider the following utility model:

u∗
j = β∗⊤xj + α∗pj + ε∗

j , ε∗
j ∼ Gumbel

(
0, σ2 π2

6

)
, (1)

where β∗ is the vector of coefficients for non-price attributes xj , α∗ is the coefficient for
price pj , and the error term, ε∗

j , is an IID random variable with a Gumbel extreme value
distribution of mean zero and variance σ2(π2/6).
This model is not identified since there exists an infinite set of combinations of values for β∗,
α∗, and σ that will produce the same choice probabilities. In order to specify an identifiable
model, Equation 1 must be normalized. One approach is to normalize the scale of the error
term by dividing Equation 1 by σ, producing the “preference space” utility specification (Train
and Weeks 2005):(
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The typical preference space parameterization of the multinomial logit model can then be
written by rewriting Equation 2 with uj = (u∗

j/σ), β = (β∗/σ), α = (α∗/σ), and εj = (ε∗
j/σ):

uj = β⊤xj + αpj + εj εj ∼ Gumbel
(

0,
π2

6

)
. (3)

The vector β in Equation 3 represents the marginal utility for changes in each non-price
attribute (relative to the standardized scale of the error term), and α represents the marginal
utility obtained from changes in price (relative to the standardized scale of the error term).
The coefficients β and α are only relative values rather than absolute and do not have units.
Using this model, estimates of the marginal WTP for changes in each non-price attribute
could be computed by dividing β̂ by −α̂, where the “hat” symbol indicates a parameter
estimate.
An alternative approach to normalizing Equation 1 is to divide by −α∗ instead of σ, resulting
in the “WTP space” utility parameterization:(
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Since the error term in Equation 4 is scaled by λ2 = σ2/(−α∗)2, it can be rewritten by
multiplying both sides by λ = (−α∗/σ) and renaming uj = (λu∗

j/ − α∗), ω = (β∗/ − α∗),
and εj = (λε∗

j/ − α∗):

uj = λ
(
ω⊤xj − pj

)
+ εj εj ∼ Gumbel

(
0,

π2

6

)
. (5)

The vector ω in Equation 5 represents the marginal WTP for changes in each non-price
attribute, and λ represents the scale of the deterministic portion of utility relative to the
standardized scale of the random error term (also called the scale parameter). In contrast
to the β coefficients from the preference space model in Equation 3, the ω coefficients have
absolute value with units of currency.
The logitr package can fit logit models with either utility parameterization, and it contains
functions that facilitate the comparison of WTP estimates between models from the two
model spaces.

2.2. Multinomial and mixed logit probabilities

By assuming that the error term in Equations 3 and 5 follows a Gumbel extreme value
distribution, the probability that a consumer will choose alternative j in choice situation n
follows a convenient, closed form expression, see Train (2009):

Pnj = exp (vnj)∑J
k exp (vnk)

, (6)

where vnj is the deterministic portion of the utility model and J is the number of alternatives
in choice situation n. The multinomial logit model assumes homogeneous preferences across
the population and possess the independence of irrelevant alternatives (IIA) property, which
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means that the ratio of any two probabilities is independent of the functions determining any
other outcome since

Pnj

Pnk
= exp (vnj)

exp (vnk) .

To relax this assumption and allow for heterogeneity of preferences across the population,
the multinomial logit model can be extended to the random coefficients “mixed” logit model
(McFadden and Train 2000) where probabilities are the integrals of standard logit probabilities
over a density of parameters across people:

Pnj =
∫ ( exp (vnj)∑J

k exp (vnk)

)
f(θ)dθ, (7)

where f(θ) is a density function and θ contains the parameters in the deterministic portion
of the utility model, which are β and α for preference space models (Equation 3) and ω and
λ for WTP space models (Equation 5). The mixed logit probability can be interpreted as a
weighted average of the multinomial logit probability with weights given by the density f(θ).
Modelers often specify different mixing distributions for parameters in θ depending on as-
sumptions of how preferences might be distributed across the population. For example, mod-
elers may assume α follows a log-normal or zero-censored normal distribution to force the
price coefficient to remain positive – an assumption based on the logic that most people pre-
fer price decreases rather than increases. Likewise, parameters in β are often assumed to
follow a normal distribution if it is unclear whether the utility parameters for attributes xj

should be positive or negative.

2.3. Maximum likelihood estimation

Parameters in the preference or WTP space utility models can be estimated by maximizing
the log-likelihood function. For the multinomial logit model, the log-likelihood is given by:

L =
N∑
n

J∑
j

ynj ln Pnj , (8)

where ynj = 1 if alternative j is chosen in situation n and 0 otherwise, N is the number of
choice situations, J is the number of alternatives in choice situation n, and the probabilities
Pnj are given by Equation 6.
For mixed logit models, the log-likelihood can be estimated using simulation to obtain esti-
mates of Pnj in Equation 7 (Train 2009). Over a series of iterations, parameters are drawn
from f(θ) and used to compute the logit probability in Equation 6. The average probabilities
over all of the iterations, P̂nj , are then used in place of Pnj in Equation 8 to compute the
simulated log-likelihood. Should the data contain a panel structure where multiple observa-
tions come from the same individual, the product of the logit probabilities in Equation 6 over
all trials for each individual must first computed and then averaged over the draws of each
parameter drawn from f(θ) (Train 2009).
McFadden (1974) shows that the log-likelihood function is globally concave for linear-in-
parameters utility models with fixed parameters. This implies that optimization algorithms
should always arrive at a global solution when minimizing the negative log-likelihood for
preference space models with fixed parameters. In contrast, WTP space utility models (as
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well as mixed logit models with either utility parameterization) have non-convex log-likelihood
functions and thus are not guaranteed to arrive at a global solution. For these models, different
optimization strategies should be used to minimize the negative log-likelihood, such as using a
multi-start loop where the optimization algorithm is run multiple times from different random
starting points to search for multiple local minima.

3. Implications of WTP space utility models
WTP estimates can be obtained from both preference and WTP space utility parameteri-
zations. In the preference space utility model given by Equation 3, WTP is estimated as
β̂/ − α̂; in the WTP space model given by Equation 5, WTP is simply ω̂. The choice of
which approach to use can have important implications for estimates of WTP, and modelers
should consider which outcomes and measures are most relevant to any one particular study
when making a choice between the two parameterizations.

3.1. Distribution of WTP estimates across the population

Depending on the utility parameterization used, the distribution of WTP in mixed logit
models can be sensitive to distributional assumptions of model parameters (Train and Weeks
2005; Sonnier et al. 2007). For example, in a preference space model, if α and β were each
assumed to be normally distributed, then the WTP for marginal changes in xj would follow
a Cauchy distribution, implying that WTP has an infinite variance across the population.
This WTP distribution is not likely what the modeler had in mind when making individual
distributional assumptions on α and β, but it is the implied result. In contrast, in a WTP
space model the distribution of WTP for marginal changes in xj can be directly specified.
Several prior studies have also identified this issue, and all find that WTP space utility
parameterizations yield more reasonable estimates of WTP. In a study on preferences for
alternative-fuel vehicles, Train and Weeks (2005) found that while a preference space model
with a log-normally distributed price coefficient fit the data better, it resulted in unreasonably
large estimates of WTP; in contrast, a WTP space model produced much more reasonable
estimates of WTP. Using a Bayesian approach, Sonnier et al. (2007) similarly found that
a preference space model with heterogeneity distributions for attribute and price coefficients
resulted in poorly behaved posterior WTP distributions and that the problem was particularly
bad in small sample settings. Finally, Daly et al. (2012) show that when the price coefficient
is modeled with a variety of popular distributions, including the normal, truncated normal,
uniform, and triangular, the resulting distribution of WTP has infinite moments.
To illustrate this issue, consider an example of three preference space models with different
assumptions on how the price parameter is distributed. This example uses the yogurt data
set included in package logitr. In each model, coefficients for the yogurt brand (β in the
preference space and ω in the WTP space) are modeled as normally distributed. However,
the price parameter, α, in the preference space model (and likewise the scale parameter, λ, in
the WTP space model) is modeled three different ways: (1) as a fixed coefficient, (2) normally
distributed, and (3) log-normally distributed.
Figure 1 compares the WTP distribution for the Yoplait brand across the population from
each preference space and WTP space model. In the case where α and λ are modeled as
fixed coefficients (panel A), the WTP distributions from each model are identical. But when



Journal of Statistical Software 7

Figure 1: Comparison of WTP distribution for the Yoplait brand from mixed logit models
with preference space (red) and WTP space (gray) utility parameterizations. In each panel,
the price parameter is modeled as fixed, normally distributed, or log-normally distributed.
The SD in the labels means standard deviation.

