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Abstract

Endogeneity is a common problem in any causal analysis. It arises when the indepen-
dence assumption between an explanatory variable and the error in a statistical model is
violated. The causes of endogeneity are manifold and include response bias in surveys,
omission of important explanatory variables, or simultaneity between explanatory and
response variables. Instrumental variable estimation provides a possible solution. How-
ever, valid and strong external instruments are difficult to find. Consequently, internal
instrumental variable approaches have been proposed to correct for endogeneity with-
out relying on external instruments. The R package REndo implements various internal
instrumental variable approaches, i.e., latent instrumental variables estimation (Ebbes,
Wedel, Boeckenholt, and Steerneman 2005), higher moments estimation (Lewbel 1997),
heteroscedastic error estimation (Lewbel 2012), joint estimation using copula (Park and
Gupta 2012) and multilevel generalized method of moments estimation (Kim and Frees
2007). Package usage is illustrated on simulated and real-world data.
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1. Introduction
In the absence of data based on a randomized experiment, endogeneity is a concern in any
causal analysis. It implies that the independence assumption between at least one regressor
and the error term is not satisfied, leading to biased and inconsistent results. The causes
of endogeneity are manifold and include response bias in surveys, omission of important ex-
planatory variables, or simultaneity between explanatory and response variables (Antonakis,
Bendahan, Jacquart, and Lalive 2014; Angrist and Pischke 2009). A “devilishly clever” so-
lution to cope with confounders when randomization is not possible is to find additional
variables, the so-called “instrumental variable” (Antonakis et al. 2014; Theil 1958). These
variables are correlated with the suspected endogenous regressor but not correlated with the
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structural error. For example, when estimating the demand for bread, the price variable is
endogenous since price and demand are jointly determined in the market. Thus, there is a
simultaneity problem. A strong instrumental variable would be the number of rainy days in
the year, which influences the wheat production and consequently the price of bread, without
having any effect on the demand for bread. The difficulty of finding a good instrument is well
known. Paradoxically, the stronger the correlation between the instrument and the regressor,
the more difficult it is to defend its lack of correlation with the error (Ebbes et al. 2005;
Lewbel 1997).
Sometimes a suitable instrumental variable can be indicated by the data generating process
or by the cause of endogeneity. However, frequently the search for an adequate instrumental
variable fails. In this case, an “instrument free” or “internal instrumental variable” (IIV)
model can be used. These methods address the endogeneity problem without the need for
external instruments.
REndo (Gui, Meierer, Algesheimer, and Schilter 2023) is the first R (R Core Team 2023)
package to implement the most recent IIV methods. The package includes implementations
of the latent instrumental variable approach (Ebbes et al. 2005), the joint estimation us-
ing copula (Park and Gupta 2012), the higher moments method (Lewbel 1997), and the
heteroscedastic error approach (Lewbel 2012). To model hierarchical data such as students
nested within classrooms, nested within schools, REndo includes the multilevel generalized
method of moments (GMM) estimation proposed by Kim and Frees (2007). All approaches
assume a continuous dependent variable. The package is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=REndo.
Section 2 elaborates on the endogeneity problem and its impact on the parameter estimates.
Section 3 provides an overview of the intuition and existing software implementations of ex-
ternal instrumental variable approaches. Analogously, Section 4 describes the underlying idea
of the internal instrumental variables listed above alongside their specificities. Section 5 de-
scribes the implementation of these IIV models in REndo and their usage on various simulated
datasets. Section 6 outlines the usage of these approaches on real-world data. Thereby, we
illustrate how REndo facilitates applying multiple approaches to the same dataset and thus,
enables researchers to address endogeneity rigorously. The last section presents directions for
future development.

2. Endogeneity
Researchers from a wide range of disciplines, from political science, finance, management,
marketing or education research are interested in causal relationships. They ask questions
such as: Does institutional quality explain the variation in the economic development of
different countries? Does CEO’s compensation depend on firm size? Does an increase in
advertising expenditure lead to an increase in sales? Does repeating a class lead to better
test scores?
In order to be able to answer such questions, there are two possible options: (1) run a ran-
domized controlled experiment or (2) use observational data. In many instances, randomized
experiments are too expensive, rely on rather small sample sizes, or are seen as unethical.
Thus, researchers often turn to observational data. The problem with such data is the threat
of obtaining parameter estimates that are not consistent, meaning that they will not converge
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to the true population parameter as the sample size increases. This threat occurs when

1. important variables are omitted from the model,

2. one or more explanatory variables are measured with error,

3. there is simultaneity between the response variable and one of the explanatory variables,

4. the sample is biased due to self-selection, or

5. a lagged response variable is included as a covariate.

Ruud (2000) showed that (2)–(5) can be viewed as a special case of (1). Nonetheless, in all
these instances the error term of the model is correlated with one of the covariates. This is
known as endogeneity. Figure 1 depicts an endogeneity problem: regressor P is endogenous
due to its correlation with the error ϵ, while X is an exogenous covariate, since its correlation
with the error is zero.
Figure 2 shows the results of a simulation in order to exemplify how the bias of coefficient
estimates of the endogenous regressor increases as the correlation between P and the error
increases. At low correlation (0.1), the bias is 0.11. But as the correlation between P and
the error increases to 0.3 and then to 0.5, so does the bias: it increases from 0.24 to 0.34.
The simulation was run over 1000 iterations where each sample had 2500 observations and
the error and the omitted variable were normally distributed with a mean 0 and a standard
deviation equal to 1.
Sometimes the cause of endogeneity or the data at hand can give clues on how to handle
the problem. For example, if endogeneity arises from time-invariant sources, applying fixed-
effects estimation on a panel dataset eliminates the omitted variable problem. For endogeneity
caused by measurement error, autoregressive models or simultaneous equation models could
offer a solution. Structural models that estimate demand-supply models (Draganska and Jain
2004; Berry, Levinsohn, and Pakes 1995; Berry 1994) are yet another alternative to deal with
endogeneity.
However, the most frequently used methods in addressing endogeneity are instrumental vari-
ables (Theil 1958; Wright 1928). The main idea behind these approaches is to focus on the
variations in the endogenous variable that are uncorrelated with the error term and disregard
the variations that bias the ordinary-least squares coefficients. This is possible by finding
an additional variable, called external instrument, such that the endogenous covariate can
be separated into two parts: (1) the instrumental variable that (a) should not be correlated
with the structural error and (b) should be correlated with the endogenous regressor; (2) the
other part, which is correlated with the structural error of the model. Section 3 provides
an overview of the intuition and existing software implementations of external instrumental
variable approaches.

3. External IV methods
The concept of instrumental variables was first derived by Wright (1928). He observed that
“success with this method depends on success in discovering factors of the type A and B”
(page 314), where A and B refer to instrumental variables. Specifically, an “instrumental
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Figure 1: Endogeneity causes inconsistent estimates.

variable” (IV) is defined as a variable Z (Equation 2) that is correlated with the explanatory
variable P and uncorrelated with the structural error, ϵ, in Equation 1:

Y = βP + ϵ, (1)

P = γZ + ν, (2)

where

• The error term ϵ stands for all exogenous factors that affect Y when P is held constant.
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Figure 2: Estimates bias at different correlation levels between endogenous regressor and
model error.

• The instrument Z should be independent of ϵ.

• The instrument Z should not affect Y when P is held constant (exclusion restriction).

• The instrument Z should not be independent of P .

Figure 3 gives a graphical representation of the notions above, where ψ1 and ψ2 represent the
correlation between P and Z and between P and the error, respectively, ψ3 is the correlation
between the dependent variable and the error, while ω1 represents the correlation between the
instrumental variable and the error. The existence of an instrumental variable, Z, identifies
the average direct effect (β1) of the endogenous variable P on the outcome Y , independent
of the unobserved sources of variability. The identification is achieved only if the exclusion
restriction assumption is met, meaning that the effect of the instrumental variable on Y is
solely moderated by its effect on P .
The following section outlines the most commonly used approaches which rely on external
instrumental variables to model endogeneity. Section 3.2 provides an overview of available
functions in R, Stata, and SAS which allow to apply these approaches.

3.1. Overview of estimation approaches

Today, researchers have a variety of instrumental variable models to choose from, depending
on the research question, data type (cross-sectional vs. panel, single-level vs. multi-level), and
on the number of available external instrumental variables.
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Figure 3: The instrumental variable Z solves the inconsistency of the estimates problem
caused by endogeneity.

The simplest and most commonly used method in tackling endogeneity in linear single-level
models is the two-stage least squares (2SLS) approach proposed by Theil (1958). In the first
stage, each endogenous variable is regressed on all the exogenous variables in the model, both
exogenous covariates and the excluded instruments. In the second stage, the regression of
interest is estimated as usual via ordinary least squares, except that each endogenous covariate
is replaced with the predicted values from the first stage.
Another widely used method for correcting endogeneity is the generalized method of moments
(GMM) proposed by Hansen (1982). GMM is a class of estimators that are constructed by
exploiting the sample moment counterparts of population moment conditions of the data
generating model. When the system is over-identified and the sample size is large, GMM is
more efficient than the two-stage least squares (2SLS) method.
However, in real-world applications we do not observe the impact of the endogeneity problem
since, in fact, we cannot test how large the correlation between the endogenous regressor and
the error is. Thus, for an unbiased and consistent estimate it is important to find a very
good, “strong” instrumental variable (see Appendix A). Stock and Yogo (2002) were the first
to point to the importance of the quality of the excluded instrumental variable used in the IV
estimation. They were the first to differentiate external instrumental variables according to
their correlation with the endogenous regressor into weak (low correlation) and strong (high
correlation) instruments (Stock and Yogo 2002). Considering Equation 2, Stock and Yogo
(2002) constructed the “concentration” parameter, µ2: µ2 = γ⊤Z⊤Zγ/σν . Depending on the
number of instruments, the proposed thresholds for the concentration parameter when the
instruments are considered weak (Stock and Yogo 2002).
Depending on strength of the instrumental variables and on the sample size, the performance
of external instrumental variable methods compared to the ordinary least squares (OLS)
can vary significantly (see Appendix A, Table 6 for a comparison of OLS and the two-stage
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Software Approach Level dep. v. Level end. v. Function (Package)
Cont. Bin. Cont. Dis.

