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Abstract

Multi-period cluster randomized trials (CRTs) are increasingly used for the evaluation
of interventions delivered at the group level. While generalized estimating equations
(GEE) are commonly used to provide population-averaged inference in CRTs, there is
a gap of general methods and statistical software tools for power calculation based on
multi-parameter, within-cluster correlation structures suitable for multi-period CRTs that
can accommodate both complete and incomplete designs. A computationally fast, non-
simulation procedure for determining statistical power is described for the GEE analysis
of complete and incomplete multi-period cluster randomized trials. The procedure is
implemented via a SAS macro, CRTFASTGEEPWR, which is applicable to binary, count
and continuous responses and several correlation structures in multi-period CRTs. The
SAS macro is illustrated in the power calculation of two complete and two incomplete
stepped wedge cluster randomized trial scenarios under different specifications of marginal
mean model and within-cluster correlation structure. The proposed GEE power method
is quite general as demonstrated in the SAS macro with numerous input options. The
power procedure and macro can also be used in the planning of parallel and crossover
CRTs in addition to cross-sectional and closed cohort stepped wedge trials.
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1. Introduction

Cluster randomized trials (CRTs) are studies designed to evaluate interventions that operate
at a group level, manipulate the physical or social environment, or cannot be delivered to indi-
viduals (Murray, Varnell, and Blitstein 2004). Regarding the different schedules of recruiting
participants, CRTs are classified into cross-sectional, closed-cohort and open-cohort designs
(Copas, Lewis, Thompson, Davey, Baio, and Hargreaves 2015). Cross-sectional designs re-
cruit a unique set of individuals in each period, whereas closed-cohort designs follow the same
individuals in clusters with repeated observations across periods. The open-cohort design,
however, allows the addition of new members to an existing cohort in each period. Moreover,
there are different types of CRT designs, including parallel, crossover, and stepped-wedge
designs. As are instances of CRTs with outcomes measured in multiple periods, a stepped-
wedge cluster randomized trial (SW-CRT) is a type of CRT wherein clusters switch from
control condition to treatment at randomly assigned time points (Hussey and Hughes 2007).
Logistical and ethical considerations such as the need to deliver the intervention in stages and
the desire to implement the intervention in all clusters are factors involved in the choice to
use a SW-CRT (Turner, Li, Gallis, Prague, and Murray 2017). SW-CRTs may be preferred
over other designs because they may facilitate cluster recruitment or offer increased power
over other cluster randomized designs even with a limited number of clusters (Hemming and
Taljaard 2020). Most study planning methods are for complete SW-CRTs, where all clusters
have outcome data in all periods. However, incomplete stepped wedge designs are increasingly
being deployed, whereby some cluster-periods do not record data due to logistical, resource,
and patient-centered considerations (Kasza and Forbes 2019). Specifically, researchers may
choose not to collect data in a cohort design or enroll new participants in a cross-sectional de-
sign during some cluster-periods. Hemming, Lilford, and Girling (2015) described two types
of incompleteness in stepped wedge designs, one involving implementation periods and the
other staggered study entry or termination of clusters.

Population-averaged analysis models with GEE estimation and inference have several advan-
tages for the design and analysis of CRTs (Preisser, Young, Zaccaro, and Wolfson 2003).
In contrast to generalized linear mixed models, the intervention effect from a population-
averaged model describes how the average response changes across the subsets of population
defined by the treated and control cluster-periods. Additionally, because models for mean
and correlation structures are separately specified, the interpretation of the marginal mean
regression parameters remains the same regardless of the specification of working correlation
model (Preisser, Lu, and Qaqish 2008). The link function is chosen to obtain inference on
the target parameter of choice; for binary responses, the target parameters could be the odds
ratio via the logit link, the risk ratio via the log link, or the risk difference via the identify link.
Another advantage in using GEE for CRTs is that the estimation of mean model parameters
is robust to misspecification of correlation structures in large samples. However, the specifi-
cation of working independence correlation structure may result in efficiency loss that can be
substantial when the cluster-period sizes are not all equal (Tian, Preisser, Esserman, Turner,
Rathouz, and Li 2022). Furthermore, an over-simplified exchangeable correlation structure
may give inaccurate power calculations when there is correlation decay in multi-period CRTs
(Li 2020; Kasza, Hemming, Hooper, Matthews, and Forbes 2019). Thus, correlation struc-
tures informed by the study design are recommended for both study design and data analysis
of stepped wedge and other multi-period CRTs.
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Because CRTs are usually less powerful than individually randomized trials, determination
of the proper number and allocation of study participants is critically important. A general,
non-simulation, computationally fast power method based on the model-based variance was
introduced by Rochon (1998). Moreover, as special cases of the fast GEE power method,
simple-to-use sample size formulae for continuous responses and non-simulation procedures
for binary responses have recently been proposed for complete, cross-sectional and cohort
SW-CRTs (Li, Turner, and Preisser 2018). The methods extend earlier sample size formulae
for GEE analysis of parallel-groups CRTs, including cross-sectional and cohort CRTs (Preisser
et al. 2003, 2008) and multi-level CRTs (Reboussin, Preisser, Song, and Wolfson 2012; Teeren-
stra, Lu, Preisser, Van Achterberg, and Borm 2010; Wang, Turner, Preisser, and Li 2021).
Prior work (Li et al. 2018; Li 2020) has shown that the analytical fast GEE power for marginal
mean (e.g, intervention) parameters in complete SW-CRTs agrees well with simulated power
based on GEE with finite-sample sandwich variance estimators for as few as eight clusters.
Zhang, Preisser, Turner, Rathouz, Toles, and Li (2023b) shows, for CRTs with incomplete
stepped wedge designs, fast GEE power based on the t-test agrees well with simulated power
with the finite-sample sandwich variance estimator of (Kauermann and Carroll 2001) and
twelve clusters. In scenarios with 6 clusters, it is similar to simulated power with estima-
tions using the correctly specified model-based variance estimator. Those studies focus on
the empirical performance of the analytical power rather than software tools to implement
the method for different multi-period CRT designs.

This article describes a comprehensive, analytical power method and accompanying SAS
(SAS Institute Inc. 2020) macro for both complete and incomplete multi-period CRTs. The
proposed GEE power procedure is motivated by the Connect-Home trial, which uses an
incomplete, cross-sectional stepped wedge design to test an intervention to improve outcomes
for rehabilitation patients transitioning from skilled nursing facilities (SNFs) to home-based
care (Toles et al. 2021). The primary component of the intervention is an individualized
Transition Plan of Care that SNF staff create to support the patient and caregiver at home.
The incomplete design with six SNFs (clusters) and four patients per cluster-period (360
patients total), shown in Figure 1, was chosen based on considerations of internal validity
and power under restrictions placed by available resources and logistical considerations. The
black and orange boxes represent cluster-periods where no patients are enrolled, giving an
incomplete design. Staggered enrollment of SNFs (clusters) is used to initiate data collection
in stages with limited research staff resulting in the black boxes. The orange boxes represent
the implementation phase, where two months are needed to activate the intensive intervention
through training nursing home and home health care staff. The Connect-Home study design
is distinct in several aspects. First, the number of periods (J = 22) is much greater than the
number of sequences (S = 6), as compared to the standard SW-CRT in which J = S + 1
Hussey and Hughes (2007); Hemming et al. (2015); Li et al. (2018). Next, the incompleteness
of the design adds to the complexity of power calculation.

