
JSS Journal of Statistical Software
April 2023, Volume 106, Issue 12. doi: 10.18637/jss.v106.i12

bootUR: An R Package for Bootstrap Unit Root
Tests

Stephan Smeekes
Maastricht University

Ines Wilms
Maastricht University

Abstract

Unit root tests form an essential part of any time series analysis. We provide practi-
tioners with a single, unified framework for comprehensive and reliable unit root testing
in the R package bootUR. The package’s backbone is the popular augmented Dickey-
Fuller test paired with a union of rejections principle, which can be performed directly on
single time series or multiple (including panel) time series. Accurate inference is ensured
through the use of bootstrap methods. The package addresses the needs of both novice
users, by providing user-friendly and easy-to-implement functions with sensible default
options, as well as expert users, by giving full user-control to adjust the tests to one’s
desired settings. Our parallelized C++ implementation ensures that all unit root tests
are scalable to datasets containing many time series.

Keywords: bootstrap, R, time series, unit roots.

1. Introduction

In this paper, we introduce the bootUR package (Smeekes and Wilms 2023) for R (R Core
Team 2023), which implements several bootstrap tests for unit roots. Unit root testing is
an essential part of any statistical analysis of time series. Given the crucial role of unit
root testing in time series analysis, surprisingly few R packages exist that allow for easy and
comprehensive unit root testing. The bootUR package aims to fill this gap by offering three
major contributions to existing R packages. First, it offers a comprehensive, easy-to-use and
reliable set of unit root tests not found as generally in other packages. Second, it offers
accurate p values based on bootstrap methods. Third, its functions are not only directly
applicable to single time series, but also to datasets consisting of a potentially large set of
time series. With these contributions the bootUR package provides practitioners with a single
source to fill their unit root testing needs.

https://doi.org/10.18637/jss.v106.i12
https://orcid.org/0000-0002-0157-639X
https://orcid.org/0000-0003-3269-4601

2 bootUR: Bootstrap Unit Root Tests in R

Proper handling of unit roots is of paramount importance before commencing any form of
analysis on the time series of interest. The by far most important use of unit root tests is
therefore as a pre-test to determine whether differencing of the series is needed to eliminate
the trend and render the time series stationary. Ignoring unit roots, or stochastic trends, es-
sentially invalidates any subsequent statistical analysis: the stochastic trend, and associated
non-decaying dependence of the present on the far past of a series, yields standard inference
inapplicable. Probably the most famous consequence of ignoring unit roots is the “spurious
regression phenomenon”, where one finds seemingly important relations (high R2s and highly
significant t statistics) between unrelated time series with stochastic trends. These results
have a long history and are well-established and extensively documented in the time series
literature. A reader new to unit roots may, for instance, consult Enders (2008) for a classi-
cal textbook treatment of this spurious regression phenomenon as well as the more general
problems associated with unit roots.
Currently, unit root tests are scattered across several packages in the R environment for
statistical computing and graphics, making it difficult for a practitioner to find and apply an
appropriate and reliable test. The most popular unit root test is the classical augmented-
Dickey Fuller (ADF) test (Dickey and Fuller 1979, 1981). Implementations of the ADF test are
incorporated in various packages, in particular CADFtest (Lupi 2009), fUnitRoots (Wuertz,
Setz, and Chalabi 2022), tseries (Trapletti and Hornik 2023), and urca (Pfaff 2008). The
mleur package (Zhang, Yu, and McLeod 2013) also implements the ADF test, but links to
urca for this purpose. The package uroot (de Lacalle and Boshnakov 2020) used to have the
ADF test implemented but it is no longer supported in the package’s current version, hence
disregarded from the overview.
As we will argue in the next section, most “standard” unit root tests, such as the ones
implemented in these packages, require practitioners to choose which test to use together
with its various model specifications, that may have a major impact on the performance of
the unit root tests. As its first major contribution, the bootUR package instead implements
the user-friendly union of rejections principle (Harvey, Leybourne, and Taylor 2009, 2012;
Smeekes and Taylor 2012) that relieves the user from the burden of having to choose the right
specification and performs this task automatically.
With the exception of the HEGY seasonal unit root test in the uroot package (de Lacalle
and Boshnakov 2020), current R implementations of unit root tests rely on asymptotic infer-
ence when returning critical values or p values for the unit root test. Another exception is
the repository URT (Mallet 2017), available on GitHub, which includes bootstrap unit root
tests. In the remainder, we only focus on packages that are currently maintained on the
Comprehensive R Archive Network (CRAN). Unit root tests are very sensitive to size distor-
tions in smaller samples due to, for example, neglected serial correlation (Schwert 1989). Size
distortions due to features such as time-varying volatility even persist asymptotically (Cava-
liere 2005). Bootstrap unit root tests have therefore become a commonly used alternative to
asymptotic inference. The bootstrap approximates the exact distribution of the unit root test
statistic by repeatedly drawing new samples from the original sample, thereby capturing the
features of the time series of interest that affect the distribution of the test, which ensures that
bootstrap unit root tests have accurate size properties under very general conditions. The
addition of a comprehensive set of bootstrap tests constitutes the second major contribution
of our package. The “boot” in bootUR stands for bootstrap to emphasize that most unit
roots tests we provide rely on various bootstrap methods for constructing p values.

Journal of Statistical Software 3

Finally, most datasets contain multiple, sometimes even many, time series to be tested for unit
roots, often leading practitioners to apply unit root tests to each time series separately. Such
a practice does not only suffer from multiple testing issues, rejecting several tests by chance
alone, but also disregards similarities between individual time series which, if exploited, could
increase the often limited power of the individual tests. Although some packages provide
joint unit root tests for multivariate or panel data (pdR, Tsung-wu 2022; plm, Croissant
and Millo 2018, 2008), such tests may increase power but do not allow one to determine the
properties of individual series. For this goal one would need tests accounting for multiple
testing, but proper implementations of multiple testing corrections are currently lacking for
unit root tests. Therefore, the third major contribution of bootUR is to implement easy
tools for applying unit root tests to multivariate time series with automatic multiple testing
control. The packages PANICr (Bronder 2016) and punitroots (Kleiber and Lupi 2012) also
provide panel unit root tests, but the former has been removed from CRAN and the latter is
only available on R-Forge (Theußl and Zeileis 2009).
With these contributions, the bootUR package provides a unified framework for easy and
comprehensive unit root testing based on the following philosophy. (1) for novice users,
the tests should be easy to implement with sensible default options; (2) those default options
should lead to reliable and accurate unit root tests, applicable in general situations; (3) expert
users, familiar with the unit root literature, should be able to easily tweak and adjust the
tests to their desired settings; (4) all tests should be easily scalable to large datasets without
additional effort by the user, thereby providing “automatic” functionality.
To accomplish our philosophy, the package has a simple structure, yet it offers users a wide
variety of unit root tests. In particular, unit root tests can directly be performed on single
time series or multiple time series. To this end, we deliberately created separate functions
that serve these purposes: the adf() function provides the traditional “textbook” ADF test
(Dickey and Fuller 1979) based on asymptotic p values, while the functions boot_adf() and
boot_union() can be used for bootstrap-based inference on single time series. The func-
tion boot_ur() is the main function for multiple time series without multiple-testing control,
boot_sqt() and boot_fdr() are set up for multiple time series with multiple-testing control,
and the boot_panel() function offers a panel unit root test. For each unit root test, the
bootstrap method can be chosen by the end-user. To this end, all functions make use of
the universal argument bootstrap. Via suitable warning and error messages, user-friendly
advise is provided on the (non)-applicability of certain bootstrap methods in certain situa-
tions. Model specifications (such as deterministic components, lag length selection, detrending
methods) are under the user’s full control, with the option to have them implemented au-
tomatically according to the union of unit root tests principle which ensures reliable tests
across potentially heterogeneous series. Each function contains many options whose syntax
is shared across the package, thereby facilitating usability and control by the end-user.
We have also added several functions, based around the core functions above, that aid
in the practical implementation of the unit root tests. Most importantly, the function
order_integration() provides an automatic way to determine the order of integration of
each series in a dataset, based on a sequence of one of the aforementioned unit root tests. As
it also directly outputs the correctly differenced time series that remove all stochastic trends,
it provides the user with the option to conduct the entire unit root pre-analysis with a single
command. Additionally, we provide several functions that easily allow the user to assess and
visualize properties of the data and outcomes of the tests.

4 bootUR: Bootstrap Unit Root Tests in R

The package is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=bootUR. In addition, the latest (development) version is
available on GitHub at https://github.com/smeekes/bootUR. The core of the package is
written in C++ (Stroustrup 2013), where we make use of the packages Rcpp (Eddelbuettel
and François 2011; Eddelbuettel 2013; Eddelbuettel and Balamuta 2017) and RcppArmadillo
(Eddelbuettel and Sanderson 2014) to facilitate seamless integration with R. In addition we
use the RcppParallel (Allaire, François, Ushey, Vandenbrouck, Geelnard, and Intel 2023)
package, which provides parallel functionality on all platforms to ensure scalability to large
datasets. Version 1.0.0 of the bootUR package and version 4.2.3 of R were used in this paper.
Adhering to the four points of our philosophy not only requires thoughts on how to implement
the tests and design the API, but it also requires a careful choice of the appropriate statistical
methods. We therefore first consider the problem from a statistical point of view in Section 2,
where we discuss the unit root test for single time series and multiple time series, and in
Section 3, where we discuss the bootstrap methods. We then continue with the package’s
implementation in Section 4. Section 5 uses three empirical applications to compare bootUR’s
unit root functions to implementations in other R packages and illustrate its usefulness for
practitioners. Section 6 concludes. Appendix A contains a simulation study of the finite
sample performance of the methods included in the package.

2. Unit root tests
We first discuss unit root tests for individual time series (Section 2.2), followed by testing
multiple series for unit roots (Section 2.3). In our discussion, paralleling Smeekes and Wijler
(2020), we do not focus on theory, but on the issues that arise for practitioners when imple-
menting these tests on their time series. For a more extensive and theoretical overview of
unit root testing, we refer the interested reader to Choi (2015).

2.1. Unit roots

Consider the case where we have T observations from a time series yt (t = 1, . . . , T) generated
according to the data generating process (DGP)

yt = xt + β⊤dt, xt = ρxt−1 + ut, (1)

where dt are deterministic functions of time. In particular, three cases are commonly con-
sidered: dt = 0 (no deterministic components), dt = 1 (intercept only), and dt = (1, t)⊤

(intercept and linear trend). The error process ut is allowed to be serially correlated and
heteroskedastic. The presence of serial correlation in ut has to be accounted for in inference.
Typically, ut is modelled as an invertible infinite order linear process, for instance as

ut =
∞∑

j=0
ψjϵt−j =

∞∑
j=1

ϕjut−j + εt,

where εt is typically assumed to be a martingale difference sequence. This linearity motivates
the use of adding lagged differences of the time series to account for the serial dependence, as
in the classical ADF test (Dickey and Fuller 1979). However, Paparoditis and Politis (2018)

https://CRAN.R-project.org/package=bootUR
https://CRAN.R-project.org/package=bootUR
https://github.com/smeekes/bootUR

Journal of Statistical Software 5

Package bootUR CADFtest fUnitRoots tseries urca
Function adf() boot_adf() CADFtest() unitrootTest() adf.test() ur.df() ur.ers()

Deterministic None ✓ ✓ ✓ ✓ ✓
components Intercept only ✓ ✓ ✓ ✓ ✓ ✓

Intercept & linear trend ✓ ✓ ✓ ✓ ✓ ✓ ✓
User control ✓ ✓ ✓ ✓ ✓ ✓

Detrending OLS ✓ ✓ ✓ ✓ ✓ ✓
QD ✓ ✓

Lag selection AIC ✓ ✓ ✓ ✓
BIC ✓ ✓ ✓ ✓
MAIC ✓ ✓ ✓
MBIC ✓ ✓
HQC ✓
Rescaled ✓ ✓
Heuristic ✓
User control ✓ ✓ ✓ ✓ ✓ ✓ ✓

Inference Critical value table ✓ ✓ ✓ ✓
Asymptotic p value ✓ ✓ ✓ ✓
Bootstrap p value ✓

Other Covariate augmentation ✓
features Explosive alternative ✓

Table 1: Overview ADF-test functionalities in existing R packages.

show that ADF-type approaches are valid under much more general forms of dependence
in ut.
We focus on testing whether or not yt contains a unit root, that is on testing

H0 : ρ = 1 against H1 : |ρ| < 1

in Equation 1. Under the null hypothesis of a unit root, yt contains a stochastic trend, and
equivalently yt is being said to be integrated of order 1 (I(1)), while the alternative postulates
that yt is integrated of order 0 (I(0)), which is generally taken as synonymous to yt being
stationary. Here “integrated of order d” means that yt should be differenced d times to
achieve a process that does not contain a stochastic trend anymore. Although stationary is
generally used as synonym for I(0), an I(0) process can still be non-stationary, for instance
through a shift in the variance. Despite this distinction, we follow tradition and use “I(0)”
and “stationary” interchangeably.

2.2. Individual unit root tests

To test the null hypothesis of a unit root, the classical ADF test (Dickey and Fuller 1979,
1981) remains the pre-dominant choice in practice. For this reason it also forms the backbone
of the bootUR package. However, even in its most basic form, practitioners are required
to make several non-trivial choices that affect its performance. Table 1 summarizes these
choices and indicates how the various R packages address each of them. In this section, we
first discuss the ADF test and the choices that need to be made, before discussing the union
of unit root tests principle proposed by Harvey et al. (2009, 2012) which alleviates many of
the concerns.