R 2SLS ✓ ivreg (AER, Kleiber and Zeileis
2022), tsls (sem, Fox, Nie, and
Byrnes 2022), systemfit (system-
fit, Henningsen and Hamann 2007),
plm (plm, Croissant and Millo 2008)

3SLS ✓ ✓ systemfit (systemfit, Henningsen
and Hamann 2007)

GMM ✓ ✓ ✓ gmm (gmm, Chaussé 2010)
SEM ✓ ✓ ✓ ✓ sem (sem, Fox et al. 2022),

sem (lavaan, Rosseel 2012)
Copula
splines

✓ ✓ ✓ gjrm (GJRM, Marra and Radice
2022)

Stata 2SLS, 3SLS ✓ ✓ ✓ ivregress (StataCorp 2015), reg3
(StataCorp 2015)

2SLS ✓ ✓ ✓ ivprobit (StataCorp 2015)
2SLS ✓ ✓ sspecialreg (Baum 2012)
GMM ✓ ✓ ivregress (StataCorp 2015), gmm

(StataCorp 2015)
SEM ✓ ✓ ✓ sem (StataCorp 2015)
SEM ✓ ✓ ✓ ✓ gsem (StataCorp 2015)

SAS 2SLS ✓ ✓ ✓ PROC SYSLIN (SAS Institute Inc.
2020)

3SLS ✓ ✓ ✓ INSTRUMENTS (SAS Institute Inc.
2020)

GMM ✓ ✓ ✓ INSTRUMENTS (SAS Institute Inc.
2020)

SEM ✓ ✓ ✓ ✓ CALIS (SAS Institute Inc. 2020)
FIML ✓ ✓ ✓ ✓ PROC QLIM (SAS Institute Inc.

2020)

Table 1: External instrumental variable approaches implemented in R, Stata, and SAS. The
table illustrates the various implementations and categorizes them according to the level
of the dependent variable (continuous or binary) and the level of the endogenous variable
(continuous or discrete).

least squares method with a weak and a strong instrument). Finding a suitable instrumen-
tal variable is non-trivial, if ever possible. Therefore, researchers have proposed alternative
“instrument-free” models like the ones in REndo.

3.2. Software implementing external IV methods

The two-stage least squares and the generalized method of moments are two of the most
used approaches for instrumental variable estimation. There are several implementations in
R (R Core Team 2023), Stata (StataCorp 2019), and the SAS software (SAS Institute Inc.
2020).
In R, 2SLS can be implemented using the ivreg() function in the AER (Kleiber and Zeileis
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2022) package as well as tsls() function in the sem package (Fox et al. 2022). The gmm()
function in the gmm (Chaussé 2010) performs instrumental variables regression using gen-
eralized method of moments estimation. Additionally, in the context of structural equation
modeling, one can model the correlation between an explanatory variable and the error using
the two available packages, sem and lavaan (Rosseel 2012).
In Stata, the ivregress() function supports estimation either via two-stage least squares,
limited-information maximum likelihood (LIML) or generalized method of moments. Fur-
thermore, the gmm() function performs instrumental-variables regression using the generalized
method of moments approach, while the sem() and gsem() functions can be used to model
the unobserved correlation in multiple equations, for continuous responses and for binary,
count or multinomial responses, respectively.
In SAS the 2SLS option in the PROC SYSLIN statement implements the two-stage least squares
estimation. For instrumental variable estimation using the generalized method of moments
approach, one needs to use the INSTRUMENTS statement together with the gmm option, in-
side the MODEL procedure. In a structural equation modeling approach, one can address the
unobserved correlation in SAS using the CALIS procedure.
Additional packages and procedures in R, Stata and SAS that address the endogeneity problem
using external instrumental variables are presented in Table 1. With a vivid interest in the
endogeneity topic, new packages appear constantly.
Therefore, this table is far from being exhaustive and we underlined only the key packages
that treat the endogeneity problem. A detailed look at these implementations illustrates two
main points: (1) Controlling for endogeneity should rely on using a diverse set of models care-
fully considering the identifying assumptions underlying these models (Germann, Ebbes, and
Grewal 2015). (2) A harmonized user interface that facilitates a straightforward estimation
of alternative models and comparison of results is key.

4. Internal IV methods
Internal instrumental variable methods have been proposed for cases when no observable
variable satisfies the properties of a strong instrumental variable. The identification strategy
of these methods is conditional on distributional assumptions of the endogenous regressors and
of the error term. For example, Ebbes et al. (2005) assume the distribution of the endogenous
variable to be discrete, Lewbel (1997), Lewbel (2012) and Park and Gupta (2012) consider a
skewed distribution, while Rigobon (2003) work with a heteroscedastic distribution.

4.1. Software implementing internal instrumental variable methods
Contrary to the external instrumental variable methods, implementations of methods that
address endogeneity with internal instruments are scarce. In R, a notable exception is the
implementation of the heteroscedastic errors method (Lewbel 2012), in the ivlewbel (Ferni-
hough 2014) package. This technique allows the identification of structural parameters in
regression models with endogenous or mismeasured regressors. Identification is achieved by
having regressors that are uncorrelated with the product of heteroscedastic errors, which is
a feature of many models where error correlations are due to an unobserved common factor.
Therefore, instruments may be constructed as simple functions of the model’s data. This
approach may be applied when no external instruments are available, or, alternatively, used



Journal of Statistical Software 9

to supplement external instruments to improve the efficiency of the IV estimator. In Stata,
the only IIV approach, implemented by the ivreg2h() function (Baum, Schaffer, and Still-
man 2002), is also the heteroscedastic errors approach proposed by Lewbel (2012). A useful
feature of the Stata implementation is the option to estimate the model using the two-stage
least squares approach where the user already has an external instrumental variable, or a
model that before augmentation with the generated instruments fails to be identified. In the
former case, the Stata implementation provides three sets of estimates: the traditional IV
parameter estimates, parameter estimates using only generated instruments and parameter
estimates using both, external and internal instruments.
The Stata implementation of Lewbel (2012)’s approach considers all the exogenous regressors
when building the internal instruments. However, we find it preferable for the function to allow
the user to specify the set of variables from which to construct the instruments. Moreover, a
warning message displayed when the model assumptions are not met would also be desirable.
We considered these two points in our implementation of Lewbel’s heteroscedastic errors
approach to endogeneity. Lewbel (2012)’s approach, while becoming more popular due to its
availability in both in Stata and R, is not without drawbacks – such as large standard errors
and high sensibility to the form of heteroscedasticity assumed (Chau 2015). Therefore, having
alternative approaches that address endogeneity through instrument-free methods would help
researchers to choose the best method given the assumptions of their model and their data.

4.2. Internal instrumental variable methods implemented by REndo

Extending the rather limited set of IIV implementations across different software packages,
REndo offers researchers and practitioners the possibility to estimate a variety of IIV ap-
proaches which rely on different techniques to control for potentially endogenous regressors.
Building up on the findings of our survey of existing implementation for both, external and
internal instrumental variable approaches, REndo aims to provide a harmonized interface
across implementations to facilitate a straightforward estimation and comparison of alterna-
tive models (e.g., by using the formula interface and S3 generic methods).
The following sections describe the underlying idea of internal instrumental variables alongside
the specificities of the IIV approaches implemented. Among the existing single-level IIV
approaches, REndo includes implementations of the latent instrumental variables approach
proposed by Ebbes et al. (2005), the higher moments estimation proposed by Lewbel (1997),
the heteroscedastic errors estimation (Lewbel 2012) and the joint estimation using Gaussian
copula (Park and Gupta 2012).
There are many instances in which the data have a hierarchical structure, for example students
clustered in classes and in schools. Even longitudinal data can be seen as a series of repeated
measurements nested within individuals. For such data structures, multilevel models have
been developed (Longford 1995; Raudenbush and Bryk 1986). These regression methods
recognize the existence of data hierarchies by allowing for residual components at each level
in the hierarchy. In these models, endogeneity can have two sources: either the regressors are
correlated with the random components, or they are correlated with the structural error of
the model at the lowest level (level-one dependence). While theoretically, methods such as
two-stage-least squares, weighted two-stage-least squares, or generalized methods of moments
could be used in a multilevel setting to deal with both level-one and level-two endogeneity,
no such implementations are available in R. REndo is the first R package that implements
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a method that tackles endogeneity in a multilevel setting by implementing the multilevel
generalized method of moments method proposed by Kim and Frees (2007).
Table 2 gives an overview of the IIV approaches implemented in REndo, emphasizing the as-
sumptions of each of the approaches. Four of the methods apply to single-level data, while the
approach of Kim and Frees (2007) addresses endogeneity in multilevel settings. All approaches
allow for just one endogenous regressor. The exception is the copula correction method (Park
and Gupta 2012). The response variable is assumed to be continuous in all methods. Regard-
ing possible missing data, it is left to the user to address this point (e.g., apply imputation
methods), the execution is stopped if there is any non-finite data in the input.

4.3. Internal instrumental variable methods for non-hierarchical data

The four internal instrumental variable methods presented in this section share the same
underlying model presented in Equations 3 and 4. The specific characteristics of each method
are discussed in the subsequent sections.
Consider the model:

Yt = β0 + Ptβ1 +X⊤
t β2 + ϵt (3)

where t = 1, . . . , T indexes either time or cross-sectional units, Yt is a 1 × 1 response variable,
Xt is a k × 1 vector of exogenous regressors, where k is the number of exogenous regressors,
Pt is a 1 x 1 continuous endogenous regressor, and ϵt is the structural error term, assumed
to have mean zero and variance σ2

ϵ . β0, β1 are model parameters and β2 is a k × 1 model
parameter vector. The endogeneity problem arises from the correlation of Pt and ϵt. As such:

Pt = Z⊤
t γ + νt (4)

where Zt is a l×1 vector of internal instrumental variables, γ is a l×1 vector of parameters and
νt is the random error with mean zero, variance equal to σ2

ν and E(ϵtνt) = σϵν . Zt is assumed
to be stochastic with distribution G and νt is assumed to have density h(·). The latent
instrumental variables and the higher moments models assume Zt to be uncorrelated with
the structural error, which is similar to the “exclusion restriction” assumption for observed
instrumental variables methods. Moreover, Zt is also assumed unobserved.
Internal instrumental variables models require for identification that the distribution of the
endogenous regressor, Pt, is distinct from the distribution of the structural error, ϵt, which, in
most IIV models such as LIV or copula correction is assumed normal. Otherwise, assuming
the same distribution for the structural error and the endogenous regressor, would make
impossible separating the variation due to the endogenous regressor from that due to the
error (Park and Gupta 2012). Therefore, the proposed instruments work best when the
sample distribution of the endogenous regressor is “as skewed as possible” (Lewbel 2012,
1997).
The following sections share a general structure: First, we present the underlying idea of
each method. Second, we discuss its specific characteristics and finally, present the particular
assumptions and weaknesses of the method.

