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Abstract

The existence of latent clusters with different responses to a treatment is a major
concern in scientific research, as latent effect heterogeneity often emerges due to latent
or unobserved features – e.g., genetic characteristics, personality traits, or hidden mo-
tivations – of the subjects. Conventional random- and fixed-effects methods cannot be
applied to that heterogeneity if the group markers associated with that heterogeneity are
latent or unobserved. Alternative methods that combine regression models and clustering
procedures using Dirichlet process are available, but these methods are complex to imple-
ment, especially for non-linear regression models with discrete or binary outcomes. This
article discusses the R package hdpGLM as a means of implementing a novel hierarchi-
cal Dirichlet process approach to estimate mixtures of generalized linear models outlined
in Ferrari (2020). The methods implemented make it easy for researchers to investigate
heterogeneity in the effect of treatment or background variables and identify clusters of
subjects with differential effects. This package provides several features for out-of-the-
box estimation and to generate numerical summaries and visualizations of the results. A
comparison with other similar R packages is provided.

Keywords: latent effect heterogeneity, regression, semi-parametric Bayesian regression, hier-
archical Dirichlet process, Dirichlet process, clustering methods, unsupervised learning, R,
mixture models.

1. Introduction
Latent heterogeneity in the effect of explanatory variables is a major concern in science.
Uncovering that latent heterogeneity is crucial when the result of the analysis will guide
practices and interventions. For instance, increasing the dosage of a new medication may
improve symptoms of a disease, but it is a major concern of public health authorities to
ensure that a dosage increase does not have the opposite effect (worsening symptoms) for
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some latent sub-populations whose members are unknown in advance due to, for example,
unobserved genetic traits. The COVID pandemic provides a recent example on a global
scale of such concerns about adversarial effect of vaccines for latent sub-populations. Here
is another example from labor economics: The intensity of a job market training program
can be beneficial on average, but can increase marginalization of some groups because of
unobserved personality traits. In these examples, the identification of the latent groups
with adversarial effects is crucial to prevent undesirable consequences, even though the factor
causing heterogeneous effects remains latent and unknown by the researcher.

The presence of latent or unobserved features that create latent effect heterogeneity cannot
be avoided in practice. When there is unobserved or unknown features of sub-populations
causing latent effect heterogeneity and the membership in those sub-populations is unknown,
conventional estimation methods, such as fixed- and random-effects models, are no longer
useful to account for group-specific effects because group identifiers are not observed.

Recent developments, combining machine-learning clustering procedures with traditional re-
gression estimation, provide an attractive alternative. An important class of such methods
include the finite mixture of regression models (Ng, McLachlan, Wang, Ben-Tovim Jones, and
Ng 2006; Villarroel, Marshall, and Barón 2009), and Dirichlet process regression (DPR) (Han-
nah, Blei, and Powell 2011; Heinzl and Tutz 2013). However, these methods are complex,
require expertise in programming languages to implement, and are often difficult to estimate
due to the non-convexity of the objective function and the computational cost involved. More-
over, while there are resourceful, reliable, and user-friendly packages available for R (R Core
Team 2023) users to estimate conventional regression and fixed- and random-effects models,
the same is not true for DPR models, which makes the latter approaches inaccessible for many
practitioners, including those who possess intermediate-level programming skills.

This article discusses the main methodological, implementation, and numerical features of the
software package hdpGLM, available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=hdpGLM. In a nutshell, the software provides an
interface for practitioners to investigate latent effect heterogeneity in their regression analysis.
The hdpGLM package can be used to identify latent heterogeneity across sub-populations in
the association between the explanatory variables and the outcome. The package provides
an easy-to-use implementation of a hierarchical Dirichlet process prior (DPP) regression,
as proposed in Ferrari (2020), for out-of-the-box estimation of linear and generalized linear
models (GLMs), while simultaneously searching for latent clusters in the data that differ
because of the value that the linear coefficients have for one or more of the observed covariates.
When the estimation doesn not find a cluster, it returns linear coefficients whose posterior
average are indistinguishable from the results of conventional regression methods in R –
e.g., those obtained from the function lm.

The estimation using the hdpGLM package is intuitive and easy to conduct. It adopts stan-
dard R symbolic formula notation, as used in the built-in stats package and well-known R
functions for regression estimation, such as lm and glm, providing a seamless transition for
practitioners from classical models to a more complex regression estimation that accounts for
latent effect heterogeneity. The package provides the function hdpGLM to estimate hierarchical
and non-hierarchical DPR.

This function implements the hierarchical Dirichlet process generalized linear model (hdpGLM)
proposed in Ferrari (2020) to estimate a Bayesian Dirichlet process mixture of regression mod-
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els, and to estimate latent heterogeneity in the effect of the linear coefficients. The function
takes R standard regression formulas as an argument, e.g., y ∼ var_1 + var_2 + · · · +
var_d and conducts a data-driven search for clusters. It returns K ∈ N sets of d + 1 linear
coefficients (intercept included) that best fit, in a Bayesian sense, the correlation between the
covariates (var_1, . . . , var_d ) and the outcome (y). The estimation uses MCMC blocked
Gibbs sampler for Gaussian outcomes and Hamiltonian Monte Carlo (HMC) within Gibbs
for non-Gaussian outputs – e.g., binary dependent variables.

In addition, the default methods coef, print, plot, summary, family, nobs, and predict
are supported for objects returned by hdpGLM, making it easy for R users at all levels to
manipulate the estimation results. The package also provides a number of post-processing
functions for generating tidy summaries, visualizations, and classify data points into clusters
based on how the treatment or observed covariates affect the response variable in different
latent subgroups found during the estimation. In particular, the function plot builds on the
ggplot2 package (Wickham 2016), and users can easily customize its aesthetic elements to
fit their needs. The estimation algorithms are fully implemented in C++ (Stroustrup 2013)
for efficient computation using the Rcpp API (Eddelbuettel and François 2011; Eddelbuettel
and Balamuta 2018). The C++ code is seamlessly integrated in the package and the user can
access everything, from estimation to visualization, within R using standard R syntax.

A search on CRAN reveals that the package PReMiuM (Liverani, Hastie, Azizi, Papathomas,
and Richardson 2015) is the only other software available that implements DPP regression
models in R, and whose goal is similar to the hdpGLM software package. Other packages that
implement Dirichlet process models on CRAN are not directly comparable due to differences
in the scope and goal of the application. Even the PReMiuM and hdpGLM packages differ
in various ways, and are designed to accomplish different goals, making them complementary
rather than alternative options to one another. The package PReMiuM provides a rich set
of features, including clustering the data, variable selection methods, procedures to handle
missing values in the explanatory variables, and built-in Markov Chain Monte Carlo (MCMC)
diagnostic checks. However, the Dirichlet process is used to model only the intercept term of
the regression models in that package.

This means that the hdpGLM is unique in two ways. First, it is the only package that esti-
mates and returns the linear coefficients of each cluster found in the analysis, and investigates
heterogeneous effects for all covariates across clusters. In that sense, the goal is very different
than in other packages, such as PReMiuM and DPpackage (Jara, Hanson, Quintana, Müller,
and Rosner 2011), that use Dirichlet process models. Second, the hdpGLM is the only pack-
age that provides the user an option to estimate a hierarchical DPR. The hierarchical DPP
regression in the hdpGLM package investigates if the latent effect heterogeneity across clus-
ters is explained by upper-level covariates, as originally proposed in Ferrari (2020). Table 1
gives a summary of the main similarities and differences between the two main packages on
CRAN, namely hdpGLM and PReMiuM, for DPR estimation in R. Section 6 compares the
performance of these two packages.

In the remainder of this article, I focus on the R implementation of the software package
hdpGLM. For completeness, the next section provides a brief self-contained introduction of
the main ideas behind the underlying hdpGLM implemented in R with the software hdpGLM.
Then, details of the MCMC samplers and some core implementation and design features are
presented. Finally, a general analysis workflow with a real application is illustrated.
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Software

Feature PReMiuM hdpGLM
Main function profRegr hdpGLM

Similarities
Types of outcome supported(a) Discrete or continuous Discrete or continuous
MCMC algorithm(b) Gibbs Gibbs
DPR clustering ✓ ✓
Prediction ✓ ✓

Differences
Hierarchical DPR × ✓
Clusters are based on all coefficients × ✓
Use standard R formula syntax × ✓
Include default methods(c) × ✓

Other features
Variable selection ✓ ×
Handle missing values ✓ ×
MCMC diagnostics(d) Built-in External

Table 1: Comparison between the hdpGLM package and other alternatives. The symbol
✓ indicates the feature is available, and × indicates it is not available. Note: (a) Current
version of PReMiuM supports binary, categorical, count and continuous outcome variables.
hdpGLM’s algorithm is built to support all GLM models; current version includes binary
and continuous outcomes only; (b) For the hdpGLM, Gibbs is used for Gaussian outcomes,
and HMC within Gibbs is required for non-Gaussian outcomes to cluster the data based on
all linear coefficients; (c) Current version of hdpGLM includes coef, family, nobs, plot,
predict, print, and summary; (d) Diagnostics for the hdpGLM can be computed using
specialized packages designed for that purpose, such as coda (Plummer et al. 2006).

