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Abstract

Market models constitute a significant cornerstone of empirical applications in busi-
ness, industrial organization, and policymaking macroeconomics. The econometric lit-
erature proposes various estimation methods for markets in equilibrium, which entail a
market-clearing structural condition, and disequilibrium, which are described based on a
structural short-side rule. Nonetheless, maximum likelihood estimations of such models
are computationally demanding, and software providing simple, out-of-the-box methods
for estimating them is scarce. Therefore, applications rely on project-specific implemen-
tations for estimating these models, which hinders research reproducibility and result
comparability. This article presents the R package markets, which provides a common
interface with generic functionality simplifying the estimation of models for markets in
equilibrium and disequilibrium. The package specializes in estimating demanded, sup-
plied, and aggregated market quantities and absolute, normalized, and relative market
shortages. Its functionality is exemplified via an empirical application using a classic
dataset of United States credit for housing starts. Moreover, the article details the scope
and design of the implementation and provides statistical measurements of the computa-
tional performance of its estimation functionality gathered via large-scale benchmarking
simulations. The markets package is free software distributed under the Expat license as
part of the R software ecosystem. It comprises a set of estimation and analysis tools that
are not directly available from either alternative R packages or other statistical software
projects.

Keywords: disequilibrium, marginal effects, market clearing, maximum likelihood, short side
rule, shortages.

1. Introduction

Demand and supply estimations are among the most common objectives of econometric work
in policy-making, business, and finance. Foundational economic reasoning suggests that the
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combination of these two market forces determines observed market outcomes, with various
theories proposing different rules through which demand and supply translate to traded quan-
tities and prices. These rules rely on different identification conditions, leading to distinct
implications for the estimated market fundamentals. Shared among all approaches is that
prices and quantities, simultaneously determined in a market system, represent different sides
of a single coin.
With this shared characteristic as its focal point, the usage scope of R (R Core Team 2023)
package markets is to provide a common estimation interface for market models with differ-
ent structural assumptions. Moreover, the package’s design goal is to provide harmonized
post-estimation analysis functionality. The variability of identification conditions found in
commonly used market models and the computational difficulties relating to their estimations
prevented other software from providing a standard interface with unifying model function-
ality. As a consequence, recent empirical results obtained from market models with com-
putationally demanding estimation methods rely on project specific implementations (e.g.,
Carbó-Valverde, Rodríguez-Fernández, and Udell 2016; Loberto and Zollino 2018), using var-
ious optimization tools and methods with nonstandardized starting values and tolerances.
This situation makes project replication and cross-project comparability difficult.
The primary purpose of using market models is to obtain estimates of price elasticities,
demanded/supplied quantities, and shortages/surpluses. The markets package offers a variety
of well-established methods to obtain estimates of elasticities and market quantities. In
addition, it provides a unified set of analysis and visualization tools for the obtained market
fits irrespective of their underlying structural assumptions. Furthermore, markets specializes
in estimating market shortages, providing functionality through which shortage estimates are
measured in absolute, normalized, and probability terms.
The common interface of markets exposes different estimation methods and optimization tools
for the market models it implements. The implemented models follow commonly used struc-
tural assumptions found in empirical applications of economics and finance. The most used
structural assumption is market clearing, which postulates that prices are infinitely responsive
to demand and supply changes and swiftly adjust so that demand and supply perpetually
equalize. Alternative structural assumptions are more useful in cases where market short-
ages or surpluses are observed, and the market clearing assumption constitutes a rather poor
approximation. Unemployment in labor markets and financial constraints in credit markets
are prominent examples of market surpluses and shortages correspondingly. Shortages and
surpluses can also manifest due to exogenous effects. The semiconductor markets offer con-
temporary examples of unexpected shortages reported after the Coronavirus pandemic in the
late 2019. Market models describe such market states using the short-side rule, which pre-
sumes that the price adjustment mechanism is imperfect and temporary market imbalances
can lead to disparities between demanded and supplied quantities.
Estimating models under the market clearing condition is straightforward because the system
resulting from this identification rule is linear, and many software solutions offer appropriate
methods. In contrast, the estimation of short side rule systems is comparatively more involved.
Because the short-side rule introduces non-linearities to the market system, computational
difficulties related to estimating models with these systems hindered the development of stan-
dard tools, despite the well-understood methods for their estimation. The package markets
closes this persisting gap by providing a common framework for estimating, visualizing, and
analyzing models relying on both market clearing and short side rules.
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The common framework comprises five market models; a model based on market clearing and
four models based on the short side rule. All market models of the package are estimated
by maximizing their full information likelihoods by default. The market clearing model can
additionally be estimated using two-stage least squares. Furthermore, the estimation interface
of markets allows choosing among the available optimization methods in optim of R package
stats (R Core Team 2023). Lastly, access to a native optimization procedure from the GNU
Scientific Library (henceforth GSL, Galassi and Gough 2009) is provided for the market
clearing model.

More importantly, markets uses analytic expressions for calculating the gradients of all
likelihoods by default, which greatly reduces the computation times of maximum likeli-
hood optimizations. The article presents statistical evidence documenting the overperfor-
mance of the usage of analytic gradients, the expressions of which are package exclusive.
These statistics are obtained from large-scale benchmarking estimations using simulated
data in the high-performance cluster of Goethe University’s center for scientific comput-
ing (CSC, https://csc.uni-frankfurt.de/wiki/doku.php?id=public:start). The arti-
cle presents benchmarking measurements for estimating all models using Broyden-Fletcher-
Goldfarb-Shanno (hereafter BFGS) with analytically calculated gradients, BFGS with nu-
merically approximated gradients, and Nelder-Mead.

The package additionally incorporates analytic Hessian expressions for two of the implemented
short side rule models. These expressions are used to calculate standard errors by default.
In addition, markets exports functionality options allowing to estimate heteroscedastic or
clustered standard errors for all implemented market models.

Last but not least, markets offers a set of comprehensive analysis and visualization post-
estimation methods. The visualization methods offer an intuitive way of examining the es-
timated price elasticities against the quantity-price points observed in the data. The post-
estimation analysis methods fall into three categories. First, markets offers methods for
obtaining fitted demand and supply values, as well as their aggregates. Second, it provides
tools for measuring shortages and surpluses from fitted market models. Lastly, the package
exposes methods for assessing the impact of changes in the market system’s variables on
shortages and surpluses.

The markets package (Karapanagiotis 2024) is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=markets and developed on
GitHub at https://github.com/pi-kappa-devel/markets.