Latent instrumental variables method

Ebbes et al. (2005) propose the latent instrumental variables (LIV) model as defined in Equa-
tions 3 and 4, with both errors being normally distributed. LIV does not accept additional
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Figure 4: Parameter estimates for latent instrumental variable method vs. OLS. Parameter
estimates were obtained over 1000 simulated samples, each of size 2500; the true parameter
value is −1.

covariates besides the endogenous regressor, Pt, whose distribution has to be different than
normal. A particular characteristic of this approach is that the internal instrumental vari-
ables Zt are assumed unobserved, discrete and exogenous, with an unknown number of groups
m, while γ is a vector of group means. The method accepts just one endogenous regressor.
Identification of the parameters relies on the distributional assumptions of the latent instru-
ments as well as that of the endogenous regressor, P . Specifically, the endogenous regressor
should have a non-normal distribution while the unobserved instruments, should be discrete
and have at least two groups with different means (Ebbes, Wedel, and Boeckenholt 2009). A
continuous distribution for the instruments leads to an unidentified model, while a normal
distribution of the endogenous regressor gives rise to inefficient estimates. The interested
reader can find a more detailed description of the identification strategy of the LIV method
in Ebbes et al. (2005), in the last paragraph of the second chapter (page 369), and a formal
proof in Appendix I (page 385).
The LIV model implemented in REndo assumes that the latent instrumental variable has
two categories. Ebbes et al. (2005) showed, using Monte Carlo simulations, that the model
estimates are still consistent and the power of the test is good even if the number of categories
is misspecified. A simulation study provides evidence of the ability of the LIV model to
recover the true parameter value for the endogenous regressor if the assumptions are met.
The endogenous regressor has a true parameter value equal to −1. Figure 4 shows the
distribution of LIV parameter estimates in comparison with ordinary least squares for 1000
simulated samples. While the OLS estimate is biased, the LIV estimate is unbiased but has
a larger standard deviation. The mean and variance of the OLS estimate are −0.59 and 0.02,
while the mean and variance of the LIV estimate are −1.08 and 0.22 respectively. For a more
detailed overview of the method see Ebbes et al. (2005).
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Joint estimation using copula method

Park and Gupta (2012) propose a method that allows for the joint estimation of the continuous
endogenous regressor and the error term using Gaussian copulas. A copula is a function that
maps several conditional distribution functions (CDF) into their joint CDF (see Appendix C,
Figure 10).
The underlying idea of the method is that using information contained in the observed data,
one selects marginal distributions for the endogenous regressor and the structural error term,
respectively. Then, the copula model enables the construction of a flexible multivariate joint
distribution allowing a wide range of correlations between the two marginals.
In Equation 3, the error ϵt is assumed to have a normal marginal distribution, while the
marginal distribution of the endogenous regressor Pt is obtained using the Epanechnikov
kernel density estimator (Epanechnikov 1969), as below:

ĥ(p) = 1
T · b

T∑
t=1

K

(
p− Pt

b

)

where Pt is the endogenous regressor, K(x) = 0.75 · (1 −x2) · I(∥x∥ <= 1) and the bandwidth
b is the one proposed by Silverman (1986), and is equal to b = 0.9 · T−1/5 · min(s, IQR/1.34).
IQR is the interquartile range while s is the data sample standard deviation and T is the
number of time periods observed in the data. After obtaining the joint distribution of the
error term and the continuous endogenous regressor, the model parameters are estimated
using maximum likelihood (ML) estimation.
With more than one continuous endogenous regressor or an endogenous discrete regressor,
an alternative approach to the estimation using Gaussian copula should be applied. This
approach is similar to the control function approach (Petrin and Train 2010). The core idea
is to apply ordinary least squares estimation on the original set of explanatory variables
in Equation 3 as well as an additional regressor, namely P ∗

t = Φ−1(H(Pt)). H(Pt) is the
marginal distribution of the endogenous regressor, P . Including this regressor solves the
correlation between the endogenous regressor and the structural error in Equation 3, ordi-
nary least squares providing consistent parameter estimates. Due to identification problems,
the discrete endogenous regressor cannot have a binomial distribution. For more details on
the identification strategy, interested readers are referred to the first section of Chapter 2
(pages 570–573) in Park and Gupta (2012).
A simulation study highlights that the method performs well in recovering the true parameter
values even with violations of the normality assumption of the structural error, given that the
distribution of the endogenous regressor is different from that of the error. Figure 5 illustrates
the performance of the copula correction method compared to the performance of the OLS.
The parameter estimates of the copula correction method are less biased than those of OLS
when endogeneity is present, even though they are slightly less consistent. The parameter
estimate of the endogenous variable has a mean and variance of −0.73 and 0.03 with OLS,
while the mean and variance of the estimate obtained with the copula correction method are
−1.00 and 0.06 respectively. For further technical details, see Park and Gupta (2012).

Higher moments method

The method proposed by Lewbel (1997) helps identifying structural parameters in regression
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Figure 5: Parameter estimates for copula correction method vs. OLS. Parameter estimates
were obtained over 1000 simulated samples, each of size 2500; the true parameter value is −1.

models with endogeneity caused by measurement error, as exposed in Equations 3 and 4.
Identification is achieved by exploiting third moments of the data.
Internal instruments, Zt, alongside the error terms in Equations 3 and 4, ϵt, and νt, respec-
tively, are assumed unobserved. Unlike previous models, no restriction is imposed on the
distribution of the error terms, while their means are set to zero. Lewbel (1997) proves that
the following instruments can be constructed and used with two-stage least squares estimation
to obtain consistent estimates:

q1t = (Gt − Ḡ) (5)
q2t = (Gt − Ḡ)(Pt − P̄ )
q3t = (Gt − Ḡ)(Yt − Ȳ )
q4t = (Yt − Ȳ )(Pt − P̄ )
q5t = (Pt − P̄ )2 (6)
q6t = (Yt − Ȳ )2 (7)

Here, Gt = G(Xt) for any given function G(·) that has finite third own and cross moments
and Xt are all the exogenous in the model. Ḡ is the sample mean of Gt. The same rule
applies to Pt and Yt.
The instruments in Equations 6 and 7 can be used only when the measurement and the
structural errors are symmetrically distributed. Otherwise, the use of the instruments does
not require any distributional assumptions for the errors. Given that the regressors G(Xt)
are included as instruments, G() should not be linear in Xt in Equation 5 (e.g., G() function
could be the square, cubic or logarithmic function).
An important part for identification is the assumption of skewness of the endogenous regressor.
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Figure 6: Parameter estimates for higher moments method vs. OLS. Parameter estimates
were obtained over 1000 simulated samples, each of size 2500; the true parameter value is −1.

To cite Lewbel (1997, page 1204), “the greater the skewness, the better the quality of the
proposed instruments”. If this assumption fails, the instruments may be weak, and thus, the
parameter estimates will be biased. Since the instruments constructed come along with very
strong assumptions, one of their best uses is to provide over-identifying information. The over-
identification provided by constructed moments can be used to test the validity of a potential
outside instrument, to increase efficiency, and to check for robustness of parameter estimates
based on alternative identifying assumptions. Details on the assumptions and proof of the
theorems for identification can be found in Chapter 2 (pages 1201–1204) in Lewbel (1997).
A simulation study provides evidence of the ability of the Higher Moments method to recover
the true parameter value if its assumptions are met. Figure 6 illustrates the parameter
estimates for the endogenous regression of the higher moments method and OLS for 1000
simulated samples. While ordinary least squares are more biased, with an average parameter
estimate equal to −0.88 and variance equal to 0.02, the higher moments estimator has an
average of −0.99 but it is volatile, with a variance of 0.32. For more details and the proof of
the above assumptions, see Lewbel (1997).

Heteroscedastic errors method

The method proposed in Lewbel (2012) identifies structural parameters in regression models
with endogenous regressors by means of variables that are uncorrelated with the product of
heteroscedastic errors. This feature is encountered in many models in which error correlations
are due to an unobserved common factor (Lewbel 2012). The instruments are constructed
as simple functions of the underlying data. The method can be applied when no external
instruments are available or to supplement external instruments to improve the efficiency of
the IV estimator.
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Figure 7: Parameter estimates for heteroscedastic errors method vs. OLS. Parameter esti-
mates were obtained over 1000 simulated samples, each of size 2500; the true parameter value
is −1.

Consider the model in Equations 3 and 4, with the exception that in Equation 4 Pt is a
function of Xt, while Zt is a subset of Xt. The model assumes that E(Xtϵt) = 0, E(Xtνt) = 0
and COV(Zt, ϵtνt) = 0. The errors, ϵt and νt, may be correlated with each other. Structural
parameters are identified by an ordinary two-stage least squares regression of Yt on Xt and
Pt, using Xt and [Zt − E(Zt]νt as instruments. A vital assumption for identification is that
COV(Zt, ν

2
t ) ̸= 0. The strength of the instrument is proportional to the covariance of (Zt −

Z̄t)νt with νt, which corresponds to the degree of heteroscedasticity of νt with respect to
Z (Lewbel 2012). The assumption that the covariance between Z and the squared error is
different from zero can be empirically tested. If it is zero or close to zero, the instrument
is weak, producing imprecise estimates, with large standard errors. The interested reader is
referred to the first section of Chapter 2 (pages 8–9) in Lewbel (2012) for more details related
to identification in a triangular system.

Under homoskedasticity, the parameters of the model are unidentified. But, identification
is achieved in the presence of heteroscedasticity related to at least some elements of Xt.
This strategy of identification is less reliable than the identification based on coefficient zero
restriction, since it relies upon higher moments. But sometimes, it might be the only avail-
able strategy. The performance of this method in comparison to OLS is illustrated with a
simulation study of over 1000 samples (see Figure 7). As with the previous methods, the
heteroscedastic error method is less efficient than the OLS, but the coefficient estimate is
unbiased. The mean parameter estimate of the endogenous regressor in the case of OLS is
−0.87, compared to −0.98 in the case of the IIV method. The variance of the OLS estimate
is 0.015 compared to 0.16 of the heteroscedastic Errors method.
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4.4. Internal IV methods for hierarchical data

Many kinds of data have a hierarchical structure. Multilevel modeling is a generalization
of regression methods that recognize the existence of such data hierarchies by allowing for
residual components at each level in the hierarchy. For example, a three-level multilevel
model which allows for grouping of students within classrooms over time, would include time,
student, and classroom residuals (Equation 8). Thus, the residual variance is partitioned
into four components: between-classroom (variance of the classroom-level residuals), and
within-classroom (variance of the student-level residuals), between student (the variance of
the student-level residuals) and within-student (variance of the time-level residuals). The
classroom residuals represent the unobserved classroom characteristics that affect student’s
outcomes. These unobserved variables lead to a correlation between outcomes for students
from the same classroom. Similarly, the unobserved time residuals lead to a correlation
between a student’s outcomes over time. A three-level model can be described as below:

ycst = Z1
cstβ

1
cs +X1

cstβ1 + ϵ1cst

β1
cs = Z2

csβ
2
c +X2

csβ2 + ϵ2cs (8)
β2

c = X3
c β3 + ϵ3c .