2. Background
In classical linear regression models, we estimate a single vector of linear coefficients β =
(β0, . . . , βd), that is, for β ∈ RDx+1 the model is:

y = β0 + β1x1 + · · ·+ βdxd + ϵ β ∈ RDx+1, d = Dx

The coefficient βl, for l ∈ {1, . . . , d} represents the marginal association between the outcome
y and xl. Under some circumstances, it can be interpreted as the causal effect of xl on
y (Angrist and Pischke 2008; Pearl 2009; Imbens and Rubin 2015). One of the assumptions
of those models is that every observation comes from the same underlying model. That is,
a feature xl affects the outcome in the same way for every observation. It means that, if
E [ϵ | X] = 0, for every observation whose value of xl changes, for example, from -10 to 10,
ceteris paribus, the average effect on the outcome will be, with probability 1 (certainty), 20βl.
The same applies for GLMs, except that βl affects the log odds ratio or another transformation
of the average parameter. The core point here is that, by modeling assumptions in linear
regressions, the average effect (e.g., βl) of the covariates (e.g., xl) is constant; that is, there
is no heterogeneity in that effect.
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Dirichlet and Dirichlet process regressions, on the other hand, do not assume such a homo-
geneity on the average effect across subjects (Hannah et al. 2011). Instead, it assumes that
some or all features X can have different effects, on average, on the outcome for different
groups of subjects. When that is the case, if there are K groups, each one with different
average effects, we can describe the model for each group k ∈ {1, . . . , K} as:

yk = β0k + β1kx1 + · · ·+ βdkxd + ϵk βk ∈ RDx+1, β ∈ R(Dx+1)×K , d = Dx

If we knew the number of subgroups (K) and the group membership for each observation, we
could estimate K separate regressions, one for each group, or include a group indicator as an
interactive term. The big advantage of the DPR is that the groups with differential effects
don’t need to be known or observed in advance. In other words, we can use a DPR model
to investigate if there is effect heterogeneity caused by unobserved or omitted variables. The
model estimates the group membership, the average effects of each covariate in each group,
and the proportion of subjects in each cluster.
Denote Zi = k, or Zik for short, the group membership of subject i on group k. Let πk denote
the proportion of subjects on group k. The regression model becomes:

π | α ∼ Dir(α) α = (α1, . . . , αK), αl > 0, l = 1, . . . , K,

π = (π1, . . . , πk, . . . , πK),
∑K

k=1 πk = 1
Zi | π ∼ Cat(π) Zi ∈ {1, . . . , k, . . . , K}

βk | Zik ∼ fβ(b | Z) βk ∈ RDx+1, β ∈ R(Dx+1)×K , Zik ≜ Zi = k

ϵi | Zik ∼ fϵ(e | Z)
yik = βk0 + · · ·+ βkdxid + ϵi d = Dx

(1)

The same formulation works for a Dirichlet mixture of GLMs, with a little modification in the
last two lines of Model 1 above. The Dirichlet process prior (DPP) regression generalizes this
model for an unknown, possible infinite number of groups K, so the total number of groups
K don’t need to be set in advance. In DPP, we substitute the Dirichlet distribution as prior
for π in the Model 1 and use a Dirichlet process prior instead. A constructive way to describe
the model with a DPP was presented in Sethuraman (1994). It is called the stick-breaking
construction (SBC) and for more details, see Teh, Jordan, Beal, and Blei (2006) and Ferrari
(2020). If we denote ∆∞ the infinity simplex and g−1 the inverse link function (e.g., identity
function for Gaussian outcomes, exponential function for Poisson outcomes, inverse-logit for
Bernoulli outcomes, and so on, following standard notation for generalized linear models;
see McCullagh and Nelder (1989)), then the Model 1 can be written as follows in terms of
the SBC and for GLMs:

Vl | αo ∼ Beta(1, αo)

πk =
{

V1, k = 1
Vk

∏k−1
l=1 (1− Vl), k > 1

Zi | π ∼ Cat(π) π ∈ ∆∞, Zi ∈ N

βk | Zik ∼ fβ(b) βk ∈ RDx+1, β ∈ R(Dx+1)×K , Zik ≜ Zi = k

yi | Zik, βk ∼ f(y | Zik, βk) E[yi | Zik, βk] = g−1(X⊤
i βk)

f(y | Zik, βk) from exponential family

(2)
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Researchers have applied Model 2 or some variation of it in many different problems, includ-
ing to relax distributional assumptions on random effects models (Verbeke and Lesaffre 1997;
Heinzl and Tutz 2013); estimate population latent heterogeneity when the group membership
and number of heterogeneous groups are unknown (Mukhopadhyay and Gelfand 1997; Klein-
man and Ibrahim 1998; Hannah et al. 2011; Heinzl and Tutz 2013); model latent instrumental
variables to deal with endogeneity of covariates (Ebbes, Wedel, Böckenholt, and Steerneman
2005; Ebbes, Wedel, and Böckenholt 2009); study effect heterogeneity in job market train-
ing programs (Aakvik, Heckman, and Vytlacil 2005; Heckman and Vytlacil 2007; Matzkin
2007; Ichimura and Todd 2007; Chen 2007); investigate consumer demand in discrete choice
models (Rossi, Allenby, and McCulloch 2012; Rossi 2014); study the length of time political
appointees stay in their appointed position (Gill and Casella 2009); discern political prior-
ities of senators (Grimmer 2009); track intraparty voting (Spirling and Quinn 2010); study
immigrant turnout in elections (Traunmuller, Murr, and Gill 2015); and investigate dynamic
aspects of public support for welfare policies (Stegmueller 2013).

Ferrari (2020) proposes a model called hdpGLM which generalizes Model 2 for hierarchical
data and estimates context-dependent DPP regressions. The generalization makes it possible
to use the model on data sets with and without hierarchical structures. The reader can find
detailed information about hierarchical Dirichlet process more generally in Teh et al. (2006).
Hierarchical data is very common in science. Examples include students nested within schools,
voters nested within cities or states, patients nested within hospitals, people nested within
countries, legislators nested within state legislatures, and so on.

Essentially, the main idea of the hdpGLM model is the following: Let’s call the upper-level
information (e.g., school, cities, states, hospitals, or countries) the context of the lower-level
data point (e.g., students, voters, patients, people). The hdpGLM models heterogeneity in
the effect of lower-level features (e.g., family income) of subjects (e.g., patients) across la-
tent clusters in each context (e.g., hospitals or cities), and estimates how the within-context
latent heterogeneity depends on features of the context (e.g., hospitals’ investments in post-
treatment care). In that sense, it differs substantially from the goals of conventional hierar-
chical models – random and fixed effects–or their Dirichlet extension (see Kyung, Gill, and
Casella 2009, 2010).

To model the dependence of the clusters on context-level features, the hdpGLM adds a param-
eter τ ∈ R(Dw+1)×(Dx+1) to the model (2), where Dw is the number of context-level covariates
(W ), and Dx is the dimension of within-context, lower-level covariates (X). The parameter
τ captures the dependence of the linear coefficients β on features W of the context. The
hdpGLM leaves that dependence undefined to express its generality. The hdpGLM package
lets the user express that dependence as an upper-level regression on W , as explained in
Section 4. The result of the estimation is a set of vectors of linear coefficients, one for each
latent group within each context, and a set of context-level coefficients indicating how context
features affect within-context effects and latent heterogeneity.

If we use J to denote the number of contexts (e.g., schools, hospitals, states) in the data,
W the context-level features (e.g., school budget, number of teachers per student, etc.), X
the lower level features (e.g., student performance, gender, race, etc.), and Ci = j, or Cij for
short, a variable indicating that the observation i comes from context j, then the hdpGLM
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model can be formally described as follows:

Vl | αo ∼ Beta(1, αo)

πk =
{

V1, k = 1
Vk

∏k−1
l=1 (1− Vl), k > 1

Zi | π ∼ Cat(π) π ∈ ∆∞, Zi ∈ N
τd ∼ fτ (t) d = 1, . . . , Dx + 1

βkj | Zik, τ, Cij , W ∼ fβ(b |W, τ) X ∈ RDx+1; W ∈ RDw+1,

βkj ∈ RDx+1, β ∈ R(Dx+1)×K×(Dw+1),

Zik ≜ Zi = k, Cij ≜ Ci = j ∈ {1, . . . , J}
yi | Zik, βkj , Xi, Cij ∼ f(yi | Zik, Cij , Xi, βkj) E[yi | Zik, βkj , Xi, Cij ] = g−1(X⊤

i βkj),
f(yi | Zik, Cij , Xi, βkj) from

exponential family
(3)

Basically, the Model 3 generalizes DPP regression models. More details can be found in Ferrari
(2020). Note that in this model, the coefficients β are three-dimensional real-valued matrices,
that is, β ∈ R(Dx+1)×K×(Dw+1). Henceforth, the indices lkj in βlkj indicate the coefficient of
xl for group k in context j, and βkj represents the entire Dx + 1 vector of coefficients of X
for cluster k and context j.