Thus, the Connect-Home trial inspires an extension of the computationally fast, non-
simulation procedures for determining sample size and statistical power for GEE analysis
from complete (Li et al. 2018) to incomplete SW-CRTs. Specifically, we introduce a SAS
macro CRTFASTGEEPWR as a computationally efficient, non-simulation based routine for
determining the statistical power in multi-period CRTs by further accommodating incom-
pleteness at the design stage. Ouyang, Li, Preisser, and Taljaard (2022) reviewed 18 sample
size calculators for stepped wedge CRTs and identified the SAS macro CRTFASTGEEPWR
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Figure 1: The trial diagram of the Connect Home trial: the blue, orange and green cells
denote control, implementation and intervention cluster-periods, respectively.

and the R (R Core Team 2023) package swdpwr (Chen, Zhou, Li, and Spiegelman 2022) as
two of the most flexible approaches for non-simulation GEE power and sample size calcula-
tion for marginal models. Whereas swdpwr provides power calculation based on the average
intervention effects mean model with categorical period effects for continuous and binary out-
comes, exchangeable-type correlation structures, and equal cluster sizes for complete designs,
the SAS macro CRTFASTGEEPWR additionally offers three options for coding intervention
effects, a choice of linear effects or categorical period effects, count outcomes, time-decaying
correlation structures, and unequal cluster-period sizes for both complete and incomplete
multi-period CRT designs. The SAS macro CRTFASTGEEPWR is developed to accommo-
date binary, count and continuous responses in stepped wedge and other multi-period CRTs
with a collection of commonly-seen multilevel intra-cluster correlation structures for incom-
plete cross-sectional and cohort designs.
The remainder of this article is organized as follows. Section 2 describes the population-
averaged models of interest with special consideration of correlation structures suitable for
multi-period CRTs. Section 3 summarizes the general power procedure for GEE analysis
with adaptation to stepped wedge designs. Section 4 presents the SAS macro details and four
examples for complete and incomplete SW-CRTs.

2. GEE analysis of multi-period CRTs

2.1. Population-averaged model of multi-period CRTs

A unifying population-averaged model framework is described below for the design and statis-
tical analysis of multi-period CRTs. The following notations apply to both cross-sectional and
cohort multi-period CRTs, where there are J periods, S sequences, I clusters and Is clusters
in sequence s, such that I =

∑S
s=1 Is. Let yijk denote the response of the kth individual

from cluster i during period j for i = 1, . . . , I, j = 1, . . . , Ji, and k = 1, . . . , Nij , noting that
Ji ≤ J is the number of observed periods (i.e., with data collection) for cluster i, and Nij is
the cluster-period size. Let µijk denote the marginal mean response of yijk, which is related
to the intervention effect δ and jth categorical period effect βj with link function g(.) via the
marginal mean model

g(µijk) = βj + uijδ (1)

Alternatively, categorical period effects in Equation 1 can be replaced with linear period
effects:

g(µijk) = β0 + β1(tij − 1) + uijδ (2)
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where β0 is the intercept, and {tij : j = 1, . . . , Ji} are integer-valued calendar periods from
the study design such that β1 is the increment in the mean response on the scale of the link
function for a unit increase in calendar period, and uij is the treatment status in cluster i at
period j. Linear period effects are particularly useful for, but are not limited to, multi-period
CRTs with fewer clusters than periods (I < J), such as in the Connect-Home study.
Three types of intervention effect models are implemented in the SAS macro, the widely used
average intervention effects model (Hussey and Hughes 2007; Hemming et al. 2015; Li et al.
2018), the incremental intervention effects model (Hughes, Granston, and Heagerty 2015) and
the extended incremental intervention effects model. In the average intervention effects model,
uij is the period-specific treatment indicator (1 for intervention and 0 for control) for cluster
i and δ is the intervention effect, irrespective of time on treatment, on the link function scale.
With the specification of uij , population-averaged models could be used for different types
of multi-period CRTs. In multi-period CRTs with parallel designs, uij = 0 for all clusters
under baseline period j, and uij = 0, 1 in subsequent post-baseline periods depending on the
treatment status. In the case of complete SW-CRTs, clusters switch from control condition
to intervention at different periods. Thus, uij = 0 in the control period, j = 1, . . . , bi and bi

is the total periods under the control condition in cluster i, whereas, in intervention periods,
uij = 1, j = bi + 1, . . . , Ji. Conversely, the incremental intervention effects model assumes
a gradual uptake of the intervention such that its effect depends on time-on-treatment. As-
suming a complete SW-CRT is specified with the incremental intervention effects model, the
treatment status is uij = 0 in the control period and uij = (j − bi)/q, j = bi + 1, . . . , Ji in
the intervention period, where q > 0 is chosen to scale the intervention effect δ according
to user specification. In the Connect-Home trial (Figure 1), q = 10 so that δ is defined as
the full intervention effect on the link function scale after 10 periods, which corresponds to
the number of intervention periods for the first SNF. Finally, an extended incremental inter-
vention effects model is considered for designs additionally having a maintenance phase after
the active intervention phase with q periods. In SW-CRTs with a maintenance phase, one
research question relates to whether the patient benefit from the intervention as captured by
the outcome is maintained after the active intervention period has ceased. The treatment
status is uij = (j − bi)/q, j = bi + 1, . . . , bi + q in the active intervention periods and uij = 1
in the maintenance phase, for j > bi + q.
Specification of the marginal model is completed with the covariance structure of all individual
responses in each cluster. Variance of the individual-level response is VAR(yijk) = vijkϕ
where vijk is the variance function and ϕ is the dispersion parameter. For binary responses,
vijk = µijk(1 − µijk) and ϕ = 1, while for continuous responses following typical normal
model assumptions, vijk = 1 and ϕ is the constant variance. For count outcomes with Poisson
distribution, vijk = µijk and ϕ is the dispersion parameter. The macro assumes GEE is used to
estimate the marginal mean parameters θ = (β1, . . . , βp, δ)⊤ as well as the working correlation
matrix parameters; common multilevel correlation structures for multi-period CRTs will be
presented in Section 4.1 during the SAS macro description.

2.2. Variance in GEE analysis of multi-period CRTs

Using GEE analysis, parameters in the marginal mean model are estimated through the
estimating equations (Liang and Zeger 1986): U =

∑I
i=1 D⊤

i V −1
i (Yi − µi) = 0, where

the response vector is Yi = (yi11, . . . , yiJiNiJi
)⊤ and its expected mean vector is µi =

(µi11, . . . , µiJiNiJi
)⊤. Let Di = ∂µi

∂θ⊤ and Vi = A
1/2
i RiA

1/2
i , in which Ri is the working
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Design Correlation structure Label j = j′ j ̸= j′

Cross sectional Nested exchangeable NE α1 α2 –
Exponential decay ED α0 α0r

|j−j′|
0 –

j = j′ j ̸= j′, k ̸= k′ j ̸= j′, k = k′

Cohort Block exchangeable BE α1 α2 α3

General proportional decay PD α0 α0r
|j−j′|
0 r

|j−j′|
1

Table 1: Intra-cluster correlation: corr
(
yijk, yij′k′

)
under different correlation structures for

SW-CRTs for cluster i, period j and individual k).

correlation with correlation parameters α and Ai = ϕ diag{vi11, . . . , viJiNiJi
}. Commonly,

the model-based variance estimator for VARMB(θ̂) =
(∑I

i=1 D⊤
i V −1

i Di

)−1
is used in the

power calculation.
The choice of working correlation structure usually depends on design features of the CRT.
Four within-cluster correlation structures for multi-period CRTs are summarized in Table 1.
Specifically, there are two distinct correlation structures for each of the cohort and cross-
sectional design. Each structure incorporates the usual ICC, which measures the correlation
between responses from different individuals within the same cluster during the same period:
corr