α and λ are modeled as normally distributed (panel B), the WTP distribution from the
preference space model changes dramatically. Since WTP in this case is the ratio of two
normal distributions, the variance increases by two orders of magnitude and the mean shifts
upward. A similar outcome occurs when α and λ are modeled as log-normally distributed
– a common assumption used to force parameter positivity (panel C). Note that the WTP
distribution in the WTP space model remains nearly the same regardless of how λ was
assumed to be distributed.
This example illustrates the sensitivity of the WTP distribution to modeling choices made
in preference space utility models. In general, WTP space models yield more reasonable
estimates of WTP distributions across the population, a consistent finding across multiple
prior studies (Train and Weeks 2005; Sonnier et al. 2007; Das, Anderson, and Swallow 2009;
Helveston et al. 2018).

3.2. Prediction

Whether preference space or WTP space utility models predict better is an empirical ques-
tion that has not been definitively addressed in prior studies. Of the few studies that have
estimated models in the WTP space, none have provided conclusive evidence that one pa-
rameterization systematically predicts better than the other. Both Sonnier et al. (2007) and
Train and Weeks (2005) found that a preference space parameterization fit the data better,
but they also both found that the resulting estimates of WTP had unreasonably large tails.
Das et al. (2009) also estimated both preference and WTP space models using data on pref-
erences for landfill site attributes in Rhode Island, and they found nearly identical model fit
on out-of-sample predictions with each model specification, though the WTP space model
yielded more reasonable estimates of WTP.

3.3. Practical considerations

In addition to considerations of WTP estimates, model fit, and prediction, there are other
practical implications to consider when choosing to estimate a preference versus WTP space
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model. Perhaps the simplest and most obvious distinction is that a WTP space model yields
estimates of WTP without needing additional post-estimation calculations. And because
WTP space coefficients have units of currency, they have a concrete meaning that can be
immediately interpreted. In contrast, preference space model coefficients only have relative
meaning along an abstract scale of utility, and modelers often compute WTP from preference
space coefficients to help make results more interpretable.
Perhaps less obvious is the fact that WTP estimates can be directly compared with those
from models estimated on other datasets since WTP coefficients are independent of error
scaling. This is particularly convenient for comparing WTP estimates from different subsets
of a dataset. In a preference space model, parameters are proportional to error scaling, and
thus due to potential scale differences coefficients estimated from different data sets cannot
be directly compared (Swait and Andrews 2003; Helveston et al. 2018). This also poses a
challenge for comparative studies or literature reviews that seek to compare outcomes on
similar topics across multiple studies.
Another perhaps less obvious implication of the preference space parameterization is the
assumption that distributions of marginal utilities are independent across attributes, which
induces a strong correlation structure among WTP values (Train and Weeks 2005). This can
make it difficult to evaluate alternatives with different attribute levels since WTP cannot be
added across attributes. In a WTP space model, this problem can be avoided by directly
incorporating the correlation structure among WTP coefficients, and as a result dollar values
can be summed to yield the total WTP for an alternative.
Finally, there is no theoretical basis for believing that marginal utilities versus marginal WTPs
should follow standard distributions (e.g., normal and log-normal). In the absence of any
theoretical basis for these assumptions, the modeler is left to consider differences in empirical
outcomes, which as previously noted, there has not been much definitive evidence that models
in one space systematically out-perform the other along all measures of significance.

4. Software architecture and performance

4.1. Design features for increased estimation speed
In maximum likelihood estimation (and simulated MLE for mixed logit models), the log-
likelihood function is computed many times as the algorithm searches for parameters that
minimize the negative of the log-likelihood via gradient descent. The logitr package uses
several strategies to accelerate this process.
First, minimization of the negative log-likelihood is handled via the nloptr package, which
is an R interface to NLopt – an open-source program for nonlinear optimization started by
Steven G. Johnson (Ypma and Johnson 2020). One benefit of using nloptr is that both the
log-likelihood function and its gradient can be computed within the same function. This
reduces redundant computations as many intermediate calculations are shared between the
log-likelihood and its gradient. Furthermore, analytic gradients are implemented for both
preference space and WTP space models and for multinomial and mixed logit models.
Another important feature is that the choice probabilities are reformulated to reduce the
number of calculations needed to compute the log-likelihood function. Instead of using Equa-
tion 6 to compute the probability of each alternative in a choice set, the choice probability
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for the chosen alternative, Pc, can be calculated as:

Pc = 1
1 +∑J

j ̸=c exp(vj − vc)
.

This results in a more stable and computationally faster calculation of the log-likelihood,
which is simplified from Equation 8 as

L =
N∑
n

J∑
j

ln Pnc. (9)

In addition, logitr takes advantage of the fact that, except for the parameters, the data used
in computing the log-likelihood function and its gradient do not change, enabling a consider-
able amount of memory reduction by pre-computing several intermediate computations that
remain constant throughout the estimation process. For example, the gradient with respect to
parameters θ of the log-likelihood in Equation 9 for multinomial logit models can be written
as follows:

∂L
∂θ

=
N∑

n=1
−Pnc

 J∑
j ̸=c

exp(vnj − vnc)
∂

∂θ
(vnj − vnc)

 . (10)

In preference space models where vnj = β⊤xnj + αpnj , the partial derivative ∂/∂θ in Equa-
tion 10 is:

∂

∂α
(vnj − vnc) = pnj − pnc,

∂

∂β
(vnj − vnc) = xnj − xnc. (11)

In WTP space models where vnj = λ(ω⊤xnj − pnj), the partial derivatives ∂/∂θ in Equa-
tion 10 are:

∂

∂λ
(vnj − vnc) = 1

λ
(vnj − vnc),

∂

∂ω
(vnj − vnc) = λ(xnj − xnc). (12)

The values of pnj − pnc and xnj − xnc in Equations 11 and 12 are constant and can be
computed prior to starting the optimization loop. Furthermore, since Pnc, (vnj − vnc), and
exp(vnj − vnc) are already computed when calculating the log-likelihood, they can be used to
quickly compute the analytic gradient with only a few additional calculations in each iteration
of the algorithm.
Finally, the parallel package is also used to simultaneously estimate multiple models from
different starting points when estimating a multi-start loop. For machines with multiple cores,
this can dramatically increase the size of the solution space searched without substantially
increasing estimation time.

4.2. Performance benchmarking

The design features implemented in logitr result in impressive gains in overall efficiency com-
pared to similar packages. To compare its performance, a preference space mixed logit model
was estimated using logitr, mlogit, mixl, gmnl, and apollo. Figure 2 shows the estimation
time for each package plotted against the number of random draws used in the mixed logit
model. The benchmark was carried out in a Google Colab notebook at https://colab.
research.google.com/drive/1vYlBdJd4xCV43UwJ33XXpO3Ys8xWkuxx?usp=sharing.

https://colab.research.google.com/drive/1vYlBdJd4xCV43UwJ33XXpO3Ys8xWkuxx?usp=sharing
https://colab.research.google.com/drive/1vYlBdJd4xCV43UwJ33XXpO3Ys8xWkuxx?usp=sharing
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Figure 2: Comparison of package estimation times for a preference space mixed logit model
with four normally-distributed random parameters. The x-axis shows the number of random
draws used in simulating the log-likelihood function.

Estimation time (s) Times slower than logitr
50 200 400 600 800 1000 50 200 400 600 800 1000

logitr 3 9 14 24 33 39 1.0 1.0 1.0 1.0 1.0 1.0
mixl (1 core) 11 50 80 158 229 271 3.9 5.6 5.8 6.6 6.8 6.9
mixl (2 cores) 9 42 66 130 185 231 3.2 4.7 4.8 5.4 5.5 5.9
mlogit 12 20 88 60 101 98 4.3 2.2 6.4 2.5 3.0 2.5
gmnl 11 31 70 122 99 141 3.8 3.5 5.1 5.1 3.0 3.6
apollo (1 core) 17 44 84 129 164 198 6.3 4.9 6.1 5.4 4.9 5.1
apollo (2 cores) 22 53 83 120 164 197 8.0 6.0 6.0 5.0 4.9 5.0

Table 1: Comparison of package estimation times for a preference space mixed logit model
with four normally-distributed random parameters.