3. MCMC sampler
The package hdpGLM implements Models 2 and 3 for R users using the MCMC algorithm
proposed in Ferrari (2020). There are a few options to estimate DPP regression models using
MCMC (Ishwaran and Zarepour 2000; Neal 2000; Blei and Jordan 2006; Walker 2007). Ferrari
(2020) follows Ishwaran and James (2001) and proposes a blocked Gibbs sampler for the
hdpGLM. One of the advantages of the MCMC implementation in the hdpGLM package
is that the number of clusters grow “as needed” during the estimation. The MCMC starts
with all points classified into a single cluster. Then, it follows the rules in Algorithm 1 and
more clusters are generated based on the posterior density. The algorithm uses a normal
distribution for fτ and fβ, and makes β a linear function of context-level features for each
latent cluster, that is E [βkj | ·] = W ⊤

j τ in the prior distribution of β. When the outcome
variable is continuous, these specifications lead to a conjugate prior, and Gibbs update is
available for all parameters of the model (see proof in Ferrari 2020). In that case, we substitute
the last line of Model 3 with a linear model with Gaussian outcomes, and model the prior
parameters as follows:

σ2
k | Zik ∼ Scaled-inv-χ2(v, s2)

ϵi | σk, Zik ∼ N (0, σk)
yi = β0kj + β1kjx1 + · · ·+ βdkjxd + ϵi Zi = k, Ci = j

(4)

It leads to a Gibbs sampler described in Algorithm 1 (for proof, see Ferrari 2020, Appendix A).
Following Ferrari (2020), in the algorithm, Z∗ represents the cluster labels at the current
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Algorithm 1 Gibbs Sampler for the hdpGLM with Gaussian mixtures
Require: Z(t) = (Z(t)

1 , . . . , Z
(t)
n ), θ

(t)
Zi

, τ (t), π(t)

1: For all d ∈ {1, . . . , Dx + 1} sample τ
(t+1)
d | β(t), W ∼ N (µτdj

, Στd
) such that µτdj

=
1
K

∑K
k=1 µ

(k)
A ; Στd

= 1
K ΣA; SA =

(
Σ−1

τ σ2
β + W⊤W

)−1
; µ

(k)
A = SAW⊤β

(t)
dk ; ΣA = SAσ2

β

2: For j = 1, . . . , J

For all k ∈ Z∗
j sample β

(t+1)
kj | Z(t), σ2(t), τ (t+1), X, W, C, y ∼ ND+1(µβ, Σβ) such that

Sβ =
(
Σ−1

β σ2
k + X⊤

kjXkj

)−1
; µβ = Sβ

[
Σ−1

β (W⊤τ (t+1))⊤ + X⊤
kjykj

σ
2(t)
k

]
σ2

k; Σβ = Sβσ
2(t)
k

For all k ∈ Z∗C
j sample β

(t+1)
kj | τ (t+1), W ∼ ND+1((W⊤τ (t+1))⊤, Σβ)

3: For all k ∈ Z∗ sample σ
2(t+1)
k | Z(t), β(t+1), τ (t+1), X, W, C, y ∼ Scale-inv-χ2(ν, s2) such

that ν = ν + N
(t)
k ; s2 = νs2+N

(t)
k

ŝ2

ν+N
(t)
k

; ŝ2 = 1
N

(t)
k

(yk −Xkβ
(t+1)
k )⊤(yk −Xkβ

(t+1)
k )

For all k ∈ Z∗C sample σ
2(t+1)
k | Zi = k ∼ Scale-inv-χ2(ν, s2)

4: For i = 1, . . . , n, sample Z
(t+1)
i | θ(t+1), π(t), Xi, y ∼

∑K
k=1 pikδ(Zi = k) such that pik ∝

π
(t)
k p(yi | Xi, Z

(t)
ik , Cij , θ

(t+1)
kj )

5: For k = 1, . . . , K − 1 sample v
(t+1)
k

iid∼ Beta
(
1 + N

(t+1)
k , αo +

∑K
l=k+1 N

(t+1)
l

)
such that

N
(t+1)
k =

∑n
i=1 I(Z(t+1)

ik )

Set v
(t+1)
K = 1 and compute π

(t+1)
k =

v
(t+1)
1 , k = 1

v
(t+1)
k

∏k−1
l=1 (1− v

(t+1)
l ), k = 2, . . . , K

iteration of the MCMC, and Z∗C the values between 1 and K that are not in Z∗. The
number K represents the maximum number of clusters selected by the user (see discussion
below in Section 4.2). The subscript j indicates the context. The variable Nk is the total
number of data points in cluster k, and Xjk (or yjk) the covariates (outcome variable) of the
units i in context j classified to k in the current iteration.
When the outcome is not continuous, Gibbs is not available for coefficients β. In that case, Fer-
rari (2020) proposes a Riemann Manifold Hamiltonian Monte Carlo (RMHMC) update (Giro-
lami and Calderhead 2011) within Gibbs to sample from the posterior distribution of those
parameters. HMC is more efficient than traditional Metropolis-Hastings updates to explore
the posterior distribution, because it takes advantage of the gradient of the posterior distri-
bution (Neal 2011). The HMC uses an ancillary variable v (called momentum) with the same
dimension of β (called position variable). For βkj denoting the linear parameter for cluster k
in context j, the Hamiltonian equation is defined as:

H(βkj , v) = U(βkj , v) + K(βkj , v)

The HMC (Neal 2011) defines U(βkj , v) = − ln fβkj
(b | ·) and K(βkj , v) = ln fv(v), where

fβkj
(b | ·) is the posterior distribution of βkj , and fv is the distribution of v. Both U() and

K() are convex. Based on the definition of U() and K(), the gradient is:

∇vH(βkj , v) = ∇v ln fv(v)
∇βkj

H(βkj , v) = −∇βkj
ln fβkj

(b | ·)
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Algorithm 2 Riemann Manifold Hamiltonian Monte Carlo
Require: Z(t), β(t), π(t), τ (t)

1: for j = 1, . . . , J and for k ∈ Z∗
j do

2: sample vcurrent ∼ fv(v)
3: Let v ← vcurrent, βkj ← β

(t)
kj

4: Set v ← v − e
2∇βkj

U(βkj) {Start the leapfrog steps}
5: for l = L− 1 do
6: βkj ← βkj + e∇vK(βkj , v)
7: v ← v − e

2∇βkj
U(βkj)

8: end for
9: Set v ← v − e

2∇βkj
U(βkj)

10: Set v = −v
11: sample u ∼ U(0, 1) {HMC update}
12: if u < min

{
1, exp

{
−H(βkj , v) + H(β(t)

kj , vcurrent)
}}

then

13: β
(t+1)
kj ← βkj

14: else
15: β

(t+1)
kj ← β

(t)
kj

16: end if
17: end for

The leapfrog integration solves this system of simultaneous equations (Girolami and Calder-
head 2011; Calin and Chang 2006) using L leapfrog steps of size e. Each step l = 1, . . . , L is
defined by:

vl+ ϵ
2 = vl − ϵ

2∇βkj
H

(
βl

kj , vl+ ϵ
2
)

βl+ϵ
kj = βl

kj + ϵ

2
[
∇vH

(
βl

kj , vl+ ϵ
2
)

+∇vH
(
βl+ϵ

kj , vl+ ϵ
2
)]

vl+ϵ = vl+ ϵ
2 − ϵ

2∇βkj
H

(
βl+ϵ

kj , vl+ ϵ
2
)

This solution leads to the RMHMC update for the parameter β when the outcome variable
is not continuous. Algorithm 2 describes the RMHMC update (see also Neal 2011).

4. hdpGLM package

4.1. Design philosophy, MCMC implementation, and general syntax

The design choices behind the hdpGLM software package, and the hdpGLM function in partic-
ular, seek to: (1) maximize usability for R users at all levels of experience; (2) maximize the
integration of the hdpGLM package into commonly-used R package ecosystems; (3) provide
out-of-the-box DPP and hierarchical DPP models to practitioners to investigate latent het-
erogeneity in all explanatory variables of regression models, and; (4) offer a computationally-
efficient estimation of DPP and hierarchical DPP regression models.
On the latter goal, the MCMC algorithms that estimate the models are fully implemented in
C++ for efficient computation, and all of the package functionalities are available through the
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R language. The C++ code is integrated in R via the C++ API available in the Rcpp pack-
age (Eddelbuettel and François 2011). The MCMC in the hdpGLM package exactly matches
Algorithms 1 and 2 presented in Section 3. For the RMHMC algorithm, the implementa-
tion followed the convention and adopted a normal distribution for the momentum variable
v ∼ N (0, I(Dx+1)×(Dx+1)) (Neal 2011), which simplifies a term of the leapfrog integrator to:

∇vH(βkj , v) = v

The package is fully implemented for continuous and binary outcome variables, and future
versions will include discrete and ordinal outcomes as well. For binary outcome yi ∼ Ber(pkj),
the package uses a logit transformation for the average parameter:

pkj = 1
1 + e−X⊤

i βkj

For that case, the elements of the RMHMC becomes, for each active cluster k:

U(βkj) = − ln fβkj
(b | ·) ∝ −

[
− Dx + 1

2 ln 2π − 1
2 ln(det(Σβ))

− 1
2(βkj − (W ⊤

j τ)⊤)⊤Σ−1
β (βkj − (W ⊤

j τ)⊤)

−
∑
i∈Ik

yi ln
(
1 + e−X⊤

i βkj

)
−

∑
i∈Ik

(1− yi) ln
(
1 + eX⊤

i βkj

) ]

∇βkj
U(βkj) = −

[
− (βkj − (W ⊤

j τ)⊤)⊤Σ−1
β +

∑
i∈Ik

Xiyip(yi = 0 | ·)−
∑
i∈ik

Xi(1− yi)p(yi = 1 | ·)
]