(
yijk, yijk′

)
= α0 or α1, k ̸= k′. For cross-sectional designs, the nested exchangeable

correlation structure additionally specifies a correlation parameter α2 for observation pairs
collected from different periods. Alternatively, exponential decay assumes the between-period
correlation between responses from different individuals within the same cluster in the jth

and j′
th periods decays over time as α0r

|j−j′|
0 . For cohort designs, the block exchangeable

correlation structure distinguishes between-period correlations for pairs of individuals, α2,
from a constant intra-individual correlation for repeated observations, α3 (Li et al. 2018;
Preisser et al. 2003). On the other hand, the general proportional decay correlation structure
(Gallis, Wang, Rathouz, Preisser, Li, and Turner 2022) allows for correlation decay over time,
where the intra-individual correlation corr

(
yijk, yij′k

)
= r

|j−j′|
1 , j ̸= j′ has a first-order auto-

regressive structure decay rate r1 and the between-period correlation among responses from
different individuals within the same cluster is α0r

|j−j′|
0 , j ̸= j′, k ̸= k′. When r0 = r1, it

reduces to the proportional decay correlation structure (Li 2020; Lefkopoulou, Moore, and
Ryan 1989). Note that the nested exchangeable correlation for cross-sectional designs is a
special case of block exchangeable correlation when α2 = α3. Finally, the simple exchangeable
correlation (Hussey and Hughes 2007) additionally specifies that within- and between-period
correlations are equal α1 = α2.
Rochon (1998) proposed a power calculation procedure using the model-based variance, which
depends on the design matrix and specification of the working correlation structure. Typically,
simulations are used to determine power for population-averaged models with incomplete
multi-period CRTs with complex correlation structures. However, there may be substantial
computational burdens in generating empirical power based on GEE with a large number
of simulation scenarios. To lessen computational burden, Zhang et al. (2023b) adapted the
non-simulation based fast GEE power method (Rochon 1998) multi-period complete and
incomplete SW-CRTs, which we implement in the SAS macro CRTFASTGEEPWR.
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3. Fast GEE power for multi-period CRTs

3.1. Overview of the fast GEE power method

The two-sided test of the intervention effect H0: δ = 0 vs H1: δ ̸= 0 is based upon the
asymptotic normal distribution of

√
I(δ̂ − δ) with mean zero and variance determined by the

(p, p)-th element of VAR(
√

I(θ̂ − θ)) , when I is sufficiently large (Li et al. 2018). In turn,
the Wald-test statistic δ̂/VAR(δ̂) has an asymptotically standard normal distribution under
the null hypothesis. Thus, power to detect an intervention effect of size δ ̸= 0 with a nominal
type I error rate α is Φ

(
zα/2 + |δ|/

√
VAR(δ̂)

)
where Φ(·) is the standard normal cumulative

distribution function and zα/2 is the normal quantile such that Φ(zα/2) = α/2. However, for
CRTs with a small number of clusters, the t test is a good alternative with power modified
as Φt,I−p

(
tα/2,I−p + |δ|/

√
VAR(δ̂)

)
where tα/2,I−p is the α/2% quantile of the t distribution

with I − p degrees of freedom. Typically, the degrees of freedom of the t statistic in CRTs is
set to I −p, where p = dim(θ) is the number of estimated marginal mean model parameters in
Equation 1; some authors have used I −2, which is sometimes preferred for multi-period CRTs
with fewer number of clusters than periods (Li 2020; Ford and Westgate 2020). The model-
based variance of the intervention effect VAR(δ̂) in the determination of power is defined as
the (p, p)-th element in the model-based variance matrix VARMB(θ̂). We refer to this general
analytical power method (Rochon 1998) as “fast GEE power” because it is a computationally
fast power calculation procedure for CRTs with GEE analysis.

3.2. Adaption of the fast GEE power for incomplete SW-CRTs

The fast GEE power procedure has been previously investigated for complete SW-CRTs
for the average intervention effects marginal mean model with categorical period effects (Li
et al. 2018). Motivated by Connect-Home, we define a class of incomplete designs for which
Connect-Home is an archetype allowing for implementation periods and/or staggered en-
try/termination. Let bi0 and bi1 denote the first and last calendar periods of data collection
for cluster i in the control condition (e.g., b20 = 2 and b21 = 7 for the second sequence, s = 2,
in Figure 1), such that there are bi = bi1 − bi0 + 1 total periods in the control condition; qi0
and qi1 as the first and last calendar periods of data collection for cluster i in the intervention
condition (e.g., q20 = 10 and q21 = 18, s = 2) such that there are qi = qi1 − qi0 + 1 total
periods in the intervention condition; and ci implementation periods occurring in calendar
periods bi1 + 1, . . . bi1 + ci where ci = qi0 − bi1 − 1.
A key step in applying the fast GEE power computation to incomplete SW-CRTs is the
generation of cluster-level design matrices, consisting of covariates in Equation 1 or 2.
For incomplete SW-CRTs, we specify a Design Pattern (DP) matrix by the notation of
{bi0, bi1, qi0, qi1, i = 1, . . . , I} to represent the experimental design analogous to the power
analysis of continuous responses in linear mixed models (Hemming et al. 2015). Each element
in the DP matrix corresponds to a representative cluster-period in the SW-CRT design with
entries of 0 for control condition, 1 for intervention condition and 2 for cluster-periods in
sequences without data collection. To illustrate the specification of DP matrix, an example
of an incomplete SW-CRT (Hemming et al. 2015) is used here with S = 2 treatment se-
quences, T = 4 periods, and an implementation period that occurs in period 2 for the first
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sequence and in period 3 for the second sequence. The incomplete design is specified by
(b10, b11, q10, q11) = (1, 1, 3, 4) for s = 1 and (b20, b21, q20, q21) = (1, 2, 4, 4) for s = 2. Then

DP =
(

0 2 1 1
0 0 2 1

)

The DP matrix serves to modify the design matrix obtained under the complete design to
more accurately determine VARMB(θ̂) and thus VAR(δ̂) in the power calculation for CRTs
with incomplete design.

4. The SAS macro details

4.1. Input arguments in the macro

A SAS macro CRTFASTGEEPWR that implements the fast GEE power method is developed
for multi-period CRTs with complete and incomplete designs and available at https://www.
bios.unc.edu/~preisser/personal/software.html.
Table 2 provides required and optional arguments in the macro, which are classified into three
aspects: describing characteristics of the multi-period CRT, parameterizing the marginal
mean model and choosing the working correlation structure. All required arguments are in
boldface in the first column of Table 2.
First, users are required to describe characteristics of the multi-period CRT through a design
pattern matrix, specified by DesignPattern, containing the number of sequences and periods,
numerical indicators for treatment status, and the incompleteness in the design. The number
of clusters in sequences are specified by a vector M to allow varying number of clusters across
sequences. The SAS macro applies to cross-sectional and closed-cohort multi-period CRT
designs but not to open cohort designs. Specifically, the SAS macro allows a varying number
of participants across cluster periods for cross-sectional designs through the specification of
CP_size_matrix. For closed-cohort designs, cluster-period sizes within rows (sequences) of
the CP_size_matrix should be non-increasing. Equal cluster-period sizes within rows imply
no dropout, whereas decreasing numbers are assumed to be due to dropout only (not to inter-
mittent missing data) so that the design matrices for clusters are unambiguous. An example
of decaying cohort size due to dropout in a closed-cohort CRT using CRTFASTGEEPWR is
in Appendix C.1.
Marginal mean model options include binary, count, and continuous responses with three
link functions, specified by dist and link, respectively. Note that the default link func-
tion is the canonical link. Meanwhile, the categorical period effects model or the lin-
ear period effects model is selected by specifying period_effect_type. The user also
needs to choose one of three intervention effects models introduced in Section 2, spec-
ified by intervention_effect_type. For the incremental intervention effects model,
max_intervention_period should be filled with the number of periods at which the full
treatment effect δ is reached. For the extended incremental intervention effects model, the
max_intervention_period is the number of periods under active intervention phase and
there should be at least one maintenance period in each sequence. The intervention effect

https://www.bios.unc.edu/~preisser/personal/software.html
https://www.bios.unc.edu/~preisser/personal/software.html
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Macro variable Input Description
DesignPattern Variable An S × T matrix with 0 representing control periods, 1

for intervention periods, and 2 for periods without data
collection.