6 bootUR: Bootstrap Unit Root Tests in R

ADF test
Let ∆ be the difference operator defined as ∆yt := yt − yt−1. If no deterministic components
are present, the ADF regression is given by

∆yt = γyt−1 +
p∑

j=1
ϕj∆yt−j + εt, t = p+ 1, . . . , T, (2)

where the lagged differences of yt are added to the regression to capture the serial correlation
present in ut. Testing the null of a unit root then boils down to testing the significance of the
parameter γ in Equation 2.
If the time series yt is suspected to have deterministic components as well, testing becomes
more complicated. The traditional one-step procedure adds the relevant deterministic com-
ponents directly in Equation 2. However, the one-step detrending does not lend itself to be
extended to other forms of detrending such as the popular generalized least squares (GLS)
or quasi-differencing (QD) framework (Elliott, Rothenberg, and Stock 1996) discussed later.
Most contemporaneous literature (see e.g., Chang and Park 2002; Harvey et al. 2009) therefore
considers a two-step approach. Here, a first stage regression is run of yt on the deterministic
components dt, and in the second stage the ADF regression

∆yd
t = γyd

t−1 +
p∑

j=1
ϕj∆yd

t−j + εd
t , t = p+ 1, . . . , T, (3)

is run on the residuals of the first stage regression, yd
t = yt − β̂⊤dt, commonly referred to

as the detrended time series. When estimated by ordinary least squares (OLS), the one-step
and two-step detrending are generally used interchangeably and will give very similar results,
although they are not equal, and may even have different limit behavior (cf. Harvey et al. 2009,
Remark 5). For the traditional adf() test, bootUR offers the user the choice to implement
one-step as an alternative to the default two-step detrending. This option is mainly provided
to allow replicability of results obtained through other software or textbook examples. The
two-step procedure is implemented for all bootstrap unit root tests in the bootUR package,
including the boot_adf() function for single time series.
Elliott et al. (1996) proposed the DF-GLS test, in which β̂ is obtained by a GLS regression
where the (near-)unit root in yt is first removed by quasi-differencing; the regression is then
performed by OLS for yt −

(
1 − c

T

)
yt−1 on dt −

(
1 − c

T

)
dt−1, where c is a parameter that

determines how close to differencing the GLS step is; Elliott et al. (1996) recommend that
c = 7 for the case dt = 1 and c = 13.5 for the case dt = (1, t)⊤ to yield tests with good
power properties. The DF-GLS, or alternatively, DF-QD test, is often considered to be more
powerful than the ADF test, although as shown by Müller and Elliott (2003) and Harvey
et al. (2009) inter alia, the QD test is only more powerful if the initial condition, that is the
deviation of the start of the time series from equilibrium, is small. When the initial condition
is large, the standard OLS-detrended ADF test is considerably more powerful. To avoid
confusion with a “proper” GLS estimation that also takes into account higher-order serial
dependence and heteroskedasticty, we follow Harvey et al. (2009) and refer to this test as the
quasi-differenced (QD) test rather than GLS. Among other R packages, only urca provides a
version of the DF-QD test, see Table 1.
While both options are implemented in the function boot_adf() for varying choice of dt,
the issue of including deterministic components presents the practitioner with two difficult

Journal of Statistical Software 7

choices: which deterministic components to include, and how to perform the detrending.
These choices can have a major impact on the performance. If too few deterministic com-
ponents are included, deterministic trends are detected as stochastic trends, and the test
becomes inconsistent. On the other hand, adding too many deterministic components re-
duces the power of the test considerably, and should also be avoided (Harvey et al. 2009).
Yet, all unit root tests in current R packages ask the user to make these choices. Similarly, the
initial condition is unobservable, such that the user has to choose which detrending method
to use.
The bootUR package is, to the best of our knowledge, the first R package which does not
force the user to make these choices, but instead offers the function boot_union() for a data-
driven alternative via the union of rejections principle introduced by Harvey et al. (2009,
2012). Before discussing this in detail, we first turn to the third choice a user has to make:
selecting the lag length p in Equation 3.
The lag length choice concerns a trade off between size distortions incurred from including
too few lags to capture all serial correlation, and power loss incurred from including too many
lags. Although theory (and some R packages such as tseries) generally assume p to be a
deterministic function of the sample size, in practice data-driven selection allows for a more
precise choice of p that can achieve a better trade off between size and power. bootUR offers a
set of information criteria for automatic data-driven lag length selection. Information criteria
trade off model fit (through the residual sum of squares) and overfitting (through a penalty
on the number of parameters). The lag length is estimated as

p̂ := argmin
pmin≤k≤pmax

IC (k), IC (k) = lnσ̂2
k + k

CT

T
, (4)

where σ̂2
k := (T − pmax)−1∑T

t=pmax+1(ε̂d
k,t)2 with ε̂d

k,t the OLS residuals from the ADF regres-
sion with lag length k in Equation 3, and CT is a penalty function that differs according to
the information criterion used. We consider two penalties: one corresponding to the Akaike
information criterion (AIC; CT = 2) and the other to the Bayesian information criterion (BIC;
CT = lnT).
Next to the original criteria, bootUR also implements their modified variants proposed by Ng
and Perron (2001). These modifications are specifically motivated for lag length selection in
the ADF regression. They are given by

MIC (k) := lnσ̂2
k + k

CT + ξT (k)
T

,

where ξT (k) := (σ̂2
k)−1γ̂2∑T

t=pmax+1(yd
t−1)2. The lag length is then estimated as in Equation 4,

with IC (k) replaced by MIC (k). The modified AIC (MAIC) is obtained by taking CT = 2,
the modified BIC (MBIC), by taking CT = lnT . Ng and Perron (2001) show that the MICs
yield large size improvements over the ICs for the purpose of unit root testing. Perron and Qu
(2007) recommend to always use the MICs with the OLS rather than QD-detrended data (even
if the unit root test itself makes use of QD detrending) since this improves the test’s power
properties; bootUR follows this recommendation. In addition, there are various seemingly
minor aspects of how the lag selection is implemented that influence its performance, such
as how many observations are used to calculate the residual sum of squares. Ng and Perron
(2005) provide a detailed study and guidelines for these choices; bootUR implements the
scheme they recommend as optimal.

8 bootUR: Bootstrap Unit Root Tests in R

Cavaliere, Phillips, Smeekes, and Taylor (2015) find that heteroskedasticity affects the per-
formance of information criteria, leading to less accurate choices of p and consequent power
loss of the unit root tests. They propose rescaled information criteria, where the time series
yt is rescaled with a nonparametric estimate of its (time-varying) standard deviation, thereby
eliminating the heteroskedastictiy. The information criterion is then applied to this rescaled
series. These rescaled ICs are generally more powerful in the presence of heteroskedasticity,
yet very similar to the original ones without. bootUR therefore performs the rescaling by
default (with the option not to consider it) since it is a safe choice and relieves the user of
the burden to check whether heteroskedasticity is present.

Union of rejections test
As mentioned above, choosing the right deterministic components to include and the right
detrending method to use, is crucial to obtain tests with good power properties. Harvey et al.
(2009, 2012) take a different approach based on a very simple principle. Roughly speaking,
for both specification issues, we have one powerful test and one not powerful test. A logical
step would therefore be to perform both tests and reject whenever one of them rejects the
null hypothesis - the logic being that the one rejecting is then the powerful one. With two
tests performed simultaneously, one must control for multiple testing and adjust the tests
with a Bonferroni-type adjustment to control size at the desired level. Harvey et al. (2009)
introduced this union of rejections idea for the two specification issues separately, while Harvey
et al. (2012) combined the two approaches to consider a union of four tests – intercept only or
intercept with trend in combination with OLS or QD detrending – that guards against both
uncertainty over the trend and the initial condition.
This makes the union test a safe option for quick or automatic unit root testing where careful
manual specification is not viable, and makes it therefore very suitable for bootUR’s phi-
losophy that the default option provides a reliable and accurate test, for which no in depth
knowledge is needed about either the data or the applicability of various unit root tests. More-
over, it scales easily to large datasets with many series, where careful manual considerations
about these specifications are not possible regardless of the expertise of the user.
The bootUR package implements the bootstrap version of the union test developed by
Smeekes and Taylor (2012), which uses the bootstrap both for determining the appropri-
ate size correction and for obtaining the test’s p values. The test statistic takes the form

UR = min
(

s

cµ∗
QD(α)

QDµ,
s

cτ∗
QD(α)QDτ ,

s

cµ∗
ADF (α)

ADFµ,
s

cτ∗
ADF (α)ADF τ

)
, (5)

where ADF and QD are the ADF and QD detrended tests, and superscript µ and τ respec-
tively indicating whether the series are demeaned or detrended. The critical values c·

·(α) are
determined in a preliminary bootstrap step as the individual level α critical values of the four
tests; weighting with their inverse is needed to bring the four tests on the same scale. The
variable s is a scaling factor to which the statistics are scaled. Any s < 0 suffices to preserve
the left-tail rejection region; in bootUR we scale to −1. This bootstrap union test is made
available through the function boot_union(). Finally, note that this union-based approach
still requires one to select the lag lengths in each of the four ADF regressions. To this end,
any of the four information criteria, AIC, BIC, MAIC and MBIC can be used.
Of course, various other unit root tests such as the Phillips and Perron (1988) (PP) test,
the KPSS (Kwiatkowski, Phillips, Schmidt, and Shin 1992) stationarity test, the HEGY test

Journal of Statistical Software 9

(Hylleberg, Engle, Granger, and Yoo 1990) for seasonal unit roots, or the covariate-augmented
Dickey-Fuller test of Hansen (1995) exist. While these tests undoubtedly have a lot of value,
we intentionally do not implement them in bootUR to avoid overloading the user with choices
in tests and options. Instead, we focus on the ADF test which is by far the most popular
in practice. Practitioners interested in applying these other unit root tests are recommended
to consult the packages fUnitRoots, stats, tseries or urca for the PP test, and fUnitRoots,
tseries or urca for the KPSS test. We also want to highlight the uroot package which focuses
on the HEGY seasonal unit root test, and the CADFtest package which offers the covariate-
augmented ADF test, which exploits correlation with known stationary covariates to improve
power. These two packages packages are entirely devoted to these specific unit root tests and
already provide excellent functionality for the practitioner in need of these specific tests.

2.3. Multiple unit root tests

Practitioners often make use of several time series in their analysis, and typically need to test
all for unit roots. While performing a unit root test for each series separately is normal practice
for a small number of time series, this becomes more complicated if the number of series is
large. First, performing many unit root tests simultaneously suffers from multiple testing
issues as the probability of incorrect classifications increases with the number of performed
tests. Second, we would like to exploit the similarity between different time series to improve
the power of the unit root tests, in particular if the time dimension is relatively small.
In the bootUR package, we consider three different ways to approach the testing problem
with multiple time series. First, the simplest option of ignoring the test multiplicity issue by
just performing unit root tests separately for each series. To this end, the function boot_ur()
from bootUR can be used. Second, we consider the traditional approach of panel unit root
tests, where on pools the information in all series to obtain a more powerful test. The
function boot_panel() offers such a test. Third, we can consider individual tests but then
with appropriate control of multiple testing error rates. bootUR considers two such tests,
namely boot_sqt() and boot_fdr().
Despite the large literature on this topic, software implementations for multiple unit roots
are mostly lacking. While there is some support for panel unit root testing as discussed
hereafter, methods to control multiple testing in the context of unit root testing are, to the
best of our knowledge, not available. While several general purpose multiple testing packages
exist, using these in a proper way with unit root tests requires considerable effort and expertise
from the user. For instance, some standard corrections may be overly conservative, such as
the Bonferroni correction, or only applicable under specific conditions on the dependence,
such as the method by Benjamini and Hochberg (1995) to control the false discovery rate. As
argued by for instance Romano, Shaikh, and Wolf (2008b), bootstrap methods for controlling
multiple testing allow for general forms of dependence and avoid being too conservative.
However, such bootstrap methods need to be integrated with the unit root testing, which is
the approach taken in bootUR.
Throughout this section, we use the following notation. Consider N time series for which
one would like to test the presence of a unit root. We denote their respective individual unit
root test statistics by URi, 1 ≤ i ≤ N . Typically these would correspond to one of the tests
discussed in Section 2.2. Without loss of generality, we assume that rejections occur for small
values of the test statistic.

10 bootUR: Bootstrap Unit Root Tests in R

Panel unit root tests

Panel unit root tests view the multiple time series as a coherent panel dataset, and exploit the
similarity between such time series to pool the information in them and achieve more powerful
tests. They have a long tradition in econometrics, see e.g., Breitung and Pesaran (2008) or
Choi (2015) for reviews. A typical panel unit root test has the null hypothesis that all series
have a unit root. Rejection of this null hypothesis is then typically interpreted as evidence
that a “significant proportion” of the series is stationary. However, how large that proportion
is, or which series are stationary is not revealed by the test. Pesaran (2012) therefore suggests
to use panel unit root tests as an initial screening tool for analyzing multiple series; if the
panel unit root test rejects the null, this indicates that the individual series need to examined
further; if not, treating the full dataset as I(1) may be a reasonable choice.
We implement the bootstrap group-mean (GM) test of Palm, Smeekes, and Urbain (2011)

GM = 1
N

N∑
i=1

URi,

in the function boot_panel() which is based on averaging the unit root test statistics URi

(1 ≤ i ≤ N) of the N individual time series. This test is valid under very general forms
of dependence within the dataset, yet does not require modelling it. Panel unit roots tests
are scarcely available for R users. Currently, only two packages with panel unit root tests,
namely plm and pdR, are being maintained. The package plm was the first to offer panel
unit root tests and provides the tests introduced in Maddala and Wu (1999); Choi (2001);
Levin, Lin, and Chu (2002); Im, Pesaran, and Shin (2003). However, none of them allow for
cross-sectional dependence (see Kleiber and Lupi 2011 for a discussion). The package pdR
offers the panel unit root test of Chang (2002) and a panel version of the seasonal unit root
test in Hylleberg et al. (1990).

