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Abstract

Despite the huge availability of software to estimate cross-sectional spatial models,
there are only few functions to estimate models dealing with spatial limited dependent
variable. This paper fills this gap introducing the new R package spldv. The package
is based on generalized methods of moment (GMM) estimators and includes a series of
one- and two-step estimators based on different choices of the weighting matrix for the
moments conditions in the first step, and different estimators for the variance-covariance
matrix of the estimated coefficients. An important feature of spldv is that users can
estimate the spatial Durbin model and compute the direct, indirect, and total effects in
a friendly and flexible way.
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1. Introduction
In recent years, spatial econometrics has gained interest and importance in economics and
related fields. The proliferation of applications in various areas has been supported by the
growth of available software.1 Currently, spatial econometrics routines for the estimation of
spatial models are accessible in many commercial (and non commercial) software environ-
ments, such as MATLAB (LeSage and Pace 2009), Stata (Drukker, Prucha, and Raciborski
2013c; Drukker, Prucha, Peng, and Raciborski 2013a; Drukker, Prucha, and Raciborski 2013b)
and PySal (Anselin and Rey 2014), among others. R (R Core Team 2023) is undoubtedly the
open source environment that includes the largest variety of resources in spatial econometrics.
The oldest (and perhaps most famous) package is spdep (Bivand, Pebesma, and Gomez-Rubio
2013; Bivand and Wong 2018). The original version included functions to construct spatial
weighting matrices and spatial lags, testing for spatial dependence, and a few additional

1For a deeper review see Bivand and Piras (2015) and Bivand, Millo, and Piras (2021).
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routines to estimate the spatial lag and spatial error models through maximum likelihood
(ML) and generalized method of moments (GMM). Few years later, sphet (Piras 2010; Piras
and Postiglione 2022) was introduced to complement spdep with a complete treatment of a
general cross-sectional model involving lags of the dependent variable, of the regressors, and
of the error term. Dealing exclusively with GMM, sphet has the advantage that some of the
regressors in the model can be endogenous. Recently, spdep split and gave rise to a new
package named spatialreg (Bivand and Piras 2015). spatialreg inherited all the estimation
functions that were originally included in spdep along with functions to compute impacts
and properly interpret marginal effects in spatial models (LeSage and Pace 2009).2 However,
none of the packages mentioned allow for the estimation of models with limited dependent
variables. This is very unfortunate given the fact that social agents are frequently faced with
decisions that are intrinsically discrete.
The present paper introduces spldv (Sarrias and Piras 2023), a newly developed package
that deals with GMM estimation of spatial models with a binary dependent variable. This
package is available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=spldv. To the best of our knowledge, there are a few attempts
to estimate spatial binary limited dependent variable models in R. The first is a linearized
and one-step version of a GMM estimator available from the McSpatial package (McMillen
2013).3 The second is the implementation available from spatialprobit based on a GIBBS
sampler (Wilhelm and de Matos 2013). The package ProbitSpatial provides an approxi-
mate likelihood estimation (Martinetti and Geniaux 2021). Recently, Gómez-Rubio, Bivand,
and Rue (2021) introduced the package R-INLA (available at https://www.r-inla.org/
download-install), that implements an integrated nested Laplace approximation for the
estimation of spatial models with binary outcomes. This paper is the first attempt to a sys-
tematic approach to estimate spatial binary models. The structure of the package follows the
GMM methods put forth in Pinkse and Slade (1998), Klier and McMillen (2008) and Piras
and Sarrias (2023), and includes a series of two-step estimators based on different choices of
the weighting matrix for the moments conditions in the first step, and different estimators for
the variance-covariance matrix of the estimated coefficients.4

The paper is organized as follows: Section 2 introduces the model and discusses the spatial
effects and certain issues concerning inference on them. Specifically, Section 2.1 presents the
general specification of the spatial autoregressive binary dependent model. Depending on the
distributional assumption on the innovations, spldv allows for the estimation of probit as well
as logit models. In Section 2.2, we introduce the spillover effects and two ways of approaching
inference: one based on Monte Carlo simulation, and the other based on delta method. In
Section 3 various one-step and two-step GMM estimator are reviewed and demonstrated using
the main function of the package named sbinaryGMM. In the same section, we also illustrate

2The availability of software in R is not limited to cross-sectional methods. For example, the increased
sophistication of methods for spatial panels encouraged the development of the package splm (Millo and Piras
2012). This package embeds a full treatment of static panel data models, with diagnostic tests and estimates
of the impacts. There are also many other packages that are at various stages of development such as, for
example, spsur (Angulo, Lopez, Minguez, and Mur 2022). For a more comprehensive review of those packages
see Bivand et al. (2021).

3We included the code for the linearized GMM in our package since the original version does not allow
for spatially lagged independent variables nor for the computation of proper marginal effects. McSpatial also
allows to estimate other non-linear models using, for example, locally weighted regression, and semiparametric
and conditionally parametric regression.

4Additional details will be given in later sections.

https://CRAN.R-project.org/package=spldv
https://CRAN.R-project.org/package=spldv
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the function sbinaryLGMM that can be used to estimate a linearized version of the GMM
estimator. We conclude this section by providing some guidance and recommendations on
the use of GMM estimators. An empirical application is presented in Section 4 and Section 5
provides a comparison with other estimators available in R. Section 6 concludes the paper.

2. Spatial autoregressive binary dependent model

2.1. The model

The structural form of the spatial autoregressive specification of a binary dependent model
(SARB) can be written in the following way:5

y∗ = Xβ + WXγ + λWy∗ + ϵ,

= Zδ + λWy∗ + ϵ,

y = 1 [y∗ > 0] ,

(1)

where Z = [X, WX], δ =
[
β⊤, γ⊤

]⊤
, y∗ is an n × 1 vector of latent (unobserved) continuous

variable, y is the vector of observed binary variable, and 1 [·] is the indicator function. In
other words, the binary variable yi = 1 if y∗

i > 0, and zero otherwise. The matrix X is
an n × k matrix of explanatory variables whose first column is the intercept, W is a non-
stochastic n×n spatial weighting matrix whose elements are wij , and WX is the n× l matrix
of spatially lagged regressors. The matrix WX contains spatially lagged variables of (some
of) the exogenous variables so that l < k.6 The n × 1 vector Wy∗ is the spatial lag of the
continuous but unobserved variable y∗ which introduces (unobserved) endogeneity, and λ is
the spatial autoregressive coefficient. The model in Equation 1 reduces to a conventional
non-spatial binary model when λ and γ are both zero.
The full structural model is obtained once the distribution of the errors term ϵ is postulated.
In the probit SARB model, the errors ϵ are assumed to follow a standard normal distribu-
tion, whereas in the logit SARB model, the errors are assumed to follow a standard logistic
distribution with mean 0 and variance π2/3. Thus:

1. Probit: ϵ ∼ N(0, σ2
ϵ In), with σ2

ϵ = 1.

2. Logit: ϵ ∼ L(0, σ2
ϵ In), with σ2

ϵ = π2/3.

Under the usual assumption that all the diagonal elements of W are zero and that |λ| < 1,
the reduced form equation for the SARB model in Equation 1 becomes:

y∗ = (In − λW)−1 (Zδ + ϵ) ,

= A−1
λ Zδ + A−1

λ ϵ,

= A−1
λ Zδ + u,

5This model is also known as the spatial Durbin binary model (see LeSage and Pace 2009; Lacombe and
LeSage 2018).