CP_size_matrix Variable Number of cluster-period sizes, a matrix vector with di-
mension S × T

M Variable Number of clusters in each sequence, a vector with di-
mension S × 1

dist BINARY The distribution for the outcomes
POISSON
NORMAL

link LOGIT Link function for the outcomes. For binary,
LOG count, and continuous responses, the default
IDENTITY link is logit, log and identity, respectively

phi Variable The dispersion parameter
intervention_effect_type AVE Average intervention effects model

INC Incremental intervention effects model
INC_EX Extended incremental intervention effects model

period_effect_type CAT Categorical period effects model
LIN Linear period effects model

delta Variable The parameters of intervention
beta_period_effects Variable The parameters for period effects:

A T × 1 vector for categorical period effect
A 2 × 1 vector for continuous period effect

corr_type NE/ED NE: Nested Exchangeable, ED: Exponential decay,
BE/PD BE: Block exchangeable, PD: General proportional de-

cay
alpha0 Variable The within-period correlation in ED and PD correlation

structures
r0 Variable Between-subject correlation decay rate over time in ED

and PD correlation structures
r1 Variable Within-subject correlation decay rate over time in the

PD correlation structure
alpha1 Variable The within-period correlation in NE and BE correlation

structures
alpha2 Variable The inter-period correlation in NE and BE correlation

structures
alpha3 Variable The within-subject correlation in the BE correlation

structure
max_intervention_period Variable The number of intervention periods to reach full inter-

vention effects in incremental intervention
effects model and extended incremental intervention ef-
fects model

alpha Variable Significance level with two sided test, default at 0.05
df_choice 1 Degrees of freedom, df = I − p is default; p is number

of mean model parameters
2 df = I − 2

Table 2: Input arguments in the SAS macro CRTFASTGEEPWR.
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size and period effects at the scale of link function are all required with the choice of specific
intervention and period effects model through delta and beta_period_effects.
The working correlation structure is specified through the specification of corr_type and
corresponding intra-cluster correlations (ICCs). The macro does not have an option for cross-
sectional versus cohort design, but rather the type of study design should inform the user’s
choice of correlation structure as suggested in Table 1. The significance level for two-sided
tests, specified by alpha is optional with a default value of 0.05. In the degrees of freedom
determination, the number of clusters minus the number of marginal mean parameters, df =
I − p, is the default formula. Another degrees of freedom determination df = I − 2 in Li
(2020) is also available, specified by df_choice.
There are some consistency checks in SAS macro CRTFASTGEEPWR to ensure parameters
are reasonably specified for the power calculation. First, if there are cluster periods in the
design pattern matrix with no data collection (i.e., 2 in DesignPattern), the corresponding
locations in the CP_size_matrix need to be 0. Second, the length of beta_period_effects
should match the selected period effects model. For the linear period effects model, there
are two period effects parameters. While for the categorical period effects model, the num-
ber of period effects parameters is equal to the column size of the Design pattern matrix
DesignPattern. Finally, the marginal mean outcome µijk needs to be within the rational
range based on the specific outcome type, such as µijk within (0,1) for binary outcomes
and µijk are non-negative for count outcomes. Specifically, for binary outcomes, the Frèchet
bounds are also checked based on the specification of working correlation structures and the
marginal means to ensure their compatibility (Qaqish 2003).

4.2. Multi-period CRT examples of SAS macro CRTFASTGEEPWR

In this section, we focus on illustrating the power calculation of two complete and two incom-
plete stepped wedge cluster randomized trials using the SAS macro CRTFASTGEEPWR, with
different outcome types, specification of marginal mean models, and correlation structures.
The first example illustrates power calculation based on the Connect-Home trial design (Fig-
ure 1) with linear period effects for a continuous outcome, patient preparedness for home
care (a scale with range 0 to 100) assessed 7 days after discharge from the SNF. There are 6
sequences with 22 periods in the study, having 7 periods without patient enrollment and 15
periods with patient enrollment in each cluster. In the power calculation, there is 1 cluster in
each sequence and 360 patients in the trial, in which 4 patients enrolled in each non-missing
cluster period. In CP_size_matrix, 0 means no patients enrolled in the specific sequence and
period, which corresponds to locations with 2 in the design pattern matrix. We assume the
baseline patient preparedness score as β0 = 68 and a gently increasing linear period effect such
that β1 = 0.1 for J = 1, . . . , 22 with common variance ϕ = 64 (standard deviation = 8). The
full effect size is reached at 10 months on intervention condition (q = 10) for the incremental
intervention effects model with δ = 10. ICCs are specified with (α1, α2) = (0.03, 0.015) under
the nested exchangeable correlation structure to indicate a small within-cluster correlation
for the cross-sectional design. The power is calculated using the z test with normal approxi-
mation and t test with df = 3. From the results, the power using the z-test is much greater
than the t test. Simulation studies have shown that the z test is too optimistic and tends to
have an inflated test size in SW-CRTs with a small number of clusters (Li et al. 2018). Thus,
we recommend calculating power with the t test for the Connect Home study.
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%CRTFASTGEEPWR(alpha = 0.05, m = %str(J(6, 1, 1)), corr_type = NE,
alpha1 = 0.03, alpha2 = 0.015, intervention_effect_type = INC,
delta = 10, period_effect_type = LIN, max_intervention_period = 10,
beta_period_effects = %str({68, 0.1}), dist = normal, phi = 64,
CP_size_matrix = %str({4 4 4 4 4 0 0 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0,

0 4 4 4 4 4 4 0 0 4 4 4 4 4 4 4 4 4 0 0 0 0,
0 0 4 4 4 4 4 4 4 0 0 4 4 4 4 4 4 4 4 0 0 0,
0 0 0 4 4 4 4 4 4 4 4 0 0 4 4 4 4 4 4 4 0 0,
0 0 0 0 4 4 4 4 4 4 4 4 4 0 0 4 4 4 4 4 4 0,
0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 0 0 4 4 4 4 4}),

DesignPattern = %str({ 0 0 0 0 0 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2,
2 0 0 0 0 0 0 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2,
2 2 0 0 0 0 0 0 0 2 2 1 1 1 1 1 1 1 1 2 2 2,
2 2 2 0 0 0 0 0 0 0 0 2 2 1 1 1 1 1 1 1 2 2,
2 2 2 2 0 0 0 0 0 0 0 0 0 2 2 1 1 1 1 1 1 2,
2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 2 2 1 1 1 1 1}));

The fast GEE power of NORMAL outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.03, 0.015)

Under incremental intervention effects model and delta = 10

T S clusters df theta totaln Dist LINK stddel zpower tpower
22 6 6 3 68 360 NORMAL IDENTITY 3.9139 0.9746 0.7413