Multiple testing

Multiple testing methods allow practitioners to determine the order of integration for each
series in their dataset while controlling the overall probability of making false rejections. First
note that in order to properly rank and compare tests for different series, the individual test
statistics should have the same marginal distributions. Then, the ranking

UR(1) ≤ . . . ≤ UR(R) ≤ UR(R+1) ≤ . . . ≤ UR(N), (6)

corresponds to a ranking from “most significant” to “least significant”, when the i-th order
statistic of UR1, . . . ,URN is denoted by UR(i). To ensure the comparability of these statistics,
nuisance parameters need to be eliminated from the distribution of the test statistics. bootUR
does this automatically for the union test by scaling all test statistics in Equation 5 towards
s = −1; if the user chooses to set specifications manually, it is up to the user to choose them
such that any nuisance parameters are eliminated.
The goal is to find an appropriate cut-off point R such that the null of a unit root is rejected
for all statistics less than or equal to UR(R), while it is not rejected for all statistics larger.
How this threshold is determined, depends on how one controls for multiple testing. bootUR
implements two ways to do this: the sequential testing procedure of Smeekes (2015), which
also encompasses the Step-M method of Romano and Wolf (2005) to control the familywise

Journal of Statistical Software 11

error rate, and the false discovery rate (FDR) controlling approach of Romano et al. (2008b);
Moon and Perron (2012).

Sequential quantile test

Smeekes (2015) proposes the Bootstrap Sequential Quantile Test (BSQT) for multiple unit
root testing, that acts as an intermediate between panel unit root testing and full multiple
testing control. The method proceeds by sequentially testing groups of time series for unit
roots, where the user decides the group sizes. At step 1, we test whether the first p1 series are
stationary. Here “first” does not refer to the order in the dataset (which is arbitrary), but to
the most significant tests as found via Equation 6. If the null hypothesis that all p1 units have
a unit root cannot be rejected, the test stops. If we do observe a rejection, we move on to the
second group where we test if the first p2 are stationary. However, as we already concluded
that the first p1 units are stationary, in this second step the actual test is whether the next
p2 − p1 units are stationary as well. We continue this testing procedure until no rejection
is observed anymore or we tested all series in the dataset. The BSQT can be performed by
using the function boot_sqt().
More formally, let p1, . . . , pK be the number of series to be tested as stationary in each of the
steps k = 1, . . . ,K. In the sequential step k we then test

H0 : pk−1 series are I(0); against H1 : pk series are I(0).

As the first test should have as H0 that all units are I(0), p0 = 0 by default. Furthermore,
pK = N to complete the testing procedure. The number of steps K and the intermediate
numbers p1, . . . , pK−1 can be chosen by the practitioner. Instead of thinking in terms of pk

series, it may be easier to think in terms of quantiles qk, and set pk = [qkN]. A practitioner
may for instance think “I want to split my series in 10 equally-sized groups.” In that case the
practitioner simply sets qk = 0.1k.
The choice of {pk} does require input and consideration from the user. It can be chosen based
on the nature of the dataset and the desired level of precision of the practitioner. Smeekes
(2015) shows that if pk units are found to be I(0), the probability that the true number
of stationary series lies outside the interval [pk−1, pk+1] is at most the chosen significance
level of the test. Finding that pk series are I(0) should therefore be interpreted as finding
that the number of I(0) series is in the interval [pk−1, pk+1]. In the end, if p2, . . . , pK−1 are
chosen sensibly and not spaced too far apart, the series that lie in the “uncertain interval”
are likely those series which are “just about” significant, and correspond to time series with
a ρ parameter very close to 1. The practical consequences of incorrect classification of these
series are typically small, as their behavior makes them fit reasonably well in both classes of
I(1) and I(0) series.
One special case worth mentioning – set as the default in boot_sqt() – is when we set
pk = k, such that each series gets tested sequentially. Smeekes (2015) shows that in this case
the BSQT method coincides with the popular Step-M method of Romano and Wolf (2005) to
control the familywise error rate (FWE). The FWE is defined as the probability of making
at least one false rejection, and is typically controlled via the Bonferroni or Holm (1979)
approach.

12 bootUR: Bootstrap Unit Root Tests in R

FDR-controlled test

The false discovery rate (FDR), originally proposed by Benjamini and Hochberg (1995), is
defined as FDR = E

[
F
R1(R > 0)

]
, where R denote the total number of rejections, and F

the number of false rejections. It is more appropriate for larger N than the FWE, as it
aims to control the proportion of false rejections to the total, rather than the probability of
a single false rejection. Romano, Shaikh, and Wolf (2008a) develop a bootstrap method to
control the FDR, and show that unlike the classical way to control FDR, the bootstrap is
appropriate under very general forms of dependence between series. Moon and Perron (2012)
applied this method to unit root testing, and it is their method that is implemented in the
boot_fdr() function of the bootUR package. FDR control can be combined with any unit
root test specification considered in Section 2.2.
To decide on whether to use BSQT or FDR control, relative sample sizes can be considered.
The Monte Carlo comparison of Smeekes (2015) reveals that the FDR-controlling test is
somewhat more accurate when the sample size T is at least of equal magnitude as the number
of time series N , whereas the BSQT method is clearly preferable when T is much smaller than
N , since the FDR-controlling test then suffers from a lack of power. While Smeekes (2015)
investigates the performance of (various) bootstrap unit root tests based on the standard
ADF test with intercept only, we conduct an additional Monte Carlo simulation experiment
in Appendix A that compares the asymptotic adf() test to the bootstrap tests boot_ur(),
boot_sqt() and boot_fdr() based on the union of rejections test, which is the default in the
package bootUR.

3. Bootstrap-based inference
We mainly rely on bootstrap methods to obtain critical values and/or p values for all of the
unit root tests discussed in Section 2. In the bootUR package, six bootstrap methods are
implemented: the sieve bootstrap (SB), moving block bootstrap (MBB), sieve wild bootstrap
(SWB), dependent wild bootstrap (DWB), block wild bootsrap (BWB) and autoregressive
wild bootstrap (AWB). Their properties are summarized in Table 2, and discussed more exten-
sively below. As immediately apparent from Table 2, any “off-the-shelf” time series bootstrap
method may be used to counteract size distortions arising from neglected serial correlation
(Schwert 1989); whereas a wild bootstrap method is needed to deal with general forms of

Bootstrap method Serial Heteroskedasticity Cross-sectional Unbalancedness
correlation dependence

SB ✓
MBB ✓ ✓
SWB ✓ ✓ ✓
DWB ✓ ✓ ✓ ✓
BWB ✓ ✓ ✓ ✓
AWB ✓ ✓ ✓ ✓

Table 2: Bootstrap methods and their ability to deal with serial correlation, general forms of
heteroskedasticity, cross-sectional dependence and unbalancedness of the data.

Journal of Statistical Software 13

heteroskedasticity (Cavaliere and Taylor 2008, 2009a). General forms of cross-sectional de-
pendence can be captured by any bootstrap method apart from the sieve ones.
Next to correcting the size of unit root tests, bootstrap methods have other advantages.
First, the bootstrap offers an automatic p value. Second, the bootstrap directly allows for
implementation of multiple testing techniques such as those discussed above. Third, it guards
against misspecification and uncertainty regarding the lag length selection in the ADF. As
bootUR re-selects the lag lengths within the bootstrap replications, it automatically takes
effects of lag selection into account. This, coupled with the fact that the bootstrap captures
any dependence missed by the lagged differences in the ADF regression, adds another layer
of protection to the tests.

3.1. Sieve bootstrap
The sieve bootstrap (SB) has been extensively considered in the context of unit root testing;
see among others Psaradakis (2001), Chang and Park (2003), Paparoditis and Politis (2005),
Palm, Smeekes, and Urbain (2008) and Smeekes (2013). It estimates the dependence as an
autoregressive (AR) process, resamples the residuals of the AR fit, and then re-applies the
AR model recursively to place the dependence back into the bootstrap sample. bootUR
determines the required order of the AR model by the order of the ADF model, combining
these in a single step as they should conceptually coincide.
While it is able to capture general forms of serial dependence (Kreiss, Paparoditis, and Politis
2011), it is mostly suited for tests on single time series. Smeekes and Urbain (2014b) show
that it is not suited to capture general forms of cross-sectional dependence, making it invalid
for joint or multiple testing. The bootUR package therefore advises to only use it for unit root
testing of a single series or on multivariate series without multiple testing control, throwing
a warning to alert the user otherwise. When still applied multivariately, users should also
realize that each time series is required to be observed over the same periods, which we refer
to as balanced datasets. This often forces practitioners to delete observations for series that
have been observed for a longer period. The reason for this limitation is that resampling
step of the sieve bootstrap would reshuffle the missing values, creating bootstrap sample with
“holes” in it.

3.2. Moving block bootstrap
The moving block bootstrap (MBB) is another traditional bootstrap method that has not
only been used for univariate unit root testing in Paparoditis and Politis (2003), but also for
multivariate unit root testing in Moon and Perron (2012) and Smeekes (2015), as well as for
panel unit root testing in Palm et al. (2011). It works by dividing the data in overlapping
blocks of data and resampling those blocks to create bootstrap series by laying them end-to-
end. The blocks are taken in the time dimension and encompass all series. The block length
ℓ is set automatically by bootUR as a function of the sample size, following a rule proposed
by Palm et al. (2011) that they showed to perform well in many different circumstances.
However, it is easily adjusted by the user to experiment with different lengths and assess the
sensitivity of the results for varying block lengths.
The MBB can accommodate any form of serial dependence as long as it “fits” into an ade-
quately sized block, which is a wide class. Unlike the SB, the MBB can also handle general
forms of dependence between series, including but not limited to common factor structures.

14 bootUR: Bootstrap Unit Root Tests in R

From a practical point of view an attractive feature is that it can be applied without requiring
one to model the serial and/or cross-sectional dependence. Palm et al. (2011) show its validity
for mixed I(1)/I(0) panel datasets under such general forms of dependence. The MBB still
has, however, two disadvantages: it cannot handle unbalanced datasets and is sensitive to
unconditional heteroskedasticity. To handle both issues, users should switch to one of the
wild bootstrap methods available in bootUR.

3.3. Sieve wild bootstrap

The wild, or multiplier, bootstrap (Mammen 1993; Davidson and Flachaire 2008) is known
to be robust against general forms of heteroskedasticity, however it cannot handle serial
dependence. Nonetheless, if combined with a sieve bootstrap, we get the best of both worlds.
That is, by replacing the resampling step applied to the residuals of the AR model with a
multiplication by independent and identically distributed (iid) random variables with mean
zero and variance one, we obtain the sieve wild bootstrap (SWB). Cavaliere and Taylor
(2009a,b) and Smeekes and Taylor (2012) among others apply this sieve wild bootstrap for
bootstrap unit root testing. The method is perfectly suited to individual unit root testing,
but due the AR estimation, suffers from the same inability to capture complex dependence
across series as explained by Smeekes and Urbain (2014b) for the SB. For the generation
of the iid random variables, bootUR follows the unit root papers cited above and uses the
normal distribution.

3.4. Dependent, block and autoregressive wild bootstrap

The three remaining bootstrap methods implemented in the package are all wild bootstrap
methods adjusted to deal with dependence. However unlike the SWB, here the multiplicative
random variables themselves are adjusted to be dependent over time. This setup allows
these bootstrap methods to capture complex serial and cross-series dependence structures
as well as unconditional heteroskedasticity. In addition, no resampling takes place for the
dependent wild bootstrap, such that missing values “stay in their place” which makes the
method applicable to unbalanced datasets.
The three wild bootstrap methods only differ in how the multiplier variables are made time-
dependent. The dependent wild bootstrap method (DWB), originally introduced by Shao
(2010), draws random variables from a T -dimensional N(0,Σ) distribution, where the ele-
ments in Σ decrease with the distance between them. Shao (2010) proposes to use a kernel
function to achieve this, along with a bandwidth ℓ which ensures that variables more than
ℓ time points apart are independent. This way ℓ has a similar interpretation as the block
length in the MBB. Rho and Shao (2019) and Smeekes and Urbain (2014a) study the DWB
for unit root testing, the latter focusing on multivariate settings.
We consider two more variations. The block wild bootstrap (BWB) (Shao 2011; Zhang and
Cheng 2014) is a direct alternative to the MBB, where for each block of size ℓ, we use the same
multiplier variable, and the variables are independent between blocks. The autoregressive
wild bootstrap (AWB) (Smeekes and Urbain 2014a; Friedrich, Smeekes, and Urbain 2020)
generates the multiplier variables as a first-order autoregressive process. Unlike the BWB
and DWB who have a block length ℓ tuning parameter, the tuning parameter of the AWB
is the first-order AR parameter. To be able to use the same tuning parameter ℓ, we use
the conversion formula proposed by Smeekes and Urbain (2014a) and Friedrich et al. (2020)

Journal of Statistical Software 15

that writes the AR parameter as a function of ℓ, though bootUR also allows to set the AR
parameter directly. The default setting for ℓ in bootUR uses the same rule as for the MBB,
which was also tested for the three wild bootstrap methods by Smeekes and Urbain (2014a).
They also provide theoretical results on the validity of these methods under general forms of
dependence and heteroskedasticity.
For completeness, in Algorithm 1 we present the six bootstrap methods and their role in the
general bootstrap algorithm. Note that the outcome of the bootstrap algorithm is a collection
of bootstrap unit root test statistics URb

i for the series i = 1, . . . , N and bootstrap replications
b = 1 . . . , B. How these are then used depends on the multiple testing approach taken. For
instance, if we ignore multiple testing, we simply calculate the bootstrap p values

p∗
i = 1

B

B∑
b=1

I(URb
i < URi), i = 1, . . . , N.