6Note that l < k since WX cannot include the lagged intercept.
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where Aλ = (In − λW), and u = A−1
λ ϵ, so that u ∼ (0, Σu), and:

Σu = E(uu⊤) = σ2
ϵ (In − λW)−1

[
(In − λW)⊤

]−1
= σ2

ϵ

(
A⊤

λ Aλ

)−1
, (2)

which is a full matrix. Note that σ2
ϵ is held fixed at 1 or at π2/3 in the probit and logit

specification, respectively, for reasons related to the identification of the parameters. As a
consequence, probit and logit estimates cannot be compared directly.
The expectation of the observed outcome, for all i = 1, . . . , n, is

E(yi) = P(yi = 1),

= P
(
{u}i > −

{
A−1

λ Zδ
}

i

)
,

= F
(
{Σu}−1/2

ii

{
A−1

λ Zδ
}

i

)
,

= F (ai) ,

(3)

where F (·) is either the normal or logistic standard cumulative distribution function (cdf),
{·}i is the ith element of the vector in brackets and {·}ii is the ith diagonal element of the
matrix in brackets. Let ai in Equation 3 be the ith element of the following n × 1 vector

a = D−1
λ A−1

λ Zδ, (4)

where Dλ is an n × n diagonal matrix with diagonal elements representing the square root
of the diagonal elements of the variance-covariance matrix of the error terms u given in
Equation 2. Then, Equation 3 can also be written in vector form as

E(y) = F
(
D−1

λ A−1
λ Zδ

)
= F (a). (5)

The parameters of the SARB model can be estimated by maximum likelihood (ML) under
the assumption that the error term is distributed as ϵ ∼ N(0, σ2

ϵ In). In this case, the log-
likelihood function can be expressed as

ln L = ln Φn

[
QA−1

λ Zδ; 0, Σu

]
, (6)

where Q is a diagonal matrix with elements 2yi − 1, and Φn is an n-dimensional multivariate
normal cumulative distribution with upper bounds corresponding to the first term in paren-
thesis, mean 0 and variance-covariance matrix Σu. The main drawback of ML approach is
that the evaluation of Equation 6 involves the computation of n-dimensional integrals and
the inverse of matrix Aλ, which is infeasible in practice.7

2.2. Spillover effects

Following Lacombe and LeSage (2018) and Billé and Arbia (2019), let
x.r = (x1r, x2r, . . . , xir, . . . , xnr)⊤ be an n × 1 vector of observations of the rth regressor,

7Some progress has been made to reduce the dimensionality problem in the optimization of the log-likelihood
function. Based on Vijverberg (1997), Beron and Vijverberg (2004) introduce the so-called recursive importance
sampling (RIS) estimator and show how this estimator can be used to evaluate an n-dimensional normal
probability. More recently, Billé and Leorato (2020), put forth a partial maximum likelihood estimator for a
general spatial non-linear probit model, and perform a complete asymptotic analysis of their estimator.
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r = 1, . . . , k. Considering the expected value of the observed outcome in Equation 5, the
marginal effects when the rth variable changes in all spatial units can be computed as8

∂E(y)
∂x⊤

.r
(n×n)

=
(

∂E(y)
∂x1r

∂E(y)
∂x2r

. . . ∂E(y)
∂xnr

)
,

=


∂E(y1)
∂x1r

∂E(y1)
∂x2r

. . . ∂E(y1)
∂xnr

∂E(y2)
∂x1r

∂E(y2)
∂x2r

. . . ∂E(y2)
∂xnr...

... . . . ...
∂E(yn)
∂x1r

∂E(yn)
∂x2r

. . . ∂E(yn)
∂xnr

 ,

= diag(f(a))D−1
λ A−1

λ (Inβr + Wγr) ,

= Cr(θ),

(7)

where f(·) = F ′(·) is the probability density function (pdf), diag(f(a)) is an operator that
generates an n × n diagonal matrix with elements given by the n × 1 vector f(a), and θ =
(δ⊤, λ)⊤ is the (k + l + 1) × 1 vector of population parameters. Thus diag(f(a)) contains the
pdf evaluated at the predictions for each of the observations on the diagonal.9

Every diagonal element of Cr(θ) represents a direct effect. For example, the element Cr,ii(θ)
provides the partial change in the probability of observing yi = 1 given a change of the same
spatial unit i in xr. This impact includes the effect of feedback loops where observation i
affects observation j and observation j also affects observation i. The off-diagonal elements of
Cr,ij(θ) represent the indirect effect, that is, the partial change in the probability of observing
yi = 1 in unit i given a partial change in xr for spatial unit j.
Since the change of each variable in each region implies n2 potential marginal effects, LeSage
and Pace (2009) propose the following scalar measures for the average total, direct and indirect
effects:10

ATEr = n−1ı⊤
n Crın,

ADEr = n−1 tr (Cr) ,

AIEr = ATEr − ADEr.

(8)

Inference for the average total, direct and indirect effects can be approached in a couple of
different ways: One can either use Monte Carlo (MC) methods to simulate a vector of effects
using the sampling distribution of θ, or delta method.
A MC approximation to the average effects is obtained by generating a set of empirical values
of the marginal effects evaluated at pseudo draws of θ from the asymptotic distribution of
the estimator. The algorithm can be summarized as follows:

1. Let Ω̂θ be the estimated variance-covariance matrix of θ̂. Take a random draw of θ
(say, e.g., θr) from the normal distribution N(θ̂, Ω̂θ).

2. Compute Equation 7 and the average effects in Equation 8, substituting θ̂ for θr.

3. Update r = r + 1, and go back to step 1.
8Unlike Billé and Arbia (2019), Lacombe and LeSage (2018) ignore D−1.
9Note that if λ = 0, so that A−1

λ = In and A−1
ij,λ = 0, we get the standard binary result where there are no

spatial spillovers effects.
10See also Lacombe and LeSage (2018) for some simplification in the notation.
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4. Repeat the previous steps R times, where R is a large number.

5. Calculate the empirical mean of the average marginal effects. The standard error of the
average marginal effects across the R draws can be then used for inference.

The delta method computes the standard errors of the average marginal effects using asymp-
totic approximation. Let f(θ) be a 3 × 1 vector-valued function representing the average
effects in Equation 8 for some variable. Then, the asymptotic variance-covariance matrix of
f(θ) is approximated as:

V [f(θ)] ≈ ∇f(θ)⊤Ωθ∇f(θ),

where ∇f(θ) is the 3 × (k + l + 1) matrix of first derivatives evaluated at θ, also known as
the Jacobian, and Ωθ is the asymptotic variance-covariance matrix of the estimator. The
standard errors of the average effects are then computed by taking the square root of the
diagonal of V̂

[
f(θ̂)

]
, where θ̂ is some consistent estimate of θ.

2.3. A simulated dataset

To show the capabilities of spldv, we create a simulated data set. The spatial layout of
the observations is taken from the famous Boston data set which contains 506 spatial units
corresponding to the Boston tracts (Bivand, Nowosad, and Lovelace 2023). The shapefile is
loaded using st_read function from sf package (Pebesma 2018):

R> library("sf")
R> boston.tr <- st_read(system.file("shapes/boston_tracts.shp",
+ package = "spData")[1], quiet = TRUE)

Next, we create the spatial weighting matrix W based on contiguous boundaries using
poly2nb and nb2listw functions from spdep (Bivand and Wong 2018):

R> library("spdep")
R> boston_nb <- poly2nb(boston.tr)
R> W <- nb2listw(boston_nb, style = "W")

The function nb2listw transforms a list of neighbors into an object of class ‘listw’. Since
style = "W", the spatial weighting matrix is row-standardized. The data generating process
(DGP) is given by the following equations:

y∗ = (In − λW)−1 (β0ın + β1x + β2Wx + β3z + ϵ) ,

y = 1 [y∗ > 0] ,
(9)

where ın in an n × 1 vector of ones, the elements of the vector x are standard normal
and z is uniformly distributed between 0 and 1. The true parameters are set to θ0 =
(β0, β1, β2, β3, λ)⊤ = (−0.5, 1, 1, 1, 0.6)⊤. The error term is normally distributed with mean
zero and standard deviation one yielding the SARB probit model.
After setting the seed, we create the random variables and the true coefficients. To generate
(In − λW)−1 we use the spdep function invIrM, while lag.listw creates the spatial lag of
the explanatory variable x:
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Figure 1: Spatial distribution of latent and binary dependent variable.