0.1
10

The second example aims to calculate the power for a count outcome based on the Connect-
Home trial design (Figure 1), which is the number of days of acute care use for patients
within 60 days after discharge from the SNF. In this example, an average intervention effect
model is specified with the same linear period effect model as in the first example. The design
is identical to the first example but the number of clusters increases from 6 to 12 clusters
to achieve enough power for the count outcome. For the parameters in the marginal mean
model with log link, baseline number of acute care use is assumed to be 1.24 days with an
slightly decreasing period effect over time, giving β0 = log(1.24) = 0.215 and β1 = −0.01 with
the dispersion parameter ϕ = 1.2. Assuming the intervention reduces the mean number of
acute care days by 40%, the intervention effect under the average intervention effects model
is δ = log(0.6) = −0.511. ICCs are specified with (α0, r0) = (0.03, 0.8) under exponential
decay correlation structure to indicate a small within-cluster correlation for the cross-sectional
design. The power is calculated using the z test with normal approximation and the t test
with df = 9. In the example with 12 clusters, the z test gives slightly higher power compared
to the t test, which indicates potentially overly optimistic power calculation as shown in
simulation studies (Zhang, Preisser, Li, Turner, Toles, and Rathouz 2023a).

%CRTFASTGEEPWR(alpha = 0.05, m = %str(J(6, 1, 2)), corr_type = ED,
alpha0 = 0.03, R0 = 0.8, intervention_effect_type = AVE, delta = -0.511,
period_effect_type = LIN, beta_period_effects = %str({0.215, -0.01}),
dist = poisson, phi = 1.2,
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Figure 2: The trial diagram of the decision-making trial: the study includes 40 clusters and
each treatment sequence includes 8 clusters. The blue and green cells denote control and
intervention cluster-periods, respectively.

CP_size_matrix = %str({4 4 4 4 4 0 0 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0,
0 4 4 4 4 4 4 0 0 4 4 4 4 4 4 4 4 4 0 0 0 0,
0 0 4 4 4 4 4 4 4 0 0 4 4 4 4 4 4 4 4 0 0 0,
0 0 0 4 4 4 4 4 4 4 4 0 0 4 4 4 4 4 4 4 0 0,
0 0 0 0 4 4 4 4 4 4 4 4 4 0 0 4 4 4 4 4 4 0,
0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 0 0 4 4 4 4 4}),

DesignPattern = %str({0 0 0 0 0 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2,
2 0 0 0 0 0 0 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2,
2 2 0 0 0 0 0 0 0 2 2 1 1 1 1 1 1 1 1 2 2 2,
2 2 2 0 0 0 0 0 0 0 0 2 2 1 1 1 1 1 1 1 2 2,
2 2 2 2 0 0 0 0 0 0 0 0 0 2 2 1 1 1 1 1 1 2,
2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 2 2 1 1 1 1 1}));

The fast GEE power of POISSON outcomes with exponential decay correlation
structure and (alpha0,r0):(0.03, 0.8)

Under average intervention effects model and delta = -0.511

T S clusters df theta totaln Dist Link stddel zpower tpower
22 6 12 9 0.215 720 POISSON LOG 3.1096 0.8749 0.7906

-0.01
-0.511

The third example illustrates power calculation for a cross-sectional SW-CRT to improve
pre-operative decision-making, by the use of a patient-driven question prompt list inter-
vention (Taylor et al. 2017; Schwarze et al. 2020). In the third example, 480 patients en-
rolled across six periods are clustered within 40 surgeons who are randomized to transition
from control (blue cells) to intervention condition (green cells) at one of five randomly as-
signed sequences (8 surgeons per sequence; Figure 2). We calculate the power for a binary
primary outcome regarding whether the patient has a post-treatment regret. We assume
a balanced and complete design for the study, 12 patients for each surgeon with two pa-
tients in each cluster period. In the marginal mean model for the binary outcome with
logit link and average intervention effects model, the control is assumed to have 2.2 times
the odds of reporting post-treatment regret compared to the intervention group, given by
δ = log(1/2.2) = −0.789. The average probability of post-treatment regret at baseline is
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assumed to be 0.22, such that β0 = log(0.22/0.78) = −1.266 with an consistent increasing
period effects βi = 0.01, i = 1, . . . , 5. For the working correlation structure, we used the ex-
ponential decay correlation structure with ICCs (α0, r0) = (0.03, 0.8). Power using the t test
and the z test both reach 80% and are similar to one another considering the moderately
large number of clusters.

%CRTFASTGEEPWR(alpha = 0.05, m = %str(J(5, 1, 8)), corr_type = ED,
intervention_effect_type = AVE, delta = -0.789, period_effect_type = CAT,
beta_period_effects = %str({-1.266, 0.01, 0.01, 0.01, 0.01, 0.01}),
alpha0 = 0.03, R0 = 0.8, dist = binary, phi = 1,
CP_size_matrix = %str(J(5, 6, 2)),
DesignPattern =%str({0 1 1 1 1 1,

0 0 1 1 1 1,
0 0 0 1 1 1,
0 0 0 0 1 1,
0 0 0 0 0 1}));

The fast GEE power of binary outcomes with exponential decay correlation
structure and (alpha0,r0):(0.03, 0.8)

Under average intervention effects model and delta = -0.789

T S clusters df theta totaln Dist Link stddel zpower tpower
6 5 40 33 -1.266 480 BINARY LOGIT 2.917 0.8307 0.8081

0.01
0.01
0.01
0.01
0.01

-0.789

The fourth example is based on the Heart Health NOW (HHN) study with a large number
of clusters. We assume the HHN study using a complete, stratified, SW-CRT evaluating the
effect of primary care practice support on evidence-based cardiovascular disease (CVD) pre-
vention, organizational change process measures, and patient outcomes, the latter captured
by electronic health records (EHR, Weiner et al. 2015). Medical practices are randomized to
receive the intervention at one of three time points (steps) within two strata defined by high
(the first three treatment sequences, Figure 3) or low (last three rows) readiness for change.
After four quarters in the intervention phase (green boxes), each practice enters a maintenance
phase (gray boxes) for two to six quarters depending upon the allocated treatment sequence.
HHN was a quality improvement research project whereby the intervention of practice facilita-
tion aimed to bring about enduring change in patient-centered and organizational outcomes.
We consider a combined binary outcome regarding whether there is hospitalization due to
stroke, acute myocardial infarction, or angina for patients. We assume that there are 30 med-
ical practices (clusters) in each sequence (practice cohort) with 100 patients enrolled in each
cluster period; thus 1100 patients will be enrolled in each cluster. If the baseline probability
of hospitalization is 0.05, making β0 = log(0.05/0.95) = −2.944 with an consistent decreasing
period effects β1 = −0.01. Under the extended incremental intervention effects model, the
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Figure 3: The study design of the HHN study: the blue, green and gray cells denote control,
active intervention and maintenance cluster-periods, respectively.

intervention effect is assumed to decrease the odds of hospitalization at the end of 4 quarters
by 25% under the active intervention condition, δ = log(0.75) = −0.288, maintaining the
same effect size in the maintenance periods. The working correlation structure for the binary
outcome is a nested exchangeable correlation structure with ICCs (α1, α2) = (0.03, 0.015).
Considering the large cluster size and number of clusters, powers is very similar under the
z test and t test, reaching 78%.