Like in single-level regression, in multilevel models endogeneity is also a concern. The ad-
ditional problem is that in multilevel models there are multiple independent assumptions
involving various random components at different levels. Any moderate correlation between
some predictors and a random component or error term, can result in a significant bias in
the coefficients and of the variance components (Ebbes et al. 2005). While panel data models
for dealing with endogeneity can be used to address the same problem in two-level multilevel
models, their implications to higher levels have not been closely examined (Kim and Frees
2007). Moreover, panel data models allow only the inclusion of one random intercept while
multilevel models require a methodology that can handle more general error structures.

Multilevel instrumental variables method

Exploiting the hierarchical structure of multilevel data, Kim and Frees (2007) propose a
generalized method of moments technique for addressing endogeneity in multilevel models
without the need for external instrumental variables. This approach uses both, the between
and within variations of the exogenous variables, but only assumes the within variation of
the variables to be endogenous. Another assumption in the multilevel generalized moment of
moments model is that the errors at each level are normally distributed and independent of
each other. Moreover, the slope variables are assumed to be exogenous. Since the model does
not handle “level one dependencies”, an additional assumption is that the level-one structural
error is uncorrelated with any of the regressors. If this assumption is not met, additional,
external instruments are necessary. It is to note that the multilevel data structure considered
here excludes the possibility of non-nested clustering. The interested researcher can find more
details about the identification strategy in sections 2 and 3 of the second chapter (pages 7–10)
in Kim and Frees (2007).
Kim and Frees (2007) apply a three-level multilevel model as in Equation 8. The coefficients
of the explanatory variables appear in vectors β1, β2, and β3. The term β1

cs captures latent,
unobserved characteristics that are classroom and student-specific while β2

c captures latent,
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Figure 8: Parameter estimates for multilevel GMM method vs. regular random effects model.
Parameter estimates were obtained over 1000 simulated samples, each of size 2500; the true
parameter value is −1.

unobserved characteristics that are classroom specific. For identification, the disturbance
term ϵcst is assumed independent of the other variables, Z1

cst and X1
cst.

Given the set of disturbance terms at different levels, there exists a couple of possible corre-
lation patterns that could lead to biased results:

• errors at both levels (ϵ2cs and ϵ3c) are correlated with some of the regressors,

• only third level errors (ϵ3c) are correlated with some of the regressors,

• a third case, where there is a concern with errors at both levels, but there is not enough
information to estimate level 3 parameters.

When all model variables are assumed exogenous, the GMM estimator is the usual GLS
estimator, denoted as bRE. When all variables are assumed endogenous, the fixed-effects
estimator is used, bFE. While bRE assumes all explanatory variables are uncorrelated with
the random intercepts and slopes in the model, bFE allows for endogeneity of all effects but
sweeps out the random components as well as the explanatory variables at the same levels.
The more general estimator bGMM proposed by Kim and Frees (2007) allows for some of
the explanatory variables to be endogenous and uses this information to build instrumental
variables. The multilevel GMM estimator uses both, the between and within variations of
the exogenous variables, but only the within variation of the variables assumed endogenous.
When all variables are assumed exogenous, bGMM estimator equals bRE. When all covariates
are assumed to be endogenous, bGMM equals bFE. In facilitating the choice of the estimator
to be used for the given data, Kim and Frees (2007) also propose an omitted variable test.
This test is based on the Hausman test (Hausman 1978) for panel data. The omitted variable
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test allows the comparison of a robust estimator and an estimator that is efficient under the
null hypothesis of no omitted variables, and also the comparison of two robust estimators at
different levels.
A simulation study provides evidence on the ability of this model to recover the true parameter
value if its assumptions are met. Figure 8 shows the performance of the multilevel generalized
method of moments method compared to the regular random effects model over 1000 samples.
In this simulation study, each sample represents a three-level dataset with a single endogenous
regressor on level-two. The mean random effects parameter estimate is −0.559 and standard
error 0.022, while the multilevel GMM parameter estimate has a mean of −0.998 over 1000
simulations, with a standard error of 0.032.
Citing Kim and Frees (2007), “the (multilevel) GMM estimators can help researchers in
the direction of exploiting the rich hierarchical data and, at the same time, impeding the
improper use of powerful multilevel models” (page 529). REndo facilitates the application of
this approach and thus, contributes to the growing number of studies relying on multilevel
models.

5. Using REndo
REndo encompasses five functions that allow the estimation of linear models with one or more
endogenous regressors using internal instrumental variables. Depending on the assumptions
of the model and the structure of the data, single or multilevel, the researcher can use one of
the following functions:

• latentIV() implements the latent instrumental variable estimation as in Ebbes et al.
(2005). The endogenous variable is assumed to have two components – a latent, discrete,
and exogenous component with an unknown number of groups and the error term that
is assumed normally distributed and correlated with the structural error. The method
supports only one endogenous, continuous regressor and no additional explanatory vari-
ables.

• copulaCorrection() models the correlation between the endogenous regressor and
the structural error with the use of Gaussian copula (Park and Gupta 2012). The
endogenous regressor can be continuous or discrete. The method also allows estimating a
model with more than one endogenous regressor, either continuous, discrete or a mixture
of the two. However, the endogenous regressors cannot have a binomial distribution,
due to parameter identification problems.

In the case of only one continuous endogenous regressor, the method uses maximum
likelihood for estimation. In the case of a discrete endogenous regressor, or when several
endogenous regressors are suspected, the estimation is carried out using a different model
specification, in the style of the control function approach (Petrin and Train 2010), which
is nonetheless based on Gaussian copulas.

• higherMomentsIV() implements the higher moments approach described in Lewbel
(1997) where instruments are constructed by exploiting higher moments of the data,
under strong model assumptions. The function allows just one endogenous regressor.
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• hetErrorsIV() uses the heteroscedasticity of the errors in a linear projection of the
endogenous regressor on the other covariates to solve the endogeneity problem induced
by measurement error, as proposed by Lewbel (2012). The function allows at the
moment only one endogenous regressor.

• multilevelIV() implements the instrument free multilevel GMM method proposed by
Kim and Frees (2007) where identification is possible due to the different levels of the
data. Endogenous regressors at different levels can be present. The function comes
along a built-in omitted variable test, which helps in deciding which model is robust to
omitted variables at different levels.

The package includes seven simulated datasets. Using just one dataset for exemplifying the
functions is not possible due to different assumptions regarding the underlying data generating
process for each of the methods. Where possible, the names of the variables were kept
consistent across the datasets, with y for the response variable, P for the endogenous variables
and X for the exogenous regressors. An intercept is always considered unless otherwise
specified (by adding a “−1” in the first right-hand-side of the formula) and the true parameter
value of the endogenous regressor is equal to −1 across all simulations. REndo builds up on
functionalities provided by the following R packages: Formula (Zeileis and Croissant 2010),
optimx (Nash and Varadhan 2011), mvtnorm (Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and
Hothorn 2023), AER (Kleiber and Zeileis 2022), lmtest (Zeileis and Hothorn 2002), Matrix
(Bates, Mächler, and Jagan 2023), lme4 (Bates, Mächler, Bolker, and Walker 2015), data.table
(Dowle and Srinivasan 2023), corpcor (Schafer, Opgen-Rhein, Zuber, Ahdesmaki, Silva, and
Strimmer 2021), Rcpp (Eddelbuettel and François 2011), RcppEigen (Bates and Eddelbuettel
2013). Next, the usage of each of the five IIV functions is presented in the sections below.

5.1. Latent instrumental variables method

The syntax of the latentIV() function is: latentIV(y ~ P, data, start.params,
optimx.args, verbose). The first argument is the formula of the model to be estimated,
y ~ P, where y is the response and P is the endogenous regressor, the second argument is
the name of the dataset used while the third argument, which is optional, is a vector with
the initial parameter values, start.params. Additionally, one can specify arguments for the
optimization algorithm in the optimx.args argument, such as the optimization method or
the maximum number of iterations. The argument verbose informs about the main steps
that the method is performing (such as start parameters or the intermediary models). TRUE is
the default for all methods. When set to the value FALSE, the verbose argument still returns
warnings.
To illustrate the LIV approach, the dataset dataLatentIV was constructed.

R> data("dataLatentIV", package = "REndo")
R> resultsLIV <- latentIV(y ~ P, data = dataLatentIV)
R> summary(resultsLIV)

Call:
latentIV(formula = y ~ P, data = dataLatentIV)
Coefficients:
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Estimate Std. Error z-score Pr(>|z|)
(Intercept) 3.32351 0.37383 8.89 <2e-16 ***
P -1.04580 0.04894 -21.37 <2e-16 ***
Further parameters estimated during model fitting:

pi1 pi2 theta5 theta6 theta7 theta8
3.7652 8.5354 0.1905 1.1277 1.5754 13.7507
Initial parameter values:
(Intercept)=2.6275 P=-0.9545 pi1=7.6273 pi2=11.7843 theta5=0.5
theta6=1 theta7=0.5 theta8=1
The value of the log-likelihood function: 10627.18
AIC: -21238.35 , BIC: -21191.76
KKT1: TRUE KKT2: TRUE Optimx Convergence Code: 0

The summary() function returns the parameter estimates (Intercept: 3.323, P : −1.045). As
starting values for optimizing the log-likelihood function were not provided, the ordinary least
squares parameter estimates were used, together with the default values for the correlation ma-
trix and the probability of belonging to group 1: (2.627,−0.954, 7.627, 111.784, 0.5, 1, 0.5, 1).
Using maximum likelihood for estimation, the function also returns the log-likelihood value
(10627.18), Akaike (AIC) and Bayesian (BIC) information criteria (AIC : −21238.35 and
BIC : −21191.76), and a convergence code (here 0) that indicates whether the model con-
verged (0) or, an issue occurred during estimation, which is indicated by a set of other codes,
as seen with the help of the optimx() function. The coefficients, variance-covariance matrix,
residuals and fitted values, as well as the Akaike and Bayesian information criteria, can be
requested with the respective generic functions, e.g. coef(resultsLIV), vcov(resultsLIV),
residuals(resultsLIV), fitted(resultsLIV), AIC(resultsLIV), BIC(resultsLIV),
logLik(resultsLIV).
The true parameter value of the endogenous regressor is −1. The coefficient for P produced by
the latent internal instrument method is −1.045 with standard error 0.049, while OLS returns
a coefficient equal to −0.954 and a standard error (SE) 0.004. LIV produces unbiased esti-
mates for the endogenous regressor but standard errors are large. Therefore, when using the
latent instrumental variable approach caution has to be taken when interpreting the results.
When optionally specifying the starting values, the following has to be considered: In any
model there are seven or eight parameters, depending on whether an intercept is considered
or not, where the first parameter is the intercept, if considered, then the coefficient of the
endogenous variable followed by the means of the two groups of the underlying model. The
means of the groups need to be different, otherwise, the model is not identified. These are
returned by the parameters pi1 and pi2. The three parameters, theta5, theta6, and theta7,
return the estimates that compose the variance-covariance matrix. The parameter theta8
returns the probability of being in group 1. When not provided, the initial parameter values
are taken to be the OLS parameter estimates of regressing y on P. For the groups’ means,
the mean and the mean plus one standard deviation of the endogenous regressor are used as
initial values. The variance-covariance parameters are taken to be 1, while the probability of
being part of the first group is 0.