R> library("spatialreg")
R> set.seed(1)
R> n <- length(W$neighbours)
R> lambda <- 0.6
R> beta0 <- -0.5
R> beta1 <- beta2 <- beta3 <- 1
R> A_i <- invIrM(boston_nb, lambda)
R> x <- rnorm(n)
R> z <- runif(n)
R> Wx <- lag.listw(W, x)
R> epsilon <- rnorm(n)

The syntax to create the SARB probit model in Equation 9 is the following:

R> ystar <- A_i %*% (beta0 + beta1 * x + beta2 * Wx + beta3 * z + epsilon)
R> y <- as.numeric(ystar > 0)
R> data <- as.data.frame(cbind(y, x, z))

Figure 1 shows the spatial distribution of both y∗ and y for the simulated data. For all
those census tracts having y∗

i > 0 (y∗
i ≤ 0), we observe that the dependent variables takes

the value 1 (0). Since we know the true data generating process, we can also calculate the
true average total, direct and indirect effects. The matrix Cr in Equation 7 for each variable
r = 1, 2 is constructed as follows:11

R> Sigma_u <- tcrossprod(A_i)
R> sigma <- sqrt(diag(Sigma_u))
R> index <- beta0 + beta1 * x + beta2 * Wx + beta3 * z
R> a <- as.vector(A_i %*% index / sigma)
R> P <- diag(dnorm(a)) %*% A_i %*% diag(1 / sigma)

11The function listw2mat is available from spdep and transforms an object of class ‘listw’ to a ‘matrix’.
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R> C_x <- P %*% (diag(n) * beta1 + beta2 * listw2mat(W))
R> C_z <- P %*% (diag(n) * beta3)

Using Equation 8, the average marginal effects are:

R> TE_x <- (sum(C_x) / n)
R> DE_x <- (sum(diag(C_x))/ n)
R> IE_x <- TE_x - DE_x
R> TE_z <- (sum(C_z) / n)
R> DE_z <- (sum(diag(C_z))/ n)
R> IE_z <- TE_z - DE_z
R> Teffects <- rbind(cbind(TE_x, DE_x, IE_x), cbind(TE_z, DE_z, IE_z))
R> colnames(Teffects) <- c("ATE", "ADE", "AIE")
R> rownames(Teffects) <- c("x", "z")
R> Teffects

ATE ADE AIE
x 0.9836068 0.2448900 0.7387169
z 0.4918034 0.2146375 0.2771659

For example, the ATE for x would be interpreted as: An increase of (approximately) 1 unit
for x in all tracts increases the probability of observing yi = 1 in the same unit and in units
corresponding to other tracts by 98%, on average.

3. GMM estimators

3.1. Moment conditions

For the estimation of the SARB model using a GMM procedure we use population moment
conditions based on the innovations. The main problem with the model in Equation 1 is that
the error terms ϵ are based on the unobserved dependent variables y∗. For this reason, we
have to rely on the so-called generalized residuals. The generalized residuals for spatial unit
i = 1, . . . , n are (see also Pinkse and Slade 1998)

ũi(θ) = ui ·
[

f(ai)
F (ai)(1 − F (ai))

]
, (10)

where ui = yi−F (ai), ai is the ith element of the vector a in Equation 4, and θ = (β⊤, γ⊤, λ)⊤

is the (k + l + 1) × 1 vector of population parameters.
The p × 1 population moment conditions are then

E [hiũi(θ)] = 0, (11)

where hi is a p × 1 vector of instruments such that p ≥ k + l + 1 for identification issues. The
sample analog of the population moment conditions in Equation 11 in vector form is

g(θ) = n−1H⊤ũ, (12)
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where ũ is the n × 1 vector of the estimated generalized residuals. The n × p matrix of
instrument is given by the independent columns of H = (Z, WZ, W2Z, . . . , WqZ) for some
given q (Kelejian and Prucha 1998; Kelejian, Prucha, and Yuzefovich 2004). The p×p variance
matrix of the moment conditions is given by

S(θ) = VAR [g(θ)] ,

= n−1H⊤TH,
(13)

where T is a diagonal matrix whose elements are f2(ai)/ [F (ai)(1 − F (ai))].

3.2. General GMM estimator

Let Ψ̂ be some p × p symmetric positive semidefinite moment-weighting matrix such that
Ψ̂

p−→ Ψ , then the corresponding GMM estimator is defined as

θ̂GMM = argmin
θ∈Θ

J(θ) = g⊤(θ)Ψ̂g(θ), (14)

where g is the p×1 vector of sample moments given in Equation 12. Under certain regularity
conditions, the GMM estimator is consistent and asymptotically normally distributed with
estimated variance-covariance matrix given by (see Pinkse and Slade 1998, p. 134)

V̂GMM = n
[(

Ĝ⊤H
)

Ψ̂
(
H⊤Ĝ

)]−1 [(
Ĝ⊤H

)
Ψ̂ ŜΨ̂

(
H⊤Ĝ

)] [(
Ĝ⊤H

)
Ψ̂

(
H⊤Ĝ

)]−1
, (15)

where Ĝ is an n × (k + l + 1) matrix of first derivatives of the generalized residuals such that

Ĝ = ∂ũ
∂θ⊤

∣∣∣∣
θ̂

,

and the p × p matrix Ŝ is a consistent estimator of Equation 13.
Unlike the traditional GMM estimator for spatial models with continuous dependent variables
(see for example Kelejian and Prucha 1998, 1999), the GMM estimator for the SARB model
requires the computation of the inverse of the n × n matrix Aλ = (In − λW). Of course, the
inversion slows down the optimization procedure increasing the computation time. However,
these computation issues can be simplified using matrix approximation methods as proposed
by Santos and Proença (2019).12

One-step GMM estimators

The one-step procedure estimates the model parameters based on an initial weight matrix
Ψ̂ . Following Klier and McMillen (2008) and Pinkse and Slade (1998), we consider two types
of one-step GMM estimators. The first estimator is obtained by setting Ψ̂ =

(
n−1H⊤H

)−1
,

that is
12To reduce computation time, the current implementation of spldv takes advantage of sparse matrices

routines available from the Matrix package (Bates, Maechler, and Jagan 2023). Users can also reduce the
computation time when n is large by applying the expansion A−1

λ =
∑∞

q=0 (λW)q setting the arguments
approximation = TRUE and fixing q with the argument pw. Of course, this approximation is effective as long
as the spatial weighting matrix is sparse. See the examples in Section 5. Future releases of the package
spldv will include other ways to speed up the computation such as, for example, the approximation methods
proposed by Santos and Proença (2019).
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θ̃OS,H = argmin
θ∈Θ

J(θ) =
( 1

n
ũ⊤H

) (
n−1H⊤H

)−1
( 1

n
H⊤ũ

)
. (16)

This one-step estimator is a natural adaptation of the estimator proposed by Klier and
McMillen (2008) to estimate a spatial lag binary dependent model with a logistically dis-
tributed error term. The variance-covariance matrix for θ̃OS,H can be estimated as:

V̂
(
θ̃OS,H

)
=n

[
G̃⊤H

(
H⊤H

)−1
H⊤G̃

]−1 [
G̃⊤H

(
H⊤H

)−1
S̃

(
H⊤H

)−1
H⊤G̃

]
×

[
G̃⊤H

(
H⊤H

)−1
H⊤G̃

]−1
,

(17)

where the estimator for S̃ is

S̃
(
θ̃OS,H

)
= 1

n

n∑
i=1

hi

[
ϕ2(ãi)

Φ(ãi)(1 − Φ(ãi))

]
h⊤

i , (18)

and ãi is the ith element of Equation 4 evaluated at θ̃OS,H .
As in Pinkse and Slade (1998), the second one-step estimator sets Ψ̂ = Ip yielding

θ̃OS,I = argmin
θ∈Θ

J(θ) = g⊤g. (19)

This estimator can be viewed as an unweighted nonlinear least squares estimator in which
J(θ) is the sum of p squared sample average of the moment conditions (Cameron and Trivedi
2005). The estimator of the variance-covariance matrix in this case is:

V̂
(
θ̃OS,I

)
=n

[
Ĝ⊤HH⊤Ĝ

]−1 [
Ĝ⊤HŜH⊤Ĝ

] [
Ĝ⊤HH⊤Ĝ

]−1
.