%CRTFASTGEEPWR(alpha = 0.05, m = %str(J(6, 1, 30)), corr_type = NE,
intervention_effect_type = INC_EX, period_effect_type = LIN,
delta = -0.288, max_intervention_period = 4,
beta_period_effects = %str({-2.944, -0.01}),
alpha1 = 0.03, alpha2 = 0.015, dist = binary, phi = 1,
CP_size_matrix = %str(J(6, 11, 100)),
DesignPattern = %str({0 1 1 1 1 1 1 1 1 1 1,

0 0 1 1 1 1 1 1 1 1 1,
0 0 0 1 1 1 1 1 1 1 1,
0 0 0 1 1 1 1 1 1 1 1,
0 0 0 0 1 1 1 1 1 1 1,
0 0 0 0 0 1 1 1 1 1 1}));

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.03, 0.015)

Under extended incremental intervention effects model and delta = -0.288

T S clusters df theta totaln Dist Link stddel zpower tpower
11 6 180 177 -2.944 198000 BINARY LOGIT 2.7477 0.7846 0.7801

-0.01
-0.288

In the appendix, we also describe the power calculation of multi-period parallel cluster ran-
domized trials, as well as SAS codes to calculate powers under varying effect sizes using the
SAS macro.
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5. Discussion

This article proposes a fast GEE power method for binary, count, and continuous responses
of complete and incomplete multi-period CRTs, including parallel-arm longitudinal CRTs,
cluster randomized crossover trials and SW-CRTs. The fast GEE power approach was illus-
trated in the planning of four complete and incomplete cross-sectional stepped wedge designs
for binary, count and continuous outcomes. The SAS macro CRTFASTGEEPWR is novel
in several aspects. Through specification of the Design Pattern matrix in the spirit of Hem-
ming et al. (2015) and Rochon (1998), the general GEE power method in the SAS macro is
implemented for four within-cluster correlation structures proposed in the recent literature
for multi-period CRTs. To our knowledge, there is no other statistical softwares that unifies
the multi-level correlation structures for designing cross-sectional and cohort CRTs. This pro-
posed software for power of multi-period CRTs based on marginal models fills a gap by adding
to the literature of power calculators, which has mostly focused on mixed models (Hughes
et al. 2015; Hemming, Kasza, Hooper, Forbes, and Taljaard 2020).

In the SAS macro CRTFASTGEEPWR, the user needs to choose from among three parame-
terizations of the intervention effect and two specifications of the period effects. Categorical
or linear period effects may be chosen. A linear time trend could be appropriate when the
underlying secular trend under control condition increases or decreases at an approximately
constant rate over time (e.g., an educated speculation from historic data before the plan-
ning of the study). When the secular trend is non-linear or when little prior information
is available, categorical period effects might be a more robust specification and with fewer
assumption compared to a linear time trend. In the special case of a complete stepped wedge
design where the treatment sequences are balanced and the outcome is continuous, Grantham,
Forbes, Heritier, and Kasza (2020) has shown that the model-based variance of the interven-
tion effect estimator under linear period effects (Model 1) is identical to that under categorical
period effects (Model 2). In more general cases, however, one would expect the variance of the
intervention effect estimator to be larger under Model 1 due to the additional cost in degrees
of freedom for estimating more period effect parameters. Therefore, whenever feasible, Model
1 can be considered as a more conservative option for power calculation, and the specified
degrees of freedom should be concordant with this conservative analysis option.

As the power calculation of the macro CRTFASTGEEPWR is based on the t distribution, it
offers two choices of degree of freedom based upon the intended GEE analysis, either I − 2
or I − p , where I is the number of clusters and p is the number of regression coefficients in
the marginal mean model. The options are based on previous simulation studies for multi-
period CRTs (Li et al. 2018; Li 2020; Li, Yu, Rathouz, Turner, and Preisser 2022; Zhang
et al. 2023b). In general, when the number of clusters is less than the number of periods, the
user must set df = I − 2 or specify the linear time trend in Model 2 with df = I − 3 since
otherwise the degrees of freedom becomes negative. As a concrete example, in the Connect-
Home trial (Figure 1), I = 6 and J = 22 and, thus, I − p = 6 − 23 = −17 < 0. Therefore, a
linear time trend is recommended when using I − p as the degrees of freedom. Zhang et al.
(2023b) showed that predicted power based on the fast, non-simulation GEE power method
with df = I − p has good agreement to the empirical power for testing the intervention effect
from simulation studies when the bias-corrected sandwich variance estimator of Kauermann
and Carroll (2001) is used in GEE analysis. Others have recommended using df = I −2 (Ford
and Westgate 2020; Li 2020; Li et al. 2022) based on simulation studies.
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Several variance estimators have been widely studied for use in GEE analysis. Based on
simulation studies of its finite-sample properties, the bias-corrected variance estimator of
Kauermann and Carroll (2001) has been recommended for use in GEE analysis of parallel-
groups CRTs (Preisser et al. 2003), multi-level CRTs (Teerenstra et al. 2010), crossover CRTs
(Li, Forbes, Turner, and Preisser 2019), and SW-CRTs (Li et al. 2018) with as few as 8 to
10 clusters. For as few as six clusters, recommendations are less certain. In this case, Zhang
et al. (2023b) suggest that the GEE with the model-based variance matrix may be the best
choice. In the case of constructing confidence intervals for ICCs, Preisser et al. (2008) and
Li et al. (2022) recommend the bias-variance estimator of Mancl and DeRouen (2001) and
matrix-adjusted estimating equations (MAEE) for point estimates. Evidence in the literature
for count outcomes is relatively scarce compared to that for binary and continuous outcomes.
A limitation of the SAS macro CRTFASTGEEPWR is that the power procedure that it
implements is based on the GEE model-based variance estimator, when sandwich variance
estimators (Zeger, Liang, and Albert 1988), which validly estimate the true variance under
misspecification of the correlation structure, are often used in analysis. As noted in the
introduction, under correct specification of the correlation matrix, the accuracy of the fast
GEE power method based on the GEE model-based variance matrix has been validated in
simulation studies based on GEE with a bias-corrected variance estimator for a few as eight
clusters (Kauermann and Carroll 2001; Li et al. 2022). Future research could investigate the
use of asymptotic sandwich variance formulae in the fast GEE power method under correlation
structure mis-specification. For example, if the planned GEE analysis specifies the working
independence correlation matrix (Thompson, Hemming, Forbes, Fielding, and Hayes 2021),
power could be computed under one or more assumed true non-independence correlation
structures. Another adaptation of the fast GEE power method, with the goal of improving
Type I error control in CRTs with small number of clusters, would base the power calculation
on the sandwich variance formula that is the expectation of a bias-corrected empirical variance
estimator (Kauermann and Carroll 2001; Mancl and DeRouen 2001; Fay and Graubard 2001).
Several recent software programs have been developed for the GEE analysis of studies
with a small number of clusters. For researchers interested in GEE analysis of binary re-
sponses with bias-corrected variance estimators for CRTs, the SAS macro GEECORR by
Shing, Preisser, and Zink (2021) is available. A SAS macro GEEMAEE developed by the
authors for binary, count, and continuous outcomes additionally applies bias-corrections
in the estimation of ICCs and their variance estimators, which is desirable for report-
ing ICC parameters as recommended by the CONSORT statement for stepped wedge tri-
als (Hemming et al. 2018). The GEECORR and GEEMAEE SAS macro are available at
https://www.bios.unc.edu/~preisser/personal/software.html.
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A. Standard GEE analysis of multi-period CRTs