The DPP regression is a special case of hdpGLM when there is just one context (J=1) and
there is no context-level variable W . The algorithm used for DPP regression is the same as
algorithm 1, except that it sets E [β] = 0 for the prior distribution of β and, obviously, does
not sample τ because that parameter is not used. Section 6 contrasts the performance of the
MCMC algorithm implemented in the hdpGLM against the existing alternative in R.
The other goals – integration, usability, and out-of-the-box DPP regression analysis – are
achieved in various ways in the package design. Section 5.1 demonstrates the usability and
integration features in detail, with a workflow example for practical application.
First, the hdpGLM package returns the posterior samples in a ‘mcmc’ object of the R package
coda (Plummer et al. 2006). Various other R packages use coda as the main engine for analysis
of MCMC outputs, such as the MCMCpack (Martin, Quinn, and Park 2011), R2WinBUGS
(Sturtz, Ligges, and Gelman 2005), MCMCglmm (Hadfield 2010), boa (Smith 2007), and
many others. The user can use packages specialized in MCMC diagnostics directly on the
output object of the estimation function hdpGLM, and take advantage of all the coda facilities
to evaluate convergence of the MCMC and visualize sample outputs of DPP regression.
Second, R users don’t need to learn new, intricate syntax or a series of different functions to
estimate the model and create summaries with the results. The design mimics the syntax
of standard, widely-used built-in regression estimation methods from the stats package, such
as the lm and glm functions. The hdpGLM function receives the same basic arguments as
those other functions, including R default symbolic formulas for regression. Moreover, the
underlying method to create design matrices from input data.frames to run the regression,
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and the default methods to print, summarize, and visualize the results, follow standard R
design. For instance, it becomes immediately obvious for R users who have used the built-
in lm function the meaning of the summary output from hdpGLM, provided the differences
between the underlying models are understood – i.e., clustering and Bayesian methods for
hdpGLM regression.
Third, when non-hierarchical DPP regression models are estimated using the hdpGLM pack-
age, only one R-standard symbolic formula is required and the argument is mandatory (more
details are provided in the next section). When hierarchical DPP regression are estimated,
the main function hdpGLM requires an additional formula specifying the upper-level covari-
ates. This design differs from other available options in R to estimate conventional hierarchical
models – i.e., fixed and random effects – such as those provided in the lme4 package (Bates,
Mächler, Bolker, and Walker 2015).
The option for two separate formulas when hierarchical DPP regression is required is due
to several reasons. First, the first formula is mandatory and shares some goals with other
widely-used R functions, such as the lm and glm. I opted to follow standard R syntax to
facilitate usage and remind users that the model shares similar goals of those other regression
estimation functions. In all cases (lm, glm, and hdpGLM), users depart from observed covariates
that they want to include in the regression, based on domain knowledge. Users then run the
model and get the estimated linear coefficients. So, the first formula reflects that common
goal. The main difference is that the hdpGLM function relaxes the modeling assumption of no
latent heterogeneity in the association between the covariates and the outcome, as assumed
by the lm and glm functions.
The second formula is optional and used only if the user wants to investigate the dependency
of the latent heterogeneity on higher-level covariates. Using two separate formula arguments
makes the syntax and the documentation cleaner and more straightforward, and the manip-
ulation of those formulas by internal ancillary functions easier to handle. So, it provides an
end-to-end benefit, from maintenance and development to the usage of the package. Finally,
different from the first formula, the second formula has a different goal that is not matched by
any other R package currently on CRAN. When the second formula is used, the hierarchical
model estimates the effect of higher-order observed covariates on the latent heterogeneity of
the linear effects of lower-level covariates. Different from the first formula, the goal of the
second formula is very different from other hierarchical models implemented in R, e.g., for
fixed and random effects estimation, such as those provided by the lme4 package. Hence, the
package separates formulas instead of adopting lme4-like syntax to remind the user of the
important distinction between the estimation goals of these packages.

4.2. Estimation
A single function called hdpGLM handles the estimation of DPPs (Model 2) and hierarchical
DPP (Model 3) regression models. It can receive one or two different regression formulas that
follow standard R symbolic formula notation. Which model is estimated (DPP or hierarchical
DPP) depends on the numbers of formulas provided, and the function automatically selects
the appropriate sampler to use. A discussion of the design decisions is presented on Section 4.1.
The signature of the function with its default arguments is:

hdpGLM(formula1, formula2 = NULL, data, mcmc, family = "gaussian", K = 100,
context.id = NULL, constants = NULL, n.display = 1000)
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Both the arguments formula1 and formula2 receive standard regression formulas, but only
the former is mandatory. For instance, if we set formula2 = NULL (default) and formula1
= y ~ x1 + x2, the function hdpGLM will run a DPP regression (Model 2), which will search
for latent subgroups that differ on how the outcome y responds to the covariates x1 and x2.
When formula2 is also provided, the function estimates a hierarchical DPP (Model 3) instead.
Following the same example, suppose the observations (e.g., persons) come from J contexts
(e.g., states), and we measured a variable w with context-level information (e.g., state GDP).
If we provided formula2 = y ~ w alongside formula1 as above, we can estimate the effect τ
of w on the latent clusters across contexts (states).
The argument data receives an R data.frame or a more efficient data structure compatible
with it, such as tibble (Müller and Wickham 2023) or data.table (Dowle and Srinivasan
2023). The data must contain the column names specified in the formulas. It is advisable to
normalize all the variables in the data before the estimation for algorithm numerical stability.
The user can provide a string to the argument context.id with the name of the column
in the data frame containing the context labels. This not required, but can facilitate post-
estimation reports because the package provides general as well as context-specific summaries
and plots of the clusters and linear coefficients. The argument can be a meaningful label of
the contexts. For example, if the context is states, we could have a variable named state in
the data with the name of the states. Otherwise, arbitrary labels are assigned to the contexts
to identify them.
The argument mcmc receives a named list with the parameters for the MCMC. The list must
contain two mandatory named elements, burn.in and n.iter. Additionally, it can receive
three optional elements, epsilon, leapFrog, and hmc_iter. The element named burn.in
must be an integer, and it indicates the number of iterations to discard before recording the
samples (MCMC burn-in period). The element n.iter is the number of iterations to keep
after the burn-in. The other elements of the list are only needed if the user wants to tune in the
HMC updates, which is used for non-Gaussian outcomes (see Section 3 and Algorithm 2). The
default values follow recommendations from the literature (Neal 2011) and perform well for
in a variety of cases (Ferrari 2020). If users want to modify those parameters, epsilon must
be a positive number. It is used in the Stormer-Verlet Integrator (a.k.a. leapfrog integrator)
to solve the Hamiltonian Monte Carlo in the estimation of the model. The default value is
0.01. leapFrog must be an integer. It indicates the number of steps taken at each iteration
of the HMC for the Stormer-Verlet Integrator. The default is 40. Finally, hmc_iter must
receive an integer, and it indicates the number of HMC iteration(s) for each Gibbs iteration.
The default is 1. An example of the argument mcmc is:

list(n.iter = 10000, burn.in = 2000, epsilon = 0.01,
leapFrog = 40, hmc_iter = 1)

The initial state of the Gibbs sampler comes from the prior distribution of the parameters,
and the optional argument constants of the function hdpGLM receives a named list with the
constants (prior distributions parameters) of the model specifying those priors. The user can
take advantage of the argument constants to conduct sensitivity analyses. The list received
by that argument can contain a vector named mu_theta, which is the average parameter of the
multivariate normal prior for β, and whose size must match the number of covariates specified
in the argument formula1 plus one for the intercept. The first element of the vector will be
the prior average for the intercept, the second the prior for the coefficient of the first covariate
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that appears in formula1, and so on (see the complete example below). The list can also
contain a square matrix named Sigma_beta, which is the covariance matrix of the multivariate
normal prior of β, and the dimensions must match the size of mu_theta. Users can also set the
prior parameter α0, which is the parameter of the Beta distribution for the SBC (Model 4),
by including in the list an element named alpha with a positive number. Other elements of
the list depend on the family of the GLMs used to capture the outcome variable, which is
specified in the argument family. If the outcome is continuous and modeled with a Gaussian
distribution (family = "gaussian"), then the list can contain an element named s2_sigma,
which is the parameter of the scaled inverse-χ2 distribution of σ2

k as described in Equation 4.
The user can also set df_sigma, which is the parameter v (degrees of freedom of the scaled
inverse-χ2 distribution) in Model 4. Both s2_sigma and df_sigma must be positive numbers.
If constants = NULL (default), the package sets mu_beta = (0, ..., 0) and Sigma_beta
= 10I, where I is an identity matrix. The dimensions are automatically adjusted to match
the model formulas. The prior for the Beta distribution of the SBC is set to alpha = 1. For
Gaussian outcome, it sets the priors for σk as s2_sigma = 10 and df_sigma = 10. These
values produce good estimation performance under various case scenarios (Ferrari 2020).
Here is an example of how to use the argument constants to select the prior parameters in
a regression with two covariates (see Models 3 and 4 for reference):

list(mu_beta = c(0, 0, 0), Sigma_beta = 10*diag(3), df_sigma = 10,
s2_sigma = 10, alpha = 1)