With just 50 random draws, logitr is particularly fast, clocking in at 4.3 times faster than
mixl with one core, 3.6 times faster than mixl with two cores, 5.1 times faster than mlogit,
4.5 times faster than gmnl, 8.2 times faster than apollo with one core, and 10.6 times faster
than apollo with two cores. The comparative difference decreases with higher numbers of
draws, though even at 1,000 draws logitr is still over twice as fast as mlogit, the next-fastest
package in the benchmark (see Table 1). Speeds could potentially be further improved by
parallelizing elements of the gradient calculation. In addition, it is important to note that
mixl in particular may perform better at very large numbers of draws (e.g., 10,000 or more)
if used on a machine with a large number of cores.
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5. Using the logitr package

5.1. Installation

The logitr package can be installed from CRAN:

R> install.packages("logitr")

The development version can be installed from GitHub using the remotes package (Csárdi
et al. 2021):

R> remotes::install_github("jhelvy/logitr")

The package is loaded in R with:

R> library("logitr")

5.2. Data format

The logitr package requires that data be structured in a data.frame and arranged in a “long”
format (Wickham 2014) where each row contains data on a single alternative from a choice
observation. The choice observations do not have to be symmetric, meaning they can have a
“ragged” structure where different choice observations have different numbers of alternatives.
The data must include variables for each of the following:

• Outcome: A dummy-coded variable that identifies which alternative was chosen (1 is
chosen, 0 is not chosen). Only one alternative should have a 1 per choice observation.

• Observation ID: A sequence of repeated numbers that identifies each unique choice
observation. For example, if the first three choice observations had 2 alternatives each,
then the first 6 rows of the obsID variable would be 1, 1, 2, 2, 3, 3.

• Covariates: Other variables that will be used as model covariates.

The logitr package contains several example data sets that illustrate this structure. The
yogurt data set will be used as a running example throughout this paper to illustrate the key
features of the package. The data set contains observations of yogurt purchases by a panel of
100 households (Jain, Vilcassim, and Chintagunta 1994). Choice is identified by the choice
column, each choice observation is identified by the obsID column, and the columns price,
feat, and brand can be used as model covariates:

R> head(yogurt)

# A tibble: 6 x 7
id obsID alt choice price feat brand

<dbl> <int> <int> <dbl> <dbl> <dbl> <chr>
1 1 1 1 0 8.1 0 dannon
2 1 1 2 0 6.10 0 hiland
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3 1 1 3 1 7.90 0 weight
4 1 1 4 0 10.8 0 yoplait
5 1 2 1 1 9.80 0 dannon
6 1 2 2 0 6.40 0 hiland

This data set also includes an alt variable that determines the alternatives included in the
choice set of each observation and an id variable that determines the individual as the data
have a panel structure containing multiple choice observations from each individual.

5.3. Model specification interface

Models are specified and estimated using the logitr() function. The data argument should
be set to the data frame containing the data, and the outcome and obsID arguments should
be set to the column names in the data frame that correspond to the dummy-coded outcome
(choice) variable and the observation ID variable, respectively. All variables to be used as
model covariates should be provided as a vector of column names to the pars argument.
Each variable in the vector is additively included as a covariate in the utility model, with the
interpretation that they represent utilities in preference space models and WTPs in a WTP
space model.
For example, consider a preference space model where the utility for yogurt is given by the
following utility model:

uj = αpj + β1xj1 + β2xj2 + β3xj3 + β4xj4 + εj ,

where pj is price, xj1 is feat, and xj2−4 are dummy-coded variables for each brand (with
the fourth brand representing the reference level). This model can be estimated using the
logitr() function as follows:

R> mnl_pref <- logitr(data = yogurt, outcome = "choice", obsID = "obsID",
+ pars = c("price", "feat", "brand"))

The equivalent model in the WTP space is given by the following utility model:

uj = λ (ω1xj1 + ω1xj2 + ω1xj3 + ω2xj4 − pj) + εj .

To specify this model, simply move "price" from the pars argument to the scalePar argu-
ment:

R> mnl_wtp <- logitr(data = yogurt, outcome = "choice", obsID = "obsID",
+ pars = c("feat", "brand"), scalePar = "price")

In the above model, the variables in pars are marginal WTPs, whereas in the preference space
model they are marginal utilities. Price is separately specified with the scalePar argument
because it acts as a scaling term in WTP space models. While price is the most typical
scaling variable, other continuous variables can also be used; for example, time could be used
to obtain marginal estimates of “willingness to wait.”
Interactions between covariates can be entered in the pars vector separated by the * symbol.
For example, an interaction between price with feat in the above preference space model
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could be included by specifying pars = c("price", "feat", "brand", "price*feat"), or
even more concisely just pars = c("price*feat", "brand") as the interaction between
price and feat will produce individual parameters for price and feat in addition to the
interaction parameter.
Although the logitr model specification interface is a departure from the popular formula
interface used in other similar packages such as mlogit, it was designed to be more uniform and
streamlined for estimating either preference or WTP space models. For WTP space models
in particular, using the formula interface can be confusing as it requires that covariates be
additively specified (e.g., choice ~ price + feat + brand), which is inconsistent with the
underlying WTP space utility model parameterization in which the price parameter (λ) scales
the WTP parameters.
For example, consider how the formula interface is used in the gmnl package. Using gmnl,
WTP space models are specified by (1) modifying the price attribute in the data to be
the negative of price prior to estimation, (2) specifying the model argument as "smnl", (3)
additively including all parameters in the formula (including price) along with appropriate
0s and 1s in the additional formula components to properly specify a scaled multinomial logit
model, (4) specifying a vector of TRUE and FALSE values to the fixed argument for every
model parameter, and (5) providing starting values where the price/scale parameter is set
to 1 for stability (otherwise the default value of 0 will be used, which usually results in a
convergence failure). To estimate the previous example WTP space model using gmnl, the
data would first need to be formatted using the mlogit.data() function:

R> data_gmnl <- mlogit.data(data = yogurt, shape = "long",
+ choice = "choice", id.var = "id", alt.var = "alt", chid.var = "obsID",
+ opposite = "price")

The model would then be estimated using the gmnl() function:

R> mnl_wtp <- gmnl(data = data_gmnl,
+ formula = choice ~ price + feat + brand | 0 | 0 | 0 | 1,
+ fixed = c(TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE),
+ model = "smnl", method = "bhhh", start = c(1, 0, 0, 0, 0, 0, 0))

Compared to the logitr interface, the above syntax is considerably more complex, and it is
also not obvious that this specification will produce WTP estimates. The additive inclusion
of price in formula is particularly confusing for a model that produces WTP estimates as
it is inconsistent with the WTP space utility model. Finally, if the user fails to remember
the specific set of preparation steps prior to estimation (such as taking the negative of price),
results could be confusing.
The apollo and mixl packages can also be used to estimate WTP space models, but they
require that the user hand-specify the utility model either as a function or string. While this
provides greater flexibility in the types of models that can be estimated, it also requires much
more effort by the user to carefully specify every model. Simple modifications, such as adding
in one more variable, require that the user modify multiple settings, including modifying the
starting parameter vector as well as re-defining the utility model function or string (among
other potential required changes). Even with helpful guides and examples provided by the



14 logitr: Preference and Willingness-to-Pay Space Logit Models in R

developers of these packages, more effort is required by the user to appropriately use these
packages to estimate even the simplest of models.
These issues motivated the use of an alternative model specification interface for package
logitr, with the goal of developing a syntax that is at least as intuitive as the formula
interface but more uniform for estimating models in either the preference or WTP space.

5.4. Continuous and discrete variable coding

Variables are modeled in logitr as either continuous or discrete based on their data type.
Numeric variables are modeled with a single “slope” coefficient, and ‘character’ or ‘factor’
type variables are modeled as categorical variables with dummy-coded coefficients for all but
the first level, which serves as the reference level. For example, since the price variable
in the yogurt data frame is a numeric variable, it will be modeled with a single coefficient
representing the change in utility for marginal changes in price. In contrast, since brand is
a character type with the levels "dannon", "hiland", "weight", and "yoplait", it will be
modeled with three dummy-coded coefficients with the "dannon" brand set as the reference
level as it is alphabetically first.
To change the reference level for discrete variables, modify the factor levels for that variable
prior to model estimation with the factor() function. For example, the following code will
set "weight" instead of "dannon" as the reference level for the brand variable:

R> yogurt2 <- logitr::yogurt
R> yogurt2$brand <- factor(x = yogurt2$brand, levels = c("weight", "hiland",
+ "yoplait", "dannon"))
R> levels(yogurt2$brand)

[1] "weight" "hiland" "yoplait" "dannon"

Any variable can be made discrete by either converting it to a character or factor type
prior to model estimation or by creating new dummy-coded variables for each level and
including all but the reference level as model covariates. A recommended approach is to use
the dummy_cols() function from the fastDummies package, which generates dummy-coded
variables for each unique level of a discrete variable (Kaplan 2020).