For the BSQT and FDR tests more involved processing is needed; for details we refer to
Smeekes (2015) and Romano et al. (2008a) respectively.

4. An introduction to the bootUR package
The bootUR package has a simple structure with 13 user-accessible functions. Section 4.1
presents three functions to check if the data are suitable to be bootstrapped. Sections 4.2
and 4.3 introduce the seven core functions for unit root testing on respectively individual and
multiple time series. Section 4.4 presents three useful functions for determining the order of
integration of each series in a particular dataset.
The package’s functions will now be presented together with examples of their specific use.
To this end, we make use of the dataset "MacroTS" which contains a collection of 20 macroe-
conomic time series taken from Eurostat and comes with the package. A complete description
of the data can be obtained by typing ?MacroTS in R. The following examples require that the
bootUR package and the data have been loaded. As random number generation is required
to draw bootstrap samples, we first set the seed of the random number generator to obtain
reproducible results:

R> library("bootUR")
R> data("MacroTS")
R> set.seed(155776)

4.1. Checking data suitability

The package bootUR offers three functions, namely check_missing_insample_values(),
find_nonmissing_subsample() and plot_missing_values(), to check if a particular dataset
is suitable to be bootstrapped. While the bootstrap tests do not work with missing data, un-
balanced datasets are generally allowed (see Table 2).
The function check_missing_insample_values() checks if a particular dataset contains
missing values. Its usage is extremely simple, as it only requires the data as input,

R> check_missing_insample_values(MacroTS)

16 bootUR: Bootstrap Unit Root Tests in R

Algorithm 1: Multivariate bootstrap unit root tests.
1 Let yd

i,t = yi,t − dtβ̂, where β̂ is obtained by OLS;

2 for i ∈ {1, . . . , N} do
3 Estimate Equation 3 for {yi,t}T

t=1, determining p by an appropriate criterion,
obtaining estimates (γ̂i, ϕ̂i,1, . . . , ϕ̂i,p);

4 Set ûi,t = ∆yd
i,t − ρ̂iy

d
i,t−1 and ε̂i,t = ∆yd

i,t − ρ̂iy
d
i,t−1 −

∑p
j=1 ϕ̂i,j∆yd

i,t−j , with
y−p+1, . . . , yo = 0;

end

5 for b ∈ {1, . . . , B} do

6 if SB then
7 Generate s1, . . . , sT from a uniform distribution on {1, . . . , T};
8 Set ub

i,t =
∑p

j=1 u
b
i,t−j + εb

i,t with εb
i,t = ε̂i,st and u−p+1, . . . , u0 = 0 for i = 1, . . . , N

and t = 1, . . . , T ;

else if MBB then
9 Generate sb

1, . . . , s
b
⌈T/ℓ⌉ from a uniform distribution on {1, . . . , T − ℓ+ 1};

10 for m ∈ {1, . . . , ⌈T/ℓ⌉} do
11 Set ub

i,t = ε̂i,sb
t

for i = 1, . . . , N and t = (m− 1)ℓ+ 1, . . . ,mℓ;
end

else if SWB then
12 Generate ξb

1, . . . , ξ
b
T from a N(0, 1) distribution;

13 Set ub
i,t =

∑p
j=1 u

b
i,t−j + εb

i,t with εb
i,t = ξb

t ε̂i,t and u−p+1, . . . , u0 = 0 for
i = 1, . . . , N and t = 1, . . . , T ;

else if DWB then
14 Generate ζb

1, . . . , ζ
b
T from a N(0, 1) distribution and let

ξb = (ξb
1, . . . , ξ

b
T)⊤ = Σ1/2(ζb

1, . . . , ζ
b
T)⊤ with (σs,t)T

s,t=1 = K
(

|s−t|
ℓ

)
for the kernel

function K(·) defined in Shao (2010);
15 Set ub

i,t = ξb
t ûi,t for i = 1, . . . , N and t = 1, . . . , T ;

else if BWB then
16 Generate ξb

1, . . . , ξ
b
⌈T/ℓ⌉ from a N(0, 1) distribution;

17 for m ∈ {1, . . . , ⌈T/ℓ⌉} do
18 Set ub

i,t = ξb
mûi,t for i = 1, . . . , N and t = (m− 1)ℓ+ 1, . . . ,mℓ;

end

else if AWB then
19 Generate ζb

2, . . . , ζ
b
T from a N(0, 1 − γ2) distribution and let ξb

t = γξb
t−1 + ζb

t with
ξb

1 ∼ N(0, 1);
20 Set ub

i,t = ξb
t ûi,t for i = 1, . . . , N and t = 1, . . . , T ;

21 Set yb
i,t =

∑t
s=1 u

b
i,s;

22 Let URb
i = UR(yb

i,1, . . . , y
b
i,T), where UR(·) denotes the chosen unit root test.

end

Journal of Statistical Software 17

GDP_BE GDP_DE GDP_FR GDP_NL GDP_UK CONS_BE CONS_DE CONS_FR CONS_NL CONS_UK HICP_BE HICP_DE HICP_FR HICP_NL HICP_UK UR_BE UR_DE UR_FR UR_NL UR_UK

Variables

O
bs

er
va

tio
ns Missing Type

Observed

Unbalanced NA

Figure 1: Missingness for the dataset MacroTS.

which can be a vector, matrix, data frame or in time series format (e.g., ts, zoo or xts).
It returns an N -dimensional Boolean vector which indicates for each series whether missing
values are present (TRUE) or not (FALSE).
If a dataset contains series with different starting and end points, the bootstrap methods SWB,
DWB, BWB and AWB can still be used. The function find_nonmissing_subsample() lets
users check the start and end points of each series as follows:

R> sample_check <- find_nonmissing_subsample(MacroTS)
R> sample_check

$range
GDP_BE GDP_DE GDP_FR GDP_NL GDP_UK CONS_BE CONS_DE

first 1 1 1 5 1 1 1
last 100 100 100 100 100 100 100

CONS_FR CONS_NL CONS_UK HICP_BE HICP_DE HICP_FR
first 1 5 1 9 9 9
last 100 100 100 100 100 100

HICP_NL HICP_UK UR_BE UR_DE UR_FR UR_NL UR_UK
first 9 9 1 1 1 1 1
last 100 100 100 100 100 100 100

$all_equal
[1] FALSE

The output slot range returns a (2×N) matrix displaying the first and last non-missing value
for each series, the logical slot all_equal provides a quick check to see if all time series have
the same non-missing indices (TRUE) or not (FALSE).

18 bootUR: Bootstrap Unit Root Tests in R

Finally, to display missingness in the dataset, we can use

R> plot_missing_values(MacroTS, show_names = TRUE)

which displays present cell values in green, missing values at the start or end (“Unbalanced
NAs”) in purple and internal missing values in red, see Figure 1. Only the latter are prob-
lematic for the wild bootstrap methods, while the purple values also need to be avoided for
the resampling-based bootstraps.

4.2. Individual unit root tests

bootUR has one function, adf(), that implements a traditional asymptotic ADF test and two
functions to perform a bootstrap unit root test on a single series: boot_adf() for a standard
bootstrap ADF test and boot_union() for a bootstrap union test.
We start by discussing the standard adf() function followed by its bootstrap analogue
boot_adf() with the many options users can tweak. As bootUR shares its syntax across
the various functions, the majority of function arguments remains identical across bootUR’s
functions, which facilitates usability and control by the end-user. In the remainder, we there-
fore only highlight the differences compared to the adf() and/or boot_adf() function.

Asymptotic ADF test

To perform a standard ADF test with asymptotic p value, bootUR offers the adf() function:

adf(data, data_name = NULL, deterministics = "intercept", min_lag = 0,
max_lag = NULL, criterion = "MAIC", criterion_scale = TRUE,
two_step = TRUE)

The minimum required input is adf(data), where the time series data can be a vector or a
time series object. The optional argument data_name allows users to name their data for use in
the printed output. The remaining set of arguments relates to the ADF regression. The deter-
ministic components can be tweaked via the argument deterministics with options "none",
"intercept", "trend", lag length selection in the ADF regression is controlled via the argu-
ments min_lag and max_lag that respectively set the minimum and maximum lag length. For
the latter, we use the sample size-based default ⌊12 · (T/100)1/4⌋. The information criterion
can be selected via the argument criterion (with options "AIC", "BIC", "MAIC", "MBIC")
and the argument criterion_scale lets practitioners choose to use the rescaled information
criteria of Cavaliere et al. (2015). To overwrite data-driven lag selection with a pre-specified
lag length, users can simply put both min_lag and max_lag equal to the desired lag length.
Finally, the argument two_step allows users to specify whether OLS detrending should be
performed following the one-step or two-step procedure, with the latter being the default.
We apply the asymptotic variant of the ADF test with both one-step and two-step OLS
detrending to Dutch gross domestic product (GDP). An intercept and linear time trend are
added as deterministic components:

R> GDP_NL <- MacroTS[, 4]
R> adf_out1 <- adf(data = GDP_NL, deterministics = "trend",
+ two_step = FALSE)

Journal of Statistical Software 19

R> adf_out2 <- adf(data = GDP_NL, deterministics = "trend",
+ two_step = TRUE)

The function returns a ‘bootUR’ class object that inherits from the class ‘htest’. The outcome
of the unit root test can be easily read from the console via the print() function. We slightly
adjust the standard R output from the ‘htest’ class to make it better fit for our unit root
tests. Practitioners interested in retrieving the standard R output from the ‘htest’ class, can
use stats:::print.htest(adf_out1) instead.

R> print(adf_out1)

One-step ADF test (with trend) on a single time series

data: GDP_NL
null hypothesis: Series has a unit root
alternative hypothesis: Series is stationary

estimate largest root statistic p-value
GDP_NL 0.9489 -2.487 0.3339

R> print(adf_out2)

Two-step ADF test (with trend) on a single time series

data: GDP_NL
null hypothesis: Series has a unit root
alternative hypothesis: Series is stationary

estimate largest root statistic p-value
GDP_NL 0.9471 -2.515 0.3202

The tests differ slightly numerically but both give the same evidence regarding the presence
or absence of a unit root. Return values such as sample estimate γ̂, test statistic and p value
can be easily retrieved via:

R> adf_out1$estimate

gamma
-0.05106074

R> adf_out1$statistic

tstat
-2.486711

R> adf_out1$p.value

p-value
0.333873

20 bootUR: Bootstrap Unit Root Tests in R

Next to the standard slots in ‘htest’, the object contains the additional slots details and
specifications. The output slot details contains an overview of the sample estimate γ̂
in the slot individual estimates, the test statistic in the slot individual statistics,
the p value in individual p-values, and the selected number of lagged differences in the
ADF regression in the slot selected lags. The output slot specifications contains the
specifications (deterministics, minimum and maximum lag order, criterion for lag selection,
with or without re-scaling and de-trending procedure; one-step or two-step) of the unit root
test that is performed.

Bootstrap ADF test

To perform a standard ADF bootstrap unit root test on a single series, the boot_adf()
function can be used. The function is structured as follows:

boot_adf(data, data_name = NULL, bootstrap = "AWB", B = 1999,
block_length = NULL, ar_AWB = NULL, deterministics = "intercept",
detrend = "OLS", min_lag = 0, max_lag = NULL, criterion = "MAIC",
criterion_scale = TRUE, show_progress = TRUE, do_parallel = TRUE,
cores = NULL)

Many arguments used for adf() re-appear in the boot_adf() function and play the same role.
We focus the discussion on the new arguments. The arguments related to the bootstrap spec-
ifications include the bootstrap method (bootstrap) and number of bootstrap replications
(B). If a user chooses the bootstrap method "MBB", "DBB" "BWB" or "AWB", the desired block
length can be controlled via the argument block_length. By default, we use block_length
= ⌊1.75 ·T 1/3⌋, as recommended in Palm et al. (2011). While for the first three, this argument
concerns the genuine block length, for the latter, the block length is transformed into an
autoregressive parameter ar_AWB via the formula 0.01(1/l) as in Smeekes and Urbain (2014a);
this can be overwritten by setting ar_AWB directly. The following set of arguments relates to
the ADF regression and most arguments have a one-to-one correspondence with those in the
adf() function. For boot_adf(), the user can additionally choose the type of detrending via
detrend, with options "OLS" (default) and "QD".
The argument show_progress provides live progress updates on the bootstrap. The latter
is particularly useful for large values of the argument B. Finally, the option do_parallel =
TRUE allows the bootstrap to be executed in parallel via RcppParallel; the argument cores
allows users to specify how many cores should be used for the parallel loops. By default, all
but two cores are used.
We illustrate the bootstrap ADF test on Dutch GDP, with the sieve bootstrap (bootstrap
= "SB") as used by Palm et al. (2008) and Smeekes (2013). We use the same specification for
the deterministic components as for the adf() test above and detrending is done via OLS.

R> boot_adf(data = GDP_NL, bootstrap = "SB",
+ deterministics = "trend", detrend = "OLS")

SB bootstrap OLS test (with intercept and trend)
on a single time series

Journal of Statistical Software 21

data: GDP_NL
null hypothesis: Series has a unit root
alternative hypothesis: Series is stationary

estimate largest root statistic p-value
GDP_NL 0.9471 -2.515 0.1311

As for adf(), the function returns an object of class ‘bootUR’ and ‘htest’. The bootstrap
ADF test returns the same value of the sample estimate and test statistic as for the standard
ADF test with two-step OLS detrending as it should, only the p value differs. Also in this
case, the test indicates no rejection of the unit root.