Under the assumptions made, the choice of the weight matrix Ψ̂ should not affect the con-
sistency of the one-step estimators. However, we should observe differences in finite samples
(see Piras and Sarrias 2023).

Demonstration of one-step GMM estimators

The one-step GMM estimator θ̃OS,H given in Equation 16 can be fitted using the sbinaryGMM
function from spldv and the simulated data from Section 2.3 as follows:

R> library("spldv")

R> os_R <- sbinaryGMM(y ~ x + z | x, link = "probit", listw = W,
+ nins = 2, data = data, type = "onestep", winitial = "optimal")

First-step GMM optimization based on optimal initial weight matrix

The formula argument of sbinaryGMM consists of two parts with the general form being y ~ x
| wx, where y is the binary dependent variable, x are the exogenous regressors, and wx are the
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spatially lagged independent variables, which must appear also in the first part.13 The argu-
ment link indicates whether a logit (link = "logit") or probit (link = "probit") model
should be fitted. As in other packages dealing with spatial models in R, the argument listw
handles the spatial weight matrix. The argument can be either of class ‘listw’, ‘matrix’, or
‘Matrix’. The argument nins defines the number of lags to be included in the instrument
matrix. For example, if nins = 2 (which is also the default value), then H = (Z, WZ, W2Z).
The instruments are stored in the object os_R and can be retrieved as follows:

R> head(os_R$H)

6 x 8 Matrix of class "dgeMatrix"
(Intercept) x z lag_x W*z W*lag_x

1 1 -0.6264538 0.08492106 -0.17162223 0.5640233 -0.03326320
2 1 0.1836433 0.99477051 -0.17181750 0.4196241 -0.02199433
3 1 -0.8356286 0.40144412 -0.08190726 0.6560343 -0.29234035
4 1 1.5952808 0.89564630 -0.28573648 0.6423895 0.04205991
5 1 0.3295078 0.87685841 -0.02932424 0.5492231 0.01129188
6 1 -0.8204684 0.29648480 0.45128864 0.5417832 -0.03034083

WW*z WW*lag_x
1 0.4274437 -0.04584257
2 0.6010576 -0.07847112
3 0.5051597 -0.06991665
4 0.5416661 -0.08334591
5 0.5612784 -0.01820690
6 0.5327470 0.08178005

Note that the matrix of instruments does not contain the variable WW*x since WW*x and
W*lag_x are linearly dependent.
The key arguments of sbinaryGMM for fitting different GMM estimators are type and winitial.
The argument type is a string indicating whether the one-step (type = "onestep"), or two-
step GMM (type = "twostep") should be computed. The argument winitial is also a
string indicating the initial moment-weighting matrix Ψ̂ for the one-step estimator; it can be
either winitial = "optimal" and then Ψ̂ =

(
n−1H⊤H

)−1
as in Equation 16 (the default)

or winitial = "identity" and then Ψ̂ = Ip as in Equation 19.

R> summary(os_R)

------------------------------------------------------------
SLM Binary Model by GMM

------------------------------------------------------------

Call:
sbinaryGMM(formula = y ~ x + z | x, data = data, listw = W, nins = 2,

link = "probit", winitial = "optimal", type = "onestep")
13This rules out situations in which one of the regressors can be specified only in lagged form.
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Coefficients:
Estimate Std. Error z-value Pr(>|z|)

(Intercept) -0.447141 0.124552 -3.5900 0.0003307 ***
x 0.907657 0.110266 8.2315 2.220e-16 ***
z 0.888341 0.244215 3.6375 0.0002753 ***
lag_x 1.002749 0.279634 3.5859 0.0003359 ***
lambda 0.605980 0.096286 6.2935 3.103e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample size: 506

The output generated from the summary method shows that the point estimates are close
to the true population parameters θ0 = (β0, β1, β2, β3, λ) = (−0.5, 1, 1, 1, 0.6). The standard
errors for the estimated coefficients are computed using the variance-covariance matrix in
Equation 17.
Next, we compute the one-step GMM estimator θ̃OS,I given in Equation 19 by setting
winitial = "identity" and type = "onestep". A glance at the two outputs reveals that
the two estimators θ̃OS,H and θ̃OS,I produce very similar results. This is not surprising given
the sample size of the simulated data. However, we might expect larger differences for smaller
sample sizes.

R> os_I <- sbinaryGMM(y ~ x + z | x, link = "probit", listw = W,
+ nins = 2, data = data, type = "onestep", winitial = "identity")

First-step GMM optimization based on identity initial weight matrix

R> summary(os_I)

------------------------------------------------------------
SLM Binary Model by GMM

------------------------------------------------------------

Call:
sbinaryGMM(formula = y ~ x + z | x, data = data, listw = W, nins = 2,

link = "probit", winitial = "identity", type = "onestep")

Coefficients:
Estimate Std. Error z-value Pr(>|z|)

(Intercept) -0.48218 0.13291 -3.6278 0.0002859 ***
x 0.91262 0.11108 8.2157 2.220e-16 ***
z 0.95661 0.26043 3.6732 0.0002395 ***
lag_x 1.02183 0.29035 3.5193 0.0004326 ***
lambda 0.59996 0.10335 5.8053 6.425e-09 ***
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample size: 506

The average marginal effects are calculated using the function impacts which is an S3 method.
This function also allows to estimate the standard errors of the average total, direct and
indirect effects using either MC approximation or delta method (see Section 2.2).
The average marginal effects for the model os_R can be computed via MC using R = 100
draws by typing:14

R> set.seed(1)
R> summary(impacts(os_R, type = "mc", R = 100, approximation = TRUE,
+ pw = 6))

------------------------------------------------------
(a) Total effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.96139 0.06943 13.847 < 2e-16 ***
z 0.46340 0.13435 3.449 0.000562 ***

------------------------------------------------------
(b) Direct effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.23324 0.01376 16.953 < 2e-16 ***
z 0.20029 0.05240 3.822 0.000132 ***

------------------------------------------------------
(c) Indirect effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.72815 0.06937 10.497 < 2e-16 ***
z 0.26312 0.09749 2.699 0.00696 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The point estimates of the average effects are computed using Equation 8 and are very close to
the true average effects. The argument approximation = TRUE replace the inverse of Aλ by
the expansion A−1

λ = (I − λW)−1 = ∑∞
q=0(λW)q. Even though it was not strictly necessary

in this context, the approximation can be used to speed up the algorithm when the sample
size is particularly large. The argument pw = 6 indicates the number of powers used for the
approximation. It is important to note that increasing the number of powers makes W denser
and, consequently, the computation time is considerably larger.