The user can select the argument K to set the upper bound of the truncated Gibbs sampler. As
discussed in Section 3, one of the advantages of the MCMC implementation in the hdpGLM
package for efficient computation is that the number of clusters grow “as needed” during
the estimation. The MCMC starts with all points classified into a single cluster. Then,
it follows the rules in Algorithm 1 and more clusters are generated based on the posterior
density. However, although the actual active clusters (i.e., clusters with data points) in each
iteration can be small, the prior π on the cluster indicator Z must be large enough to let
the active clusters grow as needed. The argument K sets the upper bound for the number
of clusters, which is required by the algorithm to set the size of π (see Ishwaran and James
(2001) and Ferrari (2020)). For instance, if K = 100 (default), the number of active clusters
can grow during the estimation up to 100. If the estimation achieves that upper bound, no
additional cluster is created to allocate the data points. Too large of an upper bound K will
require more memory. If it is too small, it can artificially truncate the number of clusters and
classify the data in less clusters than it should. Users are advised to monitor the number of
active clusters - that is, the number of clusters actually occupied with data points - either
while the MCMC is running or after the estimation is completed. If the upper bound is
achieved at any point, the user can increase it and rerun the analysis (this process will be
automated in future versions).
The package provides two ways to monitor the number of occupied clusters to check if K
needs to increase. After the estimation is completed, the maximum number of active clusters
used at any point during the MCMC is saved in the output of the function hdpGLM (more
details about the complete output are provided below). The user can check if that maximum
is equal or close to K, in which case the user can increase K. For instance:

R> library("hdpGLM")
R> set.seed(777)
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R> sim <- hdpGLM_simulateData(n = 200, nCov = 2, K = 2, nCovj = 1, J = 5,
+ family = "gaussian")
R> df <- sim$data
R> mod <- hdpGLM(y ~ X1 + X2, y ~ W1, data = df, K = 50,
+ mcmc = list(burn.in = 0, n.iter = 100), n.display = 30)
R> mod$max_active

[1] 8

In the example above, the maximum number of clusters activated at any point during the
MCMC was 8, which is much lower than the value of 50 used for K. It indicates that the
algorithm needed much less than 50 clusters to sample from the regions of high density, so
the truncation of π to 50 is not affecting any result.
The user doesn not need to wait until the estimation finishes to check the maximum number
of active clusters. A partial report will be display in R during the MCMC iterations every
time it reaches as many iterations as indicated in the argument n.display of the function
hdpGLM. For instance, if n.display = 30, the function hdpGLM will display a report at every
other 30 iterations. For example, the report after 60 iterations for the previous model will
look like this:

Family of the distribution of the outcome variable of the
mixture components: gaussian

Burn-in: 0
Number of MCMC Iterations : 100

Iteration: 60

Acceptance Rate for beta : 1
Average Acceptance Rate for beta : 1

Maximum Number of Clusters Allowed (K) : 50
Maximum Number of Clusters Activated Among All Contexts : 8
Maximum Number of Clusters Active in the Current Iteration : 8

(displaying only clusters with more than 5% of the data)
Clusters in Context 1

1.0000 3.0000
30.0000 69.0000

Clusters in Context 2
1.0000 2.0000 3.0000 4.0000 5.0000

14.0000 13.0000 18.0000 39.0000 13.5000

Clusters in Context 3
1.0000 2.0000 5.0000
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31.0000 39.5000 26.0000

Clusters in Context 4
1.0000 4.0000 5.0000

19.0000 50.0000 28.0000

Clusters in Context 5
1.0000 2.0000 7.0000
6.5000 32.0000 60.5000

The report contains several important pieces of information. It shows the current iteration
when the report was displayed (Iteration: 60); the acceptance rate (current and on aver-
age) for the parameter β, which is equal to 1 for Gaussian models because they use a Gibbs
sampler, but it is usually smaller than 1 when HMC within Gibbs is used to sample β, which
is the case for regression with non-Gaussian outcomes. It also shows the maximum number
of clusters allowed, which is set by the user using the argument K of the function hdpGLM;
the maximum number of activated clusters up to the iteration the report was generated (8 in
the example); the number of active clusters in the current iteration (8 in the example); and
the percentage of data points in each active cluster in the current iteration (clusters with less
than 5% of the data are omitted in the report).
The output of the function hdpGLM is either an object of class ‘dpGLM’ or ‘hdpGLM’, depending
on which model is estimated (DPP or hierarchical DPP). The object is a list with various
elements, and here is an example of the main ones:

R> class(mod)

[1] "hdpGLM"

R> str(mod)

$ samples : 'mcmc' num [1:2344, 1:6] 1 2 1 2 3 4 5 6 1 2 ...
$ tau : 'mcmc' num [1:100, 1:6] 1.0425 -0.0564 -1.152 0.3185 ...
$ pik : num [1:1000, 1:50] 0.446 0.564 0.416 0.347 0.554 ...
$ max_active : int 8
$ n.iter : int 100
$ burn.in : int 0

The object hdpGLM returned by the function hdpGLM contains an element named samples,
which has the samples of the linear coefficients β for all clusters. That element belongs
to the class ‘mcmc’, which is a class defined and used in various specialized R packages to
produce diagnostics for MCMC samples, such as the package coda. The element named tau
is the posterior distribution of the parameter τ . It is only returned when users estimate a
hierarchical DPP regression.
The pik element of the object hdpGLM is a n×K matrix with the estimated probabilities that
the observation i = 1, . . . , n belongs to the cluster k = 1, . . . , K, where K is the maximum
number of clusters allowed (argument K of the function hdpGLM). The classification of the
data points into clusters use those probabilities.
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4.3. Estimation numerical summaries

The software package hdpGLM uses the default method summary to create a summary of the
posterior samples. To illustrate the summary function provided by the hdpGLM package, con-
sider the model fit previously, mod. Suppose we estimate the following model, which examines
the effect of a new assignment policy (x1) and teacher personality (x2) on student perfor-
mance (y). We collected data on many different schools, and measured school investment in
extracurricular activities (W1).
The dataset df contains columns named y, X1, X2, and W1 measuring the relevant variables.
We can estimate the coefficients β and search for latent subgroups (k) of students who respond
differently to x1 and x2 by using formula1 = y ~ X1 + X2 in the function hdpGLM, and we can
estimate how school investment in extracurricular activities affects the clustering of student
response to covariates by using formula2 = y ~ W1. After the estimation, if we use the
function summary to summarize the object returned by the function hdpGLM it will print the
following (suppose df is the name of the data.frame with the school-student data):

R> summary(mod)

--------------------------------
hdpGLM Object

Maximum number of clusters activated during the estimation: 8
Numer of MCMC iterations: 100
Burn-in: 0

Number of contexts : 5

Number of clusters (summary across contexts):

Average Std.Dev Median Min. Max.
1 3 1.2247 3 2 5
--------------------------------

Summary statistics of clusters with data points in each context

--------------------------------
Coefficients and clusters for context 1

Post.Mean Post.Median HPD.lower HPD.upper Cluster
1 (Intercept) -0.97611 -0.98064 -1.3143 -0.60395 1
2 X1 -5.57226 -5.58286 -5.8340 -5.34086 1
3 X2 2.16103 2.12966 1.7468 2.69694 1
4 (Intercept) -1.49072 -1.46188 -1.8145 -1.15886 3
5 X1 -5.75276 -5.73522 -6.1323 -5.43723 3
6 X2 3.14486 3.19251 2.5276 3.52279 3
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--------------------------------
Coefficients and clusters for context 2

Post.Mean Post.Median HPD.lower HPD.upper Cluster
1 (Intercept) -3.554739 -3.42616 -4.608871 -2.93400 1
2 X1 1.265157 1.18973 0.184679 2.47285 1
3 X2 -17.004367 -17.15814 -17.998191 -15.94061 1
4 (Intercept) -1.039218 -1.14437 -1.808516 -0.50807 2
5 X1 0.415246 0.39460 -0.038041 0.76823 2
6 X2 -17.141898 -17.07015 -17.882653 -16.34140 2
7 (Intercept) -3.206114 -3.58882 -4.696327 3.32715 3
8 X1 0.019245 -0.20007 -1.334364 1.42690 3
9 X2 -16.419047 -17.04453 -20.739489 -12.20822 3
10 (Intercept) -2.903687 -3.12625 -3.711885 -2.58690 4
11 X1 0.470094 0.49289 -0.177659 0.98629 4
12 X2 -16.326264 -16.49657 -16.890567 -15.94055 4
13 (Intercept) -3.609961 -3.77480 -6.672626 -2.12280 5
14 X1 -0.148885 -0.29762 -4.082790 2.07480 5
15 X2 -16.979781 -17.37436 -17.868185 -14.08068 5

--------------------------------
... (truncated)
--------------------------------
Context-level coefficients:

Description Post.Mean HPD.lower HPD.upper
1 Intercept of beta[0] -0.67849 -3.5305 2.10751
2 Intercept of beta[1] -2.52145 -5.4717 0.40664
3 Intercept of beta[2] -0.46091 -3.4801 2.08948
4 Effect of context term 1 on beta[0] 0.74241 -1.2963 2.97354
5 Effect of context term 1 on beta[1] -1.45167 -3.4145 0.69349
6 Effect of context term 1 on beta[2] 4.64269 2.8063 6.44313