Union of rejections test

To perform a bootstrap union unit root test on a single series, the boot_union() function
can be used. It shares all its arguments with boot_adf() except for deterministics and
detrend which are omitted since boot_union() performs tests for all the possible options,
then combines the outcomes of the four unit root tests as in Equation 5 to produce a single
p value. By combining these tests, the sample estimate is not available and hence set to NA in
the output. The function introduces one new argument union_quantile, which allows the
user to choose the α in Equation 5 used to construct the critical values that serve as weights
in the union. If the user has a particular significance level in mind when performing the test,
α should be set to this. If not, the default 0.05 is used.
The bootstrap union test for Dutch GDP with the sieve wild bootstrap as proposed by Smeekes
and Taylor (2012) can be obtained via

R> boot_union(data = GDP_NL, bootstrap = "SWB")

SWB bootstrap union test on a single time series

data: GDP_NL
null hypothesis: Series has a unit root
alternative hypothesis: Series is stationary

estimate largest root statistic p-value
GDP_NL NA -0.6701 0.6433

Finally, for the union test, the output slot details contains an overview of the estimates,
test statistics, p values and selected lag orders of the four tests, namely the ADF unit root
tests with intercept only or intercept with trend in combination with OLS or GD trending.

4.3. Multiple unit root tests

Below, we discuss the various approaches bootUR offers to approach the testing problem with
multiple series.

22 bootUR: Bootstrap Unit Root Tests in R

Separate unit root tests

To perform individual ADF tests on multiple time series simultaneously without multiple
testing control, the function boot_ur() can be used:

boot_ur(data, data_name = NULL, bootstrap = "AWB", B = 1999,
block_length = NULL, ar_AWB = NULL, level = NULL, union = TRUE,
union_quantile = 0.05, deterministics = NULL, detrend = NULL, min_lag = 0,
max_lag = NULL, criterion = "MAIC", criterion_scale = TRUE,
show_progress = TRUE, do_parallel = TRUE, cores = NULL)

Compared to the syntax of boot_adf(), it has three additional arguments. The argument
union controls whether a bootstrap union test is used (TRUE) or not (FALSE). If union = TRUE
(default), the arguments deterministics and detrend are ignored, and a warning message is
returned if the user would have provided specifications for these anyway. If set to FALSE, the
deterministic components and detrending methods can be specified as for the boot_adf()
function. The argument union_quantile is the same as for boot_union(). Finally, the
optional argument level offers the user the possibility to give a significance level for the
tests to be performed. Doing so adds a slot in the output object which contains a Boolean
vector indicating for each series if the unit root null hypothesis is rejected or not. This may
be convenient for automated post-processing if the unit root tests are performed as an initial
step in an analysis. If a significance level is given, union_quantile is overwritten with this
value.
Furthermore, since the bootstrap is performed for all series simultaneously, the bootstrap
methods "SB" or "MBB", that cannot handle unbalanced datasets, should not be used. If
the user were to specify these anyway, the function will revert to splitting the bootstrap up
and performing it separately for each time series. A warning message is then returned to
alert the user. If a vector (or univariate time series) instead of a matrix (multivariate time
series) is given for data, a single unit root test is performed; in this case the function acts
as an alternative to boot_adf() and boot_union(). In fact, internally, these functions call
boot_ur().
We illustrate the function’s usage by performing individual ADF tests with the "MBB" boot-
strap on the first five series of the unbalanced dataset MacroTS, which correspond to the real
GDP in Belgium, Germany, France, the Netherlands and the United Kingdom respectively.

R> boot_ur_out <- boot_ur(data = MacroTS[, 1:5], bootstrap = "MBB")

Warning message:
In check_inputs(data = data, boot_sqt_test = boot_sqt_test,
boot_ur_test = boot_ur_test, : Missing values cause resampling bootstrap to
be executed for each time series individually.

The warning message alerts the user about the resampling "MBB" bootstrap method being
unable to handle unbalanced datasets and the corrective action that is taken to this end.

R> boot_ur_out

Journal of Statistical Software 23

MBB bootstrap union test on each individual series
(no multiple testing correction)

data: MacroTS[, 1:5]
null hypothesis: Series has a unit root
alternative hypothesis: Series is stationary

Tests performed on each series:
estimate largest root statistic p-value

GDP_BE NA -0.8135 0.36618
GDP_DE NA -1.1076 0.08804
GDP_FR NA -0.6301 0.76188
GDP_NL NA -0.8211 0.41371
GDP_UK NA -0.7207 0.53877

An object of class ‘bootUR’ and ‘mult_htest’, for multiple hypothesis testing, is returned.
We constructed the class ‘mult_htest’ as an extension of ‘htest’ to make it suitable for
multiple hypothesis testing. In addition to the return values as for the class ‘htest’, it has
additional output slots series.names, which contains the names of the individual time series,
and rejections, which optionally contains the aforementioned vector with rejections in case
this is requested.
Looking at the results, none of the time series is stationary at the 5% significance level, as
can be seen from the printed p values. Information on, for instance, the test statistics and
p values can also be accessed directly via:

R> boot_ur_out$statistic

GDP_BE GDP_DE GDP_FR GDP_NL GDP_UK
-0.8135022 -1.1076021 -0.6301366 -0.8210610 -0.7207147

R> boot_ur_out$p.value

GDP_BE GDP_DE GDP_FR GDP_NL GDP_UK
0.36618309 0.08804402 0.76188094 0.41370685 0.53876938

Panel unit root test

To perform a panel unit root test, the function boot_panel() can be used. It shares its
syntax with boot_ur(). Unlike for the latter, usage of the "MBB" or "SB" bootstrap methods
for a panel unit root test on unbalanced datasets will result in an error– not a warning –since
the unbalancedness cannot be reverted. Therefore, users should switch to one of the wild
bootstrap methods or balance their dataset. Besides, sieve bootstrap methods can be used,
but they are not suited to capture general forms of dependence across units (see Table 2).
The code therefore warns users against their usage.
We illustrate the usage of the panel unit root test on the five GDP time series with the "DWB"
bootstrap of Shao (2010) and Rho and Shao (2019):

24 bootUR: Bootstrap Unit Root Tests in R

R> boot_panel(data = MacroTS[, 1:5], bootstrap = "DWB")

Panel DWB bootstrap group-mean union test

data: MacroTS[, 1:5]
null hypothesis: All series have a unit root
alternative hypothesis: Some series are stationary

estimate largest root statistic p-value
MacroTS[, 1:5] NA -0.8372 0.2986

Since the null is not rejected at any reasonable level, treating all five GDP series as I(1) is
reasonable.

Sequential quantile test

To perform the BSQT for multiple unit root testing, the function boot_sqt() should be used.
It has one additional argument compared to the boot_panel() function, namely steps which
sets the group sizes. These can either be set in units or in quantiles. To split the series in, for
instance, K equally sized groups, use steps = 0:K/K. By the convention of Smeekes (2015),
the first entry of the vector should be equal to zero, while the second entry indicates the end
of the first group, and so on. If the initial zero value or the final value (N or 1 for quantiles)
are accidentally omitted, the function automatically adds them back. The default steps =
0:NCOL(data) corresponds to the Step-M method of Romano and Wolf (2005). Regarding the
bootstrap methods, the same warning and error messaging as for the boot_panel() apply.
To set the significance level of the individual tests performed sequentially, the argument
SQT_level can be set.
We illustrate the BSQT on the five GDP series with the "AWB" (default) bootstrap method
of Smeekes and Urbain (2014a) and Friedrich et al. (2020):

R> boot_sqt(data = MacroTS[, 1:5])

AWB bootstrap sequential quantile union test

data: MacroTS[, 1:5]
null hypothesis: Series has a unit root
alternative hypothesis: Series is stationary

Sequence of tests:
H0: # I(0) H1: # I(0) tstat p-value

Step 1 0 1 -1.046 0.3347

The details on the number of series pk to be tested as stationary in step k under H0 and H1
(first two columns) is printed to the console, together with, the test-statistic and p value (last
two columns) for each of the sequential steps until no rejection occurs. The latter information
is also accessible through the output slot details$SQT, information on the (non) rejection of
the unit root null for each of the series separately can be accessed via the slot rejections.

Journal of Statistical Software 25

FDR-controlled test

To perform a multiple unit root test by controlling the FDR, the function boot_fdr() should
be used. Its arguments are the same as for the other multivariate unit root tests, with the
addition of the argument FDR_level which sets the FDR level. We illustrate it here with the
"BWB" bootstrap method of Shao (2011) and Smeekes and Urbain (2014a):

R> boot_fdr(data = MacroTS[, 1:5], bootstrap = "BWB")

BWB bootstrap union test with false discovery rate control

data: MacroTS[, 1:5]
null hypothesis: Series has a unit root
alternative hypothesis: Series is stationary

Sequence of tests:
tstat critical value

GDP_DE -0.9814 -1.346

The procedure developed by Romano et al. (2008b); Moon and Perron (2012) does not provide
p values, therefore critical values are returned instead here.

4.4. Determining series’ order of integration

Finally, bootUR offers three useful functions for determining the order of integration of each
series in dataset: order_integration(), diff_mult() and plot_order_integration().
The main function is order_integration() which applies the “Pantula principle” (Pantula
1989) to determine the order of integration of each series

order_integration(data, data_name = NULL, max_order = 2, method = "boot_ur",
level = 0.05, plot_orders = FALSE, ...)

The argument max_order sets the maximum order of integration that should be considered for
each series. Generally the default of two should generally suffice, with series of order three or
higher only very rarely occurring in practice. The user can choose the unit root test through
the argument method depending on whether a single ("adf", "boot_adf" or "boot_union") or
a multiple time series ("boot_ur", "boot_sqt" or "boot_fdr") is considered. All arguments
used in these functions can also be passed on via order_integration(). As setting the order
of integration automatically requires “yes/no” decisions about the presence of unit roots, a
significance level has to be set via the argument level. For "boot_sqt" or "boot_fdr" this
is automatically transformed to SQT_level and FDR_level, respectively.
The Pantula principle works as follows. It starts by setting d = max_order−1 and testing for
a unit root on the ∆dyt series. The series for which the unit root null cannot be rejected are
classified as I(d+ 1) and subsequently removed from the dataset. In the next step, d = d− 1
and the remaining series are tested and classified accordingly. Under the default max_order
= 2, this second round involves testing the series in levels and classifying them as either I(1)
(if the unit root null is not rejected) or I(0) (if the null is rejected).

26 bootUR: Bootstrap Unit Root Tests in R

The function returns an object of class ‘bootUR’ and ‘order_integration’ with two accessible
elements. The slot diff_data contains a matrix whose columns are ∆diyi,t with di indicating
the order of integration of the i-th series (i = 1, . . . , N). This matrix is generated by the
user-accessible function diff_mult(data, d), where data is the original dataset and d is an
N -dimensional vector indicating each series’ order of integration. It contains the same number
of rows as the original dataset (since the default setting keep_NAs = TRUE in diff_mult()
is used), thereby indicating lost observations as missing. It can be tweaked if a practitioner
directly makes use of this function. Note that the object of the input series (e.g., matrix, data
frame or time series object) is preserved for the differenced series. The output slot order_int
makes the vector containing the found orders of integration available to the end-user.
Finally, if the argument plot_orders in the function order_integration() is set to TRUE, a
plot is provided which displays each series’ order of integration. To this end, it uses the func-
tion plot_order_integration() which takes the object that order_integration() outputs
as its input. This function is also made accessible if the end-user wishes to further adjust the
display of the variable names, legend and colours through its optional arguments show_names,
show_legend, names_size, legend_size and cols.

5. Applications
We illustrate the methods on three datasets: the income data used in Smeekes (2015), the
MacroTS dataset which comes with the package, and the FRED-QD dataset, which is widely
used for macro-economic analysis.

5.1. Replication of Smeekes (2015)

We replicate the empirical application of Smeekes (2015) based on income data from the Panel
Study of Income Dynamics (PSID) used in Pesaran (2007). The income dataset represents a
balanced micro-panel with T = 22 time periods and N = 181 units split into three subsamples
consisting of college graduates (CLG, N = 58), high school graduates (HSG, N = 87), and
high school dropouts (HSD, N = 36).
We use the functions boot_ur(), boot_sqt() and boot_fdr() with the MBB bootstrap to
determine the proportion of stationary units in the PSID dataset with the same specifications

boot_ur() boot_sqt() boot_fdr()

Total rejections (N = 181) 49 60 1
Proportion of rejections 0.27 0.33 0.01
Rejection in subsamples
CLG (N = 58) 13 16 1
Proportion 0.22 0.28 0.02
HSG (N = 87) 25 29 0
Proportion 0.29 0.33 0.00
HSD (N = 36) 11 15 0
Proportion 0.31 0.42 0.00

Table 3: Rejections of the unit root null hypothesis in the PSID dataset.

Journal of Statistical Software 27

Variables

O
bs

er
va

tio
ns Missing Type

Observed
Unbalanced NA
Internal NA

Figure 2: Missingness for the dataset FRED-QD.

as in Smeekes (2015): the bootstrap replications B are set to 4999, the block size to five, and
the lags in the ADF regression are selected using the rescaled MAIC criterion with a maximal
lag length of three.
Table 3 presents the rejection results of a unit root. boot_ur() and boot_fdr() indicate that
around 30% of the units are stationary. As discussed in Smeekes (2015), boot_fdr() returns
only few units as stationary and thereby likely suffers from low power due to the small sample
size. Finally, in line with Smeekes (2015), the proportion of stationary units are fairly similar
across subsamples.

5.2. MacroTS

The MacroTS dataset contains N = 20 macro-economic time series collected from Eurostat
(https://ec.europa.eu/eurostat/data/database) and is included in the package. Quar-
terly observations from 1995–2019 (T = 100) are available on GDP, consumption, inflation
and unemployment for Belgium, Germany, France, the Netherlands and the United Kingdom.
The dataset is unbalanced, see Figure 1.