14Since the MC approach uses random draws, we need to set the seed to make the results fully reproducible.
Additionally, the precision increases with the number of draws. In this example, we fix the number of draws
to 100, however, larger numbers should be considered in practice.
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The delta method to estimate the standard errors can be used by setting type = "delta" in
the impacts function as in the following example:

R> summary(impacts(os_R, type = "delta", approximation = TRUE, pw = 6))

------------------------------------------------------
(a) Total effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.96664 0.06827 14.160 < 2e-16 ***
z 0.44949 0.13570 3.312 0.000925 ***

------------------------------------------------------
(b) Direct effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.23562 0.01360 17.330 < 2e-16 ***
z 0.19945 0.05273 3.783 0.000155 ***

------------------------------------------------------
(c) Indirect effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.73102 0.06894 10.604 <2e-16 ***
z 0.25004 0.09752 2.564 0.0104 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Lacombe and LeSage (2018) do not consider heteroskedasticity when computing the average
marginal effects. This means that they ignore D−1 in Equation 7 so that:

Cr(θ) = diag
(
f

(
A−1

λ Zδ
))

A−1
λ (Inβr + Wγr) . (20)

The function impacts accommodates this situation by simply setting the argument het =
FALSE:

R> summary(impacts(os_R, type = "delta", approximation = TRUE,
+ pw = 6, het = FALSE))

------------------------------------------------------
(a) Total effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 1.01436 0.08407 12.065 < 2e-16 ***
z 0.47168 0.14616 3.227 0.00125 **

------------------------------------------------------
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(b) Direct effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.24707 0.01517 16.287 < 2e-16 ***
z 0.20924 0.05474 3.822 0.000132 ***

------------------------------------------------------
(c) Indirect effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.76729 0.08139 9.427 <2e-16 ***
z 0.26244 0.10567 2.484 0.013 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The total effect for each spatial unit can be computed as ı⊤
n Cr(θ̂). The following syntax

shows how the user can obtain the total effect of x from the object os_R. First, we extract
the estimated coefficients and the variables used to estimate the model:

R> theta.hat <- coef(os_R)
R> lambda.hat <- theta.hat["lambda"]
R> beta.hat <- theta.hat["x"]
R> wbeta.hat <- theta.hat["lag_x"]
R> X <- os_R$X
R> n <- nrow(X)
R> W <- os_R$listw
R> I <- Diagonal(n)
R> A_i <- solve(I - lambda.hat * W)
R> sigmas_u <- sqrt(diag(tcrossprod(A_i)))

Now, we compute the total effects as follows:

R> D_i <- Diagonal(x = 1 / sigmas_u)
R> a <- D_i %*% A_i %*% X %*% as.matrix(theta.hat[1:ncol(X)])
R> dfa <- Diagonal(x = dnorm(as.numeric(a)))
R> Chat_x <- dfa %*% D_i %*% A_i %*% (I * beta.hat + wbeta.hat * W)
R> TE_hat <- as.vector(t(rep(1, n)) %*% Chat_x)

Figure 2 shows the estimated total effect (red curve) for each observation (sorted from low-
to-high) alongside with the true total effects (black curve). The graph shows that the two
curves are very close to each other.

Two-step GMM estimator

It is widely known that one can gain efficiency by computing two-step estimators of the form:

θ̂TS = argmin
θ∈Θ

J(θ) = g⊤(θ)Ψ̂g(θ). (21)



16 GMM Estimators for Binary Spatial Models in R

0 100 200 300 400 500

0.
0

1.
0

2.
0

Census Tracts

To
ta

l E
ffe

ct
s

True Total Effect
Estimated Total Effect

Figure 2: True vs estimated total effects (observational level).

where Ψ̂ = S̃−1, and S̃ is an estimate of the variance-covariance matrix S based on either of
the one-step estimators.
The procedure can be summarized by the following steps (Piras and Sarrias 2023):

1. First, minimize the objective function in Equation 14 by choosing either Ψ̂ = Ip or
Ψ̂ = (n−1H⊤H)−1 to obtain θ̃OS. Note that in either case, θ̃OS is consistent as n → ∞
but not fully efficient.

2. Second, use θ̃OS to obtain the residuals from the first step and calculate S̃ using Equa-
tion 18. Set Ψ̂ = S̃−1 and minimize Equation 21 to obtain the final round estimate θ̂T S .
The estimated asymptotic variance is given by:

V̂EGMM = n
[
Ĝ⊤HΨ̂H⊤Ĝ

]−1
, (22)

where Ψ̂ = S̃−1.15 However, as pointed out by Cameron and Trivedi (2005) in finite
samples the estimator in Equation 22 might be biased. In such cases, it could be better
to use Equation 15, where Ψ̂ = S̃−1, and Ŝ is computed using Equation 18 and θ̂TS.

Demonstration of two-step GMM estimators
The two-step GMM estimators are obtained by setting type = "twostep". The argument
winitial allows the user to estimate θ̃OS,H or θ̃OS,I as the first-step estimator to construct
the moment weighing matrix S̃ in Equation 18.
Thus, to fit a two-step GMM using θ̃OS,H as first-step estimate we type:

R> ts_H <- sbinaryGMM(y ~ x + z | x, link = "probit", listw = W,
+ nins = 2, data = data, type = "twostep", winitial = "optimal")

15Since any consistent estimate of θ can be used, an alternative is to evaluate S at θ̂TS.
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First-step GMM optimization based on optimal initial weight matrix

Second-step GMM optimization using S moment-weighing matrix

R> summary(ts_H)

------------------------------------------------------------
SLM Binary Model by GMM

------------------------------------------------------------

Call:
sbinaryGMM(formula = y ~ x + z | x, data = data, listw = W, nins = 2,

link = "probit", winitial = "optimal", type = "twostep")

Coefficients:
Estimate Std. Error z-value Pr(>|z|)

(Intercept) -0.451177 0.124341 -3.6285 0.0002850 ***
x 0.909178 0.109571 8.2976 < 2.2e-16 ***
z 0.894382 0.243829 3.6681 0.0002444 ***
lag_x 1.015515 0.277896 3.6543 0.0002579 ***
lambda 0.602701 0.096319 6.2573 3.916e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample size: 506

By default, the summary method computes the standard errors using Equation 15, where Ψ̂ =
S̃−1, and Ŝ is computed using Equation 18 and θ̂TS. As an alternative, in order to estimate
the standard errors using the more efficient variance-covariance matrix in Equation 22, we
type

R> summary(ts_H, vce = "efficient")

------------------------------------------------------------
SLM Binary Model by GMM

------------------------------------------------------------

Call:
sbinaryGMM(formula = y ~ x + z | x, data = data, listw = W, nins = 2,

link = "probit", winitial = "optimal", type = "twostep")

Coefficients:
Estimate Std. Error z-value Pr(>|z|)

(Intercept) -0.451177 0.124517 -3.6234 0.0002907 ***
x 0.909178 0.109736 8.2851 2.220e-16 ***
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z 0.894382 0.244131 3.6635 0.0002488 ***
lag_x 1.015515 0.278442 3.6471 0.0002652 ***
lambda 0.602701 0.096452 6.2487 4.138e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample size: 506

Note that in this case, the overall statistical significance of the estimated coefficients do not
change since the standard errors are only slightly different.
To incorporate the efficient VC matrix in the computation of the average marginal effects, we
can use the following syntax:

R> summary(impacts(ts_H, type = "delta", vce = "efficient",
+ approximation = TRUE, pw = 6))

------------------------------------------------------
(a) Total effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.96667 0.06818 14.178 < 2e-16 ***
z 0.44920 0.13497 3.328 0.000874 ***

------------------------------------------------------
(b) Direct effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.23577 0.01356 17.389 < 2e-16 ***
z 0.20052 0.05267 3.807 0.000141 ***

------------------------------------------------------
(c) Indirect effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.73090 0.06888 10.611 <2e-16 ***
z 0.24869 0.09697 2.565 0.0103 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.3. Linearized GMM estimator

One of the main drawback of the previous GMM estimators is that they require the inversion
of the n × n matrix Aλ which can be very time consuming for large data sets. To overcome
this problem, Klier and McMillen (2008) propose a linearized version of the one-step GMM
estimator around the starting point λ = 0. When λ = 0, β is estimated consistently by stan-
dard Probit/Logit model and A−1

λ = In so that no matrices need to be inverted. Linearizing



Journal of Statistical Software 19

the generalized residuals around the initial estimates of θ (i.e, θ0), Klier and McMillen (2008)
obtain ũi ≈ ũ0

i − G(θ − θ0). If we define υi = ũ0
i + Gθ0 − Gθ and letting Ψ = (H⊤H), the

objective function becomes υ⊤H
(
H⊤H

)−1
H⊤υ.