--------------------------------

It gives a comprehensive assessment of the main results. The first block of the summary
(named hdpGLM Object) gives the number of iterations used in the MCMC and the number
of clusters activated during the estimation. For a hierarchical DPP regression, it also provides
the number of contexts, and a summary of the clustering results (average, median, minimum,
maximum, and standard deviation of the number of clusters found across contexts). Then,
it prints a full list of the posterior summaries for the linear coefficients of each cluster and
each context. Lastly, for hierarchical DPP regression, the function summary also prints the
posterior summary for the parameter τ , grouped under “Context-level coefficients.” The
applied examples below illustrate the interpretation of these coefficients.
The package hdpGLM also provides a function summary_tidy to create tidy summaries of
the output (Wickham 2014). The tidy summary returns the summary output in a tibble
format. Because that function returns a tidy summary, the user can easily subset and slice
the summary output to retrieve estimates for particular contexts (e.g., schools) or clusters.
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All standard R functions available for data.frame-like structures are readily available to
manipulate the summary output to plot, using packages such as the ggplot2 (Valero-Mora
2010; Ginestet 2011; Wilkinson 2012; Wickham 2016; Gómez-Rubio 2017)), or to create tables
and reports using package ecosystems such as the tidyverse tools (Wickham et al. 2019; Lee,
Sriutaisuk, and Kim 2020) or the R package kableExtra (Zhu 2021) to export the output
table to LATEX.
For a non-hierarchical DPP regression, the function summary_tidy returns a tibble (Müller
and Wickham 2023) with the posterior summary for β. For a hierarchical DPP regression, it
returns a list of two tibble objects, one for β and one for τ :

R> summary_tidy(mod)

$beta
# A tibble: 60 × 9

k j Parameter term Mean Median SD
<dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl>

1 1 1 beta[0] (Intercept) -0.976 -0.981 0.167
2 1 1 beta[1] X1 -5.57 -5.58 0.126
3 1 1 beta[2] X2 2.16 2.13 0.256
4 1 1 sigma sigma 0.616 0.553 0.203
5 1 2 beta[0] (Intercept) -3.55 -3.43 0.564
6 1 2 beta[1] X1 1.27 1.19 0.635
7 1 2 beta[2] X2 -17.0 -17.2 0.705
8 1 2 sigma sigma 0.490 0.481 0.0743
9 1 3 beta[0] (Intercept) 1.07 1.08 0.217

10 1 3 beta[1] X1 -11.5 -11.5 0.269
HPD.lower HPD.upper

<dbl> <dbl>
1 -1.31 -0.604
2 -5.83 -5.34
3 1.75 2.70
4 0.377 1.10
5 -4.61 -2.93
6 0.185 2.47
7 -18.0 -15.9
8 0.387 0.620
9 0.761 1.48

10 -11.8 -11.0
# 50 more rows
# Use `print(n = ...)` to see more rows

$tau
# A tibble: 6 × 8

w beta Parameter Description Mean SD
<int> <int> <chr> <chr> <dbl> <dbl>

1 0 0 tau[0][0] Intercept of beta[0] -0.678 1.52
2 0 1 tau[0][1] Intercept of beta[1] -2.52 1.61



Journal of Statistical Software 19

β1 (Intercept) β2 (X1) β3 (X2)

1 2 3 −2.5 −2.0 −1.5 −3.0 −2.5 −2.0 −1.5 −1.0
0.0

0.2

0.4

0.6

0

1

2

3

0.0

0.5

1.0

1.5

2.0

values

D
en

si
ty

Cluster Mean

Figure 1: Posterior distribution of β produced by function plot of the hdpGLM package.

3 0 2 tau[0][2] Intercept of beta[2] -0.461 1.53
4 1 0 tau[1][0] Effect of W1 on beta[0] 0.742 1.05
5 1 1 tau[1][1] Effect of W1 on beta[1] -1.45 1.06
6 1 2 tau[1][2] Effect of W1 on beta[2] 4.64 0.953

HPD.lower HPD.upper
<dbl> <dbl>

1 -3.53 2.11
2 -5.47 0.407
3 -3.48 2.09
4 -1.30 2.97
5 -3.41 0.693
6 2.81 6.44

4.4. Visualization
The package hdpGLM provides a variety of options to visualize the output of the estimation.
It provides a generic method plot that takes the output of the hdpGLM function with the
posterior samples and generates plots that include cluster posterior averages. The features of
the plot depend on (1) the model estimated (DPP or hierarchical DPP), and (2) the user’s
choice to visualize aggregate or cluster-specific estimates of the coefficients.
Figure 1 shows an example of the output of the plot function for a non-hierarchical DPP
regression estimated using the hdpGLM function with two covariates named x1 and x2 in the
data. The plot shows the posterior distribution of all linear coefficients β for all clusters. The
vertical lines represent the cluster posterior averages.
Users have many built-in options to control plot aesthetics. They can set the argument
separate = TRUE in the plot function to plot the clusters separately. In that case, the plots
also include the 95% highest posterior density intervals for each cluster and coefficient. The
user can also select which coefficients to plot by including an argument term, which receives
a vector of strings with the names of the covariates. For instance, if we use plot(mod,
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Figure 2: Posterior distribution of β in each context (e.g., schools) produced by function plot
of the hdpGLM package.

separate = TRUE, term = c("X1")), the plot created will display the posterior distribution
of all clusters separately with their respective 95% HPD intervals, and it will plot only the
distribution of the coefficients of X1.
If one estimated a hierarchical DPP, then the set of linear coefficients are distributed by
cluster and contexts. Moreover, it estimates an additional set of coefficients τ representing
the context-level effect. The package provides three built-in functions to visualize the results
of the model estimation in that case.
Figure 2 is created by estimating a hierarchical DPP regression estimated using the hdpGLM
function with two covariates named x1 and x2 in the data, and five contexts (e.g., schools)
with a context-level feature named W1:

R> mod <- hdpGLM(y ~ X1 + X2, y ~ W1, data = sim$data, context.id = "school",
+ mcmc = list(burn.in = 0, n.iter = 100))
R> plot(mod, context.id = "school", term = c("X1", "X2"))

In this example, a variable school in the data contains the labels of the contexts: from
School A up to School E. The panels in Figure 2 show the posterior distribution of all linear
coefficients β for all contexts.
The package provides two additional plot functions, plot_tau and plot_pexp_beta, to dis-
play the effect of context-level features on the posterior expectation of the cluster coefficients
β. The function plot_tau displays the posterior distribution of the parameter τ (see Model 3).
Figure 3 shows the plot produced by the function plot_pexp_beta. The bottom row shows
the posterior average of βkj for each cluster k and context j. The top row shows the association
between the context-level feature (W1) and the posterior averages of the βkj .
All the plot functions in the hdpGLM package return a ggplot2 object. Therefore, users
of ggplot2 (Wickham 2016) can easily extend the plots and adjust its elements to fit their
preferences.
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Figure 3: Posterior average of β for each context and cluster and the effect τ of cluster level
features (W1).

4.5. Classification/clustering

After the estimation, we can classify the data points into clusters. It is achieved using the
function classify. The classification uses the posterior probability of the cluster membership
for each data point. Each point is classified into the cluster it has the highest probability to
belong. The function receives two arguments, data and samples. The former receives the
data.frame used in the estimation. The latter uses the output of the estimation. It will
return the same data frame with an additional column called Cluster indicating the cluster
membership of each observation.

5. Analysis workflow

5.1. Applied example

Dirichlet Process Regression

This section shows a typical analysis workflow for applied research using the hdpGLM package.
It assumes the goal of the analysis is to find latent heterogeneity in the association between
the regressors and the outcome, and then cluster the sample based on that heterogeneity.
From that standpoint, the typical analysis using hdpGLM follows the same pattern of other
regression analyses in R, e.g., using the built-in lm R function. The only additional step for
the hdpGLM is the MCMC convergence checks. The analysis starts with a set of observed
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covariates and an outcome variable, selected by the researchers based on domain knowledge.
Then, the researchers estimate the model and check the linear coefficients and their summary
statistics. If one is using the lm function, that means looking at the p-values and 95%
confidence intervals of the linear coefficients. With the hdpGLM, one checks the posterior
mean, 95% highest posterior density (HPD) intervals for each cluster, and the number of
clusters found. The example below illustrates this approach.
A classic problem in political science is understanding the effect of people’s income, the level
of inequality in their neighborhood, and their ideology on their attitudes toward welfare poli-
cies (Alt and Iversen 2017; Armingeon and Weisstanner 2021). Consider the toy dataset
welfare provided with the hdpGLM package. The dataset contains four variables. The out-
come is people’s support for welfare policies (support). It is a function of levels of inequality in
people’s neighborhoods (inequality), their personal income (income), and political ideology
(ideology).