For GEE analysis of multi-period CRTs, we consider a general population averaged regression
framework. Let µijk denote the marginal mean response for a continuous or categorical
outcome yijk, which is the kth subject in the ith cluster and the jth period, for i = 1, 2, . . . , I,
j = 1, 2, . . . , Ji, and k = 1, 2, . . . , nij . The mean response µijk is related to covariates Xijk

with the link function g(.) in the following marginal mean model:

g(µijk) = X⊤
ijkβ

where β is the (p + 1) × 1 parameter corresponding to the column of the design matrix
and describes how the population averaged response depends on the covariates. (Zeger
et al. 1988) Denote the vector of response vector as Yi =

(
yi11, . . . , yiJiniJi

)⊤
with marginal

mean vector µi =
(
µi11, . . . , µiJiniJi

)⊤
. Let the design matrix in the ith cluster be Xi =

(Xi11, . . . , XiJiniJi
)⊤, where Xijk =

(
x1ijk, . . . , x(p+1)ijk

)⊤
is a (p+1)×1 vector by combing

p exploratory variables and an intercept. The estimating equations for β are:

Uβ =
I∑

i=1
D⊤

i V −1
i (Yi − µi) = 0

where Di = ∂µi

∂β⊤ , Vi = AiRi(α)Ai, Ri(α) is a working variance matrix with parameter α, and

Ai = diag
(√

VAR (yi11),
√

VAR (yi12), . . . ,

√
VAR

(
yiJiniJi

))
. The variance of the response is

denoted as VAR(yijk) = vijkϕ where vijk is the variance function and ϕ is the dispersion
parameter. For binary responses, vijk = µijk(1 − µijk) and ϕ = 1, while for continuous
responses following typical normal model assumptions, vij = 1 and ϕ is the constant variance.
For count response, vijk = µijk and ϕ is the dispersion parameter. Furthermore, the sandwich
variance estimator of β̂ is:

VAR(β̂) =
[

I∑
i=1

D⊤
i V −1

i Di

]−1 [ I∑
i=1

D⊤
i V −1

i (Yi − µ̂i)(Yi − µ̂i)⊤V −1
i Di

] [
I∑

i=1
D⊤

i V −1
i Di

]−1

(3)
On the other hand, sandwich variance estimators have the virtue that they provide consistent
estimates of the variance matrix for parameter estimates even when the assumed variance
structure fails to hold. When the working covariance is believed to be equal to the true
correlation structure, then a consistent estimator for variance estimator VAR(β̂) is given by
Σ−1

1 =
[∑I

i=1 D⊤
i V −1

i Di

]−1
. Meanwhile, the dispersion parameter could be estimated by

the moment estimator proposed in Liang and Zeger (1986), ϕ̂ = 1
N−p

∑I
i=1

∑Ji
j=1

∑nij

k=1 r2
ijk,

where the Pearson residual rijk = (yijk − µijk) /
√

vijk is calculated from estimated β̂ and
N =

∑I
i=1

∑Ji
j=1 nij is the number of all participants in the CRT.
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B. GEE analysis with finite-sample corrections

In a recent systematic review of stepped wedge CRTs, Kristunas, Morris, and Gray (2017) re-
ported that the median number of clusters is 11 with a range between 6 to 22 clusters. When
CRTs have a small number of clusters, there is a greater chance of unequal distributions of
potentially confounding factors among the different conditions, necessitating more sophisti-
cated randomization to maintain the study’s intrinsic validity Murray (1998). Moreover, a
small number of clusters can significantly degrade the efficiency of GEE analysis. The biased
sandwich variance estimates in this section would help to reduce the bias of the standard
sandwich variance estimator in equation 3.

B.1. Bias-corrected sandwich variance estimators

Mancl and DeRouen (2001) showed that the GEE sandwich variance estimates in Equation 3
tended to underestimate the variance of intervention effects, which results in a greater Wald-
type test size than the nominal level with number of clusters less than 40. The estimated tests
sizes with the model-based estimator under the true correlation structure are usually closer
to the nominal level compared with the robust estimator but are still often inflated. Thus,
bias-corrected sandwich variance estimates should be considered under the situation with a
small number of clusters. The formula Σ̂−1

1 Σ̂β̂Σ̂−1
1 unifies the common types bias-corrected

sandwich variance estimates for CRTs, where

Σ̂β̂ =
I∑

i=1
F1iD

⊤
i V −1

i B1i (yi − µ̂i) (yi − µ̂i)′ B⊤
1iV

−1
i DiF1i (4)

which is evaluated at the solution of the GEEs θ̂ = (β̂, α̂). When both F1i and B1i are iden-
tity matrices, Equation 4 reduces to the uncorrected sandwich estimator VAR(β̂) (Liang and
Zeger 1986) in Equation 3 referred to as BC0. There are mainly three bias-corrected sandwich
variance estimates to reduce the finite sample bias of the uncorrected sandwich variance esti-
mator. Setting F1i = I and B1i = (I − H1i)−1/2 gives the finite-sample correction of Kauer-
mann and Carroll (2001) or referred as BC1, where H1i = Di(

∑I
i=1 D⊤

i V −1
i Di)−1D⊤

i V −1
i .

Next, setting F1i = I and B1i = (I − H1i)−1 gives the finite-sample correction of Mancl and
DeRouen (2001) or referred as BC2. Because the matrix elements of the cluster leverage are
between 0 and 1, there is an order of bias-correction BC0 < BC1 < BC2 (Preisser et al. 2008).

Finally, setting F1i = diag
{(

1 − min
{

ζ,
[
D⊤

i V −1
i DiΣ−1

1

]
jj

})−1/2
}

and B1i = I gives the

finite-sample correction of Fay and Graubard (2001) or BC3, where the bound parameter ζ
is a user-defined constant (< 1) with a default value 0.75.

The number of clusters and the aim of the finite sample adjustment influence the choice
of bias-corrected sandwich variance estimators. Most research is focused on bias-corrected
sandwich variance estimators for the intervention effect. In recent work, Li et al. (2018)
recommended using BC1 or BC3 and MAEE with a t-test for simulated power computation
in the design phase for stepped wedge CRTs as few as 8 clusters. Zhang et al. (2023b) found
that for incomplete stepped wedge CRTs with a small number of clusters, GEE analysis based
on BC1 with MAEE is recommended to maintain the suitable type I error rate based on t-test.
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C. Examples in applying CRTFASTGEEPWR for CRT designs

C.1. Calculate power for a closed-cohort CRT with decaying cluster sizes

We demonstrate the power calculation for CRTs with decreasing cohort size, based on a
hypothetical closed-cohort CRT with the same design as the Connect-Home trial. As in
Section 4.1, we assume 4 patients are recruited at baseline and 1 patient drops out per cluster
after 15 periods after their baseline period. The number of observation per cluster-cluster is
shown in the following codes in CP_size_matrix. All of the parameters in the marginal mean
model are set to the same values as those in Section 4.1. When describing the correlation for
patients with repeated measurements in a cluster, we utilize the block exchangeable correlation
structure with the within period ICC α1 = 0.03, between-patient and between-period ICC
α2 = 0.015, and within-patient and between-period ICC α3 = 0.2. In the software output,
there are 348 observations collected from 6 clusters and the power using z test is still above
90%. While the power using t test is 61.5%, much smaller than the z test. Power using t test
in the example C.1 is also much smaller than that in Section 4.1, which is caused by the
greater ICC due to patients’ repeated measure across time and drop-out at the end of the
study.