5.2. Joint estimation using Gaussian copula
In handling endogeneity by copula correction, either with the maximum likelihood estimation
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Name Exogenous var. Endogenous var. True parameter values

dataCopCont X1, X2 P continuous,
t distributed

Exog. var: β0 = 2, β1 = 1.5, β3 = −3
Endog. var.: α1 = −1
corr(P, ϵ) = 0.33

dataCopDis X1, X2 P discrete,
Poisson distributed

β0 = 2, β1 = 1.5, β3 = −3,
Endog. var.: α1 = −1,
corr(P, ϵ) = 0.33

dataCopDisCont X1, X2
P1: Poisson
distributed,
P2: t distributed

Exog. var: β0 = 2, β1 = 1.5, β3 = −3,
Endog. var.: α1 = −1, α2 = 0.8,
corr(P1, ϵ) = 0.33, corr(P1, P2) = 0.25,
corr(P2, ϵ) = 0.25

Table 3: Simulated datasets to exemplify the copulaCorrection() function.

or with the augmented OLS, the inference occurs in two steps. Therefore, the standard errors
reported by the summary function are the bootstrapped standard errors. Due to the non-
normality of the bootstrapped parameters, we report the upper and lower bounds of the 95%
bootstrapped confidence interval. It is worth mentioning that the standard errors and the
confidence intervals might slightly vary, depending on the platform, but keeping the sign and
magnitude.
Three possible cases are discussed: The first case considers one continuous endogenous re-
gressor, the second considers one discrete endogenous regressor and the last case assumes
one continuous and one discrete endogenous regressors. To exemplifying the use of each of
the functions, due to different model assumptions, three datasets have been simulated (see
Table 3).

Case 1: Single continuous endogenous regressor

The copulaCorrection() can be used in the case of a single endogenous regressor with a
continuous, skewed distribution. The syntax is as follows: copulaCorrection(y ~ X1 + X2
+ P | continuous(P), data, num.boots, start.params, verbose) where the first argu-
ment is a two-part formula of the model to be estimated, with the second part of the RHS
(right-hand side) defining the endogenous regressor as continuous, here P; the second argu-
ment is the name of the data, the third argument of the function is optional and represents
the number of bootstraps to be performed (the default is 1000). The argument start.params
is optional and represents the initial parameter values supplied by the user (when missing, the
OLS estimates are considered). The function estimates the model using maximum likelihood
and returns two additional estimates rho and sigma besides the estimates of the explanatory
variables. Since these two variables are estimated from the data and not given ex-ante, the
standard errors of all the estimates need to be obtained using bootstrapping. The output of
the copulaCorrection() function, in this case, estimated on the dataCopCont dataset with
only 50 bootstraps is as follows:

R> data("dataCopCont", package = "REndo")
R> set.seed(1002)
R> resultsCC1 <- copulaCorrection(formula = y ~ X1 + X2 + P | continuous(P),
+ data = dataCopCont, num.boots = 50, verbose = FALSE)
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R> summary(resultsCC1)

Call:
copulaCorrection(formula = y ~ X1 + X2 + P | continuous(P),

data = dataCopCont, num.boots = 50, verbose = FALSE)
Coefficients:

Point Boots Lower Boots Upper Boots
Estimate SE CI (95%) CI (95%)

(Intercept) 2.0360 0.0384 1.9571 2.1065
X1 1.4920 0.0081 1.4790 1.5068
X2 -3.0024 0.0099 -3.0209 -2.9832
P -1.0122 0.0237 -1.0669 -0.9671
Number of bootstraps: 50
Further parameters estimated during model fitting:

rho sigma
0.3522 0.9855
Initial parameter values:
(Intercept)=2.0347 X1=1.492 X2=-3.0008 P=-0.8209 rho=0 sigma=0
The value of the log-likelihood function: 3345.747
AIC: -6679.495 , BIC: -6644.551
KKT1: TRUE KKT2: TRUE Optimx Convergence Code: 0

The summary() function returns the estimates of the model parameters, together with the
bootstrapped standard errors and the upper and lower bounds of the 95% bootstrapped con-
fidence interval. Next, the estimates of the correlation between the error and the endogenous
regressor, rho (here 0.352), and of the standard deviation of the structural error, sigma (here
0.985) are reported. The value of rho confirms the endogeneity of P , while the sign of rho
indicates the direction of the correlation, positive or negative (here positive). If initial pa-
rameter values are not supplied by the user, the parameter estimates obtained running OLS
are used as input, while for rho and sigma the default initial values are set to 0 and 1. Next,
the log-likelihood value is returned (here 3345.747) alongside the Akaike and Bayesian infor-
mation criteria (here AIC : −6679.495 and BIC : −6644.551 respectively) which can be used
for model comparison. Last, the convergence code returned by the optimization routine is
reported, which can be 0 if the estimation converged without error, or another code, different
from zero, if the maximum iteration number has been reached or another error occurred (see
optimx() for more details).
As seen in Figure 5, copula correction produces unbiased estimates for the continuous endoge-
nous regressor. In the example above, the coefficient of the endogenous regressor P is −1.01
(SE = 0.023), a value very close to the true value, −1. In comparison, the OLS coefficient
estimate for P is −0.821 (SE = 0.011).

Case 2: Single or more discrete endogenous regressor

In the case of one or more discrete endogenous regressors, an alternative model specifica-
tion also based on Gaussian copula is implemented. In this scenario, the suitable method is
ordinary least squares augmented with P ∗. In order to be able to identify the model’s coef-
ficients, the discrete endogenous variables cannot have a binomial distribution. The syntax
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of the copulaCorrection() in this case is: copulaCorrection(y ~ X1 + X2 + P1 + P2 |
discrete(P1) + discrete(P2), data, num.boots, verbose), where the first argument is
a two-part formula, with the second part of the RHS specifying the endogenous regressors,
discrete(P1) and discrete(P2), the second argument is the name of the dataset, while the
third argument lets the user specify the number of bootstraps to be used.
The output of the function, estimated on the dataCopDis dataset which has only one endoge-
nous discrete variable, is provided below:

R> data("dataCopDis", package = "REndo")
R> set.seed(1003)
R> resultsCC2 <- copulaCorrection(formula = y ~ X1 + X2 + P | discrete(P),
+ data = dataCopDis)
R> summary(resultsCC2)

Call:
copulaCorrection(formula = y ~ X1 + X2 + P | discrete(P), data = dataCopDis)
Coefficients:

Point Boots Lower Boots Upper Boots
Estimates SE CI (95%) CI (95%)

(Intercept) 1.8666 0.2506 1.0444 2.007
X1 1.5216 0.0256 1.4738 1.5757
X2 -3.0147 0.0249 -3.0671 -2.9679
P -0.9750 0.0491 -1.0044 -0.8108
PStar.P 0.2851 0.1104 -0.0948 0.3497
Number of bootstraps: 1000
Discrete endogenous variables: P

We see that copula correction method produces an estimate for the coefficient of P equal to
−0.975 (SE = 0.05), while the OLS coefficient for P is −0.852 (SE = 0.008). The additional
coefficient estimate, PStar.P, tells the direction of the correlation and whether endogeneity
exists or not. In the discrete case, the variable P ∗ lies between two points of the inverse uni-
variate normal distribution (see Park and Gupta (2012), page 573). Therefore, the coefficients
of PStar.P will slightly vary at each run of the model (for reproducible results, use a random
seed). However, the bootstrapped confidence intervals reported by the summary function give
the upper and lower bounds of the 95% bootstrapped interval, and thus a way to assess the
variation in the parameter estimates. In this case, the estimate of the endogenous regressor,
P , varies between −0.843 and −1.019. Here, the coefficient of PStar.P is positive, implying
a positive correlation between P and the error. According to the upper and lower bounds of
the bootstrapped confidence interval, the value of PStar.P can be in more than 5% of the
cases negative as well, thus not statistically significant.

Case 3: Two or more, continuous or discrete, endogenous regressors

In the case of two or more endogenous regressors, either discrete or continuous, one should
use the copulaCorrection function with the following syntax: copulaCorrection(y ~ X1 +
X2 + P1 + P2 | discrete(P1) + continuous(P2), data, num.boots, verbose), where
the first argument is a two-part formula, with the second part of the RHS specifying the
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endogenous regressors and their distribution type, discrete(P1) and continuous(P2). The
second argument is the name of the data, while the user can also specify, using the num.boots
argument, the number of replications to be done. The output of the function estimated on
the dataCopDisCont dataset is:

R> data("dataCopDisCont", package = "REndo")
R> set.seed(1004)
R> resultsCC3 <- copulaCorrection(formula = y ~ X1 + X2 + P1 + P2 |
+ discrete(P1) + continuous(P2), data = dataCopDisCont)
R> summary(resultsCC3)

Call:
copulaCorrection(formula = y ~ X1 + X2 + P1 + P2 | discrete(P1) +

continuous(P2), data = dataCopDisCont, verbose = FALSE)

Coefficients:
Point Boots Lower Boots Upper Boots
Estimate SE CI (95%) CI (95%)

(Intercept) 1.9081 0.1397 1.4853 2.0270
X1 1.5119 0.02476 1.4641 1.5614
X2 -3.0007 0.0233 -3.0460 -2.9578
P1 -0.9799 0.0452 -1.0193 -0.8435
P2 0.7617 0.0290 0.7043 0.8294
PStar.P2 0.2363 0.0526 0.1179 0.3377
PStar.P1 0.2643 0.0802 -0.01862 0.3326
Number of bootstraps: 1000
Continuous endogenous variables: P2
Discrete endogenous variables : P1

In the dataCopDisCont dataset, there are two endogenous regressors, one discrete, P1, and
one continuous, P2. The additional coefficients, PStar.P1 and PStar.P2, which are the
estimates of P ∗

1 and P ∗
2 , tell us whether there exists endogeneity or not. Also, they tell the

direction of the correlation between the endogenous regressors and the error.
In the example above, the copula correction method returned a coefficient estimate for P1
equal to −0.979 (SE = 0.045), while the OLS coefficient estimate is −0.826 (SE = 0.011).
PStar.P1 is positive, implying that P1 is positively correlated with the error. For P2, the
method returned a PStar.P2 which is statistically significant and positive. The true parame-
ter value for P2 is 0.8. The OLS estimation returned a coefficient equal to 0.884 (SE = 0.011)
while copula correction returned an estimate equal to 0.761 (SE = 0.029).