R> data("welfare", package = "hdpGLM")
R> head(welfare)

support inequality income ideology
1 -18.56496 0.33927 0.14251 1.92260
2 -9.39058 -0.99066 -0.51171 0.24833
3 0.92762 -2.23185 -0.38563 -1.36192
4 -12.35945 -3.00795 -0.94406 -0.20887
5 -2.48344 0.10005 0.83222 0.13214
6 -11.41879 -0.95439 -0.88105 0.29164

We can use this data to estimate the effect of inequality, income, and ideology on people’s
support for welfare. Using a classical linear model and the R built-in function lm, one would
have the following results:

R> mod <- lm(support ~ inequality + income + ideology, data = welfare)
R> summary(mod)

Call:
lm(formula = support ~ inequality + income + ideology, data = welfare)

Residuals:
Min 1Q Median 3Q Max

-7.098 -1.351 0.014 1.367 7.026

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.8445 0.0452 -85.10 < 2e-16 ***
inequality 0.2891 0.0449 6.43 1.6e-10 ***
income 3.8446 0.0442 87.01 < 2e-16 ***
ideology -8.3094 0.0456 -182.17 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Residual standard error: 2.02 on 1996 degrees of freedom
Multiple R-squared: 0.954, Adjusted R-squared: 0.954
F-statistic: 1.39e+04 on 3 and 1996 DF, p-value: <2e-16

Looking at the results, one would conclude that all covariates are significantly associated with
the outcome. The variables income and inequality have a positive effect, while ideology
has a negative one. However, latent heterogeneity is likely in these associations due to omitted
factors such as education and gender (Bullock 2021). We can use the hdpGLM to search for
latent subpopulations whose effect of the covariates on the response differs. Starting from the
same set of covariates and the linear specification used above, one can simply run:

R> set.seed(777)
R> mcmc <- list(burn.in = 1000, n.iter = 5000)
R> hdpGLM(support ~ inequality + income + ideology, data = welfare,
+ mcmc = mcmc, K = 30)
R> summary(mod)

--------------------------------
dpGLM model object

Maximum number of clusters activated during the estimation: 15
Numer of MCMC iterations: 5000
burn-in: 1000
--------------------------------

Summary statistics of clusters with data points

--------------------------------
Coefficients for cluster 1 (cluster label 1)

Post.Mean Post.Median HPD.lower HPD.upper
1 (Intercept) -3.8714 -3.87189 -3.94199 -3.7978
2 inequality 1.9988 1.99843 1.93266 2.0719
3 income 3.8512 3.85160 3.77841 3.9232
4 ideology -8.3070 -8.30627 -8.37800 -8.2364
5 sigma 1.0018 0.99971 0.91401 1.0872

--------------------------------
Coefficients for cluster 2 (cluster label 6)

Post.Mean Post.Median HPD.lower HPD.upper
1 (Intercept) -3.81892 -3.81934 -3.89457 -3.7484
2 inequality -1.52476 -1.52559 -1.59384 -1.4548
3 income 3.88159 3.88182 3.82049 3.9541
4 ideology -8.25600 -8.25560 -8.32457 -8.1826
5 sigma 0.97402 0.97472 0.86668 1.0796
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Figure 4: Association between income and support for welfare (left panels) and inequality
and support for welfare (right panels) in each cluster

--------------------------------

The summary function shows the posterior summaries. The interpretation is straightforward.
The summary shows the posterior averages and 95% HPD intervals. There is a clear indication
that the effect of inequality is heterogeneous in the sample, but not the effect of income. Users
can go further and check the number of clusters with nclusters(mod), classify the data using
classify(welfare2, mod), or plot the fitted values for a selected variable for each cluster,
as shown in Figure 4 (code in reproducibility material; it uses ggplot and the output of
summary_tidy(mod)).
As in any Bayesian analysis using MCMC, an important step is to check the MCMC conver-
gence. The user can run MCMC diagnostics directly on the output of the hdpGLM function
on the element samples of the list it returns. For instance, using the coda package (Plum-
mer et al. 2006), users can run geweke.diag(mod$samples) and get the Geweke convergence
check (Geweke 1992), or check the MCMC standard error (Flegal, Haran, and Jones 2008)
with the package mcmcse and the function mcse(mod$samples) (Flegal, Hughes, Vats, Dai,
Gupta, and Maji 2021). It is not recommended to use the Gelman-Rubin convergence diag-
nostic (Brooks and Gelman 1998) due to the multimodal nature of the posterior distribution
of the linear coefficients. A good summary of various MCMC convergence diagnostics can be
found in (Cowles and Carlin 1996), and the package coda implements the various convergence
checks discussed in that article.
Discussions about which model to choose, e.g., between lm and hdpGLM, when the results differ
is beyond the scope of this article. Readers are referred to Ferrari (2020), which demonstrates
that in a variety of circumstances, if there is no latent subgroups in the sample, the posterior
average of the linear coefficients estimated using the hdpGLM function are indistinguishable
from those produced by the lm function. The example above shows this feature for the effect
of income, as the clusters differ only on the effect of inequality (see also the simulated example
on Section 5.2). When clusters are found, one option is to compare root mean squared error
(RMSE) of the predictive values, which can be achieved using the function predict, available
for the objects returned by both functions.
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Hierarchical Dirichlet process regression

Following the same example, consider the data set welfare2, also included in the hdpGLM
package. This new dataset includes the same variables than the welfare dataset, but from
five different countries. It has index to indicate the country (country), and the country-level
gender gap in country’s provision of public good (gap). Here are the first rows of that dataset:

R> data("welfare2", package = "hdpGLM")
R> head(welfare2)

support inequality income ideology country gap
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 -18.6 0.339 0.143 1.92 0 0.1
2 -9.39 -0.991 -0.512 0.248 0 0.1
3 0.928 -2.23 -0.386 -1.36 0 0.1
4 -12.4 -3.01 -0.944 -0.209 0 0.1
5 -2.48 0.100 0.832 0.132 0 0.1
6 -11.4 -0.954 -0.881 0.292 0 0.1

We can estimate the effect of the country-level gender gap on the latent heterogeneity we
found in the previous example, but now using the hierarchical DPP regression. It is done by
running the following code:1

R> mcmc = list(burn.in = 1, n.iter = 50)
R> mod <- hdpGLM(support ~ inequality + income + ideology,
+ context.id = "country", support ~ gap, data = welfare2, mcmc = mcmc)

Either summary or summary_tidy will generate a numerical summary of the posterior samples.
Using the summary_tidy function, we get a list of tidy summaries for β and τ . As explained
in Section 4.3, the summary_tidy gives the summaries of the posterior distribution for the
parameter β, but now for each context (country) as well. Additionally, the same summaries
(posterior Mean and 95% HPD intervals) are provided for the parameter τ (see Model 3).

R> summary_tidy(mod)

$beta
# A tibble: 125 × 9

k j Parameter term Mean Median SD
<dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl>

1 1 1 beta[0] (Intercept) -3.82 -3.82 0.0702
2 1 1 beta[1] inequality -1.40 -1.53 0.413
3 1 1 beta[2] income 3.87 3.87 0.0405
4 1 1 beta[3] ideology -8.27 -8.28 0.0325
5 1 1 sigma sigma 0.947 0.951 0.0630

1In this toy example, I kept the MCMC small and didn’t prioritize convergence diagnostics to facilitate
replication. The goal is to focused on illustrating the package’s functionalities and interpretation of the
results. The outputs presented and those obtained with different MCMC sizes can be different unless it
reaches convergence, as is usual in this type of estimation.
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6 1 2 beta[0] (Intercept) 0.208 0.165 0.140
7 1 2 beta[1] inequality -0.613 -0.609 0.121
8 1 2 beta[2] income -0.319 -0.335 0.0688
9 1 2 beta[3] ideology -1.76 -1.77 0.0739

10 1 2 sigma sigma 0.0982 0.0954 0.0314
HPD.lower HPD.upper

<dbl> <dbl>
1 -3.93 -3.60
2 -1.61 0.133
3 3.80 3.95
4 -8.34 -8.22
5 0.805 1.05
6 0.0150 0.463
7 -0.810 -0.444
8 -0.437 -0.209
9 -1.90 -1.62

10 0.0634 0.110
# 115 more rows
# Use `print(n = ...)` to see more rows

$tau
# A tibble: 8 × 8

w beta Parameter Description Mean SD
<int> <int> <chr> <chr> <dbl> <dbl>

1 0 0 tau[0][0] Intercept of beta[0] -0.213 1.26
2 0 1 tau[0][1] Intercept of beta[1] -0.0778 1.40
3 0 2 tau[0][2] Intercept of beta[2] -0.171 1.55
4 0 3 tau[0][3] Intercept of beta[3] -0.622 1.56
5 1 0 tau[1][0] Effect of gap on beta[0] -0.0490 1.25
6 1 1 tau[1][1] Effect of gap on beta[1] 0.191 1.01
7 1 2 tau[1][2] Effect of gap on beta[2] -0.742 1.20
8 1 3 tau[1][3] Effect of gap on beta[3] 0.676 1.08

HPD.lower HPD.upper
<dbl> <dbl>

1 -2.38 2.14
2 -2.64 2.26
3 -2.47 3.19
4 -3.75 2.42
5 -2.19 1.83
6 -1.88 2.09
7 -3.01 1.58
8 -1.25 2.51

Figure 5 shows the posterior distribution of the linear coefficients β for each context. The
following command generated the plot:

R> plot(mod, ncol = 4, context.id = "country")
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Figure 5: Posterior distribution of β for each context.