The steps for the linearized spatial probit/logit model are the following (Klier and McMillen
2008, p. 462):

1. Estimate the spatial model by standard probit/logit model, in which spatial autocor-
relation and heteroskedasticity are ignored. The estimated values are β̂0. Calculate
the generalized residuals in Equation 10 assuming that λ = 0, and the gradient terms
Gβ = −∂ũ/∂β and Gλ = −∂ũ/∂λ.

2. The second step is a two-stage least squares estimator of the linearized model. Thus,
regress Gβ and Gλ on H. The predicted values are Ĝ =

[
Ĝβ, Ĝλ

]
. Then regress

u0 + G⊤
β β̂0 on Ĝ. The resulting coefficients are the estimated values of β and λ.

The variance-covariance matrix can be computed using the heteroskedasticity correction based
on the residuals of the (last) two-stage least squares estimator of the linearized model.

Demonstration of linearized GMM estimator

The linearized GMM estimator can be computed using the function sbinaryLGMM as follows:16

R> lgmm <- sbinaryLGMM(y ~ x + z | x, link = "probit", listw = W,
+ nins = 2, data = data)
R> summary(lgmm)

------------------------------------------------------------
SLM Binary Model by Linearized GMM

------------------------------------------------------------

Call:
sbinaryLGMM(formula = y ~ x + z | x, data = data, listw = W,

nins = 2, link = "probit")

Coefficients:
Estimate Std. Error z-value Pr(>|z|)

(Intercept) -0.43962 0.12665 -3.4710 0.0005185 ***
x 0.67689 0.11133 6.0800 1.202e-09 ***
z 0.85513 0.22470 3.8057 0.0001414 ***
lag_x 0.70256 0.36642 1.9174 0.0551892 .
lambda 0.74306 0.17462 4.2553 2.088e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

16The functions spprobit and splogit of McSpatial package (McMillen 2013) also implement the linearized
GMM probit and logit model, respectively. However, they do not allow for spatially lagged independent
variables nor for the computation of the marginal effects. See Section 5.
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Sample size: 506

Similar to sbinaryGMM, the formula argument of sbinaryLGMM consists of two parts fol-
lowing the general form y ~ x | wx. The argument link indicates whether a logit (link
= "logit") or probit (link = "probit") model should be fitted and the argument nins
indicates the number of spatial lags of the exogenous variables to be used as instruments.
The average marginal effects can also be computed using the function impacts:

R> summary(impacts(lgmm, type = "delta", approximation = TRUE, pw = 6))

------------------------------------------------------
(a) Total effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.9865 0.1323 7.458 8.79e-14 ***
z 0.6116 0.2519 2.428 0.0152 *

------------------------------------------------------
(b) Direct effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.19795 0.02486 7.964 1.66e-15 ***
z 0.20848 0.05186 4.020 5.83e-05 ***

------------------------------------------------------
(c) Indirect effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
x 0.7886 0.1380 5.715 1.1e-08 ***
z 0.4031 0.2290 1.760 0.0783 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.4. Properties of GMM estimators

Piras and Sarrias (2023) perform a Monte Carlo experiment comparing one- and two-step
GMM, the LGMM, and the RIS estimators of the SARB model.17 They found that the LGMM
is the estimator that presents the largest bias and the highest standard deviation among all
the considered estimators, particularly if the degree of spatial dependence is significantly
large. Similar evidence was also reported by Calabrese and Elkink (2014) who compared five
estimators: Expectation Maximization, GIBBS, RIS, one-step GMM and LGMM.
In terms of one-step GMM estimator, Piras and Sarrias (2023) also found that the initial
optimal moment-weighting matrix, Ψ̂ =

(
n−1H⊤H

)−1
, outperforms the estimator based on

17As a referee correctly pointed out, users may need some guidance in choosing the various GMM estimators.
Hence we added this subsection that is almost entirely based on the results obtained by Piras and Sarrias (2023).
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the identity matrix, Ψ̂ = Ip, in both efficiency and bias. This result may explain the poor
performance of the one-step GMM in Calabrese and Elkink (2014)’s study. Finally, Piras
and Sarrias (2023) show that the efficiency not always improves when a two-step estimator is
adopted and the sample size is small. However, if the sample size is sufficiently large (i.e., in
the order of 500 observations), then the two-step estimators achieve similar efficiency as the
RIS.

4. An empirical example
In this section, we provide an empirical application. For this purpose, we use one of the
Anselin (1988)’s dataset corresponding to a cross-section of 49 neighborhoods in Columbus,
Ohio. The resulting model is used to explain the crime rate as a function of household income
and housing values. In particular, the variables contained in the dataset are the following:

• CRIME: residential burglaries and vehicle thefts per thousand household in the neighbor-
hood.

• HOVAL: housing value in USD 1,000.

• INC: household income in USD 1,000.

We start our analysis by loading the columbus shapefile and the corresponding spatial weights
matrix into R:

R> columbus <- st_read(system.file("shapes/columbus.shp",
+ package = "spData")[1], quiet = TRUE)
R> col.nb <- read.gal(system.file("weights/columbus.gal",
+ package = "spData")[1])
R> W.col <- nb2listw(col.nb, style = "W")

We recode the dependent variable CRIME in order to obtain a binary dependent variable
(CRIMED). The neighborhoods are classified as having “high-crime” rates if their residential
burglaries and vehicle thefts are higher than 37 per thousand households, and “low-crime”
rates otherwise. We choose this number in order to obtain a binary variable with a balanced
number of zeros and ones.

R> columbus$CRIMED <- as.numeric(columbus$CRIME > 37)

The next step is to estimate different spatial GMM models for the columbus dataset. As a
benchmark, we first estimate the classical probit model using the glm function. Then we move
to the various GMM estimators presented in the previous section. In particular, we start by
the linearized GMM, and then move to the one-step and two-step GMM estimators under
different initial-weighting matrices — winitial = "identity" and winitial = "optimal".
One- and two-step GMM estimators are estimated using constrained optimization by setting
the argument cons.opt = TRUE to take into account the parameter space of the spatial
coefficient. In this case, λ is constrained to be in the interval λ ∈ (ω−1

min, ω−1
max), where ωmin

and ωmax denote the smallest and largest (real) eigenvalues of W, respectively.
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Probit LGMM OS-I OS-O TS-I TS-O TS-O-E
(Intercept) 3.331∗∗∗ 3.103∗∗∗ 4.705 4.252∗∗ 4.356∗∗∗ 4.304∗∗∗ 4.304∗∗∗

(0.886) (0.952) (5.670) (1.764) (1.420) (1.405) (1.408)
INC −0.196∗∗∗−0.164∗∗ −0.228 −0.216∗∗∗−0.209∗∗∗−0.207∗∗∗ −0.207∗∗∗

(0.062) (0.072) (0.175) (0.077) (0.065) (0.065) (0.064)
HOVAL −0.023 −0.023 −0.047 −0.040 −0.045∗ −0.044∗ −0.044∗

(0.015) (0.017) (0.098) (0.030) (0.026) (0.026) (0.026)
λ 0.746∗∗∗ 0.662 0.745∗∗∗ 0.753∗∗∗ 0.750∗∗∗ 0.750∗∗∗

(0.150) (0.425) (0.131) (0.126) (0.128) (0.127)
N 49 49 49 49 49 49 49
Significance: ∗ ∗ ∗ ≡ p < 0.01; ∗∗ ≡ p < 0.05; ∗ ≡ p < 0.1

Table 1: SARB probit estimates for columbus example.