5.3. FRED-QD

This is a quarterly version of the monthly Federal Reserve Economic Data (FRED) database
introduced in McCracken and Ng (2016). It contains N = 248 macro-economic time series
and was imported into R using the commands

R> FRED_url <- paste0("https://files.stlouisfed.org/files/htdocs/",
+ "fred-md/quarterly/2020-06.csv")
R> FRED_QD <- read.csv(FRED_url)

This paper uses the data from 1959 Quarter 2 to 2019 Quarter 4 (T = 244) to avoid possible

https://ec.europa.eu/eurostat/data/database

28 bootUR: Bootstrap Unit Root Tests in R

Series MacroTS FRED-QD

In first differences < 0.001 < 0.001
In levels 0.097 0.197

Table 4: p values of the panel unit root test on all series in differences and all series in levels,
for both the MacroTS and FRED-QD dataset.

structural breaks due to the COVID-19 pandemic in 2020. If a researcher wishes to import
the up-to-date version of the dataset, 2020-06.csv should be changed to current.csv. As
can be seen from Figure 2, the dataset contains one internal NA, since the third observation of
variable 188 (UMCSENTx: Consumer Expectations) is missing while the second observation is
not. bootUR cannot handle internal missing values but this can be easily fixed by setting the
second observation to NA, which results in the first three observations of this variable being
“unbalanced NAs” that can be handled by bootUR. The resulting dataset then contains 38
macro-economic indicators with missing values at the start of the sample. Finally, note that
all FRED-QD series have been classified into I(0), I(1), I(2) by the transformation codes
provided in McCracken and Ng (2020). However, the authors themselves indicate several
discrepancies between these codes and the outcome of unit root tests. We therefore use the
transformation codes as a benchmark for the classifications obtained through the unit root
tests but do not necessarily consider the classification closest to theirs to be the best.
Since some of the macro-economic series are likely to be I(2), we use the order_integration()
function (with its defaults) to implement the Pantula principle. All unit root tests in the
bootUR are performed with their default settings, which means that union tests are per-
formed with the AWB bootstrap method, and lag length selection is done via the re-scaled
MAIC. Throughout this section, a significance level of 5% is used. For boot_sqt(), the
default (i.e., Step-M method) is reported as well as results for evenly spaced 0.1 quantiles
(steps = 0:10/10, for MacroTS), and 0.05 quantiles (steps = 0:20/20, for FRED-QD).
We compare bootUR’s unit root tests to the R packages reported in Table 1. We hereby use
the following specifications: For the function CADFtest() (package CADFtest), we perform
ADF regressions with intercept and trend (type = "trend"), and lag length selection with
MAIC (criterion = "MAIC") thereby considering a maximum of ⌊12 · (T/100)1/4⌋ lags, set
via the argument max.lag.y. These lag length specifications correspond to the defaults
used in bootUR. For unitrootTest() (package fUnitRoots), we perform ADF regressions
with intercept and trend (type = "ct"). By default, one lagged difference is included. For
adf.test() (package tseries), we use its default settings which implies ADF-regressions with
intercept and trend and the number of lags fixed to ⌊(T−1)1/3⌋, a deterministic function of the
sample size. For ur.df() (package urca), we use ADF-regressions with intercept and trend
(type="trend"), lag length selection via AIC (selectlags = "AIC"), thereby considering a
maximum of ⌊12 ·(T/100)1/4⌋ lags, set via the argument lags. Finally, for ur.ers() (package
urca), we use an intercept and trend for detrending (model = "trend"). By default, four
lagged differences are included in the ADF-regression. Unlike the other packages, urca only
comes with critical values to judge the significance of the unit root test, the p value is not
reported, see Table 1. As discussed in Lupi (2009), the p value reported under summary() is
computed using the t distribution, which is incorrect under the unit root null. Finally, only
the packages CADFtest and fUnitRoots can handle missing values, for the other packages,
we removed missing values prior to performing the unit root tests.

Journal of Statistical Software 29

Non-bootstrap tests Bootstrap tests

CADFtest() 134.27 boot_ur() 343.75
unitrootTest() 1.70 boot_sqt() 306.68
adf.test() 0.50 boot_sqt_20step() 343.01
ur.df() 5.71 boot_fdr() 351.72
ur.ers() 0.90

Benchmark: adf() 1.33 (absolute time in seconds)

Table 5: Computing time of the unit root tests relative to the benchmark adf() test for the
FRED-QD dataset on a MacBook Pro (macOS 11.6.7) with Quad-Core Intel Core i5 2,4 GHz
processor under the default parallel computing settings.

UR_UK

UR_NL

UR_FR

UR_DE

UR_BE

HICP_UK

HICP_NL

HICP_FR

HICP_DE

HICP_BE

CONS_UK

CONS_NL

CONS_FR

CONS_DE

CONS_BE

GDP_UK

GDP_NL

GDP_FR

GDP_DE

GDP_BE

adf boot_ur boot_sqt: StepM boot_sqt: 10−step boot_fdr CADFtest unitrootTest adf.test ur.df ur.ers

Method

V
ar

ia
bl

es

Order of Integration

I(0)

I(1)

I(2)

Figure 3: Classification of the MacroTS dataset into I(0), I(1), I(2).

Before applying the various unit root tests to the two datasets, we perform the boot_panel()
(with default settings) to all series taken in first differences, and to all series in levels. Table 4
reports the p values of the panel unit root tests. For both datasets, the panel unit root tests
on the series in first differences indicates that the unit root null is rejected, thereby indicating
that a “significant proportion” of the series is stationary in first differences (hence not I(2)).
The panel unit root test on the series in levels indicates non-rejection of the unit root null.
To shed further light on the order of integration for each of the individual series, the bootstrap
unit root tests are applied and compared to the implementations from other R packages.
Figure 3 presents the obtained orders of integration on the MacroTS dataset, Figures 4 and 5
on the FRED-QD dataset. Note that on such a large dataset, performing the bootstrap tests –
even twice in order_integration() if d = 2 – can become computationally intensive. Table 5
gives the computation times relative to our adf() function, as recorded on a MacBook Pro
(macOS 11.6.7) with Quad-Core Intel Core i5 2,4 GHz processor. While the adf() function
took just over a second to run, it took roughly between 7 and 8 minutes to perform each of
the bootstrap tests. There is therefore a price to pay for bootstrap accuracy. A simple way
to save computation time, while still preserving reasonable accuracy, is to reduce the number
of bootstrap replications, by altering the argument B.
Globally speaking, most unit root tests agree upon a series’ classification into I(0), I(1), I(2),
which is comforting. Still, several interesting remarks can be made. First, the results of

30 bootUR: Bootstrap Unit Root Tests in R

WPSFD49502
PPIACO

WPSFD49207
CPILFESL
CPIAUCSL

DOTSRG3Q086SBEA
DIFSRG3Q086SBEA

DFSARG3Q086SBEA
DRCARG3Q086SBEA
DTRSRG3Q086SBEA
DHLCRG3Q086SBEA
DHUTRG3Q086SBEA
DONGRG3Q086SBEA
DGOERG3Q086SBEA
DCLORG3Q086SBEA
DFXARG3Q086SBEA

DODGRG3Q086SBEA
DREQRG3Q086SBEA
DFDHRG3Q086SBEA
DMOTRG3Q086SBEA
DHCERG3Q086SBEA
DNDGRG3Q086SBEA
DSERRG3Q086SBEA
DDURRG3Q086SBEA
DGDSRG3Q086SBEA

IPDBS
GPDICTPI
GDPCTPI

PCEPILFE
PCECTPI

INVCQRMTSPL
ANDENOx
AMDMUOx
ACOGNOx
AMDMNOx

RSAFSx
CMRMTSPLx

HOUSTW
HOUSTS

HOUSTNE
HOUSTMW

PERMIT
HOUST5F

HOUST
HWIx

AWOTMAN
AWHNONAG

AWHMAN
HOANBS

HOAMS
HOABS

LNS12032194
LNS13023569
LNS13023705
LNS13023557
LNS13023621

UEMP27OV
UEMP15T26
UEMP5TO14

UEMPLT5
LNS14000026
LNS14000025
LNS14000012

UNRATELTx
UNRATESTx

UNRATE
CIVPART
CE16OV

CES9093000001
CES9092000001
CES9091000001

USWTRADE
USTRADE

USGOVT
USTPU

USMINE
USSERV

USLAH
USPBS

USINFO
USFIRE
USEHS

USCONS
NDMANEMP

DMANEMP
USGOOD
SRVPRD
MANEMP

USPRIV
PAYEMS

CUMFNS
TCU

IPB51220SQ
IPBUSEQ

IPNCONGD
IPB51110SQ
IPDCONGD

IPNMAT
IPDMAT

IPMAT
IPCONGD

IPFINAL
INDPRO
OUTMS
OUTBS

OUTNFB
DPIC96

IMPGSC1
EXPGSC1

SLCEx
FGRECPTx

A823RL1Q225SBEA
GCEC1

A014RE1Q156NBEA
PRFIx
PNFIx

Y033RC1Q027SBEAx
FPIx

GPDIC1
PCNDx

PCESVx
PCDGx

PCECC96
GDPC1

FRED adf boot_ur boot_sqt: StepM boot_sqt: 20−step boot_fdr CADFtest unitrootTest adf.test ur.df ur.ers
Method

V
ar

ia
bl

es Order of Integration
I(0)
I(1)
I(2)

Figure 4: Classification of the first half of time series in the FRED-QD dataset into
I(0), I(1), I(2).

boot_ur() are fairly similar to adf(), boot_sqt() and boot_fdr() but it classifies a consid-
erable amount of series as I(0) instead of I(1) on the FRED-QD dataset. This illustrates that
ignoring multiple testing can quickly lead to a considerable number of misclassifications on
such large datasets. Second, among the boot_sqt() procedures, the default Step-M method
tends to classify more series as I(2) than the other procedure. On the smaller MacroTS
dataset the two versions of the boot_sqt() show more agreement than on the larger FRED-

Journal of Statistical Software 31

S.P.PE.ratio
S.P.div.yield

S.P..indust
S.P.500
CNCFx

TNWBSNNBBDIx
TNWBSNNBx

TABSNNBx
TLBSNNBBDIx

TLBSNNBx
TNWMVBSNNCBBDIx

TNWMVBSNNCBx
TTAABSNNCBx

TLBSNNCBBDIx
TLBSNNCBx

CUSR0000SEHC
NASDAQCOM

NIKKEI225
PERMITW
PERMITS

PERMITMW
PERMITNE
COMPAPFF

CP3M
CONSPIx
ISRATIOx
BUSINVx
CLAIMSx

HWIURATIOx
INVEST

DTCTHFNM
DTCOLNVHFNM
CES0600000008

CUSR0000SA0L5
CUSR0000SA0L2

CPIULFSL
CUSR0000SAS
CUSR0000SAD
CUSR0000SAC

CPIMEDSL
CPITRNSL
CPIAPPSL

PPICMM
WPSID62
AAAFFM
T5YFFM

TB3SMFFM
GS5

NONBORRES
TOTRESNS

CES0600000007
UEMPMEAN

IPFUELS
IPB51222S

IPMANSICS
GFDEBTNx

GFDEGDQ188S
B021RE1Q156NBEA
B020RE1Q156NBEA

USEPUINDXM
UMCSENTx

EXCAUSx
EXUSUKx
EXJPUSx
EXSZUSx
EXUSEU

TWEXAFEGSMTHx
SPCS20RSA
SPCS10RSA

USSTHPI
VXOCLSx

TFAABSHNOx
HNOREMQ027Sx

TARESAx
NWPIx

TNWBSHNOx
LIABPIx

TLBSHNOx
TABSHNOx

DRIWCIL
TOTALSLx

REVOLSLx
REALLNx

NONREVSLx
CONSUMERx
BUSLOANSx

MZMREAL
M2REAL
M1REAL

IMFSLx
BOGMBASEREALx

CPF3MTB3Mx
GS10TB3Mx

GS1TB3Mx
TB6M3Mx

MORTG10YRx
BAA10YM

BAA
AAA

MORTGAGE30US
GS10

GS1
TB6MS
TB3MS

FEDFUNDS
UNLPNBS

ULCNFB
ULCMFG

ULCBS
OPHPBS
OPHNFB
OPHMFG
RCPHBS

COMPRNFB
COMPRMS

CES3000000008x
CES2000000008x

AHETPIx
OILPRICEx

WPU0561
WPU0531
WPSID61

PPIIDC
WPSFD4111

FRED adf boot_ur boot_sqt: StepM boot_sqt: 20−step boot_fdr CADFtest unitrootTest adf.test ur.df ur.ers
Method

V
ar

ia
bl

es Order of Integration
I(0)
I(1)
I(2)

Figure 5: Classification of the second half of time series in the FRED-QD dataset into
I(0), I(1), I(2).

QD dataset. Third, boot_fdr() tends to classify more series as I(1) than the other tests.
For a more elaborate discussion of this tendency, we refer the interested reader to Smeekes
and Wijler (2020). Fourth, among the unit root tests from the other R packages, CADFtest()
produces most similar results to bootUR. The function unitrootTest() detects far less series
as I(2).

32 bootUR: Bootstrap Unit Root Tests in R

6. Summary
This paper presents the R package bootUR that provides a unified framework for bootstrap
unit root testing on single and multiple time series. To this end, the package builds upon
the popular ADF test with a union of rejections principle. Unlike existing packages on unit
root tests, bootUR (i) provides a large collection of easy-to-use, fully-controllable and reliable
unit root tests, including the union of rejections test which is set as default to enable quick,
automatic unit root testing, (ii) ensures accurate inference through bootstrap methods with
easy-to-read output (including p values), (iii) allows for testing the presence of unit roots in
datasets containing many time series by relying on fast C++ implementations.