The remaining article gives an overview of the design and examples of analyses that can be
performed with markets. Section 2 is a short introduction to equilibrium and disequilibrium
econometrics. It presents the stochastic systems of the five market models of markets and
discusses their likelihoods. Section 3 documents the design approach followed by the package,
the scope of its functionality, and compares it to its closest alternatives. Section 4 demon-
strates the functionality provided by markets. The presentation uses an empirical example
based on the classic dataset of Fair and Jaffee (1972), which is also shipped with the pack-
age. Finally, Section 5 documents the performance benefits of the package by presenting the
results of the large-scale estimation benchmarking exercises comparing various optimization
tools. The last section concludes.

https://csc.uni-frankfurt.de/wiki/doku.php?id=public:start
https://CRAN.R-project.org/package=markets
https://github.com/pi-kappa-devel/markets
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2. Econometric background
Market models have been used in econometrics to concisely describe the trading interactions
of multiple independently acting agents. They comprise at least two aggregate forces, one
stemming from the agents that ask for a commodity or service (the demand side) and one
originating from those that offer this commodity or service (the supply side). Despite ab-
stracting from particular characteristics of agents’ behavior, such top-down market models
still have notable interpretability and predictability capacities.
To illustrate this point, consider a normal and linear in parameters system of demand and
supply forces

Dn,t = αdPn,t + βd
0 +

kd∑
j=1

βd
j Xj,d

n,t +
k∑

j=1
ηd

j Xj
n,t + ud

n,t (1)

Sn,t = αsPn,t + βs
0 +

ks∑
j=1

βs
j Xj,s

n,t +
k∑

j=1
ηs

j Xj
n,t + us

n,t, (2)

where D is the demanded quantity, S the supplied quantity, P the market price, Xj,d and
Xj,s are equation specific control variables, Xj are market wide control variables, and ud and
us are jointly, normally distributed shocks. The parameter ad governs how elastic is demand,
i.e., how sensitive it is with regard to price changes. Estimates of ad offer valuable insight to
firm owners or managers because, based on this information, they can evaluate how different
pricing strategies available to them will affect demand and, thereby, firm profits. Analogously,
as controls the elasticity of supply, estimates of which can be very informative to have when
designing output taxation strategies as a policymaker.
In spite of the above modeling approach’s elegance, Equations 1 and 2 are not enough to obtain
parameter estimates because demanded and supplied quantities are not typically observed
in market data. Instead, the observed quantities in market data are the traded quantities.
Surveys can be (and have been) used to gather more information on how much of a commodity
is asked or offered for each potential price point. However, the cost of accumulating survey
data and, on some occasions, the unwillingness of market participants to truthfully reveal
such information due to strategic reasons limits the applicability of the approach.
On the other hand, estimating the parameters of Equations 1 and 2 using market data requires
specifying how the observed traded quantity is related to the unobserved demanded and
supplied quantities. The easiest and most prominent way of establishing this relationship is
via the market clearing condition

Qn,t = Dn,t = Sn,t. (3)

The market clearing condition postulates that demanded and supplied quantities are equal
for all entities and time points. The stochastic, linear system combining Equations 1 to 3 is
commonly referred to as the equilibrium model1.
The equilibrium model can be estimated using either two-stage least squares or full in-
formation maximum likelihood (see Zellner and Theil 1962; Balestra and Varadharajan-
Krishnakumar 1987), with the two methods being asymptotically equivalent. Substituting

1This is perhaps an unfortunate effect of institutional inertia that reinforces the usage of the less accurate
‘equilibrium model’ naming convention in favor of the more descriptive ‘market clearing model’.
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Equation 3 into Equations 1 and 2 gives a system of two stochastic equations on traded
quantities and prices, which can be used to derive the model’s likelihood. To write the like-
lihood’s expression, suppose that φ denotes the (normal) joint density of ud and us, and let
θ =

(
αd, θd, αs, θs

)
and Y = (Yd, Ys), where

θm =
(
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}
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}
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)⊤
for m = d, s.

Then, the equilibrium model’s likelihood is given by

L (θ; q, p, Y ) = dP
d (Q, P ) (q, p | Y ; θ) = φ

(
q − αdp − θ⊤

d Yd, q − αsp − θ⊤
s Ys

)
.

Estimating the parameters of vector θ allows one to also calculate fitted values for the de-
manded and supplied quantities (say D̂n,t and Ŝn,t). Because of the error terms ud

n,t and us
n,t,

the fitted values of D̂n,t and Ŝn,t for individual observations can defer, allowing entity n at
time t to have an expected shortage given by Ĝn,t = D̂n,t − Ŝn,t

2. Nevertheless, the market
clearing condition imposes that the shortages of some observations are canceled out by the
surpluses of other observations on average. Therefore, on aggregate shortages tend to vanish,
i.e.,

∑
n,t Ĝn,t is close to zero.

Thus, market clearing is not the most conducive identifying condition for describing all mar-
kets for all periods. Market shortages and surpluses can occur either due to frictions (e.g.,
unemployment in labor markets or financial constraints in loan markets), strategic behaviors
(e.g., the 1973-74 petroleum shortages resulted from the embargo of the organization of the
petroleum exporting countries), or unexpected crises (for example the 2021-2022 semiconduc-
tor shortages following the 2019’s Coronavirus pandemic).
An alternative identifying condition allowing for aggregate shortages is the short side rule,
i.e.,

Qnt = min {Dn,t, Sn,t} . (4)

Models that replace the market clearing condition with the short side rule are known as
disequilibrium models. This modification makes the systems of the disequilibrium models
non-linear, which prevents using least square methods for estimating them. Full informa-
tion maximum likelihood still offers a viable method (Maddala 1986), albeit accompanied by
computation complexities (see also Section 5).
Instead of equating demanded and supplied quantities, the short side rule postulates that the
minimum from these two quantities is observed in the data. This identifying condition allows
shortages both for particular observations and on aggregate. For a particular observation,
the probability that the traded quantity equals the supplied quantity is calculated by

πS = P (D > S | p, Y ; θ) = P
(
ud − us > αsp + θ⊤

s Ys − αdp − θ⊤
d Yd | p, Y ; θ

)
, (5)

where the random variable ud − us is normally distributed as the difference of normally
distributed random variables. The probability that the traded quantity equals the demanded
quantity, denoted by πD, is defined analogously.

2There is no need to introduce a separate symbol for surpluses as they can be thought as negative shortages.
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The basic (disequilibrium) model is defined by Equations 1, 2 and 4 (Maddala and Nelson
1974). Using the total probability theorem, its likelihood can be represented by a two-parts
expression, namely

L (θ; q, p, Y ) = dP
dQ

(q | S > D, p, Y ; θ) πD + dP
dQ

(q | D ≥ S, p, Y ; θ) πS

=
∫ ∞

q
φ

(
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d Yd, S
)

dS +
∫ ∞

q
φ

(
D, q − αsp − θ⊤

s Ys

)
dD.

The first part is the density of the demanded quantities, conditional on that they are equal to
the observed traded quantity, multiplied by the probability that this market state is observed.
The second part is the analogous expression for cases when supplied quantities are observed.
One limitation of the basic model is that it ignores the role of prices in market systems. If
the market is in an excess demand state, the producers can increase their profits by raising
prices. Analogously, if the market is in an excess supply state, producers can eliminate the
surpluses in their inventories by offering lower prices. Abstracting from such a core feature
of the market can lead to underfitting and increase the bias error of the basic model.
The directional model mitigates this issue by introducing a separation rule based on price
movements (Fair and Jaffee 1972). In addition to Equations 1, 2 and 4, the directional model
separates the sample according to

∆Pn,t ≥ 0 =⇒ Dn,t ≥ Sn,t. (6)

With its observations belonging either to an excess demand or to a excess supply state, the
directional model’s likelihood is

L (θ; q, p, Y ) =
( dP

dQ
(q | S > D, p, Y ; θ) πD

)1−I∆P ≥0 ( dP
dQ

(q | D ≥ S, p, Y ; θ) πS

)I∆P ≥0
,

where I∆P ≥0 is an indicator function taking the value one if condition (6) is satisfied. Because
prices are used to separate the sample, they cannot be included in both the demand and supply
specifications (see Maddala and Nelson 1974, p.1021), making the model applicable only for
markets with fully inelastic demand or supply.
The deterministic adjustment model maintains sample separation based on price movements;
however, it allows the estimation of price coefficients for both sides of the market by including
an additional parameter in the price equation. The extra price adjustment parameter increases
the model’s flexibility. To be concrete, the model comprises Equations 1, 2 and 4, and the
deterministic price dynamics