5.5. Estimating multinomial logit models

The logitr() function estimates preference space models by default. Once a model is es-
timated, the summary() function can be used to print a summary of the estimated model
results to the console. For example, consider again the preference space model with price,
feat, and brand as model covariates:

R> mnl_pref <- logitr(data = yogurt, outcome = "choice", obsID = "obsID",
+ pars = c("price", "feat", "brand"))
R> summary(mnl_pref)

=================================================

Model estimated on: Tue Feb 07 11:40:36 PM 2023
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Using logitr version: 1.0.0

Call:
logitr(data = yogurt, outcome = "choice", obsID = "obsID", pars = c("price",

"feat", "brand"))

Frequencies of alternatives:
1 2 3 4

0.402156 0.029436 0.229270 0.339138

Exit Status: 3, Optimization stopped because ftol_rel or ftol_abs was reached.

Model Type: Multinomial Logit
Model Space: Preference
Model Run: 1 of 1
Iterations: 21
Elapsed Time: 0h:0m:0.02s
Algorithm: NLOPT_LD_LBFGS
Weights Used?: FALSE
Robust? FALSE

Model Coefficients:
Estimate Std. Error z-value Pr(>|z|)

price -0.366555 0.024365 -15.0441 < 2.2e-16 ***
feat 0.491439 0.120062 4.0932 4.254e-05 ***
brandhiland -3.715477 0.145417 -25.5506 < 2.2e-16 ***
brandweight -0.641138 0.054498 -11.7645 < 2.2e-16 ***
brandyoplait 0.734519 0.080642 9.1084 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -2656.8878790
Null Log-Likelihood: -3343.7419990
AIC: 5323.7757580
BIC: 5352.7168000
McFadden R2: 0.2054148
Adj McFadden R2: 0.2039195
Number of Observations: 2412.0000000

The summary includes information about the logitr() function call, the frequency of chosen
alternatives, the optimization exit status, the estimated coefficients, the log-likelihood value
at the solution, and several measures of model fit. In this example, three coefficients were
estimated for the “brand” attribute, with "dannon" set as the default reference level.
These results indicate that, all else being equal, people in this sample on average preferred
the “Yoplait” brand the most, followed by “Dannon” (the reference level, which would be
0 on the utility scale), “Weight Watchers”, and finally “Hiland”. The results also indicate
that utility changed by a value of −0.367 for every dollar increase in price, which is logically
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consistent with people preferring lower rather than higher prices, all else being equal.
Values from an estimated model can be extracted using methods designed for objects of class
logitr, such as the following:
The estimated coefficients:

R> coef(mnl_pref)

price feat brandhiland brandweight brandyoplait
-0.3665546 0.4914392 -3.7154773 -0.6411384 0.7345195

The coefficient standard errors:

R> se(mnl_pref)

price feat brandhiland brandweight brandyoplait
0.02436526 0.12006175 0.14541671 0.05449794 0.08064229

The log-likelihood:

R> logLik(mnl_pref)

'log Lik.' -2656.888 (df=5)

The variance-covariance matrix:

R> vcov(mnl_pref)

price feat brandhiland brandweight
price 0.0005936657 5.729619e-04 0.001851795 1.249988e-04
feat 0.0005729619 1.441482e-02 0.000855011 5.092011e-06
brandhiland 0.0018517954 8.550110e-04 0.021146019 1.490080e-03
brandweight 0.0001249988 5.092011e-06 0.001490080 2.970026e-03
brandyoplait -0.0015377721 -1.821331e-03 -0.003681036 7.779428e-04

brandyoplait
price -0.0015377721
feat -0.0018213311
brandhiland -0.0036810363
brandweight 0.0007779427
brandyoplait 0.0065031782

5.6. Estimating willingness to pay

Coefficients in preference space models reflect marginal changes in utility, which only have
relative value. To make these coefficients more interpretable, modelers often divide the non-
price parameters by the negative of the price parameter to obtain estimates of WTP (the
negative of the price parameter is used so that marginal WTPs have a positive interpretation).
This can be computed using the wtp() function:
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R> wtp(mnl_pref, scalePar = "price")

Estimate Std. Error z-value Pr(>|z|)
scalePar 0.366555 0.024383 15.0331 < 2.2e-16 ***
feat 1.340699 0.358884 3.7357 0.0001872 ***
brandhiland -10.136219 0.582679 -17.3959 < 2.2e-16 ***
brandweight -1.749094 0.181612 -9.6309 < 2.2e-16 ***
brandyoplait 2.003848 0.143723 13.9425 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The wtp() function returns a data frame of the WTP estimates and standard errors. The
coefficient labeled scalePar is the negative of the price coefficient from the preference space
model, which can also be interpreted as the scale coefficient in the WTP space model as it
scales all the WTP coefficients. Standard errors are estimated using the Krinsky and Robb
parametric bootstrapping method (Krinsky and Robb 1986).
In contrast to the preference space model coefficients, the WTP estimates above have units
of currency (in this case $US dollars) and can be interpreted as how much the average person
in the sample would be willing to pay for each feature, all else being equal. For example, the
brand coefficients suggest that, relative to the “Dannon” brand, consumers are on average
willing to pay an additional $2.00 for the “Yoplait” brand, −$1.75 for the “Weight Watchers”
brand, and −$10.14 for the “Hiland” brand (negative WTPs indicate a relative preference for
“Dannon”).
WTPs can also be directly estimated using a WTP space model. In this case, the pars
argument should contain only attributes for which WTPs are to be estimate. The variable
for “price” should be provided separately using the scalePar argument. For example, consider
again the WTP space model with feat and brand WTP covariates:

R> set.seed(123)
R> mnl_wtp <- logitr(data = yogurt, outcome = "choice", obsID = "obsID",
+ pars = c("feat", "brand"), scalePar = "price", numMultiStarts = 10,
+ numCores = 1)

In the above example, a 10-iteration multi-start optimization loop was implemented by setting
numMultiStarts = 10. This runs the minimization of the negative log-likelihood function 10
times from 10 different sets of random starting points (the first iteration uses all 0s except
for the price parameter which starts at 1). This is recommended as WTP space models have
a non-convex log-likelihood function and thus could have multiple local minimia. Note also
that the multi-start loop can be parallelized by setting numCores to an integer greater than
1. The default value is one less than the total number of available cores, but numCores = 1
is used here to ensure reproducibility.
The WTP estimates have the same interpretation as those computed from the preference
space model. In the summary output, a short summary of each iteration of the multi-start
loop is provided first followed by the same summary information about the preference space
model. Because a multi-start loop was used, only the summary of the “best” estimated model
is returned (determined by the iteration with the largest log-likelihood value):
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R> summary(mnl_wtp)

=================================================

Model estimated on: Tue Feb 07 11:40:36 PM 2023

Using logitr version: 1.0.0

Call:
logitr(data = yogurt, outcome = "choice", obsID = "obsID", pars = c("feat",

"brand"), scalePar = "price", numMultiStarts = 10, numCores = 1)

Frequencies of alternatives:
1 2 3 4

0.402156 0.029436 0.229270 0.339138

Summary Of Multistart Runs:
Log Likelihood Iterations Exit Status

1 -2656.888 38 3
2 -2656.888 52 3
3 -2656.888 59 3
4 -2656.888 40 3
5 -2656.888 44 3
6 -2656.888 44 3
7 -2656.888 63 3
8 -2656.888 36 3
9 -2656.888 40 3
10 -2656.888 45 3

Use statusCodes() to view the meaning of each status code

Exit Status: 3, Optimization stopped because ftol_rel or ftol_abs was reached.

Model Type: Multinomial Logit
Model Space: Willingness-to-Pay
Model Run: 1 of 10
Iterations: 38
Elapsed Time: 0h:0m:0.04s
Algorithm: NLOPT_LD_LBFGS
Weights Used?: FALSE
Robust? FALSE

Model Coefficients:
Estimate Std. Error z-value Pr(>|z|)

scalePar 0.366583 0.024366 15.0448 < 2.2e-16 ***
feat 1.340593 0.355867 3.7671 0.0001651 ***
brandhiland -10.135764 0.576089 -17.5941 < 2.2e-16 ***
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brandweight -1.749083 0.179898 -9.7226 < 2.2e-16 ***
brandyoplait 2.003821 0.142377 14.0740 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -2656.8878779
Null Log-Likelihood: -3343.7419990
AIC: 5323.7757559
BIC: 5352.7168000
McFadden R2: 0.2054148
Adj McFadden R2: 0.2039195
Number of Observations: 2412.0000000

In the above summary, iteration 1 converged to a solution with a log-likelihood value of
−2656.888. While all of the iterations arrived at the same solution in this particular example,
this is not always the case nor is it guaranteed. Because the previous examples are both fixed
parameter models, the WTP estimates from the WTP space model are identical to those
computed from the preference space model. The WTPs from each model can be quickly
compared using the wtpCompare() function:

R> wtpCompare(model_pref = mnl_pref, model_wtp = mnl_wtp,
+ scalePar = "price")

pref wtp difference
scalePar 0.3665546 0.3665832 0.00002867
feat 1.3406987 1.3405926 -0.00010605
brandhiland -10.1362190 -10.1357635 0.00045548
brandweight -1.7490940 -1.7490826 0.00001133
brandyoplait 2.0038476 2.0038208 -0.00002686
logLik -2656.8878790 -2656.8878779 0.00000106

In the above summary, the pref column contains the computed WTPs from the preference
space model, and the wtp column contains the directly estimated WTPs from the WTP space
model. The difference column is the computed difference between them. This is a helpful
tool for assessing whether the two models converged to the same solution.