R> slm <- CRIMED ~ INC + HOVAL
R> probit <- glm(slm, family = binomial("probit"), data = columbus)
R> lgmm <- sbinaryLGMM(slm, link = "probit", listw = W.col,
+ data = columbus)
R> osI <- sbinaryGMM(slm, link = "probit", listw = W.col,
+ data = columbus, type = "onestep", initial = "identity",
+ cons.opt = TRUE, verbose = FALSE)
R> osR <- sbinaryGMM(slm, link = "probit", listw = W.col,
+ data = columbus, type = "onestep", winitial = "optimal",
+ cons.opt = TRUE, verbose = FALSE)
R> tsI <- sbinaryGMM(slm, link = "probit", listw = W.col,
+ data = columbus, type = "twostep", winitial = "identity",
+ cons.opt = TRUE, verbose = FALSE)
R> tsR <- sbinaryGMM(slm, link = "probit", listw = W.col,
+ data = columbus, type = "twostep", winitial = "optimal",
+ cons.opt = TRUE, verbose = FALSE)
R> tsR_E <- summary(tsR, vce = "efficient")

To have a better visualization of the results, we use the mtable function from memisc package
(Elff 2023). Table 1 presents the estimates from the various models.

R> library("memisc")
R> table <- mtable("Probit" = probit, "LGMM" = lgmm, "OS-I" = osI,
+ "OS-O" = osR, "TS-I" = tsI, "TS-O" = tsR, "TS-O-E" = tsR_E,
+ summary.stats = c("N"),
+ signif.symbols = c("***" = .01, "**" = 0.05, "*" = 0.1))
R> table

The probit estimates are presented in the first column. The results show that an increase
of neighborhood’s income is correlated, on average, with a decrease in the propensity of
having high crime. Housing value of the neighborhood, although negative, is not statistically
significant. The linearized, one- and two-step GMM estimators provide similar estimates for
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λ in terms of magnitude. The spatial autoregressive parameter λ is positive and it provides
strong evidence of positive spatial autocorrelation on the propensity of having high-crime
rates. The coefficients for INC and HOVAL are similar to the probit estimates, though slightly
more negative (with the exception of the LGMM). The last column shows the estimates
for θ̃T S,H using the efficient variance-covariance matrix. As expected, the standard errors are
slightly lower than the estimator that uses the robust variance-covariance matrix (Column 6).
For completeness, we also compute the average marginal effects for the last model in Table 1
using the delta method approach for the estimation of the standard errors.

R> me_delta <- impacts(tsR, type = "delta", vce = "efficient")
R> summary(me_delta)

------------------------------------------------------
(a) Total effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
INC -0.09539 0.01748 -5.458 4.81e-08 ***
HOVAL -0.02027 0.01284 -1.578 0.114

------------------------------------------------------
(b) Direct effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
INC -0.029356 0.007656 -3.834 0.000126 ***
HOVAL -0.006238 0.002767 -2.254 0.024185 *

------------------------------------------------------
(c) Indirect effects :
------------------------------------------------------

dydx Std. error z value Pr(> z)
INC -0.06604 0.02244 -2.943 0.00325 **
HOVAL -0.01403 0.01077 -1.302 0.19280
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results show that the variable that exerts the largest negative direct impact is INC
(i.e., INC produces the largest reduction on the own-probability of having high crime). The
point estimate indicates that, on average, every one thousand dollars in neighborhood’s income
reduces the probability of having high-crime rate of approximately 3%. Note that this average
partial change also includes the effect of feedback loops. The average direct effect for HOVAL
is also negative and significant at the 5%.
The indirect effects can be useful to identify which variable produces the largest spatial
spillovers effect. In this example, negative indirect effects would represent a positive exter-
nality. That is, an increase in the housing value of spatial unit j would reduce the probability
of having high-crime rates in j’s neighbors. According to the results, the average indirect
effect for INC and HOVAL are −0.066 and −0.014, respectively, accounting approximately for
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the 70% of the total effect. However, we cannot reject the null hypothesis that the indirect
effect for HOVAL is zero.
Considering the variable INC, the sum of the direct and indirect effects accounts for a total
negative effect of approximately 10%. In other words, an increase in income of one thousand
dollars in all spatial units will generate effects that will transmit through the whole spatial
system and result in a new equilibrium where the total probability of having high crime will
reduce by 10%.
Finally, we use the same specification to estimate a spatial Durbin model (SDM) using the
two-step GMM estimator and including the spatial lag of both INC and HOVAL:

R> sdm <- CRIMED ~ INC + HOVAL | INC + HOVAL
R> tsR_sdm <- sbinaryGMM(sdm, link = "probit", listw = W.col,
+ data = columbus, type = "twostep", winitial = "optimal",
+ cons.opt = TRUE, verbose = FALSE)
R> summary(tsR_sdm, vce = "efficient")

------------------------------------------------------------
SLM Binary Model by GMM

------------------------------------------------------------

Call:
sbinaryGMM(formula = sdm, data = columbus, listw = W.col, link = "probit",

winitial = "optimal", type = "twostep", cons.opt = TRUE,
verbose = FALSE)

Coefficients:
Estimate Std. Error z-value Pr(>|z|)

(Intercept) 9.296052 6.765445 1.3740 0.1694
INC -0.110959 0.111052 -0.9992 0.3177
HOVAL -0.058508 0.032221 -1.8158 0.0694 .
lag_INC -0.470980 0.335828 -1.4024 0.1608
lag_HOVAL 0.018034 0.055994 0.3221 0.7474
lambda 0.083988 0.770141 0.1091 0.9132
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sample size: 49

The results for the SDM shows that none of the coefficients are statistically significant at
the 5%. Hence, we test the hypothesis that the parameters for the spatially lagged variables
are jointly zero using the function linearHypothesis from car package (Fox, Friendly, and
Weisberg 2013):

R> library("car")
R> coefs <- names(coef(tsR_sdm))
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R> linearHypothesis(tsR_sdm, coefs[grep("lag_", coefs)],
+ vcov = vcov(tsR_sdm, type = "efficient"))

Linear hypothesis test

Hypothesis:
lag_INC = 0
lag_HOVAL = 0

Model 1: restricted model
Model 2: CRIMED ~ INC + HOVAL | INC + HOVAL

Note: Coefficient covariance matrix supplied.

Df Chisq Pr(>Chisq)
1
2 2 2.7764 0.2495

The null hypothesis cannot be rejected at conventional levels.

5. Comparison with other functions
In this section, we use the simulated dataset from Section 2.3 and provide a comparison with
other functions available in R in terms of estimation results and computation time.18 We start
the comparison using the functions spprobit (available from McSpatial) and sbinaryLGMM.
Both functions allow to estimate the SARB probit model using the LGMM estimator:

R> library("McSpatial")
R> data$wx <- as.matrix(W) %*% x
R> sdm <- y ~ x + z + wx
R> mcSlgmm <- spprobit(sdm, data = data, wmat = as.matrix(W),
+ winst = ~ z + wx)
R> lgmm2 <- sbinaryLGMM(sdm, link = "probit", listw = W, data = data,
+ nins = 1)

The spprobit function does not allow to include spatially lagged explanatory variables as
a separate formula. Hence, we manually create wx to estimate the SDM. By default, the
spprobit function make use of the matrix of instruments H = (X, WX). Thus, we need to
indicate that only z and wx and their respective lags should be included as instruments. This
is simply achieved by including the winst argument. To be consistent with spprobit, we set
nins = 1 in sbinaryLGMM.19

18We want to emphasize that in this section we are not comparing the statistical properties of different
estimators, that would require a proper Monte Carlo experiment, but rather checking that the different im-
plementations in R give similar results. The computation time is evaluated on different sample sizes but on
a sigle dataset. We use the following version of each package: spldv 0.1.3, McSpatial 2.0, ProbitSpatial 1.1,
spatialprobit 1.0, and R-INLA 23.04.02.