∆Pn,t = 1
γ

(Dn,t − Sn,t) , (7)

which also serve as the separation rule. Given the classification of an observation based on
this rule, one of the variables D and S can be eliminated. As a result, the remaining variable
becomes equal to the traded quantity. This, by slightly abusing the notation so that the
vector θ also contains parameter γ, results in the likelihood

L := L (θ; q, p, p−1, Y )

=
( dP
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The deterministic adjustment model is conceptually close to the equilibrium model in that
if one lets γ approach zero, prices become infinitely flexible, which essentially dictates that
demanded and supplied quantities tend to be equal.
The last model of markets is the stochastic adjustment model. Its system is determined by
Equations 1, 2 and 4, and the stochastic price dynamics

∆Pn,t = 1
γ

(Dn,t − Sn,t) + βp
0 +

kp∑
j=1

βp
j Xj,p

n,t + up
n,t, (8)

where Xj,p are the control variables and up the disturbance term of the price equation.
Since Equation 8 is stochastic, it cannot be used to separate the sample and the stochastic
adjustment model does not rely on any pre-estimation classification of observations. To write
the likelihood of this model, let θp =

(
βp

j

)⊤

j
, Yp =

(
Xj,p

)⊤
j . Suppose also that θ contains

the parameters γ and θp, and that Y contains Yp. Moreover, redefine φ to denote the joint
density of the shocks ud, us, and up. Then, the likelihood of this model is given by
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The stochastic adjustment model has the most flexible system among the five market models
reviewed in this section. The model’s flexibility reduces the bias error but increases the
variance error of its fits. In addition, the increased flexibility intensifies the computation
complexity of estimating the model.

3. Scope, design, and alternatives
The estimation functionality of markets aims at disentangling demand and supply from mar-
ket data using various structural identification conditions. In particular, the package im-
plements a model based on market clearing and four models based on the short side rule.
The majority of the functionality offered by markets does not have any direct implemented
alternatives in either R or other statistical software.
The market clearing model is the one for which estimation with alternative software is mostly
available. This is mainly due to the availability of the model’s two-stage least square esti-
mation method. The method is fast, reliable, and accessible via simple commands in main-
stream statistical software, rendering specialized libraries less relevant. However, the situation
is entirely different regarding the disequilibrium models. Least square estimation methods
are not available, the models have nonlinear systems with comparatively more complicated
likelihoods, and their estimation is associated with computational difficulties because their
likelihoods have poles and multiple local maxima. Although they have been frequently used in
applications (see, e.g., Carbó-Valverde, Rodríguez-Fernández, and Udell 2009; Carbó-Valverde
et al. 2016; Loberto and Zollino 2018; Baird, Daugherty, and Kumar 2019), each project has
been based on distinct (re-)implementations of estimation procedures using different starting
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values, tolerance parameters, and optimization tools. Non open-source implementations raise
research reproducibility obstacles and make results’ comparison difficult, if not impossible.

The package markets aims to fill this gap by providing an open-source implementation of
market model estimation with simple workflows, providing meaningful defaults and making
equilibrium and disequilibrium models equally accessible. In addition, the package delivers
a common interface for analyzing all market models irrespective of their identification con-
ditions. This feature greatly ameliorates the cross model comparison of estimation results.
The same methods are used to estimate, visualize, and summarize all models implemented
in the package. Last but not least, markets supports maximum likelihood estimations using
analytically calculated expressions of gradients, which are significantly faster than estimations
based on numerical gradient approximations or derivative-free methods (see Section 5).

With the single exception of the basic disequilibrium model, which can also be estimated
using the R package disequilibrium (Latshaw and Guggisberg 2020), the maximum likelihood
estimation functionality found in markets is not directly offered by alternative statistical soft-
ware. With the disequilibrium package, one can estimate the basic model using the L-BFGS-B
implementation of optim with the numerically approximated model likelihood’s gradient. In-
stead, markets allows the user to choose both the optimization method and whether numerical
approximations or analytic gradient and Hessian calculations are used. There are no software
alternatives directly estimating the directional, deterministic adjustment, and stochastic ad-
justment models. By default, the BFGS implementation of optim with analytic expressions
for the gradients is used in the maximum likelihood estimations of all models.

The estimation methods implemented by markets have macroeconomic origins (Fair 1971;
Maddala and Nelson 1974), but have found applications in empirical economics and finance
research using microdata (see for instance Bulligan, Busetti, Caivano, Cova, Fantino, Locarno,
and Rodano 2017; Carbó-Valverde et al. 2009). In this respect, demand estimation methods
such as the almost ideal demand systems (AIDS) of Deaton and Muellbauer (1980) and the
structural estimation of Berry, Levinsohn, and Pakes (1995), typically abbreviated as BLP,
partially overlap with the methods described in this article. The AIDS and BLP methodolo-
gies are micro-founded, but they focus only on the demand side and do not concern varying
structural assumptions such as the market clearing and short side rules. Implementations of
these methods can be correspondingly found in the R packages blpestimator (Brunner 2022)
and miceconaids (Henningsen 2022).

The markets package is organized based on the object oriented hierarchy depicted in Figure 1.
Five front-end model classes, one corresponding to each implemented model, are exposed to
the user. These are the (i) equilibrium_model, (ii) diseq_basic, (iii) diseq_directional,
(iv) diseq_deterministic_adjustment, and (v) diseq_stochastic_adjustment classes.
The two back-end classes, namely (i) market_model and (ii) disequilibrium_model, act
as base abstract classes and enclose functionality that is common for all market models. The
overarching market_fit class acts as the common interface through which the functionality
of the package is exposed to the user in a uniform fashion. The arrows in Figure 1 indicate
how these classes are related with each other. Arrows with filled arrowheads indicate inher-
itance (is-a relationship), while arrows with empty arrowheads indicate composition (has-a
relationship).

The package implements maximum likelihood estimation routines for the four disequilibrium
models. Moreover, it implements both maximum likelihood and least squares estimation
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Figure 1: Design overview.

methodologies for the equilibrium_model. The least squares estimation is based on function
lm of the R package stats. The maximum likelihood estimation is implemented for all models
based on optim. In addition, the equilibrium_model’s likelihood can be maximized using
native GSL optimization routines.
When building the package from its sources, if the C++17 version of execution.h is available
in the target machine during compilation, some parallelization optimizations are enabled in
the native estimation routines. Specifically, gradient calculations are parallelized using the
std::execution::par_unseq execution policy when the likelihood is maximized with GSL.
Using of native optimization routines does not necessarily result in faster execution times
because there is an overhead stemming from the communication between R and GSL. Unre-
ported estimation time benchmarks indicate that for small datasets, machines without C++17
support, or machines with few available processors, the communication cost is greater than
the benefits of using native routines, which results in slower execution times. Still, estimating
the equilibrium model via GSL routines is included in the package’s exposed functionality to
accommodate use cases with access to parallel execution3. In addition, native likelihood max-
imization allows the user to customize the optimization call further by choosing the step size
and the gradient tolerance of the BFGS algorithm. The two-stage least squares methodology
is, of course, the least computationally intensive estimation method for the equilibrium model
as it merely involves linear algebra operations (for the statistical background, see Henningsen
and Hamann 2007). For well-behaved samples, all estimation methods and optimization tools
available for the equilibrium_model result in similar estimates (see Appendix C).