5.7. Estimating mixed logit models

The mixed logit model is a popular approach for modeling unobserved heterogeneity across
individuals, which is implemented by assuming that parameters vary randomly across indi-
viduals according to a chosen distribution (McFadden and Train 2000). A mixed logit model
is specified by setting the randPars argument in the logitr() function equal to a named
vector defining parameter distributions. The current package version (1.0.0) supports the
following distributions:

• Normal: "n"

• Log-normal: "ln"

• Zero-censored normal: "cn"
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Mixed logit models will estimate a mean and standard deviation of the underlying normal
distribution for each random coefficient. Note that log-normal or zero-censored normal pa-
rameters force positivity, so when using these it is often necessary to use the negative of a
value (e.g., for “price”, which typically has a negative coefficient). Mixed logit models in log-
itr assume uncorrelated heterogeneity covariances by default, though full covariances can be
estimated using the correlation = TRUE argument. For WTP space models, the scalePar
parameter can also be modeled as following a random distribution by setting the randScale
argument equal to "n", "ln", or "cn".
The code below is an example of a mixed logit model where the observed utility for yogurts
is vj = αpj + β1xj1 + β2xj2 + β3xj3 + β4xj4, where pj is price, xj1 is feat, and xj2−4 are
dummy-coded variables for brand. To model feat as well as each of the brands as normally-
distributed, set randPars = c(feat = "n", brand = "n"). Since mixed logit models have
a non-convex log-likelihood function, it is recommended to use a multi-start search to run
the optimization multiple times from different random starting points. Mixed logit models
typically take longer to estimate than fixed parameter models, so setting a larger number for
numMultiStarts could take several minutes to complete.
Note that since the yogurt data has a panel structure (i.e., multiple choice observations
for each respondent), it is necessary to set the panelID argument to the id variable, which
identifies the individual. This will use the panel version of the log-likelihood (see Train 2009,
Section 6.7 for details).

R> set.seed(456)
R> mxl_pref <- logitr(data = yogurt, outcome = "choice", obsID = "obsID",
+ panelID = "id", pars = c("price", "feat", "brand"), randPars = c(
+ feat = "n", brand = "n"), numMultiStarts = 10, numCores = 1)
R> summary(mxl_pref)

=================================================

Model estimated on: Tue Feb 07 11:40:37 PM 2023

Using logitr version: 1.0.0

Call:
logitr(data = yogurt, outcome = "choice", obsID = "obsID", pars = c("price",

"feat", "brand"), randPars = c(feat = "n", brand = "n"),
panelID = "id", numMultiStarts = 10, numCores = 1)

Frequencies of alternatives:
1 2 3 4

0.402156 0.029436 0.229270 0.339138

Summary Of Multistart Runs:
Log Likelihood Iterations Exit Status

1 -1266.550 34 3
2 -1300.751 64 3
3 -1260.216 35 3
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4 -1261.216 43 3
5 -1269.066 40 3
6 -1239.294 56 3
7 -1343.221 59 3
8 -1260.006 55 3
9 -1273.143 52 3
10 -1304.384 59 3

Use statusCodes() to view the meaning of each status code

Exit Status: 3, Optimization stopped because ftol_rel or ftol_abs was reached.

Model Type: Mixed Logit
Model Space: Preference
Model Run: 6 of 10
Iterations: 56
Elapsed Time: 0h:0m:2s
Algorithm: NLOPT_LD_LBFGS
Weights Used?: FALSE
Panel ID: id
Robust? FALSE

Model Coefficients:
Estimate Std. Error z-value Pr(>|z|)

price -0.448338 0.039987 -11.2120 < 2.2e-16 ***
feat 0.776990 0.193521 4.0150 5.944e-05 ***
brandhiland -6.367360 0.520828 -12.2255 < 2.2e-16 ***
brandweight -3.668683 0.307207 -11.9421 < 2.2e-16 ***
brandyoplait 1.122492 0.203483 5.5164 3.460e-08 ***
sd_feat 0.567495 0.225004 2.5222 0.01166 *
sd_brandhiland -3.181844 0.371697 -8.5603 < 2.2e-16 ***
sd_brandweight 4.097130 0.232495 17.6225 < 2.2e-16 ***
sd_brandyoplait 3.261281 0.219902 14.8306 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -1239.2944250
Null Log-Likelihood: -3343.7419990
AIC: 2496.5888500
BIC: 2548.6828000
McFadden R2: 0.6293690
Adj McFadden R2: 0.6266774
Number of Observations: 2412.0000000

Summary of 10k Draws for Random Coefficients:
Min. 1st Qu. Median Mean 3rd Qu. Max.

feat -Inf 0.3938347 0.7765564 0.7761956 1.1591475 Inf
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brandhiland -Inf -8.5118796 -6.3663393 -6.3644101 -4.2201174 Inf
brandweight -Inf -6.4342648 -3.6720435 -3.6750045 -0.9090452 Inf
brandyoplait -Inf -1.0817673 1.1169084 1.1141118 3.3162383 Inf

Since the feat and brand attributes were modeled as normally distributed across the pop-
ulation, each of these covariates have two parameters that describe the mean and stan-
dard deviation of a normal distribution. For example, the coefficients brandyoplait and
sd_brandyoplait indicate that, relative to the “Dannon” brand, the marginal utility for
the “Yoplait” brand follows a normal distribution across the population where β1 ∼ N (µ =
1.122, σ = 3.261). For mixed logit models, a summary of all random parameter distributions
is printed at the bottom of the summary output. In this example, there appears to be less
heterogeneity in preferences for the “Yoplait” and “Hiland” brands compared to the “Weight
Watchers” brand, which has a larger standard deviation parameter.
Note that mixed logit models can sometimes produce negative values for the standard de-
viation parameters; in these cases, the parameters should be interpreted as positive. The
negative values are an artifact of how the simulated MLE algorithm works. Since the nor-
mal distribution is symmetric, it does not matter if draws are generated with µ + σZ or
µ − σZ, where Z is a standard normal and µ and σ are the mean and standard deviation
parameters. By allowing the standard deviation parameter to be negative, the optimization
is unconstrained, making it a much easier problem to solve.

5.8. Estimating WTP space mixed logit models

WTP space mixed logit models have the advantage of being able to directly specify the
assumed distribution of WTP across the population. As with fixed parameter models, esti-
mating a mixed logit WTP space model requires that price be separately specified with the
scalePar argument. The randPars argument is used to specify random parameters. For
example, the following can be used to estimate a model where the WTP distributions for
feat and each brand is assumed to be normally distributed:

R> set.seed(6789)
R> mxl_wtp <- logitr(data = yogurt, outcome = "choice", obsID = "obsID",
+ panelID = "id", pars = c("feat", "brand"), scalePar = "price",
+ randPars = c(feat = "n", brand = "n"), numMultiStarts = 10,
+ numCores = 1)
R> summary(mxl_wtp)

=================================================

Model estimated on: Tue Feb 07 11:40:54 PM 2023

Using logitr version: 1.0.0

Call:
logitr(data = yogurt, outcome = "choice", obsID = "obsID", pars = c("feat",

"brand"), scalePar = "price", randPars = c(feat = "n", brand = "n"),
panelID = "id", numMultiStarts = 10, numCores = 1)
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Frequencies of alternatives:
1 2 3 4

0.402156 0.029436 0.229270 0.339138

Summary Of Multistart Runs:
Log Likelihood Iterations Exit Status

1 -1256.886 109 3
2 -1252.536 76 3
3 -1258.974 87 3
4 -1341.966 112 4
5 -1250.922 111 3
6 -1266.990 66 3
7 -1268.352 81 3
8 -1239.294 77 3
9 -1258.974 60 3
10 -1239.294 51 3

Use statusCodes() to view the meaning of each status code

Exit Status: 3, Optimization stopped because ftol_rel or ftol_abs was reached.