19The function sbinaryLGMM considers only the linearly independent columns of the matrix of instruments.
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Columns 1–4 in Table 2 show that our implementation and spprobit function provide the
same coefficients and standard errors for the LGMM estimator.
Next, we compare the results for the one-step GMM estimator using the functions gmmprobit
(available from McSpatial) and sbinaryGMM. The gmmprobit function uses the procedure
outlined in Klier and McMillen (2008). Specifically, it minimizes the objective function given
in Equation 16 and uses the variance-covariance matrix in Equation 17. An important caveat
is that Klier and McMillen (2008) assumes homokedasticity, so that S̃ = H⊤ŨH where Ũ is
a diagonal matrix with elements ̂̃u2

i . The sbinaryGMM function allows also for this option by
setting s.matrix = "iid".

R> probit <- glm(sdm, family = binomial("probit"), data = data)
R> mcSgmm <- gmmprobit(sdm, data = data, wmat = as.matrix(W),
+ startb = coef(probit), startrho = 0, winst = ~ z + wx)
R> os_2 <- sbinaryGMM(sdm, link = "probit", listw = W, data = data,
+ type = "onestep", winitial = "optimal", s.matrix = "iid",
+ nins = 1, start = c(coef(probit), 0), reltol = 0.0001)

Note that we use the same starting values in both functions and we obtain similar results: the
starting values for γ comes from a standard probit model, whereas the starting value of λ is
set to 0.20 Similarly to spprobit, gmmprobit uses H = (X, WX) as instruments. As for the
optimization algorithm, the default algorithm in sbinaryGMM is the BFGS algorithm, while
gmmprobit uses a Gauss-Newton algorithm (that cannot be changed) with relative tolerance
equals to 0.0001. The results in Columns 5–8 show that both functions provide very similar
results.
In the following lines of code, we estimate the one-step GMM model with the sbinaryGMM
function using the Taylor expansion A−1

λ = (I − λW)−1 ≈
∑∞

q=0(λW)q setting q = 4.
Columns 9–10 of Table 2 show that the results are close to our previous results in Section 3.2.1.

R> os_a <- sbinaryGMM(sdm, link = "probit", listw = W, data = data,
+ type = "onestep", winitial = "optimal", nins = 1,
+ approximation = TRUE, pw = 4, reltol = 0.0001)

Table 2 also includes the results of the function sarprobit from spatialprobit package and
the function ProbitSpatialFit from ProbitSpatial. The sarprobit function provides a
Bayesian estimation routine for the SARB probit model (see LeSage 2000; LeSage, Pace,
Lam, Campanella, and Liu 2011), whereas the function ProbitSpatialFit is a conditional
approximate likelihood estimation (see Martinetti and Geniaux 2017). The results are dis-
played in Columns 11–14. Overall, all the estimators seem to produce similar results for the
spatial autoregressive parameter, λ. However, the ProbitSpatialFit provides the lowest
standard errors across all estimators.

R> library("spatialprobit")
R> library("ProbitSpatial")
R> bayes <- sarprobit(sdm, W = W, data = data, showProgress = FALSE)
R> ml_cond <- ProbitSpatialFit(sdm, W = W, data = data, DGP = "SAR",
+ method = "conditional", varcov = "varcov")

20In practice this is not the optimal choice, but since the focus of this section is comparing different imple-
mentations the initial values are irrelevant as long as they are the same.
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Figure 3: Comparison of computation time across different function and sample sizes: SARB
Probit model.

Finally, we include the function inla from R-INLA package available at https://www.
r-inla.org/download-install, which implements an integrated nested Laplace approxi-
mation.21 Columns 15–16 show that the estimates from inla are similar to the OS-GMM,
Bayes and ML estimates.

R> library("INLA")
R> n <- nrow(data)
R> data$idx <- 1:n
R> e <- eigen(W)$values
R> re.idx <- which(abs(Im(e)) < 1e-6)
R> rho.max <- 1 / max(Re(e[re.idx]))
R> rho.min <- 1 / min(Re(e[re.idx]))
R> mm <- model.matrix(sdm, data)
R> betaprec1 <- 0.001
R> Q.beta1 <- Diagonal(n = ncol(mm), x = 1)
R> Q.beta1 <- betaprec1 * Q.beta1
R> hyper.slm <- list(prec = list(initial = log(1), fixed = TRUE),
+ theta2 = list(prior = "logitbeta", param = c(1, 1)))
R> inlaR <- inla(y ~ -1 + f(idx, model = "slm",
+ args.slm = list(rho.min = rho.min, rho.max = rho.max, W = W,
+ X = mm, Q.beta = Q.beta1), hyper = hyper.slm),
+ data = data, family = "binomial",
+ control.family = list(link = "probit"),
+ control.compute = list(dic = TRUE, cpo = TRUE, config = TRUE))

Figure 3 illustrates the comparison in terms of computation time across the different functions
presented above for different sample sizes. A glance at Figure 3 reveals that the two imple-
mentations of the one-step GMM (sbinaryGMM and gmmprobit) are much slower than any
other functions. Interestingly, the approximated version of sbinaryGMM for sample sizes up

21For more information on the arguments of the function inla and how to specify them correctly we refer the
reader to Gómez-Rubio et al. (2021) and the examples available at https://github.com/becarioprecario/
slm/blob/master/katrina-slm.R. In this manuscript, we have also used the transformation of λ as suggested
by the authors of R-INLA. See the replication code for further details.

https://www.r-inla.org/download-install
https://www.r-inla.org/download-install
https://github.com/becarioprecario/slm/blob/master/katrina-slm.R
https://github.com/becarioprecario/slm/blob/master/katrina-slm.R
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to 10,000 observations takes less than a minute and it is very comparable to the Bayesian es-
timator in sarprobit. The conditional maximum likelihood approach in ProbitSpatialFit
has a similar performance of inla for a sample size up to 15,000. However, for larger sample
sizes inla performs much faster.22 Finally, the linearized version proposed in this paper is
the least computation intensive even compared with the original code in spprobit.

6. Conclusions

The current version of spldv implements most of GMM estimators available in the literature
for spatial models with binary dependent variables. In particular, it allows to estimate one-
and two-step GMM estimators, as well as the linearized version of the GMM procedure for
Probit and Logit spatial autoregressive models. An important feature of spldv is that users
can estimate the spatial Durbin model and compute the direct, indirect, and total effect in a
friendly and flexible way.
In the paper we also give indications on the properties of the various GMM estimators and
compare our implementation with other functions in R. From this comparison we conclude
that there is clearly a trade-off between computation time and properties of estimators. For
the benefit of the users, we try to summarize some of the findings. First of all, unless the
GMM estimators become unfeasible (either because the sample size is too large or the spatial
weighting matrix is too dense to even use the series expansion approximation), the linearized
GMM should not be used because it presents the largest bias and the highest standard
deviation. Second, the one-step estimators are similar in terms of computational time but the
one using the identity matrix is outperformed by the one using optimal moment-weighting
matrix. Moreover, the two-step GMM estimator are the slowest in terms of computational
time but they are more efficient than the one-step. Using our simulated data, the series
expansion approximation produces very similar results in the one-step estimators compared
in the paper. A final indication for users that deals with large sample sizes and relatively
sparse spatial weighting matrix would be to estimate their models using either of the two-step
GMM estimators with the approximation.
There are of course plans to expand the package in the near future. One possible direction
would be to incorporate additional (other than the spatial lag) endogenous variables. In fact,
endogenous variables can be easily dealt with using GMM methods. Another direction to
expand the package would be to consider panel data. Finally, the current version of the
package is limited in that it considers only binary responses. An extension of the package to
spatial models with multiple responses would certainly be very helpful for potential users.
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