3And potential future broader support of the C++17 execution policies by the compilers and systems
targeted by R and CRAN.
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Two stage least square fits of the equilibrium model are the easiest to obtain with alternative
software. One can manually implement the methodology using three linear regressions to ob-
tain an equilibrium model’s fit. Firstly, one regresses prices on the collection of instruments,
and demand and supply controls. Subsequently, prices are substituted by the first stage’s
fitted prices in the demand and supply regressions. In Stata, the first and second stage re-
gressions for each market equation are combined in a single call to ivregress 2sls. In R, the
package systemfit (Henningsen and Hamann 2007) simplifies the estimation of the complete
market system to a single call and, in addition, calculates the appropriate coefficient and
residual covariance matrices. The package provides a comprehensive set of tools estimating
linear systems of simultaneous stochastic equations, but full information maximum likelihood
is not among them.
Besides using optim, likelihood maximization in R can also be performed using the nlm of
stats or the mle2 function of bbmle (Bolker and R Core Team 2023)4. To a lesser extent, these
approaches constitute alternatives to markets since one can use them to obtain estimations of
the market models. The functions nlm and mle2 offer more general optimization functionality.
Package markets specializes in market models and automates many estimation elements. For
instance, the simplest way to obtain a maximum likelihood fit of a market model with nlm
using a derivative-free optimization method requires programming the likelihood of the market
model (see Section 2) and providing appropriate initializing values. The implementation
requirements become much greater when derivative-based optimization methods are used
because the user has to manually program the gradients of market model likelihoods, which
involve tedious calculations and complex expressions5. Instead, markets offers ready-to-use
implementations of market model likelihoods and gradients, and automatically calculates
appropriate initializing values using linear regressions.
The situation is similar when attempting to estimate market models using maximum like-
lihood in other software. Stata offers general likelihood maximization functionality via the
command ml (Gould, Pitblado, and Poi 2010). Additionally, specialized commands such as
logistic and poisson offer pre-programmed likelihoods that facilitate the estimation of
the logistic and Poisson models. To estimate the market model of markets, users have to
resort to ml and manually program the likelihoods. The initialization of the estimation pro-
cess is automatic. With ml, the likelihood can be maximized using either derivative-free or
derivative-based optimization methods, with programming requirements in each case being
similar to those of R for both cases. The function movestay (Lokshin and Sajaia 2004) gives
an alternative option to estimate the disequilibrium models in Stata. The disequilibrium
models are Markov switching models, and their system can be rewritten in terms of latent
variables (see, e.g., Maddala 1986). The function movestay offers functionality that estimates
Markov switching models based on derivative-free optimization methods. Besides lacking the
derivative expressions, one disadvantage is that these estimations use a less economically in-
tuitive representation of the market models. The advantage of movestay is that the user does
not have to program the models’ likelihoods.
Internally, all five models of markets have similar implementation components, which are de-
picted in Figure 2. Each model class contains a logging object that handles the exposed meth-
ods’ output depending on the verbosity chosen during initialization. More importantly, model

4Previous versions of markets were based on bbmle and systemfit.
5However, derivative based methods have computational advantages when working with large databases or

performing an extended number of model estimations.
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Figure 2: Market class implementation.

classes contain objects describing their corresponding systems. Objects of system classes con-
tain data describing the models’ systems of stochastic equations. In this respect, system
classes contain equation objects for all stochastic equations of the systems they describe.
All system classes contain demand and supply equation objects because these equations are
ubiquitous in market models. The diseq_stochastic_adjustment system class additionally
contains a price equation object. The system and equation classes primarily contain back-
end functionality used to store and organize intermediate estimation data. The functionality
of markets is intended to be accessed via the exposed methods of the market models and
market_fit classes.

4. Functionality via an empirical example
The package is designed following R’s model estimation paradigm. Estimation calls expect
model formulas evaluatable in accompanied data frames and return fitted market models.
Estimation results can then be accessed by applying standard R methods such as summary,
coef, plot on the fitted objects. In addition, markets offers package specific methods, such
as shortages, demanded_quantities, and shortage_marginal, to examine market relevant
implications of the obtained fits.

4.1. The houses dataset

The houses dataset contains monthly macroeconomic time series for the US housing credit
market from January 1958 to December 1969 (144 observations). The housing credit market
was initially studied by Fair (1971) for this period. Subsequent work on the estimation and
assessment of short side rule market models also uses US housing credit data for this period
to illustrate the introduced methodologies (for instance, see Fair and Jaffee 1972; Maddala
and Nelson 1974; Hwang 1980).
Table 1 presents the variables of the houses dataset and provides short descriptions for them.
The dataset was constructed according to the sources provided in Fair (1971). The series of RM
were directly obtained by Fair (1971, Table A.3). The observations of HS were collected from
the United States President and Council of Economic Advisers (U.S.) (1959–1978), W were



12 markets: Markets in Equilibrium and Disequilibrium in R

DATE The date of the record.
HS Private non-farm housing starts in thousands of units (not seasonally adjusted).
RM FHA mortgage rate series on new homes in units of 100 (beginning-of-month data).
DSLA Savings capital (deposits) of savings and loan associations in millions of dollars.
DMSB Deposits of mutual savings banks in millions of dollars.
DHLB Advances of the federal home loan bank to savings and loan associations in million of dollars.
W Number of working days in month.

Table 1: Variables in the houses dataset.

manually compiled, while DSLA, DMSB, and DHLB were collected from the Board of Governors
of the Federal Reserve System (U.S.) and Federal Reserve Board (1958–1980).
The examples of this section use the demand and supply equation specifications of Hwang
(1980) and Maddala and Nelson (1974) as starting points. In particular, the starting demand
equation is given by

Dt = αdRMt + βd
0 + βd

1 t + βd
2Wt + βd

3CSHSt + βd
4RMt−1 + βd

5RMt−2 +
12∑

i=2
βd

4+iMONTHi,t + ud
t ,

where CSHS is the cumulative sum of past housing starts and MONTHi are monthly indicator
variables. The variable CSHS is used as a proxy of the stock of available houses, and the
monthly indicators are used to capture seasonal demand effects. The starting supply equation
is specified as

St = αsRMt + βs
0 + βs

1t + βs
2Wt + βs

3RMt−1 + βs
4MA6DSFt + βs

5MA3DHFt +
12∑

i=2
βs

4+iMONTHi,t + us
t ,

where MA6DSF is the moving average of order 6 of the flow of deposits in savings associations,
loan associations, and mutual savings banks, while MA3DHF is the moving average of order 3
of the flow of advances of the federal home loan bank to savings and loan associations. The
stochastic terms ud,t and us,t are jointly, normally distributed. The moving averages and
lagged variables of the analysis are constructed from the variables of the houses dataset. The
fair_houses function of markets automates the construction.

R> house_data <- fair_houses()

4.2. Model formulas

The market system is specified in estimation calls by formulas, which contain the quantity
and price variables, the subject and time identification variables, and the right-hand sides of
the stochastic equations of the system. The back-end implementation of markets relies on the
functionality of the R package Formula (Zeileis and Croissant 2010). Moreover, the format of
Formula is adopted for the description of market model systems. Pipe operators separate the
various elements of the market model formula. The model formulas standardize the input of
estimation calls of different market models to a great extent.
As an example, the formula corresponding to the demand and supply equations of Section 4.1
is given in R Code 1. From left to right, the left-hand side of the expression specifies the
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quantity, price, subject, and time variables of the house_data data frame. The right-hand
side of the expression specifies from left to right (the right-hand side of) the demand and
supply equations.