Acknowledgments
We thank the editors and referees for their thorough review and highly appreciate their
constructive comments which substantially improved the quality of the package and paper.
The first author was financially supported by the Netherlands Organization for Scientific
Research (NWO) under grant number 452-17-010, the second author by the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 832671. We gratefully acknowledge the comments and checks provided by
Robert Adamek, Rui Jorge Almeida, Nalan Baştürk, Caterina Schiavoni and Etiënne Wijler
on earlier versions of the package. All remaining errors are our own.

References

Allaire JJ, François R, Ushey K, Vandenbrouck G, Geelnard M, Intel (2023). RcppPa-
rallel: Parallel Programming Tools for Rcpp. R package version 5.1.7, URL https:
//CRAN.R-project.org/package=RcppParallel.

Benjamini Y, Hochberg Y (1995). “Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society B, 57(1),
289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.

Breitung J, Pesaran MH (2008). “Unit Roots and Cointegration in Panels.” In The Econo-
metrics of Panel Data, pp. 279–322. Springer-Verlag.

Bronder S (2016). PANICr: PANIC Tests of Nonstationarity. R package version 1.0.0, URL
https://CRAN.R-project.org/src/contrib/Archive/PANICr/.

Cavaliere G (2005). “Unit Root Tests under Time-Varying Variances.” Econometric Reviews,
23(3), 259–292. doi:10.1081/etc-200028215.

Cavaliere G, Phillips PCB, Smeekes S, Taylor AMR (2015). “Lag Length Selection for Unit
Root Tests in the Presence of Nonstationary Volatility.” Econometric Reviews, 34(4), 512–
536. doi:10.1080/07474938.2013.808065.

Cavaliere G, Taylor AMR (2008). “Bootstrap Unit Root Tests for Time Series with Nonsta-
tionary Volatility.” Econometric Theory, 24(1), 43–71. doi:10.1017/s0266466608080043.

https://CRAN.R-project.org/package=RcppParallel
https://CRAN.R-project.org/package=RcppParallel
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://CRAN.R-project.org/src/contrib/Archive/PANICr/
https://doi.org/10.1081/etc-200028215
https://doi.org/10.1080/07474938.2013.808065
https://doi.org/10.1017/s0266466608080043

Journal of Statistical Software 33

Cavaliere G, Taylor AMR (2009a). “Bootstrap M Unit Root Tests.” Econometric Reviews,
28(5), 393–421. doi:10.1080/07474930802467167.

Cavaliere G, Taylor AMR (2009b). “Heteroskedastic Time Series with a Unit Root.” Econo-
metric Theory, pp. 1228–1276. doi:10.1017/s026646660809049x.

Chang Y (2002). “Nonlinear IV Unit Root Tests in Panels with Cross-Sectional Dependency.”
Journal of Econometrics, 110(2), 261–292. doi:10.1016/s0304-4076(02)00095-7.

Chang Y, Park JY (2002). “On the Asymptotics of ADF Tests for Unit Roots.” Econometric
Reviews, 21, 431–447. doi:10.1081/etc-120015385.

Chang Y, Park JY (2003). “A Sieve Bootstrap for the Test of a Unit Root.” Journal of Time
Series Analysis, 24(4), 379–400. doi:10.1111/1467-9892.00312.

Choi I (2001). “Unit Root Tests for Panel Data.” Journal of International Money and Finance,
20(2), 249–272. doi:10.1016/s0261-5606(00)00048-6.

Choi I (2015). Almost All about Unit Roots: Foundations, Developments, and Applications.
Cambridge University Press.

Croissant Y, Millo G (2008). “Panel Data Econometrics in R: The plm Package.” Journal of
Statistical Software, 27(2), 1–43. doi:10.18637/jss.v027.i02.

Croissant Y, Millo G (2018). Panel Data Econometrics with R. John Wiley & Sons. doi:
10.1002/9781119504641.

Davidson R, Flachaire E (2008). “The Wild Bootstrap, Tamed At Last.” Journal of Econo-
metrics, 146, 162–169. doi:10.1016/j.jeconom.2008.08.003.

de Lacalle JL, Boshnakov GN (2020). uroot: Unit Root Tests for Seasonal Time Series. R
package version 2.1-2, URL https://CRAN.R-project.org/package=uroot.

Dickey DA, Fuller WA (1979). “Distribution of Estimators for Autoregressive Time Series
with a Unit Root.” Journal of the American Statistical Association, 74(366a), 427–431.
doi:10.1080/01621459.1979.10482531.

Dickey DA, Fuller WA (1981). “Likelihood Ratio Statistics for Autoregressive Time Series
with a Unit Root.” Econometrica, pp. 1057–1072. doi:10.2307/1912517.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer-Verlag, New
York. doi:10.1007/978-1-4614-6868-4.

Eddelbuettel D, Balamuta JJ (2017). “Extending R with C++: A Brief Introduction to Rcpp.”
PeerJ Preprints, 5, e3188v1. ISSN 2167-9843. doi:10.7287/peerj.preprints.3188v1.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

https://doi.org/10.1080/07474930802467167
https://doi.org/10.1017/s026646660809049x
https://doi.org/10.1016/s0304-4076(02)00095-7
https://doi.org/10.1081/etc-120015385
https://doi.org/10.1111/1467-9892.00312
https://doi.org/10.1016/s0261-5606(00)00048-6
https://doi.org/10.18637/jss.v027.i02
https://doi.org/10.1002/9781119504641
https://doi.org/10.1002/9781119504641
https://doi.org/10.1016/j.jeconom.2008.08.003
https://CRAN.R-project.org/package=uroot
https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.2307/1912517
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.7287/peerj.preprints.3188v1
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005

34 bootUR: Bootstrap Unit Root Tests in R

Elliott G, Rothenberg TJ, Stock JH (1996). “Efficient Tests for an Autoregressive Unit Root.”
Econometrica, 64(4), 813–836. doi:10.2307/2171846.

Enders W (2008). Applied Econometric Time Series. 4th edition. John Wiley & Sons.

Friedrich M, Smeekes S, Urbain JP (2020). “Autoregressive Wild Bootstrap Inference for
Nonparametric Trends.” Journal of Econometrics, 214(1), 81–109. doi:10.26481/umagsb.
2017010.

Hansen BE (1995). “Rethinking the Univariate Approach to Unit Root Testing: Us-
ing Covariates to Increase Power.” Econometric Theory, pp. 1148–1171. doi:10.1017/
s0266466600009993.

Harvey DI, Leybourne SJ, Taylor AMR (2009). “Unit Root Testing in Practice: Dealing with
Uncertainty over the Trend and Initial Condition.” Econometric Theory, 25(3), 587–636.
doi:10.1017/s026646660809018x.

Harvey DI, Leybourne SJ, Taylor AMR (2012). “Testing for Unit Roots in the Presence of
Uncertainty over Both the Trend and Initial Condition.” Journal of Econometrics, 169(2),
188–195. doi:10.1016/j.jeconom.2012.01.018.

Holm S (1979). “A Simple Sequentially Rejective Multiple Test Procedure.” Scandinavian
Journal of Statistics, 6, 65–70. doi:10.2307/2532027.

Hylleberg S, Engle RF, Granger CWJ, Yoo BS (1990). “Seasonal Integration and Cointegra-
tion.” Journal of Econometrics, 44(1-2), 215–238. doi:10.1016/0304-4076(90)90080-d.

Im KS, Pesaran MH, Shin Y (2003). “Testing for Unit Roots in Heterogeneous Panels.”
Journal of Econometrics, 115(1), 53–74. doi:10.1016/s0304-4076(03)00092-7.

Kleiber C, Lupi C (2011). “Panel Unit Root Testing with R.” Vignette, version 2011-
05-18, R package punitroots, URL https://rdrr.io/rforge/punitroots/f/inst/doc/
panelUnitRootWithR.pdf.

Kleiber C, Lupi C (2012). punitroots: Tests for Unit Roots in Panels of (Economic) Time
Series, with and without Cross-Sectional Dependence. R package version 0.0-2/r42, URL
https://R-Forge.R-project.org/projects/punitroots/.

Kreiss JP, Paparoditis E, Politis DN (2011). “On the Range of Validity of the Autoregressive
Sieve Bootstrap.” The Annals of Statistics, 39, 2103–2130. doi:10.1214/11-aos900.

Kwiatkowski D, Phillips PCB, Schmidt P, Shin Y (1992). “Testing the Null Hypothesis of
Stationarity against the Alternative of a Unit Root.” Journal of Econometrics, 54(1-3),
159–178. doi:10.1016/0304-4076(92)90104-y.

Levin A, Lin CF, Chu CSJ (2002). “Unit Root Tests in Panel Data: Asymptotic and
Finite-Sample Properties.” Journal of Econometrics, 108(1), 1–24. doi:10.1016/
s0304-4076(01)00098-7.

Lupi C (2009). “Unit Root CADF Testing with R.” Journal of Statistical Software, 32(2),
1–19. doi:10.18637/jss.v032.i02.

https://doi.org/10.2307/2171846
https://doi.org/10.26481/umagsb.2017010
https://doi.org/10.26481/umagsb.2017010
https://doi.org/10.1017/s0266466600009993
https://doi.org/10.1017/s0266466600009993
https://doi.org/10.1017/s026646660809018x
https://doi.org/10.1016/j.jeconom.2012.01.018
https://doi.org/10.2307/2532027
https://doi.org/10.1016/0304-4076(90)90080-d
https://doi.org/10.1016/s0304-4076(03)00092-7
https://rdrr.io/rforge/punitroots/f/inst/doc/panelUnitRootWithR.pdf
https://rdrr.io/rforge/punitroots/f/inst/doc/panelUnitRootWithR.pdf
https://R-Forge.R-project.org/projects/punitroots/
https://doi.org/10.1214/11-aos900
https://doi.org/10.1016/0304-4076(92)90104-y
https://doi.org/10.1016/s0304-4076(01)00098-7
https://doi.org/10.1016/s0304-4076(01)00098-7
https://doi.org/10.18637/jss.v032.i02

Journal of Statistical Software 35

Maddala GS, Wu S (1999). “A Comparative Study of Unit Root Tests with Panel Data
and a New Simple Test.” Oxford Bulletin of Economics and Statistics, 61(S1), 631–652.
doi:10.1111/1468-0084.0610s1631.

Mallet O (2017). URT: Fast Unit Root Tests and OLS Regression in C++ with Wrappers for
R and Python. URL https://github.com/olmallet81/URT.

Mammen E (1993). “Bootstrap and Wild Bootstrap for High Dimensional Linear Models.”
The Annals of Statistics, 21, 255–285. doi:10.1214/aos/1176349025.

McCracken M, Ng S (2020). “FRED-QD: A Quarterly Database for Macroeconomic Research.”
Working Paper 26872, National Bureau of Economic Research.

McCracken MW, Ng S (2016). “FRED-MD: A Monthly Database for Macroeconomic Re-
search.” Journal of Business & Economic Statistics, 34(4), 574–589. doi:10.1080/
07350015.2015.1086655.

Moon HR, Perron B (2012). “Beyond Panel Unit Root Tests: Using Multiple Testing to
Determine the Nonstationarity Properties of Individual Series in a Panel.” Journal of
Econometrics, 169(1), 29–33. doi:10.1016/j.jeconom.2012.01.008.

Müller UK, Elliott G (2003). “Tests for Unit Roots and the Initial Condition.” Econometrica,
71(4), 1269–1286. doi:10.1111/1468-0262.00447.

Ng S, Perron P (2001). “Lag Length Selection and the Construction of Unit Root Tests with
Good Size and Power.” Econometrica, 69(6), 1519–1554. doi:10.1111/1468-0262.00256.

Ng S, Perron P (2005). “A Note on the Selection of Time Series Models.” Oxford Bulletin of
Economics and Statistics, 67, 115–134. doi:10.1111/j.1468-0084.2005.00113.x.

Palm FC, Smeekes S, Urbain JP (2008). “Bootstrap Unit Root Tests: Comparison and Ex-
tensions.” Journal of Time Series Analysis, 29(1), 371–401. doi:10.1111/j.1467-9892.
2007.00565.x.

Palm FC, Smeekes S, Urbain JP (2011). “Cross-Sectional Dependence Robust Block
Bootstrap Panel Unit Root Tests.” Journal of Econometrics, 163(1), 85–104. doi:
10.1016/j.jeconom.2010.11.010.

Pantula SG (1989). “Testing for Unit Roots in Time Series Data.” Econometric Theory, 5(2),
256–271. doi:10.1017/s0266466600012421.

Paparoditis E, Politis DN (2003). “Residual-Based Block Bootstrap for Unit Root Testing.”
Econometrica, 71(3), 813–855. doi:10.1111/1468-0262.00427.

Paparoditis E, Politis DN (2005). “Bootstrapping Unit Root Tests for Autoregressive Time
Series.” Journal of the American Statistical Association, 100, 545–553. doi:10.1198/
016214504000001998.

Paparoditis E, Politis DN (2018). “The Asymptotic Size and Power of the Augmented
Dickey-Fuller Test for a Unit Root.” Econometric Reviews, 37(9), 955–973. doi:
10.1080/00927872.2016.1178887.

https://doi.org/10.1111/1468-0084.0610s1631
https://github.com/olmallet81/URT
https://doi.org/10.1214/aos/1176349025
https://doi.org/10.1080/07350015.2015.1086655
https://doi.org/10.1080/07350015.2015.1086655
https://doi.org/10.1016/j.jeconom.2012.01.008
https://doi.org/10.1111/1468-0262.00447
https://doi.org/10.1111/1468-0262.00256
https://doi.org/10.1111/j.1468-0084.2005.00113.x
https://doi.org/10.1111/j.1467-9892.2007.00565.x
https://doi.org/10.1111/j.1467-9892.2007.00565.x
https://doi.org/10.1016/j.jeconom.2010.11.010
https://doi.org/10.1016/j.jeconom.2010.11.010
https://doi.org/10.1017/s0266466600012421
https://doi.org/10.1111/1468-0262.00427
https://doi.org/10.1198/016214504000001998
https://doi.org/10.1198/016214504000001998
https://doi.org/10.1080/00927872.2016.1178887
https://doi.org/10.1080/00927872.2016.1178887

36 bootUR: Bootstrap Unit Root Tests in R

Perron P, Qu Z (2007). “A Simple Modification to Improve the Finite Sample Properties
of Ng and Perron’s Unit Root Tests.” Economics Letters, 94(1), 12–19. doi:10.1016/j.
econlet.2006.06.009.