To illustrate the interpretation, in this toy example the effect of inequality is negative and
homogeneous in country 3, as indicated by a unimodal distribution of β1 on Figure 5, but
there are latent subpopulations in countries 0, 1, 2, and 4. For some subpopulations in
those countries, the effect of inequality is negative, but it is positive for other subgroups (as
indicated by a multimodal distribution of β1 in those contexts).
The parameter τ captures how the latent heterogeneity in each context is associated with
the context-level features, gap in the example. We can plot the posterior distribution of τ
using the function plot_tau or visualize its effect directly using the function plot_exp_beta.
Figure 6 uses the function plot_pexp_beta to display the posterior averages of β in each
context and cluster as function of gap.
To illustrate the interpretation, when the country gender gap in the provision of public goods
(gap) increases, the posterior expectation of the effect of income decreases for all clusters
(upper row, third column of Figure 6), but gap does not affect how inequality is associated
with the outcome (support for welfare policies) across various clusters in different countries.
As discussed in the previous section, MCMC diagnostics can be conducted using external pack-
ages to check convergence of the chain. For instance, users can run geweke.diag(mod$tau)
and geweke.diag(mod$samples) to get the Geweke convergence check (Geweke 1992), or use
other diagnostic checks for MCMC objects.

5.2. Simulated example

Dirichlet process regression

This example estimates the DPP regression on Model 2 with a simulated data of 2,000 subjects
divided into two clusters of equal size. The goal is to show how the hdpGLM function estimates
cluster-specific effects even if the effect heterogeneity occurs only on one coefficient. Ferrari
(2020) shows a comprehensive results for different numbers of clusters and heterogeneity in
the effect of more than one covariate. In the simulation, I use three covariates and a Gaussian
outcome. The three clusters differ only in the effect (β2) of the first covariate (x1). More
precisely, the β coefficients are set to values according to Table 2:
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Figure 6: Posterior averages β for each cluster and context as a function of the context-level
feature.

Coefficient Value cluster
k = 1

Value cluster
k = 2

β0 −0.15 −0.15
β1 2.00 −1.5
β2 9.90 9.90
β3 3.90 3.90

Table 2: Values of the β coefficients in the simulated data.

We can estimate the DPP model using the following code:

R> mod <- hdpGLM(y ~ X1 + X2 + X3, data = df,
+ mcmc = list(burn.in = 500, n.iter = 10000))
R> summary(mod)

--------------------------------
dpGLM model object

Maximum number of clusters activated during the estimation: 17
Numer of MCMC iterations: 10000
burn-in: 500
--------------------------------
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Figure 7: Posterior distribution of the β coefficients generated by the function plot of the
package hdpGLM after the estimation using function hdpGLM and the simulated data whose
true value of the coefficients are shown on Table 2.

Summary statistics of clusters with data points

--------------------------------
Coefficients for cluster 1 (cluster label 1)

Post.Mean Post.Median HPD.lower HPD.upper
1 (Intercept) -0.17301 -0.17297 -0.24077 -0.094259
2 X1 1.95931 1.95999 1.89786 2.027607
3 X2 9.95138 9.95170 9.87663 10.021926
4 X3 3.90324 3.90282 3.82230 3.977121
5 sigma 1.00128 0.99995 0.91356 1.085871

--------------------------------
Coefficients for cluster 2 (cluster label 2)

Post.Mean Post.Median HPD.lower HPD.upper
1 (Intercept) -0.22755 -0.22699 -0.30188 -0.15415
2 X1 -1.52658 -1.52689 -1.59253 -1.45713
3 X2 9.87029 9.87032 9.79561 9.94214
4 X3 3.88416 3.88378 3.81242 3.95890
5 sigma 1.00082 0.99989 0.91319 1.08996

--------------------------------
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We can see that the results of the estimation recover the number of clusters used to generate
the data, that is, K = 2. Moreover, the HPD intervals show that the clusters differ only in
the coefficient β1. The function plot returns a ggplot2 object, and we can use it by running
plot(mod, separate = TRUE, ncol = 4) to visualize the results of estimation, as shown
on Figure 7.
To classify the data points into clusters, we run the function classify. In this example, it is
classify(data = df, samples = mod). It returns the dataset with a new column named
Cluster that indicates the cluster membership of each observation.
Ferrari (2020) shows other examples. Note that this is the only package currently on CRAN
capable of estimating the latent heterogeneity in the linear coefficients, as illustrated in this
example.

6. Performance comparison between hdpGLM and PReMiuM
Table 3 compares the two packages currently available in R – hdpGLM and PReMiuM – that
have similar purposes of estimating DPP regression models. The tests were run serially on
an AMD EPYC 7702 CPU at 2.18 GHz on a 64-bit Debian Linux system with 514GB RAM.
The comparison was based on the time the MCMC algorithm takes to run 500 iterations
using the packages’ default MCMC parameters. A similar performance test was conducted
by PReMiuM developers (Liverani et al. 2015), and I mimic their test here. The number of
predictors and the size of the data was set in advance, but the number of clusters in the data
was randomly selected in each test.
Table 3 shows how the packages scale with the number of subjects. The hdpGLM outperforms
the PReMiuM software package in all runs when the outcome variable was Gaussian. The
gap in performance increases substantially with the size of the data set. The hdpGLM is
around five times faster when the data set had 1,500 sample points and around 17 times
faster when there were 5,000 observations. The opposite happens when the outcome variable
is binary. The PReMiuM software is faster than the hdpGLM in this case, but the gap does
not increase as much with the size of the data.
It is important to note that the two packages have a few overlapping functionalities, but differ
in many aspects (see Table 1). One important difference is that the hdpGLM investigates
latent heterogeneity on all predictors, not only the intercept, as the PReMiuM does. This
extra feature of the hdpGLM package requires a HMC update within Gibbs for non-Gaussian
outcomes, as discussed, which accounts for differences in performance for binary outcomes.
Nevertheless, the performance of the two packages for binary outcomes are not drastically
different as they are for Gaussian outcomes.
There are two limitations of the hdpGLM package, which are more generally related to
computational aspects of Gibbs sampling or MCMC. One is scalability; the other is that large
moves on the optimization curve are limited due to the restricted changes in each sampling
step. In terms of scalability, the estimation may require large memory and processing time for
large data sets. Table 3 shows that the package performs well with moderate-size data, and
it is much faster than other existing alternatives to estimate similar models, but performance
may be an issue depending on the size of the data. There are alternative approaches for
DP and hierarchical DP mixtures using sub-cluster splits (Chang and Fisher III 2013, 2014)
and variational inference (Hughes and Sudderth 2013; Hughes, Kim, and Sudderth 2015),
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Software

Sample
size

Number of
predictors

Number of
clusters

hdpGLM
(seconds)

PReMiuM
(seconds)

Ratio (PReMiuM/
hdpGLM)

Gaussian outcome variable
1500 5 3 2.26 11.28 4.98
1500 10 4 2.43 11.29 4.63
1500 15 1 2.41 11.87 4.92
2500 5 1 3.13 34.41 10.98
2500 10 2 3.48 34.32 9.87
2500 15 4 4.17 35.19 8.44
5000 5 4 6.89 132.88 19.28
5000 10 4 7.58 133.81 17.65
5000 15 4 8.14 135.52 16.66

Binary outcome variable
1500 5 1 99.60 11.10 0.11
1500 10 5 151.33 11.65 0.08
1500 15 5 100.39 12.32 0.12
2500 5 1 119.58 34.88 0.29
2500 10 4 167.58 35.54 0.21
2500 15 5 151.47 36.49 0.24
5000 5 3 201.62 132.82 0.66
5000 10 4 243.48 133.26 0.55
5000 15 3 395.95 140.12 0.35

Table 3: Comparing the time required to run 500 iterations in the two packages hdpGLM
and PReMiuM R currently on CRAN to estimate DPR models. Note: The hdpGLM clusters
data after investigating latent-heterogeneity on all linear coefficients, while the PReMiuM
package models heterogeneity in the intercept term only.

but these models need to be adapted to be used with hierarchical DP mixtures of GLMs. In
future versions, the package hdpGLM should explore these alternative sampling methods and
adapt them to estimate the hdpGLM.

7. Discussion

DPP regression is an alternative to classical regression models. It can be used in a variety of
situations when we suspect that there is heterogeneity in the effect of one or more covariates
on the response variable. DPP is one of the core approaches in semi-parametric Bayesian re-
gression models and unsupervised learning regression estimation (Abbring and Heckman 2007;
Hastie, Tibshirani, and Friedman 2009; Hastie et al. 2009; Hannah et al. 2011; Traunmuller
et al. 2015). This paper describes the R package hdpGLM, which implements a generalization
of DPP regression models, developed in Ferrari (2020), for easy-to-use estimation, summary,
and visualization of DPP regression by R users. Users can find further documentation details
and examples at http://www.diogoferrari.com/hdpGLM/. The package is designed to facil-

http://www.diogoferrari.com/hdpGLM/
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itate its integration into other widely used external R packages, and it uses common R formula
syntax for regression estimation. In addition to the functionalities built into the hdpGLM
package to estimate, predict, summarize, and visualize the results, users can take advantage
of other existing R packages to manipulate, analyze, report, or visualize the estimation results
of DPP regression models implemented in the hdpGLM package, such as the package coda for
MCMC diagnostics (Plummer et al. 2006). The outputs of summary and plot functions can
be easily manipulated and extended for users of ggplot2 (Valero-Mora 2010; Ginestet 2011;
Wilkinson 2012; Wickham 2016; Gómez-Rubio 2017), or used to create tables and reports
using package ecosystems such as tidyverse Wickham et al. (2019); Lee et al. (2020) or the R
package kableExtra (Zhu 2021).
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