R Code 1: An example of a market model formula.
HS | RM | ID | TREND ~

RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH

Each market model combines the quantity variable with the demand and supply specifications
according to its identification condition (market clearing or short side rule) and, whenever
relevant, its sample separation rule and price dynamics. Further, the dynamic market models
use the price, subject, and time variables to calculate price differences, as required in their
estimation.

4.3. Estimation

Models can be initialized and estimated using either a single function call or two separate
calls, one for initialization and one for estimation. The first approach is the most convenient
one for most use cases. However, there are some use cases in which the second approach
can have some advantages depending on the workflow. For example, maximum likelihood
estimations with large datasets can be time consuming; thus, it can be convenient to initialize
a market model once and then estimate it in parallel using different optimization methods,
starting values, and other estimation parameters. More details about the initialization calls
(constructors) can be found in Appendix D. The following presentation focuses on the single
call estimation approach. All five market models available in markets are estimated using full
information maximum likelihood in the following examples.
R Code 2 estimates the equilibrium model. The first argument specifies the market model
formula, and the second the used data frame. The first two input arguments are used during
the model’s initialization. The third argument is a list with options used in the model’s
estimation. For instance, the call of R Code 2 sets the maximum number of iterations in the
control argument of the optimization routine equal to 5000.

R Code 2: Estimating the equilibrium model.
R> eq <- equilibrium_model(
+ HS | RM | ID | TREND ~ RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
+ RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
+ house_data, estimation_options = list(control = list(maxit = 5000)))

R Code 3 estimates the deterministic adjustment model without modifying the formula used
in R Code 2. By default, operations of markets display errors and warnings in the standard
output. However, it can be helpful to have more information about the performed operations
on some occasions (e.g., during development or testing). The default behavior can be over-
ridden by specifying the verbose argument of the estimation call. For instance, the call of
R Code 3 sets the verbosity level to be equal to 2, which besides errors (level 0) and warn-
ings (level 1), displays basic information concerning the performed operations in the standard
output. In this case, the diseq_deterministic_adjustment call displays three information
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messages (preceded by Info :) and one warning message (preceded by Warning :). The
first information message declares the model, the second gives the number of observations
dropped due to the calculation of lagged prices, and the third informs the caller about the
data subsets created by the model’s separation rule.

R Code 3: Estimating the deterministic adjustment model.

R> da <- diseq_deterministic_adjustment(
+ HS | RM | ID | TREND ~ RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
+ RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
+ house_data, verbose = 2,
+ estimation_options = list(control = list(maxit = 5000)))

Info: This is Deterministic Adjustment model.
Warning: Dropping 14 rows due to missing values.
Info: Dropping 1 row to generate 'LAGGED_RM'.
Info: Sample separated with 18 rows in excess supply and 111 rows in

excess demand states.

The default optimization routine used by markets is BFGS with analytically calculated gra-
dient expressions, which is the fastest available optimization option (see Section 5). On rare
occasions, numerical stability issues might be less prominent in derivative-free optimization
algorithms. Access to alternative optimization routines is provided by setting the method
in the estimation_options list. As an example, R Code 4 estimates the directional model
using the Nelder-Mead algorithm.

R Code 4: Estimating the directional model.

R> dr <- diseq_directional(
+ HS | RM | ID | TREND ~ TREND + W + CSHS + L1RM + L2RM |
+ RM + TREND + W + MA6DSF + MA3DHF + MONTH,
+ house_data, estimation_options = list(
+ method = "Nelder-Mead", control = list(maxit = 5000)))

Maximum likelihood estimations in markets are initialized by automatically calculated start-
ing values coming from model-specific, linear regressions by default. For instance, the basic
model’s starting values are obtained by regressing the (observed) traded quantity on the de-
mand and supply right-hand side specifications. The equilibrium model’s starting values are
obtained by two stage least square estimates of the system. The user can override the default
behavior and provide custom starting values. R Code 5 provides an example of starting value
customization. In this case, the estimated coefficients of the equilibrium model are used as
starting values for the estimation of the basic model. The underlying optimization routine
of optim expects that the length of the initializing vector and the names of its entries corre-
spond to the number and names of model coefficients to be estimated. If this is not true, the
initialization of the optimizer fails. This behavior has to be taken into account when passing
starting values. For example, R Code 5 estimates the basic model using independent shocks,
which would fail if the correlation coefficient was not removed from the supplied starting
values.
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R Code 5: Estimating the basic model.
R> start <- coef(eq)
R> start <- start[names(start) != "RHO"]
R> bs <- diseq_basic(
+ HS | RM | ID | TREND ~ RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
+ RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
+ house_data, verbose = 2, correlated_shocks = FALSE,
+ estimation_options = list(start = start, control = list(maxit = 5000)))

Info: This is Basic model.
Warning: Dropping 14 rows due to missing values.

The last estimation example uses the stochastic adjustment model. The stochastic adjustment
model is comprised of three stochastic equations. Thus, the passed model formula should also
specify the right-hand side of the stochastic price dynamics (see Equation 8). The model
constructor automatically accounts for the shortage term (Dt − St) appearing in Equation 8
but it is not observed in the data. Thus, the caller needs to provide only the remaining
summands. As a concrete example, R Code 6 estimates the stochastic adjustment model with
a price dynamics’ specification given by

∆RMt = 1
γ

(Dt − St) + βp
0 + βp

1t + βp
2RMt−2 + βp

3RMt−3 + up
n,t + up

t .

In addition, the call of R Code 6 instructs the estimation routine to calculate clustered stan-
dard errors with respect to the levels of variable W (number of working days in a month).

R Code 6: Estimating the stochastic adjustment model.
R> sa <- diseq_stochastic_adjustment(
+ HS | RM | ID | TREND ~ RM + TREND + W + CSHS + MONTH |
+ RM + TREND + W + L1RM + L2RM + MA6DSF + MA3DHF + MONTH |
+ TREND + L2RM + L3RM,
+ house_data |> dplyr::mutate(L3RM = dplyr::lag(RM, 3)),
+ correlated_shocks = FALSE,
+ estimation_options = list(
+ control = list(maxit = 5000), standard_errors = "W"))

Table 2 presents the estimated coefficients for all five models. The coefficients of the monthly
indicators are omitted for brevity. Parentheses contain the p values for the estimated co-
efficients. The Coefficient column displays the names of the estimated coefficients used in
markets by default. Since variables can be simultaneously included in multiple equations,
the coefficient names use distinct prefixes for each equation. Demand coefficient names are
prefixed by D_, supply names are prefixed by S_, and the names of the price equation are
prefixed by P_. The correlation coefficient of the shocks is by default named RHO, and the
estimate of γ (see Equation 7 or Equation 8) is composed by concatenating the price variable’s
name with _DIFF.
In accordance with the usual economic intuition, estimated demand side price coefficients
(D_RM) are negative, while estimated supply side price coefficients (S_RM) are positive. Both
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Coefficient Equilibrium Basic Directional Deterministic adjustment Stochastic adjustment