Model Type: Mixed Logit
Model Space: Willingness-to-Pay
Model Run: 8 of 10
Iterations: 77
Elapsed Time: 0h:0m:3s
Algorithm: NLOPT_LD_LBFGS
Weights Used?: FALSE
Panel ID: id
Robust? FALSE

Model Coefficients:
Estimate Std. Error z-value Pr(>|z|)

scalePar 0.448563 0.039982 11.2191 < 2.2e-16 ***
feat 1.731133 0.491792 3.5201 0.0004315 ***
brandhiland -14.223308 1.365310 -10.4176 < 2.2e-16 ***
brandweight -8.172665 0.955928 -8.5495 < 2.2e-16 ***
brandyoplait 2.503597 0.407192 6.1484 7.825e-10 ***
sd_feat 1.266802 0.497472 2.5465 0.0108816 *
sd_brandhiland -7.114726 0.944233 -7.5349 4.885e-14 ***
sd_brandweight 9.130682 0.923411 9.8880 < 2.2e-16 ***
sd_brandyoplait 7.270250 0.752617 9.6600 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -1239.2939746
Null Log-Likelihood: -3343.7419990
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AIC: 2496.5879492
BIC: 2548.6819000
McFadden R2: 0.6293691
Adj McFadden R2: 0.6266775
Number of Observations: 2412.0000000

Summary of 10k Draws for Random Coefficients:
Min. 1st Qu. Median Mean 3rd Qu. Max.

feat -Inf 0.8758279 1.730164 1.729359 2.584209 Inf
brandhiland -Inf -19.0185257 -14.221018 -14.216704 -9.421986 Inf
brandweight -Inf -14.3359156 -8.180153 -8.186752 -2.022659 Inf
brandyoplait -Inf -2.4102702 2.491152 2.484918 7.394033 Inf

The summary shows the solution for iteration 8 out of the 10 multi-starts – the one with the
largest log-likelihood value. Since the feat and brand WTPs were both modeled as normally
distributed across the population, each of these covariates have two parameters that describe
the mean and standard deviation of a normal distribution. The results again suggest that
there is greater heterogeneity for the “Weight Watchers” brand compared to “Yoplait” and
“Hiland”, which can be seen with its larger standard deviation coefficient and wider WTP
range in the distribution summary at the bottom of the summary output. In fact, these
results indicate that although the mean WTP for the “Weight Watchers” brand is still higher
than that of the “Hiland” brand, the heterogeneity in WTP spans a much wider range.
In this case, since the price parameter was modeled as a fixed parameter, the WTP estimates
from the preference space and those from the WTP space model are nearly identical:

R> wtpCompare(model_pref = mxl_pref, model_wtp = mxl_wtp,
+ scalePar = "price")

pref wtp difference
scalePar 0.4483378 0.4485634 0.00022558
feat 1.7330459 1.7311321 -0.00191380
brandhiland -14.2021477 -14.2233008 -0.02115313
brandweight -8.1828534 -8.1726633 0.01019010
brandyoplait 2.5036744 2.5035996 -0.00007479
sd_feat 1.2657757 1.2667995 0.00102382
sd_brandhiland -7.0969786 -7.1147211 -0.01774250
sd_brandweight 9.1384874 9.1306797 -0.00780767
sd_brandyoplait 7.2741604 7.2702482 -0.00391222
logLik -1239.2944250 -1239.2939746 0.00045043

If, however, the price parameter in either model were modeled as a random parameter (which is
controlled via the randScale argument), the resulting WTP estimates could be substantially
different.

5.9. Weighted models

Sometimes the modeler may wish to differentially weight individual choice observations in
model estimation. For example, if a particular group was over- or under-represented in a



Journal of Statistical Software 25

sample relative to that of a target population, the choice observations of that group could be
weighted such that they have a stronger or weaker contribution to the log-likelihood in an
attempt to balance the sample to match the proportions of the target population.
The cars_us data set that comes with the package includes a weights column and is useful
for illustrating how to estimate weighted models. This data set contains 384 stated choice ob-
servations from a conjoint survey of U.S. car buyers fielded online using Amazon Mechanical
Turk in 2012 and in person at the 2013 Pittsburgh Auto show (Helveston, Liu, Feit, Fuchs,
Klampfl, and Michalek 2015). Participants were asked to select a vehicle from a set of three al-
ternatives, and each participant answered 15 choice questions. The data set contains variables
for different types of vehicles ("hev", "phev10", "phev20", "phev40", "bev75", "bev100",
"bev150"), different brands represented by the country of origin ("american", "japanese",
"chinese", "skorean"), fast charging options ("phevFastcharge" and "bevFastcharge"),
price ("price"), operating cost ("opCost"), and 0–60 mph acceleration time ("accelTime").
To compare the impact of the weights on the estimated parameters, an unweighted and
weighted model are estimated, both in the WTP space to replicate the models estimated in
Helveston et al. (2015). In both models, the argument robust = TRUE clusters the standard
errors using the obsID variable for clustering, which should be done for weighted models.
Standard errors can also be clustered at other levels by specifying a clusterID variable. For
example, a common desired clustering is to cluster at the individual level in conjoint studies
where survey respondents answer multiple sequential choice questions to account for potential
correlations among these questions. The unweighted model is estimated with the following
code:

R> set.seed(5678)
R> mnl_wtp_unweighted <- logitr(data = cars_us, outcome = "choice",
+ obsID = "obsnum", pars = c("hev", "phev10", "phev20", "phev40",
+ "bev75", "bev100", "bev150","american", "japanese", "chinese",
+ "skorean", "phevFastcharge","bevFastcharge", "opCost", "accelTime"),
+ scalePar = "price", robust = TRUE, numMultiStarts = 10, numCores = 1)
R> summary(mnl_wtp_unweighted)

=================================================

Model estimated on: Tue Feb 07 11:41:36 PM 2023

Using logitr version: 1.0.0

Call:
logitr(data = cars_us, outcome = "choice", obsID = "obsnum",

pars = c("hev", "phev10", "phev20", "phev40", "bev75", "bev100",
"bev150", "american", "japanese", "chinese", "skorean",
"phevFastcharge", "bevFastcharge", "opCost", "accelTime"),

scalePar = "price", robust = TRUE, numMultiStarts = 10, numCores = 1)

Frequencies of alternatives:
1 2 3

0.34323 0.33507 0.32170
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Summary Of Multistart Runs:
Log Likelihood Iterations Exit Status

1 -4616.952 26 3
2 -4616.955 31 3
3 -4616.952 45 3
4 -4616.952 35 3
5 -4616.952 34 3
6 -4616.952 36 3
7 -4616.952 34 3
8 -4616.952 33 3
9 -4616.952 34 3
10 -4616.952 32 3

Use statusCodes() to view the meaning of each status code

Exit Status: 3, Optimization stopped because ftol_rel or ftol_abs was reached.

Model Type: Multinomial Logit
Model Space: Willingness-to-Pay
Model Run: 8 of 10
Iterations: 33
Elapsed Time: 0h:0m:0.12s
Algorithm: NLOPT_LD_LBFGS
Weights Used?: FALSE
Cluster ID: obsnum
Robust? TRUE

Model Coefficients:
Estimate Std. Error z-value Pr(>|z|)

scalePar 0.0738787 0.0021929 33.6900 < 2.2e-16 ***
hev 0.8072448 0.9990581 0.8080 0.4190872
phev10 1.1658652 1.0614987 1.0983 0.2720648
phev20 1.6478081 1.0617443 1.5520 0.1206665
phev40 2.5794026 1.0499274 2.4567 0.0140203 *
bev75 -16.0458795 1.2541265 -12.7945 < 2.2e-16 ***
bev100 -13.0031631 1.2388544 -10.4961 < 2.2e-16 ***
bev150 -9.5733561 1.1641772 -8.2233 2.220e-16 ***
american 2.3442854 0.7979689 2.9378 0.0033053 **
japanese -0.3747714 0.7998315 -0.4686 0.6393821
chinese -10.2685448 0.8859347 -11.5906 < 2.2e-16 ***
skorean -6.0311955 0.8514340 -7.0836 1.405e-12 ***
phevFastcharge 2.8793913 0.8028804 3.5863 0.0003354 ***
bevFastcharge 2.9184681 0.9181323 3.1787 0.0014794 **
opCost -1.6360487 0.0686313 -23.8382 < 2.2e-16 ***
accelTime -1.6970364 0.1638091 -10.3598 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Log-Likelihood: -4616.9517800
Null Log-Likelihood: -6328.0067827
AIC: 9265.9035600
BIC: 9372.4426000
McFadden R2: 0.2703940
Adj McFadden R2: 0.2678655
Number of Observations: 5760.0000000
Number of Clusters 5760.0000000

The estimated WTP coefficients have units of $1,000. The results indicate large negative WTP
values for the three full electric vehicle types: −$16,000 for bev75, −$13,000 for bev100, and
−$9,600 for bev150 relative to conventional gasoline vehicles (the numbers in each bev type
indicate driving ranges in miles on a full charge). There also appear to be strong brand
preferences, with WTP values ranging as much as −$10,300 for Chinese brands to $2,300 for
American brands relative to German brands.
To estimate a weighted model, the argument weights = "weights" is added in the logitr()
function call. This sets the weights column in the cars_us data frame to be used to weight
each choice observation. The weights are specific to each individual survey respondent and
were calculated to account for over-sampling of younger and less-wealthy car buyers (Helveston
et al. 2015). In this example, the weights have values ranging from 0.2 to 5, meaning some
choice observations could have as much as 25 times the weight of others in contributing to
the log-likelihood.