Pesaran MH (2007). “A Simple Panel Unit Root Test in the Presence of Cross-Section
Dependence.” Journal of Applied Econometrics, 22(2), 265–312. doi:10.1002/jae.951.

Pesaran MH (2012). “On the Interpretation of Panel Unit Root Tests.” Economics Letters,
116(3), 545–546. doi:10.1016/j.econlet.2012.04.049.

Pfaff B (2008). Analysis of Integrated and Cointegrated Time Series with R. 2nd edition.
Springer-Verlag, New York.

Phillips PCB, Perron P (1988). “Testing for a Unit Root in Time Series Regression.”
Biometrika, 75(2), 335–346. doi:10.1093/biomet/75.2.335.

Psaradakis Z (2001). “Bootstrap Tests for an Autoregressive Unit Root in the Presence of
Weakly Dependent Errors.” Journal of Time Series Analysis, 22, 577–594. doi:10.1111/
1467-9892.00242.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rho Y, Shao X (2019). “Bootstrap-Assisted Unit Root Testing with Piecewise Locally Sta-
tionary Errors.” Econometric Theory, 35(1), 142–166. doi:10.1017/s0266466618000038.

Romano JP, Shaikh AM, Wolf M (2008a). “Control of the False Discovery Rate un-
der Dependence Using the Bootstrap and Subsampling.” Test, 17(3), 417–442. doi:
10.1007/s11749-008-0126-6.

Romano JP, Shaikh AM, Wolf M (2008b). “Formalized Data Snooping Based on Generalized
Error Rates.” Econometric Theory, 24(2), 404–447. doi:10.1017/s0266466608080171.

Romano JP, Wolf M (2005). “Stepwise Multiple Testing as Formalized Data Snooping.”
Econometrica, 73(4), 1237–1282. doi:10.1111/j.1468-0262.2005.00615.x.

Schwert GW (1989). “Tests for Unit Roots: A Monte Carlo Investigation.” Journal of Business
and Economic Statistics, 7(1), 147–159. doi:10.1080/07350015.1989.10509723.

Shao X (2010). “The Dependent Wild Bootstrap.” Journal of the American Statistical Asso-
ciation, 105(489), 218–235. doi:10.1198/jasa.2009.tm08744.

Shao X (2011). “A Bootstrap-Assisted Spectral Test of White Noise under Unknown Depen-
dence.” Journal of Econometrics, 162(2), 213–224. doi:10.1016/j.jeconom.2011.01.
001.

Smeekes S (2013). “Detrending Bootstrap Unit Root Tests.” Econometric Reviews, 32(8),
869–891. doi:10.1080/07474938.2012.690693.

Smeekes S (2015). “Bootstrap Sequential Tests to Determine the Order of Integration of
Individual Units in a Time Series Panel.” Journal of Time Series Analysis, 36(3), 398–415.
doi:10.1111/jtsa.12110.

https://doi.org/10.1016/j.econlet.2006.06.009
https://doi.org/10.1016/j.econlet.2006.06.009
https://doi.org/10.1002/jae.951
https://doi.org/10.1016/j.econlet.2012.04.049
https://doi.org/10.1093/biomet/75.2.335
https://doi.org/10.1111/1467-9892.00242
https://doi.org/10.1111/1467-9892.00242
https://www.R-project.org/
https://doi.org/10.1017/s0266466618000038
https://doi.org/10.1007/s11749-008-0126-6
https://doi.org/10.1007/s11749-008-0126-6
https://doi.org/10.1017/s0266466608080171
https://doi.org/10.1111/j.1468-0262.2005.00615.x
https://doi.org/10.1080/07350015.1989.10509723
https://doi.org/10.1198/jasa.2009.tm08744
https://doi.org/10.1016/j.jeconom.2011.01.001
https://doi.org/10.1016/j.jeconom.2011.01.001
https://doi.org/10.1080/07474938.2012.690693
https://doi.org/10.1111/jtsa.12110

Journal of Statistical Software 37

Smeekes S, Taylor AMR (2012). “Bootstrap Union Tests for Unit Roots in the Pres-
ence of Nonstationary Volatility.” Econometric Theory, 28(2), 422–456. doi:10.1017/
s0266466611000387.

Smeekes S, Urbain JP (2014a). “A Multivariate Invariance Principle for Modified Wild Boot-
strap Methods with an Application to Unit Root Testing.” GSBE Research Memorandum
RM/14/008, Maastricht University.

Smeekes S, Urbain JP (2014b). “On the Applicability of the Sieve Bootstrap in Time Series
Panels.” Oxford Bulletin of Economics and Statistics, 76(1), 139–151. doi:10.1111/obes.
12005.

Smeekes S, Wijler E (2020). “Unit Roots and Cointegration.” In P Fuleky (ed.), Macroeco-
nomic Forecasting in the Era of Big Data, volume 52 of Advanced Studies in Theoretical
and Applied Econometrics, chapter 17, pp. 541–584. Springer-Verlag.

Smeekes S, Wilms I (2023). bootUR: Bootstrap Unit Root Tests. R package version 1.0.0,
URL https://CRAN.R-project.org/package=bootUR.

Stroustrup B (2013). The C++ Programming Language. 4th edition. Addison-Wesley.

Theußl S, Zeileis A (2009). “Collaborative Software Development Using R-Forge.” The R
Journal, 1(1), 9–14. doi:10.32614/rj-2009-007.

Trapletti A, Hornik K (2023). tseries: Time Series Analysis and Computational Finance. R
package version 0.10-53, URL https://CRAN.R-project.org/package=tseries.

Tsung-wu H (2022). pdR: Threshold Model and Unit Root Tests in Cross-Section and Time
Series Data. R package version 1.8, URL https://CRAN.R-project.org/package=pdR.

Wuertz D, Setz T, Chalabi Y (2022). fUnitRoots: Rmetrics – Modelling Trends and
Unit Roots. R package version 4021.80, URL https://CRAN.R-project.org/package=
fUnitRoots.

Zhang X, Cheng G (2014). “Bootstrapping High Dimensional Time Series.” arXiv 1406.1037,
arXiv.org E-Print Archive. doi:10.48550/arxiv.1406.1037.

Zhang Y, Yu H, McLeod AI (2013). “Developments in Maximum Likelihood Unit Root
Test.” Communications in Statistics – Simulation and Computation, 42(5), 1088–1103.
doi:10.1080/03610918.2012.655828.

https://doi.org/10.1017/s0266466611000387
https://doi.org/10.1017/s0266466611000387
https://doi.org/10.1111/obes.12005
https://doi.org/10.1111/obes.12005
https://CRAN.R-project.org/package=bootUR
https://doi.org/10.32614/rj-2009-007
https://CRAN.R-project.org/package=tseries
https://CRAN.R-project.org/package=pdR
https://CRAN.R-project.org/package=fUnitRoots
https://CRAN.R-project.org/package=fUnitRoots
https://doi.org/10.48550/arxiv.1406.1037
https://doi.org/10.1080/03610918.2012.655828

38 bootUR: Bootstrap Unit Root Tests in R

A. Simulation study
We perform a simulation study to investigate the small sample performance of the different
unit root tests, thereby largely following the design choices in Smeekes (2015). We consider
three designs: a (i) micro panel with T = 25 and N = 200 (ii) macro panel with T = 100 and
N = 50, and a (iii) high-dimensional panel with T = 100 and N = 100. Data are generated
from model (1) with β = 0 (hence no deterministic components), and the error terms drawn
from a non-central t distribution with non-centrality parameter 10 and 4 degrees of freedom.
For the stationary units i ≤ k0 where k0 = ⌊q0N⌋ in the panel, we set the AR parameter
ρ = 0.6 in setting (i) and ρ = 0.9 in settings (ii) and (iii). For the non-stationary units i > k0,
we take ρ = 1. As the true proportions of stationary units, we consider q0 = 0, 0.2, 0.5, 0.9.
Results are reported for the asymptotic adf() test, and the bootstrap boot_ur(), boot_sqt()
and boot_panel() tests. For all tests, we apply the order_integration() function with
max_order = 1 to test for a unit root in the series in levels. For the bootstrap tests, we use B
= 499 bootstrap replications. For the boot_sqt() test, we take steps = 0:8/8 in the micro
and high-dimensional panel, steps = 0:4/4 for the macro panel. All other arguments are
kept at their defaults. Results are based on 200 Monte Carlo simulations.
We assess the performance of the unit root tests on three metrics. We report the average
proportion of units (1) correctly classified (“correct”), (2) incorrectly found to be stationary
(“size”), (3) correctly found to be stationary (“power”). Results are reported in Table 6.
For the micro panel, all tests produce a roughly similar, high proportion of correct classifica-
tions and a fairly low probability of classifying units incorrectly as I(0) when there are few
stationary units. All tests have rather low power, which is expected given the small number
of time series observations, but this is most severe for the boot_fdr() test. As the proportion
of stationary units increases, boot_sqt() starts to perform better than the other tests; the
opposite occurs for boot_fdr().
For the macro and high-dimensional panel, results for the tests adf(), boot_ur() and

Design Unit root q0 = 0 q0 = 0.2 q0 = 0.5 q0 = 0.9

test correct size correct size power correct size power correct size power

micro adf() 0.96 0.04 0.82 0.04 0.26 0.61 0.04 0.26 0.33 0.04 0.26
boot_ur() 0.94 0.06 0.84 0.06 0.44 0.69 0.06 0.45 0.49 0.06 0.44
boot_sqt() 1.00 0.00 0.83 0.04 0.31 0.68 0.06 0.42 0.57 0.09 0.53
boot_fdr() 1.00 0.00 0.80 0.00 0.00 0.50 0.00 0.00 0.11 0.00 0.01

macro adf() 0.96 0.04 0.81 0.04 0.23 0.60 0.04 0.23 0.30 0.04 0.23
boot_ur() 0.94 0.06 0.82 0.06 0.36 0.65 0.06 0.35 0.42 0.07 0.36
boot_sqt() 0.99 0.01 0.80 0.08 0.31 0.68 0.12 0.49 0.70 0.28 0.69
boot_fdr() 1.00 0.00 0.80 0.00 0.03 0.52 0.00 0.03 0.15 0.01 0.06

high-dim adf() 0.96 0.04 0.81 0.04 0.23 0.60 0.04 0.24 0.30 0.04 0.23
boot_ur() 0.94 0.06 0.82 0.06 0.36 0.65 0.06 0.36 0.42 0.06 0.36
boot_sqt() 0.99 0.01 0.81 0.05 0.27 0.65 0.06 0.37 0.51 0.10 0.46
boot_fdr() 1.00 0.00 0.80 0.00 0.01 0.51 0.00 0.02 0.13 0.00 0.03

Table 6: Simulation results for the four unit root tests across the different simulation designs
(micro, macro and high-dim panel), as well as varying proportion of stationary units q0.

Journal of Statistical Software 39

boot_fdr() are largely comparable to those of the micro panel. The boot_sqt() test se-
lects too many stationary units for the macro panel (especially when their true proportion
is large), which occurs due to the choice of the argument steps set to four equally spaced
quantiles. Note that the boot_fdr() test still displays very low power in the macro panel,
whereas its power reported in Smeekes (2015) is considerably better. Note that we consider
a different value under the alternative here; we use a fixed AR parameter of 0.9 whereas
Smeekes (2015) drew the AR parameter from a uniform distribution between zero and 0.9.
In addition, the usage of the union of rejection test instead of the ADF test with intercept in
Smeekes (2015) as well as the different choice of the maximum number of lagged differences
in the ADF regression (we use the sample size dependent default in bootUR, 12 in this case,
whereas the maximum was set to four in Smeekes 2015) may also affect the performance of
the boot_fdr() test.

Affiliation:
Stephan Smeekes, Ines Wilms
Quantitative Economics, School of Business and Economics
Maastricht University
Tongersestraat 53
6211 LM Maastricht, The Netherlands
E-mail: s.smeekes@maastrichtuniversity.nl, i.wilms@maastrichtuniversity.nl
URL: https://www.stephansmeekes.nl/, https://sites.google.com/view/iwilms

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

April 2023, Volume 106, Issue 12 Submitted: 2021-11-11
doi:10.18637/jss.v106.i12 Accepted: 2022-11-02

mailto:s.smeekes@maastrichtuniversity.nl
mailto:i.wilms@maastrichtuniversity.nl
https://www.stephansmeekes.nl/
https://sites.google.com/view/iwilms
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v106.i12

	Introduction
	Unit root tests
	Unit roots
	Individual unit root tests
	ADF test
	Union of rejections test

	Multiple unit root tests
	Panel unit root tests
	Multiple testing
	Sequential quantile test
	FDR-controlled test

	Bootstrap-based inference
	Sieve bootstrap
	Moving block bootstrap
	Sieve wild bootstrap
	Dependent, block and autoregressive wild bootstrap

	An introduction to the bootUR package
	Checking data suitability
	Individual unit root tests
	Asymptotic ADF test
	Bootstrap ADF test
	Union of rejections test

	Multiple unit root tests
	Separate unit root tests
	Panel unit root test
	Sequential quantile test
	FDR-controlled test

	Determining series' order of integration

	Applications
	Replication of Smeekes (2015)
	MacroTS
	FRED-QD

	Summary
	Simulation study