D_RM −7.4514 (0.00) −10.5700 (0.00) − −4.1059 (0.00) −0.7750 (0.00)
D_CONST 3.6144 (0.00) 3.7718 (0.00) −9.4997 (0.00) 42.0735 (0.00) 534.8947 (0.00)
D_TREND −3.8074 (0.00) −40.5795 (0.00) 17.6369 (0.00) −1.6725 (0.00) −20.8842 (0.00)
D_W 2.4745 (0.18) −41.0733 (0.00) 4.2710 (0.41) 1.3388 (0.35) 2.1748 (0.00)
D_CSHS 0.0346 (0.00) 0.2211 (0.03) −0.1512 (0.00) 0.0162 (0.00) 0.1921 (0.00)
D_L1RM 9.9305 (0.00) 19.0681 (0.00) 0.9166 (0.68) 5.9190 (0.00) −
D_L2RM −2.4254 (0.00) −4.0824 (0.00) −0.9874 (0.66) −1.7948 (0.00) −

S_RM 1.0932 (0.00) 0.3609 (0.16) 0.0738 (0.00) 0.2990 (0.49) 0.1298 (0.49)
S_CONST −50.2872 (0.00) −71.9648 (0.00) −40.1998 (0.00) −35.6559 (0.00) −142.7089 (0.00)
S_TREND −0.1809 (0.00) −0.1403 (0.00) −0.1799 (0.00) −0.1324 (0.01) −0.4197 (0.00)
S_W 2.6866 (0.00) 3.1616 (0.00) 2.0319 (0.00) 2.1560 (0.00) 4.3563 (0.00)
S_L1RM −1.0396 (0.00) −0.2892 (0.27) − −0.2398 (0.58) −0.1301 (0.68)
S_MA6DSF 0.0516 (0.00) 0.0510 (0.00) 0.0455 (0.00) 0.0443 (0.00) 0.0479 (0.00)
S_MA3DHF 0.0421 (0.00) 0.0409 (0.00) 0.0440 (0.00) 0.0321 (0.00) 0.0504 (0.00)
S_L2RM − − − − 0.1907 (0.25)

RM_DIFF − − − 1.7691 (0.02) 35.4703 (0.00)

P_CONST − − − − −25.1614 (0.00)
P_TREND − − − − −0.0222 (0.09)
P_L2RM − − − − 0.2299 (0.00)
P_L3RM − − − − −0.1869 (0.00)

D_VARIANCE 1241.6599 (0.00) 1228.9326 (0.00) 591.7524 (0.00) 748.3865 (0.00) 47.1873 (0.00)
S_VARIANCE 122.6572 (0.00) 100.2919 (0.00) 89.8593 (0.00) 102.3525 (0.00) 82.8410 (0.00)
P_VARIANCE − − − − 23.9172 (0.00)
RHO −0.1180 (0.45) − −0.0810 (0.93) 0.1562 (0.44) −

Table 2: Estimation results.

the deterministic and stochastic adjustment models suggest that price changes are responsive
to shortages and surpluses as their estimated shortage response parameters (RM_DIFF) are
positive and have very small p values.

4.4. Summarizing and visualizing market fits

The estimation examples of R Codes 2 to 6 return market_fit objects. These objects can be
used to summarize and visualize the fitted models.
Calling summary with a market_fit object as an input argument prints basic information
about the fit of the model to standard output. The output summary comprises four parts
separated by empty lines. The first part contains essential information concerning the model.
The second part contains information regarding the estimation method of the model. The
third part includes the model’s estimated coefficients, their standard errors, z values, and
p values. Finally, the last part displays information about the model’s maximized likelihood.
R Code 7 shows part of the market fit summary for the deterministic adjustment model
estimated in R Code 3 (some rows of the output are truncated for brevity). The first part of
the summary informs the user about the estimated model in its unindented heading. Then,
it describes the specification of the model’s equations and gives basic information about the
sample separation and the used variables. The second part of the output of summary starts
with the heading Maximum likelihood estimation. It shows the optimization algorithm,
convergence status, and used starting values. The third and fourth parts are similar to the
estimation summaries of lm and bbmle objects.
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R Code 7: Market model fits’ summaries.

R> summary(da)

Deterministic Adjustment Model for Markets in Disequilibrium:
Demand RHS : D_RM + D_TREND + D_W + D_CSHS + D_L1RM +

D_L2RM + D_MONTH
Supply RHS : S_RM + S_TREND + S_W + S_L1RM + S_MA6DSF +

S_MA3DHF + S_MONTH
Short Side Rule : HS = min(D_HS, S_HS)
Separation Rule : RM_DIFF analogous to (D_HS - S_HS)
Shocks : Correlated
Nobs : 129
Sample Separation : Demand Obs = 18, Supply Obs = 111
Quantity Var : HS
Price Var : RM
Key Var(s) : ID, TREND
Time Var : TREND

Maximum likelihood estimation:
Method : BFGS
Max Iterations : 5000
Convergence Status : success
Starting Values :

D_RM D_CONST D_TREND D_W D_CSHS D_L1RM D_L2RM
7.528e-02 7.462e+01 2.432e+00 2.395e+00 -1.977e-02 1.512e-01 -3.291e-01

...
S_MONTH12 RM_DIFF D_VARIANCE S_VARIANCE RHO
1.094e+01 -2.154e-15 1.960e+02 1.035e+02 0.000e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

D_RM -4.10589655 0.770842666 -5.3265040 1.001211e-07 ***
D_CONST 42.07353822 0.046772847 899.5291197 0.000000e+00 ***
D_TREND -1.67246804 0.166728247 -10.0311019 1.112679e-23 ***
D_W 1.33881271 1.444887967 0.9265858 3.541416e-01

...
RHO 0.15624911 0.200804009 0.7781175 4.364997e-01

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

-2 log L: 1724.659

An alternative way to inspect the market fit is via the plot function. Compared to summary,
plot provides a more concise representation of the fit, primarily focusing on the estimated
price coefficients. Figure 3 contains the output of calling plot with input arguments the fits
of R Codes 2–6 (e.g., plot(eq), plot(bs), etc.).
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Figure 3: Market fits’ visualizations.
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The (red) circles in each plot of Figure 3 correspond to the price-quantity points of the data
frame used to estimate the model. The (blue) dotted lines represent the average, estimated
demand as a function of price. The lines are obtained by calculating the fitted demanded
quantity for each price point of the figure’s domain using the sample’s average values for the
remaining control variables. For example, the demand of the equilibrium model of Figure 3
is calculated by

D(p) = α̂dp + 1
T

T∑
t=1

[
β̂d

0 + β̂d
1 t + β̂d

2Wt + β̂d
3CSHSt + β̂d

4RMt−1 + β̂d
5RMt−2 +

12∑
i=2

β̂d
4+iMONTHi,t

]
,

where hats are used to denote estimated coefficients. The (orange) dashed lines represent
average supplies as functions of prices and are analogously calculated.
The estimated price coefficients are relevant both in policymaking and in business appli-
cations. Using the plot function, the user can quickly assess whether the estimated price
coefficients have the expected signs. Microeconomic theory suggests that the relationship
between demanded quantities and prices is nonpositive6, while between supplied quantities
and prices is nonnegative.

4.5. Fitted quantities and aggregation

Using the estimated market models, one can obtain fitted values of the (unobserved) de-
manded and supplied quantities. The package markets automates these calculations with the
functions demanded_quantities and supplied_quantities. For example, R Code 8 calcu-
lates the fitted values for the stochastic adjustment model estimated in R Code 6. Specifically,
it calculates

D̂t = α̂dRMt + β̂d
0 + β̂d

1 t + β̂d
2Wt + β̂d

3CSHSt +
12∑

i=2
β̂d

4+iMONTHi,t

Ŝt = α̂sRMt + β̂s
0 + β̂s

1t + β̂s
2Wt + β̂s

3RMt−1 + β̂s
4RMt−2 + βs

5MA6DSFt + βs
6MA3DHFt +

12∑
i=2

β̂s
5+iMONTHi,t

for each time point t in the house_data data frame.