5.3. Higher moments method

The higherMomentsIV() function has a four-part formula, with the following specification:
higherMomentsIV(y ~ X1 + X2 + P | P | IIV (iiv = gp , g = x2, X1, X2) +
IIV (iiv = yp) | Z1, data), where y is the response; the first RHS of the formula, X1 +
X2 + P, is the model to be estimated; the second part, P, specifies the endogenous regressors;
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the third part, IIV(), specifies the format of the internal instruments; and the fourth part,
Z1, is optional, allowing the user to add any external instruments available.
The special function IIV in the third part of the formula has a set of three arguments: iiv
specifies the form of the instrument, g specifies the transformation to be applied on the
exogenous regressors, and the last argument is the set of exogenous variables from which the
internal instruments should be built (they can be multiple). Six different instruments can be
constructed which should be specified in the iiv argument of IIV:

• g for (Gt − Ḡ),

• gp for (Gt − Ḡ)(Pt − P̄ ),

• gy for (Gt − Ḡ)(Yt − Ȳ ),

• yp for (Yt − Ȳ )(Pt − P̄ ),

• p2 for (Pt − P̄ )2,

• y2 for (Yt − Ȳ )2.

where Gt = G(Xt) is implemented in REndo only for the following non-linear elementwise
functions of the vector Xt: X2, X3, ln(X) and 1/X. This can be specified in the parameter g
of the third RHS of the formula, as x2, x3, lnx or 1/x. In the case of internal instruments
built only from the endogenous regressor, e.g., p2, or from the response and the endogenous
regressor, like for example in yp, there is no need to specify the g or the set of exogenous
regressors in the IIV part of the formula. The function additionally reports a set of three
diagnostic tests (as returned by the AER::ivreg() function) to assess the validity of the
instruments and the endogeneity assumption. Lewbel (1997)’s higher moments approach to
endogeneity is illustrated on the synthetic dataset dataHigherMoments. In the example below
the internal instrument was chosen to be yp:

R> data("dataHigherMoments", package = "REndo")
R> resultsHM <- higherMomentsIV(
+ formula = y ~ X1 + X2 + P | P | IIV(iiv = yp),
+ data = dataHigherMoments)
R> summary(resultsHM)

Call:
higherMomentsIV(formula = y ~ X1 + X2 + P | P | IIV (iiv = yp),

data = dataHigherMoments )
Residuals:

Min 1Q Median 3Q Max
-6.56248 -1.17414 0.02446 1.20624 5.91371
Coefficients:

Estimate Std.Error t value Pr(>|t|)
(Intercept) 1.6194 0.7094 2.283 0.0225 *
X1 1.5861 0.3609 4.395 1.16e-05 ***
X2 3.0618 0.0783 39.118 < 2e-16 ***
P -1.0138 0.0819 -12.383 < 2e-16 ***
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Diagnostic tests:
df1 df2 statistic p-value

Weak instruments 1 2496 13.838 0.000204 ***
Wu-Hausman 1 2495 5.271 0.021763 *
Sargan 0 NA NA NA
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Residual standard error: 1.77 on 2496 degrees of freedom
Multiple R-Squared: 0.8925, Adjusted R-squared: 0.8924 `
Wald test: 605 on 3 and 2496 DF, p-value: < 2.2e-16

For this dataset, the OLS coefficient of the endogenous regressor is −0.854 with a standard
error of 0.005. The higher moments estimate, −1.013 is very close to the true value, with a
standard error of 0.081. In the Diagnostic tests section, the three diagnostic tests returned
by the ivreg() function are printed. The first test displayed is the partial F test of the first
stage regression for weak instruments (Staiger and Stock 1997). The test rejects the null
hypothesis of weak instruments (p value of 0.00020). The second test is the Wu-Hausman
endogeneity test proposed by Wu (1973) and Hausman (1978). The test confirms that there
is an endogeneity problem, rejecting the null hypothesis at 5% confidence level. The third
diagnostic test is the Sargan test of overidentifying restrictions (Sargan 1958). Because the
model is just identified, the Sargarn test does not report any results. Interpreting the param-
eter estimates has to be made with caution since the higher moments approach comes with
a set of very strict assumptions (see Section 4.3). And, as seen in the comparison with the
OLS in the previous section, the higher moments estimator displays high variance.

5.4. Heteroscedastic errors method
The hetErrorsIV() function specifies the model in a four-part formula:

hetErrorsIV(y ~ X1 + X2 + X3 + P | P | IIV(X1, X2) | Z1, data)

where y is the response variable, X1 + X2 + X3 + P, represents the model to be estimated, the
second part, P, specifies the endogenous regressor; the third part, IIV(X1, X2), specifies the
exogenous heteroscedastic variables from which the instruments are derived, and the fourth
part, Z1, is optional, allowing the user to include additional external instrumental variables.
Like in the higher moments approach, allowing the inclusion of additional external variables is
a convenient feature of the function, since it increases the efficiency of the estimates. To show
the heteroscedastic errors approach, the dataHetIV was simulated, where only X2 satisfies
the heteroscedasticity assumption, and thus used as instrument. The use of the function is
presented below:

R> data("dataHetIV", package = "REndo")
R> resultsHetIV <- hetErrorsIV(y ~ X1 + X2 + P | P | IIV(X2),
+ data = dataHetIV)
R> summary(resultsHetIV)

Call:
hetErrorsIV(formula = y ~ X1 + X2 + P | P | IIV(X2), data = dataHetIV)
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Residuals:
Min 1Q Median 3Q Max

-4.83374 -0.95558 -0.03449 0.97774 5.53488
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.1613 0.1241 17.41 <2e-16 ***
X1 1.3609 0.1001 13.60 <2e-16 ***
X2 2.8289 0.1516 18.66 <2e-16 ***
P -1.0081 0.0386 -26.10 <2e-16 ***
Diagnostic tests:

df1 df2 statistic p-value
Weak instruments 1 2496 6447.04 < 2e-16 ***
Wu-Hausman 1 2495 56.51 7.76e-14 ***
Sargan 0 NA NA NA
Residual standard error: 4.85 on 2496 degrees of freedom
Multiple R-Squared: 0.2492, Adjusted R-squared: 0.2483
Wald test: 282.7 on 3 and 2496 DF, p-value: < 2.2e-16

For this example, the OLS coefficient is −0.857 with a 0.033 standard error, while the het-
erogeneous errors approach produces an estimate for P equal to −1.008 and a standard error
equal to 0.038. The result returned by the internal instrumental method is closer to the true
parameter value of the endogenous regressor. The F test of the first stage regression for weak
instruments signals that the instruments are good. The Wu-Hausman test rejects the null
hypothesis, indicating that there is an endogeneity problem, while the Sargan test does not
return any value since the model is just identified. In the background, the function performs
the Koenker’s studentized version of the Breusch-Pagan (BP, Breusch and Pagan 1979) test
against heteroscedasticity (i.e., the bptest() from the lmtest package is applied). This is
done to check the assumption of non-zero covariance between the exogenous regressors used
for building the internal instruments and the squared residuals from regressing P on all the
exogenous regressors. In case the test fails to reject the null hypothesis at a 5% significance
level, a warning for a possible weak instrument is printed indicating also the p value of the
BP test.

5.5. Multilevel internal instrumental variable method

The multilevelIV() function allows the estimation of a multilevel model with up to three
levels, in the presence of endogeneity. Specifically, Kim and Frees (2007) designed an approach
that controls for endogeneity at higher levels in the data hierarchy, e.g., for a three-level
model, endogeneity can be present either at level two, level three, or at both, level two and
three. The function takes as input the formula, the set of endogenous variables and the
name of the dataset. It returns the parameter estimates obtained with fixed effects, random
effects and the GMM estimator proposed by Kim and Frees (2007), such that a comparison
across models can be done. Asymptotically, the multilevel GMM estimators share the same
properties of corresponding fixed effects estimators, but they allow the estimation of all the
variables in the model, unlike the fixed effects counterpart. To illustrate the use of the
function, dataMultilevelIV has a total of 2950 observations clustered into 1370 observations
at level 2, which are further clustered into 40 level-three units. Additional details are presented
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Name Variables Type True param. values

dataMultilevelIV

level-1: X11, X12,
X13, X14

exogenous β11 = 3, β12 = 9,
β13 = −2, β14 = 2

level-1: X15 endogenous
corr(X15, ϵcs) = 0.7;

β15 = −1

level-2: X21, X22,
X23, X24

exogenous β21 = −1.5, β22 = −4,
β23 = −3, β24 = 6

level-3: X31, X32,
X33

exogenous β31 = 0.5, β32 = 0.1,
β33 = −0.5

Table 4: Simulated dataset to exemplify multilevelIV() function. ϵcs is the level-two error.

in Table 4.
The dataset has five level-one regressors, X11, X12, X13, X14, and X15, where X15 is cor-
related with the level two error, thus endogenous. There are four level-two regressors, X21,
X22, X23, and X24, and three level-three regressors, X31, X32, X33, all exogenous. We es-
timate a three-level model with X15 assumed endogenous. Having a three-level hierarchy,
multilevelIV() returns five estimators, from the most robust to omitted variables (FE_L2),
to the most efficient (REF), i.e., lowest mean squared error:

• level-2 fixed effects (FE_L2);

• level-2 multilevel GMM (GMM_L2);

• level-3 fixed effects (FE_L3);

• level-3 multilevel GMM (GMM_L3);

• random effects estimator (REF).