%CRTFASTGEEPWR(alpha = 0.05, m = %str(J(6, 1, 1)), corr_type = BE,
alpha1 = 0.03, alpha2 = 0.015, alpha3 = 0.2,
intervention_effect_type = INC, delta = 10,
period_effect_type = LIN, max_intervention_period = 10,
beta_period_effects = %str({68, 0.1}), dist = normal, phi = 64,
CP_size_matrix = %str({4 4 4 4 4 0 0 4 4 4 4 4 4 4 4 3 3 0 0 0 0 0,

0 4 4 4 4 4 4 0 0 4 4 4 4 4 4 4 3 3 0 0 0 0,
0 0 4 4 4 4 4 4 4 0 0 4 4 4 4 4 4 3 3 0 0 0,
0 0 0 4 4 4 4 4 4 4 4 0 0 4 4 4 4 4 3 3 0 0,
0 0 0 0 4 4 4 4 4 4 4 4 4 0 0 4 4 4 4 3 3 0,
0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 0 0 4 4 4 3 3}),

DesignPattern = %str({ 0 0 0 0 0 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2,
2 0 0 0 0 0 0 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2,
2 2 0 0 0 0 0 0 0 2 2 1 1 1 1 1 1 1 1 2 2 2,
2 2 2 0 0 0 0 0 0 0 0 2 2 1 1 1 1 1 1 1 2 2,
2 2 2 2 0 0 0 0 0 0 0 0 0 2 2 1 1 1 1 1 1 2,
2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 2 2 1 1 1 1 1}));

The fast GEE power of normal outcomes with block exchangeable correlation
structure and (alpha1,alpha2,alpha3):(0.03, 0.015, 0.2)

Under incremental intervention effects model and delta = 10

T S clusters df theta totaln Dist LINK stddel zpower tpower
22 6 6 3 68 348 NORMAL IDENTITY 3.5025 0.9385 0.615

0.1
10
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C.2. Calculate power for a parallel cluster trial with cross-sectional design
We illustrate the use of SAS macro CRTFASTGEEPWR for a parallel cluster trial, based
on the Enforcing Underage Drinking Laws (EUDL) Program (Preisser et al. 2003) in the
example. The EDUL program funded interventions at the community level to enforce laws
related to alcohol use by underage person to reduce the underage drinking. Moreover, the
study used a non-randomized trial design because the intervention communities were selected
by the administrative units in states. The control communities were selected by the propensity
score method to match the intervention communities based on US census data. There are
three periods: one baseline assessment and two follow-up assessments for participants in the
communities participating in the EUDL program. We will use the design of the EUDL study
to calculate the power under the assumption that all confounded covariates were balanced in
control and intervention groups. The main outcome is the binary outcome of self-reported last
30-day alcohol use for an underage person. We assume there are 40 clusters in total with 20
clusters per intervention group and 30 participants enrolled in each cluster-period. Assuming
the baseline probability of self-reported last 30-day alcohol use for an underage person is 0.6,
we set β0 = log(0.6/0.4) = 0.405 with an consistent decreasing period effects β1 = −0.01.
Under the average intervention effects model, the intervention effect is assumed to decrease
the odds of underage drinking by 30% on average, δ = log(0.7) = −0.357. Moreover, a
nested exchangeable correlation structure is used with ICCs (α1, α2) = (0.02, 0.01). From the
power calculation results, power is close to 90% given the parameters. Thus, this example
further illustrates the flexibility of the SAS macro in calculating power for multi-period cluster
randomized trials with different designs.

%CRTFASTGEEPWR(alpha = 0.05, m = %str(J(2, 1, 20)), corr_type = NE,
alpha1 = 0.02, alpha2 = 0.01 ,intervention_effect_type = AVE,
delta = -0.357, period_effect_type = CAT,
beta_period_effects = %str({0.405, -0.01, -0.01}), dist = binary,
phi=1, CP_size_matrix = %str(J(2, 3, 30)),
DesignPattern =%str({0 1 1,

0 0 0}));

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.357

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 3.2624 0.9036 0.8875

-0.01
-0.01

-0.357

We provide SAS codes to calculate and compare powers using GEE analysis bases on dif-
ferent effect sizes. In the example codes, CRTFASTGEEPWR is used to calculate pow-
ers under varying effect sizes, reducing the odds of underage drinking in the EDUL study
by (20%, 25%, 30%, 35%, 40%) on average, leading to δ = log(0.20, 0.25, 0.30, 0.35, 0.40) =
(−0.223, −0.288, −0.357, −0.431, −0.511). Outputs of the SAS codes are attached below the
codes.
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%macro multi_effectsizes(effectsizes);
%local index value;
%do index = 1 %to %sysfunc(countw(&effectsizes,%str( )));
%let value =%scan(&effectsizes,&index,%str( ));

%CRTFASTGEEPWR(alpha=0.05, m =%str(J(2,1,20)), corr_type = NE,
alpha1 = 0.02, alpha2 = 0.01, intervention_effect_type = AVE,
delta = &value, period_effect_type = CAT,
beta_period_effects = %str({0.405,-0.01,-0.01}), dist = binary,
phi = 1, CP_size_matrix = %str(J(2, 3, 30)),
DesignPattern = %str({0 1 1,

0 0 0}));
%end;

%mend;
%multi_effectsizes(-0.223 -0.288 -0.357 -0.431 -0.511);

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.223

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 2.0482 0.5352 0.508

-0.01
-0.01

-0.223

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.288

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 2.6395 0.7516 0.7276

-0.01
-0.01

-0.288

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.357

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 3.2624 0.9036 0.8875

-0.01
-0.01

-0.357

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)
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Under average intervention effects model and delta = -0.431

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 3.9239 0.9752 0.967

-0.01
-0.01

-0.431

The fast GEE power of binary outcomes with nested exchangeable correlation
structure and (alpha1,alpha2):(0.02, 0.01)

Under average intervention effects model and delta = -0.511

T S clusters df theta totaln Dist Link stddel zpower tpower
3 2 40 36 0.405 3600 BINARY LOGIT 4.6296 0.9962 0.9933

-0.01
-0.01

-0.511

Affiliation:
Ying Zhang, John S. Preisser
Department of Biostatistics
The University of North Carolina at Chapel Hill
Chapel Hill, NC, United States of America
E-mail: zyingunc@gmail.com

Fan Li
Department of Biostatistics
and
Center for Methods in Implementation and Prevention Science
Yale School of Public Health
New Haven, CT, United States of America

Elizabeth L. Turner
Department of Biostatistics and Bioinformatics
Duke Global Health Institute
Duke University
Durham, NC, United States of America

mailto:zyingunc@gmail.com


Journal of Statistical Software – Code Snippets 27

Paul J. Rathouz
Department of Population Health
The University of Texas at Austin
Austin, TX, United States of America

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

March 2024, Volume 108, Code Snippet 1 Submitted: 2022-03-01
doi:10.18637/jss.v108.c01 Accepted: 2023-07-08

https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v108.c01

	Introduction
	GEE analysis of multi-period CRTs
	Population-averaged model of multi-period CRTs
	Variance in GEE analysis of multi-period CRTs

	Fast GEE power for multi-period CRTs
	Overview of the fast GEE power method
	Adaption of the fast GEE power for incomplete SW-CRTs

	The SAS macro details
	Input arguments in the macro
	Multi-period CRT examples of SAS macro CRTFASTGEEPWR 

	Discussion
	Standard GEE analysis of multi-period CRTs
	GEE analysis with finite-sample corrections
	Bias-corrected sandwich variance estimators

	Examples in applying CRTFASTGEEPWR for CRT designs
	Calculate power for a closed-cohort CRT with decaying cluster sizes
	Calculate power for a parallel cluster trial with cross-sectional design