R Code 8: Fitted demanded and supplied quantities.
R> demanded <- demanded_quantities(sa)
R> supplied <- supplied_quantities(sa)

The functions demanded_quantities and supplied_quantities return vectors with a fitted
value for each observation in the sample. For example, the fitted values of R Code 8 are plotted
against time in Figure 4. In this example, the fitted demanded and supplied quantities are
highly seasonal, with the demand side being more volatile than the supply side.
On some occasions, examining the fitted demand and supply at an aggregate market level
is more relevant than at an individual observation level. For example, macroeconomic pol-
icymakers are primarily interested in aggregate market demand and supply when designing

6This relationship is commonly referred to as the law of demand. The law characterization is meant to
indicate that it is the predominantly observed relationship in most market settings. However, there are also
documented counterexamples, e.g., Giffen goods.
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Figure 4: Fitted demanded and supplied quantities.

taxation. The functions aggregate_demand and aggregate_supply of markets calculate ag-
gregated fitted quantities. The functions have two modes depending on the nature of the
data frame used to estimate the passed fitted model. For panel data frames, i.e., for data
with more than one entity observation per time point, the aggregation functions return a
vector of aggregate fitted quantities per time point. For time series data frames, such as the
house_data data frame of this example, aggregation occurs over all time points.
R Code 9 exemplifies the aggregation functionality using the equilibrium (first command)
and stochastic adjustment (second command) models. As the market clearing identification
condition implies, aggregate demand and supply are almost equal for the equilibrium model.
For the stochastic adjustment model, the fitted aggregate demand is greater than the fitted
aggregate supply, which indicates that the market operated on aggregate in a shortage state.

R Code 9: Aggregate fitted quantities.
R> c(demand = aggregate_demand(eq), supply = aggregate_supply(eq))

demand supply
15180.33 15184.04

R> c(demand = aggregate_demand(sa), supply = aggregate_supply(sa))

demand supply
22823.71 15721.84

4.6. Analysis of shortages

The package provides an extensive range of options regarding the analysis of shortages and
surpluses. The fitted shortages Ĝn,t = D̂n,t − Ŝn,t are calculated by calling shortages.
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Figure 5: Fitted shortages.

The function shortages is a convenience function that calculates the differences between
demanded_quantities and supplied_quantities (for example, compare Figures 4 and 5).
It returns a vector of shortages, one for each observation in the sample.
Figure 5 plots the shortages for the stochastic adjustment model fit of R Code 6. Values
below the zero horizontal line indicate an estimated market surplus for the given date, while
values above indicate estimated market shortages.
Based on the estimated shortages, the sample can be separated (post estimation) into subsets
of observations exhibiting excess demand and supply. The sample separation for each pre-
dicted state can be easily obtained using the shortage_indicators function, which returns
a vector of Boolean values indicating whether the corresponding sample observation has a
positive fitted shortage. For example, R Code 10 confirms the visual finding of Figure 5,
suggesting that most of the sample’s observations lie in an excess demand state for the fitted
stochastic adjustment model.

R Code 10: Shortage indicators.

R> c(no_shortages = sum(shortage_indicators(sa)),
+ no_surpluses = sum(!shortage_indicators(sa)))

no_shortages no_surpluses
89 39

Fitted shortages are measured in quantity units, which prevents their comparison across and
within samples due to potential scaling differences. For example, a shortage of 10.000 Euro
housing credit for an observation in which supply is 100.000 Euro is 10% relative to the
supplied credit, while 100% when supply is 10.000 Euro. The lack of access to trade credit is
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more severe in the second case. The markets package provides normalization methods that
mitigate comparability problems.
One way to normalize shortages is via the shortage standard deviation. For example, an
estimate of the standard deviation of the expected shortage in the deterministic adjustment
model can be calculated by

σ̂G =
√

σ̂2
d + σ̂2

s − ρ̂σ̂dσ̂s.

R Code 11 calculates this estimate by applying shortage_standard_deviation on the de-
terministic adjustment fit of R Code 3.

R Code 11: Shortage standard deviation.
R> shortage_standard_deviation(da)

shortage_standard_deviation
27.64508

Then, normalized shortages can be calculated by

N̂n,t = Ĝn,t

σ̂G
.

In markets, normalized shortaged are obtained by calls to normalized_shortages. Figure 6a
depicts the histogram of estimated normalized shortages of the deterministic adjustment fit.
The normalization performed by normalized_shortages is common for all observations in
the sample. An alternative normalization is given by

R̂n,t = Ĝn,t

Ŝn,t

,

which calculates shortages relative to supply. Since estimated supplied quantities are ob-
servation specific, the normalization of R̂ is idiosyncratic. Figure 6b depicts the histogram
of estimated relative shortages of the deterministic adjustment fit obtained by the function
relative_shortages.
The last unit-free way to examine estimated shortages in markets, albeit indirectly, is via the
shortage_probabilities function. The function calculates an estimate π̂S of Equation 5
based on the normality assumption of the shocks. The histogram of the estimated shortage
probabilities for the deterministic adjustment model is depicted in Figure 6c.

4.7. Marginal effects
Marginal effects give estimates of the impact of changes of control variables on market short-
ages. This can be helpful for variables that simultaneously affect multiple equations of the
market model’s system. For example, prices affect both demand and supply in the determin-
istic adjustment specification of R Code 3. Thus, a price change affects the system via two
channels, one from the demand and one from the supply side. The overall effect of the change
can be examined by looking at the partial derivative of the normalized shortage with respect
to prices, i.e.,

MRM = ∂N

∂RM
= αd − αs√

σ2
d + σ2

s − 2ρσdσs

.
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Figure 6: Normalized shortages, relative shortages, and shortage probabilities.

Had demand or supply been inelastic, only αs or correspondingly αd would have been present
in the numerator of the marginal effect.
R Code 12 exemplifies the calculation MRM in markets. The second command calculates
the impact of a marginal price change on the fitted shortages for both the stochastic and
deterministic adjustment models using the function shortage_marginal. The price variable
name RM is prefixed by B to indicate that price coefficients are present on both the demand
and supply sides. Variables that are present on only one market side are prefixed differently.
Supply side variables are prefixed with S, while demand side variables are prefixed with D.

R Code 12: Marginal effects.

R> fits <- c(sa = sa, da = da)
R> sapply(fits, function(m) shortage_marginal(m, "RM"))
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sa.B_RM da.B_RM
-0.07934694 -0.15933786

The marginal effects of normalized shortages are state-independent because their partial
derivative expression involves constant model parameters for all market states. Hence, the
marginals of observations with large and small shortages are equal irrespective of the state
of the market. In contrast, marginal effects on shortage probabilities are state-dependent.
As a result, the marginal effects of observations with large shortages differ from those of
observations with small shortages.
There are many ways to evaluate the market impact of a control change on shortage prob-
abilities with state dependencies7. One of them is to calculate the average marginal effect,
i.e.,

E
∂ Φ(N)

∂RM
= MRM Eφ(N),

where φ denotes the normal density of the difference of the shocks (ud −us) and Φ the normal
distribution. An alternative evaluation involves calculating the marginal effect at the average
shortage, namely

∂ Φ(EN)
∂RM

= MRM φ(EN).

Both marginal effects have the same sign with MRM because the standard normal density is
positive.
R Code 13 calculates probability marginals for MA3DHF and CSHS for the fitted stochastic
and deterministic adjustment models. The first command of R Code 13 calculates the mean
marginal effects of MA3DHF, while the second command calculates marginal effects of CSHS at
the mean.