The random-effects estimator is efficient assuming no omitted variables, whereas the fixed
effects estimator is unbiased and asymptotically normal even in the presence of omitted vari-
ables. Because of the efficiency, one would choose the random effects estimator if confident
that no important variables were omitted. On the contrary, the robust estimator would be
preferable if there was a concern that important variables were likely to be omitted. The
estimation result is presented below:

R> set.seed(1005)
R> data("dataMultilevelIV", package = "REndo")
R> formula1 <- y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
+ X31 + X32 + X33 + (1 | CID) + (1 | SID) | endo(X15)
R> resultsMIV <- multilevelIV(formula = formula1, data = dataMultilevelIV)
R> coef(resultsMIV)

REF FE_L2 FE_L3 GMM_L2 GMM_L3
(Intercept) 64.364 0.000 0.000 64.664 64.364
X11 3.036 3.048 3.035 3.036 3.036
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X12 9.000 8.997 9.000 8.997 9.000
X13 -2.008 -2.000 -2.009 -2.022 -2.008
X14 1.981 2.002 1.980 1.985 1.981
X15 -0.574 -1.037 -0.575 -1.034 -0.574
X21 -2.242 0.000 -2.232 -2.217 -2.242
X22 -3.256 0.000 -2.935 -3.315 -3.266
X23 -2.833 0.000 -2.806 -2.858 -2.833
X24 5.070 0.000 5.090 5.018 5.070
X31 2.077 0.000 0.000 2.071 2.077
X32 0.454 0.000 0.000 0.457 0.454
X33 0.099 0.000 0.000 0.098 0.099

The coef() function was used here, unlike in the other methods, since it provides an overview
of the estimates across all estimated models. The summary() function returns, for each model,
the estimates together with the standard errors and z scores.
As we have simulated the data, we know that the true parameter value of the endogenous
regressor (X15) is −1. Looking at the coefficients of X15 returned by the five models, we see
that they form two clusters: one cluster is composed of the level-two fixed effects estimator
and the level-two GMM estimator (both return −1.03), while the other cluster is composed
of the other three estimators, FE_L3, GMM_L3, REF, all three having a value of −0.57. The
bias of the last three estimators is to be expected since we have simulated the data such that
X15 is correlated with the level-two error, to which only FE_L2 and GMM_L2 are robust. After
the initial estimation of all applicable methods, the most appropriate estimator has to be
identified in the next steps.
To provide guidance for selecting the appropriate estimator, multilevelIV() performs an
omitted variable test. The results are returned by the summary() function. For example, in
a three-level setting, different estimator comparisons are possible:

1. Fixed effects versus random effects estimators: To test for omitted level-two and level-
three effects, simultaneously, one compares FE_L2 to REF. The test does not indicate
the level at which omitted variables might exist.

2. Fixed effects versus GMM estimators: Once it was established that there exist omitted
effects but not certain at which level (see 1), we test for level-two omitted effects by
comparing FE_L2 versus GMM_L3. A rejection of the null hypothesis will imply omitted
variables at level-two. The same is accomplished by testing FE_L2 versus GMM_L2, since
the latter is consistent only if there are no omitted effects at level-two.

3. Fixed effects versus fixed effects estimators: We can test for omitted level-two effects,
while allowing for omitted level-three effects. This can be done by comparing FE_L2
versus FE_L3, since FE_L2 is robust against both level-two and level-three omitted effects
while FE_L3 is only robust to level-three omitted variables.

In general, in testing for higher level endogeneity in multilevel settings, one would start by
looking at the results of the omitted variable test comparing REF and FE_L2. If the null
hypothesis is rejected, the model suffers from omitted variables, either at level two or level
three. Next, test whether there are level-two omitted effects, since testing for omitted level-
three effects relies on the assumption there are no level-two omitted effects. To this end, rely
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on one of the following model comparisons: FE_L2 versus FE_L3 or FE_L2 versus GMM_L2. If no
omitted variables at level-two are found, proceed with testing for omitted level-three effects
by comparing FE_L3 versus GMM_L3 or GMM_L2 versus GMM_L3.
The summary() function that returns the results of the omitted variable test takes two argu-
ments: the fitted model object (here resultsMIV) and the name of the estimation method
(here REF). Without a second argument, summary() displays by default the random effects
coefficients. The second parameter, model, can take the following values, depending on the
model estimated (two or three levels): REF, GMM_L2, GMM_L3, FE_L2, FE_L3. It returns
the estimated coefficients under the model specified in the second argument, together with
their standard errors and z scores. Further, it returns the chi-squared statistic, degrees of
freedom, and p value of the omitted variable test between the focal model (here REF) and all
the other possible options (here FE_L3, GMM_L2, and GMM_L3).

R> summary(resultsMIV, model = "REF")

Call:
multilevelIV(formula = formula1, data = dataMultilevelIV)

Number of levels: 3
Number of observations: 2767
Number of groups: L2(CID): 1347 L3(SID): 40

Coefficients for model REF:
Estimate Std. Error z-score Pr(>|z|)

(Intercept) 64.364 6.459 9.964 <2e-16 ***
X11 3.035 0.027 109.863 <2e-16 ***
X12 9.000 0.026 345.152 <2e-16 ***
X13 -2.008 0.025 -79.668 <2e-16 ***
X14 1.982 0.026 75.079 <2e-16 ***
X15 -0.574 0.019 -28.987 <2e-16 ***
X21 -2.242 0.186 -12.016 <2e-16 ***
X22 -3.265 0.387 -8.438 <2e-16 ***
X23 -2.833 0.103 -27.427 <2e-16 ***
X24 5.069 0.073 69.240 <2e-16 ***
X31 2.077 0.089 23.246 <2e-16 ***
X32 0.454 0.191 2.375 0.0175 *
X33 0.099 0.041 2.388 0.0169 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Omitted variable tests for model REF:

df Chisq p-value
GMM_L2_vs_REF 7 30.19 8.77e-05 ***
GMM_L3_vs_REF 13 -1886.54 1.00000
FE_L2_vs_REF 13 40.0 0.000138 ***
FE_L3_vs_REF 13 39.9 0.000139 ***

In the example above, we compare the random effects (REF) with all the other estimators.
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Testing REF, the most efficient estimator, against the level-two fixed effects estimator, FE_L2,
which is the most robust estimator, we are actually testing simultaneously for level-2 and
level-3 omitted effects. Since the null hypothesis is rejected with a p value of 0.000138,
the test indicates severe bias in the random effects estimator. In order to test for level-two
omitted effects regardless of the presence of level-three omitted effects, we have to compare
the two fixed effects estimators, FE_L2 versus FE_L3:

R> summary(resultsMIV, model = "FE_L2")

Call:
multilevelIV(formula = formula1, data = dataMultilevelIV)

Number of levels: 3
Number of observations: 2767
Number of groups: L2(CID): 1347 L3(SID): 40

Coefficients for model FE_L2:
Estimate Std. Error z-score Pr(>|z|)

Intercept 0.000 1.438e-18 0.00 1
X11 3.048 3.193e-02 95.47 <2e-16 ***
X12 8.997 3.377e-02 266.43 <2e-16 ***
X13 -2.000 3.211e-02 -62.29 <2e-16 ***
X14 2.002 3.437e-02 58.24 <2e-16 ***
X15 -1.037 3.301e-02 -31.41 <2e-16 ***
X21 0.000 8.540e-19 0.00 1
X22 0.000 9.154e-19 0.00 1
X23 0.000 1.727e-18 0.00 1
X24 0.000 2.951e-18 0.00 1
X31 0.000 1.427e-17 0.00 1
X32 0.000 1.436e-17 0.00 1
X33 0.000 5.946e-17 0.00 1
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .
Omitted variable tests for model FE_L2:

df Chisq p-value
FE_L2_vs_REF 13 40.00 0.000138 ***
FE_L2_vs_FE_L3 9 38.95 1.18e-05 ***
FE_L2_vs_GMM_L2 12 40.00 7.20e-05 ***
FE_L2_vs_GMM_L3 13 40.00 0.000138 ***

The null hypothesis of no omitted level-two effects is rejected (p value is equal to 1.18e-05).
Therefore, it is possible to conclude that there are omitted effects at level-two. This finding
is no surprise as we simulated the dataset with the level-two error correlated with X15, which
leads to biased FE_L3 coefficients. Hence, the result of the omitted variable test between
level-two fixed effects and level-two generalized method of moments should not come as a
surprise: The null hypothesis of no omitted level-two effects is rejected (p value is 0). In
case of wrongly assuming that an endogenous variable is exogenous, the random effects as
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well as the generalized method of moments estimators will be biased, since the former will be
constructed using the wrong set of internal instrumental variables. To conclude this example,
the test results provide support that the FE_L2 should be used.

6. Case study: Explaining academic performance
In this section, we apply the instrument-free methods implemented in the REndo package
to the California Test Score data (CASchools) that comes with the AER package. Besides
providing a comparison across the implemented instrument-free methods, we also compare
the results with the ones obtained using frequently used external IV methods: two-stage least
squares (TSLS) and control function (Ctrl Function).
The data contain information on test performance, school characteristics, and student demo-
graphic backgrounds for schools in different districts in California. The data are aggregated
at the district level, across different California counties. In trying to answer the question
of how does student/teacher ratio affect the average reading score, we use as covariates the
following variables: student/teacher ratio (students/teachers), lunch (percent qualifying for
reduced-price lunch), english (percent of English learners), calworks (percent qualifying for
income assistance), income (district average income in USD 1000), grades (a dummy variable
if the grade is equal to KK-8) and county (dummy for county).
In this model, the student/teacher ratio might be endogenous since it could be correlated with
unobserved factors such as teacher salaries or teacher working conditions, both unobserved in
the data, that can affect the reading score of the students. However, we have an additional
variable, expenditure, representing the expenditure per student (aggregated at district level).
This variable can be used as an external instrumental variable since it is correlated with the
student/teacher ratio (a correlation of −0.61), but does not directly explain the reading score
tests of the students (Hanushek 1997). Therefore, we can apply both external and internal
instrumental variable techniques to estimate the model and compare their performance.
Both, the two-stage least squares and the control function approach return an estimate of
the student/teacher ratio of around −1, very different from the OLS estimate of −0.30.
The instrument-free methods, as underlined in the previous section, come with very many
assumptions and are not as efficient. Therefore, we observe a large variation in the estimates
returned. The higher moments and the copula correction approaches return estimates closer to
the ones returned by the external IV methods: −1.30 for the higher moments and −0.35 for the
copula method. The latent instrumental variable method, having only one regressor, returns a
value for the student/teacher ratio coefficient equal to −2.27, while the heteroscedastic errors
method fails, returning a positive estimate equal to 0.71. (see Table 5 for a comparison of
results across the different methods).
The CASchools dataset has information at the district level, where the districts are clustered
into counties. One could be tempted to apply the multilevel generalized method of moments
method to these data, as implemented in the multilevelIV() function. However, the endo-
geneity problem solved by the multilevel GMM approach considers only correlations between
level-one variables and level-two errors, while the endogeneity presented in the example above
deals with endogeneity between a level-one variable and the level-one error. Therefore, we
expect that the multilevelIV() function will indicate the use of the fixed effects method.
In other words, the results should be similar to the ones returned by OLS since we applied
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Dependent variable: read
Model: read = stratio + english + lunch + calworks + income + gr08 + county_dummy

OLS TSLS Ctrl Function copulaCor. latentIV hetErrorsIV higherMomentsIV multilevelIV
stratio −0.300 −1.136∗ −1.047∗∗∗ −0.357 −2.273 0.714 −1.307 −0.300