R> set.seed(5678)
R> mnl_wtp_weighted <- logitr(data = cars_us, outcome = "choice",
+ obsID = "obsnum", pars = c("hev", "phev10", "phev20", "phev40",
+ "bev75", "bev100", "bev150", "american", "japanese", "chinese",
+ "skorean", "phevFastcharge","bevFastcharge","opCost", "accelTime"),
+ scalePar = "price", weights = "weights", robust = TRUE,
+ numMultiStarts = 10, numCores = 1)
R> summary(mnl_wtp_weighted)

=================================================

Model estimated on: Tue Feb 07 11:41:38 PM 2023

Using logitr version: 1.0.0

Call:
logitr(data = cars_us, outcome = "choice", obsID = "obsnum",

pars = c("hev", "phev10", "phev20", "phev40", "bev75", "bev100",
"bev150", "american", "japanese", "chinese", "skorean",
"phevFastcharge", "bevFastcharge", "opCost", "accelTime"),

scalePar = "price", weights = "weights", robust = TRUE,
numMultiStarts = 10, numCores = 1)

Frequencies of alternatives:
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1 2 3
0.34323 0.33507 0.32170

Summary Of Multistart Runs:
Log Likelihood Iterations Exit Status

1 -3425.633 19 3
2 -3425.630 33 3
3 -3425.631 37 3
4 -3425.630 30 3
5 -3425.633 36 3
6 -3425.631 34 3
7 -3425.630 31 3
8 -3425.630 29 3
9 -3425.631 31 3
10 -3425.630 29 3

Use statusCodes() to view the meaning of each status code

Exit Status: 3, Optimization stopped because ftol_rel or ftol_abs was reached.

Model Type: Multinomial Logit
Model Space: Willingness-to-Pay
Model Run: 10 of 10
Iterations: 29
Elapsed Time: 0h:0m:0.11s
Algorithm: NLOPT_LD_LBFGS
Weights Used?: TRUE
Cluster ID: obsnum
Robust? TRUE

Model Coefficients:
Estimate Std. Error z-value Pr(>|z|)

scalePar 0.0522802 0.0040688 12.8489 < 2.2e-16 ***
hev -1.1745214 2.9133014 -0.4032 0.6868318
phev10 0.0275518 3.1280284 0.0088 0.9929723
phev20 1.6949071 3.0997221 0.5468 0.5845208
phev40 2.6494989 2.9851858 0.8875 0.3747834
bev75 -20.1362768 3.6671641 -5.4910 3.997e-08 ***
bev100 -19.4967470 3.6256286 -5.3775 7.554e-08 ***
bev150 -13.6909374 3.4926845 -3.9199 8.859e-05 ***
american 8.1877347 2.4052979 3.4040 0.0006640 ***
japanese 0.9337835 2.3603628 0.3956 0.6923927
chinese -19.0068520 2.8539795 -6.6598 2.743e-11 ***
skorean -9.5109238 2.5234809 -3.7690 0.0001639 ***
phevFastcharge 3.9438186 2.3624185 1.6694 0.0950384 .
bevFastcharge 3.3428976 2.8087011 1.1902 0.2339704
opCost -1.5975429 0.1948476 -8.1989 2.220e-16 ***
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accelTime -1.1719313 0.4834735 -2.4240 0.0153513 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -3425.6302862
Null Log-Likelihood: -4360.5909275
AIC: 6883.2605723
BIC: 6989.7997000
McFadden R2: 0.2144115
Adj McFadden R2: 0.2107422
Number of Observations: 5760.0000000
Number of Clusters 5760.0000000

With both models estimated, it is helpful to directly compare the estimated coefficients side-
by-side:

R> data.frame(Unweighted = coef(mnl_wtp_unweighted),
+ Weighted = coef(mnl_wtp_weighted))

Unweighted Weighted
scalePar 0.07387865 0.05228019
hev 0.80724480 -1.17452143
phev10 1.16586524 0.02755184
phev20 1.64780809 1.69490706
phev40 2.57940264 2.64949894
bev75 -16.04587947 -20.13627677
bev100 -13.00316310 -19.49674699
bev150 -9.57335615 -13.69093743
american 2.34428544 8.18773467
japanese -0.37477137 0.93378346
chinese -10.26854481 -19.00685205
skorean -6.03119552 -9.51092383
phevFastcharge 2.87939127 3.94381855
bevFastcharge 2.91846813 3.34289759
opCost -1.63604869 -1.59754290
accelTime -1.69703637 -1.17193131

From this comparison, it is clear that in the weighted model the negative WTP for full electric
vehicles is slightly larger than that in the unweighted model, and the range of WTP for each
brand also increased in the weighted model. Nonetheless, all of the statistically significant
coefficients maintained the same sign and significance.

5.10. Predicting probabilities

Once a model has been estimated, it can be used to predict probabilities, outcomes, or both
for a set of alternatives using the predict() method. Predictions can be made for any set
of alternatives so long as the columns in the alternatives correspond to estimated coefficients



30 logitr: Preference and Willingness-to-Pay Space Logit Models in R

in the model. By default, if no new data are provided via the newdata argument, then
predictions will be made for the original data used to estimate the model.
Predictions can be made using both preference space and WTP space models, as well as
multinomial logit and mixed logit models. For mixed logit models, heterogeneity is modeled by
simulating draws from the population estimates of the estimated model. In the example below,
the preference space MNL model from Section 5.5 (mnl_pref) is used to predict probabilities
for the data used to estimate the model:

R> probs <- predict(mnl_pref)
R> head(probs)

obsID predicted_prob
1 1 0.41802407
2 1 0.02118240
3 1 0.23691737
4 1 0.32387615
5 2 0.26643822
6 2 0.02255486

The predict() method returns a data frame containing the observation ID as well as the
predicted probabilities. The original data can also be returned in the data frame by setting
returnData = TRUE:

R> probs <- predict(mnl_pref, returnData = TRUE)
R> head(probs)

obsID predicted_prob price feat brandhiland brandweight brandyoplait choice
1 1 0.41802407 8.1 0 0 0 0 0
2 1 0.02118240 6.1 0 1 0 0 0
3 1 0.23691737 7.9 0 0 1 0 1
4 1 0.32387615 10.8 0 0 0 1 0
5 2 0.26643822 9.8 0 0 0 0 1
6 2 0.02255486 6.4 0 1 0 0 0

To make predictions for a new set of alternatives, use the newdata argument. The example
below makes predictions for just two of the choice observations from the yogurt dataset:

R> data <- subset(yogurt, obsID %in% c(42, 13),
+ select = c("obsID", "alt", "price", "feat", "brand"))
R> probs_mnl_pref <- predict(mnl_pref, newdata = data, obsID = "obsID")
R> probs_mnl_pref

obsID predicted_prob
1 13 0.43685145
2 13 0.03312986
3 13 0.19155548
4 13 0.33846321
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5 42 0.60764778
6 42 0.02602007
7 42 0.17803313
8 42 0.18829902

The ci argument can be used to obtain upper and lower bounds of a confidence interval
(CI) for predicted probabilities, which are estimated using the Krinsky and Robb parametric
bootstrapping method (Krinsky and Robb 1986). For example, a 95% CI is obtained with ci
= 0.95:

R> set.seed(5678)
R> probs_mnl_pref <- predict(mnl_pref, newdata = data, obsID = "obsID",
+ ci = 0.95)
R> probs_mnl_pref

obsID predicted_prob predicted_prob_lower predicted_prob_upper
1 13 0.43685145 0.41629325 0.45825284
2 13 0.03312986 0.02608194 0.04111778
3 13 0.19155548 0.17572618 0.20815699
4 13 0.33846321 0.31873136 0.35843950
5 42 0.60764778 0.57346649 0.64162051
6 42 0.02602007 0.01872744 0.03598088
7 42 0.17803313 0.16138477 0.19504384
8 42 0.18829902 0.16787563 0.20791429

WTP space models can also be used to predict probabilities. In the example below, the WTP
space MNL model from Section 5.6 (mnl_wtp) is used to predict probabilities for the data
object defined above:

R> set.seed(5678)
R> probs_mnl_wtp <- predict(mnl_wtp, newdata = data, obsID = "obsID",
+ ci = 0.95)
R> probs_mnl_wtp

obsID predicted_prob predicted_prob_lower predicted_prob_upper
1 13 0.43686141 0.41544438 0.45755479
2 13 0.03312947 0.02699777 0.04330781
3 13 0.19154829 0.17617190 0.20781582
4 13 0.33846083 0.31813916 0.35864597
5 42 0.60767120 0.57291317 0.64013516
6 42 0.02601800 0.01839027 0.03668971
7 42 0.17802363 0.16130875 0.19521886
8 42 0.18828717 0.16730269 0.20898999

5.11. Predicting outcomes

The predict() method can also be used to predict outcomes by setting type = "outcome"
(the default is "prob" for predicting probabilities). In the examples below, outcomes are
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predicted using the same preference space and WTP space models as in the previous examples.
The returnData argument is also set to TRUE so that the predicted outcomes can be compared
to the actual choices made:

R> set.seed(5678)
R> outcomes_pref <- predict(mnl_pref, type = "outcome", returnData = TRUE)
R> head(outcomes_pref)

obsID predicted_outcome price feat brandhiland brandweight brandyoplait
1 1 1 8.1 0 0 0 0
2 1 0 6.1 0 1 0 0
3 1 0 7.9 0 0 1 0
4 1 0 10.8 0 0 0 1
5 2 0 9.8 0 0 0 0
6 2 0 6.4 0 1 0 0

choice
1 0
2 0
3 1
4 0
5 1
6 0

R> set.seed(5678)
R> outcomes_wtp <- predict(mnl_wtp, type = "outcome", returnData = TRUE)
R> head(outcomes_wtp)

obsID predicted_outcome feat brandhiland brandweight brandyoplait scalePar
1 1 1 0 0 0 0 8.1
2 1 0 0 1 0 0 6.1
3 1 0 0 0 1 0 7.9
4 1 0 0 0 0 1 10.8
5 2 0 0 0 0 0 9.8
6 2 0 0 1 0 0 6.4

choice
1 0
2 0
3 1
4 0
5 1
6 0

The accuracy of each model can be computed by dividing the number of correctly predicted
choices by the total number of choices:

R> chosen_pref <- subset(outcomes_pref, choice == 1)
R> chosen_pref$correct <- chosen_pref$choice ==
+ chosen_pref$predicted_outcome
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R> accuracy_pref <- sum(chosen_pref$correct) / nrow(chosen_pref)
R> accuracy_pref

[1] 0.3706468

R> chosen_wtp <- subset(outcomes_wtp, choice == 1)
R> chosen_wtp$correct <- chosen_wtp$choice == chosen_wtp$predicted_outcome
R> accuracy_wtp <- sum(chosen_wtp$correct) / nrow(chosen_wtp)
R> accuracy_wtp

[1] 0.3706468

These results show that both models correctly predicted choice for approximately 37% of the
observations in the yogurt data frame, which is significantly better than random (25%).

5.12. Additional options

The logitr() function contains many other arguments for controlling different aspects of the
model specification and estimation procedure. For example, the estimated solution for mixed
logit models can sometimes be sensitive to the resolution of the simulated random parameter
distributions. By default, 50 Halton draws are used, but this can be increased using the
numDraws argument. The user can also use Sobol draws by specifying drawType = "sobol"
(defaults to "halton"), which is recommended in models with a larger number of random
parameters (Czajkowski and Budziński 2019).
Details of the optimization procedure can be controlled via the options argument, which
must be a named list of control options. For example, the optimization tolerance levels can
be controlled by changing the values for xtol_rel, xtol_abs, ftol_rel, and ftol_abs. The
function nloptr::nloptr.print.options() prints details on these control settings to the
console.
Finally, it can be helpful to provide a custom set of starting values for models that have
trouble converging. For WTP space models in particular, one strategy is to first compute
the WTP from a preference space model and then use those results as the starting values.
For example, using the mnl_pref model estimated in Section 5.5, we can first compute the
corresponding WTP using the wtp() function:

R> wtp_est <- wtp(mnl_pref, scalePar = "price")$Estimate

The computed wtp_est vector can then be passed to the startVals argument for the
logitr() function. If a multi-start is used, the user-provided starting values will only be
used for the first iteration.

R> set.seed(5678)
R> mnl_wtp2 <- logitr(data = yogurt, outcome = "choice", obsID = "obsID",
+ pars = c("feat", "brand"), scalePar = "price", startVals = wtp_est,
+ numMultiStarts = 10, numCores = 1)
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6. Limitations of WTP space models
Although package logitr was designed to simplify the estimation of WTP space models, these
models do have several important limitations. First, since only one scale parameter is es-
timated in a WTP space model, the true WTP could be over- or under-estimated if there
are multiple latent classes in the sample that each have different sensitivities to price. In
contrast, in preference space models interactions can be used to estimate these differences in
price sensitivities for different groups in a given sample, which could then be used to compute
WTP for each group. While one could estimate separate WTP space models on each latent
class to account for differences in price sensitivities by group, this requires that every model
parameter be separately estimated across each group, which is a stricter assumption. A latent
class implementation of WTP space models has not yet been explored.
In addition, given the non-linear utility specification of WTP space models, these models can
often diverge during estimation and can be highly sensitive to starting parameters. Models
in which the scale parameter is modeled as a random parameter in particular tend to diverge
more often during estimation. For example, if the scale parameter is assumed to be log-
normally distributed to force positivity (which can be done by setting randScale = "ln" in
the logitr() function), the model may not consistently converge on a solution as the draws
from this distribution can sometimes have extremely large values that could have dramatic
effects on the optimization search.
Even so, {logitr} tends to perform better and converge more often compared to many other
packages that support WTP space models. By using the parallelized multi-start optimization
loop, the package can efficiently search for different local minima from different random start-
ing points when minimizing the negative log-likelihood, improving the chances of converging
to a solution for at least some of the multi-start iterations. For more details, see the package
vignette titled “WTP space convergence issues in other packages”.
Finally, WTP space models can be computationally expensive. Since WTP space models
have a non-convex log-likelihood function, there is no guaranteed that any one iteration of
the optimization algorithm will reach a global solution. As a result, it is recommended
that a multi-start optimization loop always be used for WTP space models, which increases
computation time. In practice, it may be helpful to initially use a relatively small number of
multi-start iterations (e.g., 10) to ensure that the optimization is converging in most iterations
before using a larger number of iterations to conduct a broader search. The startValBounds
argument, which is set to c(-1, 1) by default, can be used to specify the lower and upper
boundaries of the random starting parameters used in each iteration of a multi-start loop.

7. Conclusions
Package logitr implements the maximum likelihood estimation of multinomial logit and mixed
logit models with unobserved heterogeneity across individuals, which is modeled by allowing
parameters to vary randomly over individuals according to a chosen distribution. Distin-
guishing features include fast estimation speeds and support for utility models that can be
specified using either a “preference space” or “WTP space” parameterization, allowing for the
direct estimation of marginal WTP. This offers several advantages over the typical procedure
of computing WTP using the estimated parameters of a preference space model, including
greater control over how WTP is assumed to be distributed across the population.
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While logitr is less general in scope than other similar packages in terms of the variety of sup-
ported models, it is considerably faster and offers other functionality that is particularly useful
for estimating WTP space and mixed logit models. For example, a parallelized multi-start op-
timization loop offers a convenient interface for searching the solution space for different local
minima when estimating models with non-convex log-likelihood functions (i.e., WTP space
and mixed logit models). In addition, although the user interface departs from the popular
formula input, it is more uniform and streamlined for estimating models with preference or
WTP utility parameterizations.
The package could be further improved by adding support for other features, such as individual-
level parameter estimates, and other random parameter distributions, such as the triangle
distribution and the exponential distribution. The package source code and documentation
can be found at https://github.com/jhelvy/logitr.
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