(0.257) (0.535) (0.103) (0.092) (13.678) (1.310) (2.730) (0.261)

english −0.205∗∗∗ −0.213∗∗∗ −0.036∗∗ −0.217 −0.195∗∗∗ −0.215∗∗∗ −0.205∗∗∗

(0.037) (0.038) (0.015) (0.0373) (0.040) (0.047) (0.038)

lunch −0.386∗∗∗ −0.393∗∗∗ −0.010 −0.356∗∗∗ −0.378∗∗∗ −0.395∗∗∗ −0.386∗∗∗

(0.037) (0.037) (0.016) (0.0380) (0.039) (0.044) (0.037)

calworks −0.052 −0.049 0.034 −0.069 −0.056 −0.048 −0.052
(0.061) (0.062) (0.024) (0.080) (0.063) (0.063) (0.062)

grades −1.912∗∗ −1.892∗ −1.177∗ −2.021 −1.937 −1.888∗∗ −1.911
(1.358) (1.377) (0.537) (0.968) (1.387) (1.388) (1.379)

income 0.716∗∗∗ 0.624∗∗∗ 0.248∗∗∗ 0.801∗∗∗ 0.826∗∗∗ 0.606∗ 0.716∗∗∗

(0.098) (0.111) (0.040) (0.074) (0.172) (0.313) (0.099)

Constant 683.453∗∗∗ 700.478∗∗∗ 680.205∗∗∗ 682.254∗∗∗ 699.601∗ 662.787∗∗∗ 703.956∗∗∗ –
(9.562) (13.580) (3.778) (1.968) (268.618) (27.901) (56.182) –

res_cf 0.878∗∗∗

(0.019)
Obs. 420 420 420 420 420 420 420 420
R2 0.88 0.87 0.85 – – 0.87 0.87
Adj. R2 0.86 0.86 0.83 – – 0.85 0.85

Table 5: IIV model comparison for the California Test Score data (p value levels: ∗p < 0.1;
∗∗p < 0.05; ∗∗∗p < 0.01; Further notes: 1 see Section 5.1, 2 see Section 5.2, 3 see Section 5.4,
4 see Section 5.3, 5 see Section 5.5).

county dummy variables. Indeed, the omitted variable test between the fixed effects and the
random effects model rejects the null hypothesis of no omitted variables (p value = 8.52e-7),
therefore, indicating an endogeneity problem and the use of fixed effects.
Before concluding, a word of caution has to be given when applying instrument-free methods:
First, one has to be careful with the assumptions of each method and second, the efficiency
of these methods improves with an increased sample size. The code for reproducing the re-
sults in this section is presented in Appendix D. The same model was estimated using the
ivreg2h() function in Stata. Given that the Stata implementation of Lewbel (2012) builds
internal instruments from all exogenous variables, we had to remove three counties from the
model indicators before being able to estimate the model. No reasonable error message was
given for this. After eliminating three county dummy variables, the coefficient returned by
Stata was statistically insignificant and equal to −0.31, similar to the OLS coefficient esti-
mate. In the light of this experience, we find that giving the user the possibility of choosing
the variables from which to construct the internal instruments (with warnings on whether
they constitute weak instruments or not) is an important feature and thus was implemented
in the REndo package. Estimating the model without the county dummies, we obtain the
same results using REndo’s hetErrorsIV() function and Stata’s ivreg2h() module.
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7. Conclusion
Endogeneity, one of the challenges of empirical research, can be addressed using different
approaches. The use of external instrumental variables is one of the most popular solutions
to the endogeneity problem. However, there exist applications in which neither theory nor
intuition helps in deriving an adequate external instrumental variable. Therefore, methods
that treat endogeneity without the need for external regressors have been proposed. These
estimation techniques are called “instrument-free” or “internal instrumental variable” (IIV)
methods.
REndo implements various IIV models. Thereby, REndo supports researchers from a broad
spectrum of disciplines such as sociology, political science, economics, and marketing, inter-
ested in the causal analysis of observational data. Moreover, we facilitate a straightforward
estimation and comparison across different IIV methods.
Future developments could include a Bayesian approach to the latent instrumental variable
method which would allow incorporating additional explanatory variables and even additional
endogenous regressors (Ebbes et al. 2009). Instrument-free methods that address endogeneity
with a binary or categorical dependent variable would be a very useful extension of the
package’s functionality. In that regard, the recent paper of Kim, Lee, Kim, and Paik (2019)
that proposes an IIV method for multilevel models with a binary outcome is a possible future
method to be implemented.
A recently published paper (Bun and Harrison 2018) has proposed yet another internal in-
strumental variable approach that helps recovering the true parameter estimate of solely the
interaction term between an endogenous and an exogenous regressor. A future version of
REndo should consider integrating this approach as well. Another useful development of the
package would be the integration of diagnostic tests for the copula correction and the latent
internal variable approaches. These would allow the users to assess whether endogeneity is
indeed a problem and whether the internal instruments considered are good. Since in the
context of these methods no adaptation of these tests has been proposed yet, we could not
implement such tests in our package at this stage.
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A. Weak versus strong instrumental variables
Table 6 illustrates the performance of OLS in comparison with two-stage least squares, one of
the most frequently used instrumental variable methods, distinguishing between strong and
weak instruments as well as small and large sample sizes. The sample size varies between 500
and 2500 observations respectively, and the correlation (ρ) between the instrument and the
endogenous regressor takes two values, 0.10 and 0.40. The results are obtained by running a
simulation over 1000 random samples, where the true parameter value is −1 and the corre-
lation between the omitted variable and the endogenous regressor (ϕ) takes two values, 0.1
or 0.3.

ϕ ρ True value OLS IV Sample size
0.1 0.1 −1 −1.038 −1.112 500
0.1 0.1 −1 −0.919 −1.011 2500
0.1 0.4 −1 −0.937 −0.935 500
0.1 0.4 −1 −0.918 −1.035 2500
0.3 0.1 −1 −0.769 −0.373 500
0.3 0.1 −1 −0.767 −1.125 2500
0.3 0.4 −1 −0.723 −0.952 500
0.3 0.4 −1 0.800 −1.067 2500

Table 6: Performance of OLS vs. IV. ϕ = correlation between endogenous variable and the
error, ρ = correlation between the IV and the endogenous variable.

The bias of the estimates, both of the OLS and of the IV, depends heavily on the sample size
but also on how much the regressor correlates with the error and with the IV. In Table 6 we
can easily see that, with a relatively low sample size and a low correlation of the regressor
with the error, a weak instrument produces a more biased estimate than the OLS. Once the
sample size increases, even using a weak instrument, the two-stage least squares produces less
biased estimates than the ordinary least squares.

B. Bias under endogeneity
The bias induced by an endogenous regressor on the estimates of the other regressors depends,
besides the correlation between the two variables, on the correlation between the structural
error and the endogenous variable. To illustrate this fact, Figure 9 as well as Table 7 illustrate
the parameter estimates for the model presented in Figure 1. The correlation between the
error and P takes three values: 0.1 0.3 and 0.5. For each of these three values, the correlation
between the two covariates, P and X, is also taken to be equal to 0.1, 0.3 and 0.5. The
parameter estimates are the mean over 1000 simulated samples, each having the same size
(2500 observations).
Panel A in Figure 9 presents the parameter estimates for the endogenous regressor, β1, while
panel B the parameter estimates for the X covariate, β2. In both cases the bias grows as
we move from lower to higher levels of the correlation between the error and the endogenous
regressor. In panel B, for the same correlation between the error and the endogenous regressor,
the increase in bias is steeper than in panel A. For example, when the correlation between
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Figure 9: Varying levels of endogeneity and resulting OLS parameter estimates for β1 and β2.
The lines illustrate the bias at different levels of correlation between the endogenous regressor
(P ) and the error.

corr(P, ϵ) corr(P,X)
0.1 0.3 0.5

β1

0.1 −0.057 −0.058 −0.090
0.3 −0.187 −0.205 −0.258
0.5 −0.305 −0.344 −0.404

β2

0.1 −0.005 0.046 0.083
0.3 0.017 0.108 0.207
0.5 0.076 0.178 0.372

Table 7: Bias for estimates for β1 (intercept) and β2 (slope) depending on different levels for
the correlation between the error and the endogenous regressor.

the error and P is 0.5, the bias of the covariate estimate increases from 0.07 to 0.17, to 0.37
for different levels of correlation between P and X. Similar patterns occur for different levels
of correlation between the error and P , either for β1 or β2, as can be observed in Table 7.
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C. Gaussian copula
A copula is a function that maps several conditional distribution functions (CDF) into their
joint CDF. Here, the CDF of x1 is a t distribution and the CDF of x2 is a normal distribution.
Function H() is the joint conditional distribution function.

Figure 10: Copula example.

D. R Code: Application to real data

R> library("AER")
R> library("REndo")
R> library("sem")
R> data("CASchools", package = "AER")
R> CASchools$stratio <- with(CASchools, students/teachers)
R> school <- CASchools
R> school$gr08 <- 1
R> school$gr08[school$grades == "KK-06"] <- 0
R> school$cc <- as.numeric(school$county)
R> ols <- lm(read ~ stratio + english + lunch + grades + calworks +
+ income + county, data = school)
R> summary(ols)$coefficients[1:7,]
R> extiv <- ivreg(read ~ stratio + english + lunch + grades + income +
R> calworks + county, ~ expenditure + english + lunch + income +
R> grades + county + calworks, data = school)
R> summary(extiv)$coefficients[1:7,]
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R> res_cf <- lm(read ~ expenditure, data = school)$residuals
R> m_cf <- lm(read ~ stratio + res_cf + lunch + english + calworks +
+ income + grades + county , data = school)
R> summary(m_cf)$coefficients[1:7,]
R> set.seed(43223)
R> cop.model <- copulaCorrection(read ~ stratio + english + lunch +
+ calworks + grades + income + county | continuous(stratio),
+ num.boots = 50, data = school, verbose = FALSE)
R> summary(cop.model)$coefficients[1:7,]
R> liv <- latentIV(read ~ stratio, data = school)
R> summary(liv)
R> hetEr <- hetErrorsIV(read ~ stratio + english + lunch + calworks +
+ income + grades + county | stratio | IIV(income, english),
+ data = school)
R> summary(hetEr)$coefficients[1:7,]
R> highMoment <- higherMomentsIV(read ~ stratio + english + lunch +
+ calworks + income + grades + county | stratio |
+ IIV(g = x3, iiv = gp, income), data = school)
R> summary(highMoment)$coefficients[1:7,]
R> multilev <- multilevelIV(read ~ stratio + english + lunch + gr08 +
+ income + calworks + (1|cc) | endo(stratio), data = school)
R> coef(multilev)
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