R Code 13: Marginal effects.

R> sapply(fits, function(m) shortage_probability_marginal(m, "MA3DHF"))

sa.S_MA3DHF da.S_MA3DHF
-0.0003189794 -0.0003719712

R> sapply(fits, function(m) {
+ shortage_probability_marginal(m, "CSHS", aggregate = "at_the_mean")
+ })

sa.D_CSHS da.D_CSHS
4.857798e-08 2.323340e-04

7In this respect, the discussion here parallels the evaluation of marginal effects of binary response probability
models.
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5. Estimation benchmarks
A major difficulty in estimating models for markets in disequilibrium comes from their com-
putational complexity. Dorsey and Mayer (1995) classify the estimation of disequilibrium
models among the most demanding econometric estimation problems, as the likelihoods of
these models have poles and non-unique local maxima. The authors propose a genetic al-
gorithm optimization method for estimating the basic model and compare its computational
performance with Nelder-Mead. Instead, the classic estimation approach proposed by Mad-
dala (1986) obtains maximum likelihood estimates using a global, iterative Newton method.
Zilinskas and Bogle (2006) use random interval arithmetic optimization for locating global
maxima. They apply the technique to the basic model with independent shocks using the
dataset of Fair and Jaffee (1972) to assess its performance experimentally. Bowden (1978) con-
siders the deterministic and stochastic adjustment models and proposes a re-parametrization
that allows their estimation using more straightforward procedures. Instead, Quandt and
Ramsey (1978) estimate the stochastic adjustment model with a methodology based on the
moment generating function of the likelihood.
The benchmarks of this section compare the computational performance of the maximum
likelihood estimation procedure for three of the optimization options that markets provides.
Specifically, the analysis compares the mean estimation time of likelihood maximizations via
BFGS with analytically calculated gradients, BFGS with numerically approximated gradients,
and Nelder-Mead’s simplex method. The execution time statistics are calculated using col-
lected measurements from a series of benchmarking simulations performed in the CSC cluster
of Goethe University. The benchmark data are collected from one water-cooled computing
node with 2 Intel Xeon E5-2670 v2 (Ivy Bridge) CPUs, 10 cores per CPU, and hyper-threading
(in total 40 logical processors). One logical processor is left unused to make space for other
operations and minimize the scheduling competition between benchmark and system tasks.
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Figure 7: Equilibrium model estimation time benchmarks.
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Figure 8: Basic model estimation time benchmarks.

The models are simulated using both random coefficients and samples drawn from normal
distributions. The sample data are generated using the structural assumptions of each model
and the randomly drawn coefficients. Estimating the models using BFGS with numerically
approximated gradients is the most error-prone procedure among the three examined algo-
rithms because numerical differentiation can fail nearby likelihood poles. For this reason, an
untimed estimation using BFGS with numerically approximated gradients is executed for each
simulation to ensure that the collected statistics accurately measure execution times and are
not biased by estimation failures. If the estimation succeeds, the simulated data are used in
timed executions. If the untimed estimation fails, new coefficients and data are regenerated.
Each model is simulated 100 times for 14 different sample sizes and 14 different numbers
of model parameters. The sample sizes grow exponentially according to the mapping p 7→
5(2p+1+10) for p = 1, . . . , 14. The number of parameter grow linearly by adding one coefficient
in the demand and one in the supply equations. It is ensured that the simulated data are
economically well behaved in all simulation cases. If shortages or surpluses represent more
than 90% of the sample, the simulated data are discarded, and a new simulation is initiated.
Each well-behaved simulated dataset is used to estimate the model with all three optimization
options to allow comparing of the resulting statistics. The execution time is saved at the end
of each round. The saved time concerns only the estimation of the models and not their
simulation or the calculation of standard errors. The estimation tolerance is kept constant
for all optimization methods. The processors are warmed up using 2 untimed estimations
performed at the beginning of the process.
Appendix B details the data generating process of each model. The markets package exposes
this simulation functionality via the functions simulate_data and simulate_model. The re-
sults of the benchmarking simulations are depicted in Figures 7 (for the equilibrium_model),
8 (diseq_basic), 9 (diseq_directional), 10 (diseq_deterministic_adjustment), and 11
(diseq_stochastic_adjustment). The vertical axes of the figures measure the estimation



Journal of Statistical Software 27

1

4

16

64

70 90 13
0

21
0

37
0

69
0

13
30

26
10

51
70

10
29

0

20
53

0

41
01

0

81
97

0

16
38

90

Number of observations (log2 scale)

E
st

im
at

io
n 

tim
e 

in
 s

ec
on

ds
 (

lo
g2

 s
ca

le
)

Method
BFGS with calculated gradient
BFGS with numerical gradient
Nelder Mead

(a) Over observations.

0

5

10

15

20

25

36 3830 32 3428 4240262422201816
Number of parameters

E
st

im
at

io
n 

tim
e 

in
 s

ec
on

ds

Method
BFGS with calculated gradient
BFGS with numerical gradient
Nelder Mead

(b) Over parameters.

Figure 9: Directional model estimation time benchmarks.
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Figure 10: Deterministic adjustment model estimation time benchmarks.

times of each optimization option. The horizontal axes of Figures 7a, 8a, 9a, 10a and 11a mea-
sure the number of observations of the simulated sample for a constant number of simulated
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Figure 11: Stochastic adjustment model estimation time benchmarks.

parameters8. The horizontal axes of Figures 7b, 8b, 9b, 10b and 11b measure the number
of simulated parameters for a constant sample size of 41, 010 observations. The points of
solid lines represent mean estimation times over 100 estimations, and dotted lines depict one
standard deviation intervals from the measured means.
The parameter benchmarks exhibit a similar pattern for all five models. Small changes in
the number of estimated parameters do not significantly affect estimation times. Out of the
three compared methods, Nelder-Mead results on average to the lengthiest estimation times
and the greatest estimation time variability. BFGS with calculated gradients has the shortest
estimation time and the least variability. Compared to BFGS with numerically approximated
gradients, which offers the fastest alternative, BFGS with calculated gradients executes 1.84
times faster for the equilibrium, 7.02 the basic, 6.82 the directional, 3.41 the deterministic
adjustment, and 8.7 for the stochastic adjustment model.
The ordering of the methods in terms of estimation time is the same for the benchmarks over
a growing number of observations. In all cases, BFGS with analytically calculated gradients
is the most efficient estimation option among those compared. The estimation times of
all methods grow exponentially in the sample size for the basic, deterministic adjustment,
and stochastic adjustment models. A different pattern is observed for the equilibrium and
directional models and small sample sizes. For sample sizes below 5, 170 observations, the
estimation times for BFGS optimizations mostly remain constant, while the Nelder-mead
estimation times reduce. Eventually, exponential growth is observed for larger sample sizes
in the equilibrium and directional models.

8The number of parameters depends on the simulated model. The equilibrium and basic models use 14
parameters, namely 6 demand, 5 supply, 2 variances, and 1 correlation parameters. The directional model uses
13 parameters because prices cannot be used on both sides of the market. The deterministic adjustment model
uses 15 parameters since it introduces an additional parameter in the price dynamics. Lastly, the stochastic
adjustment model uses 20 parameters, 3 of which are introduced in the price dynamics, 1 additional variance,
and 2 correlations.
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6. Conclusion

This article introduces the R package markets. The package provides a common interface that
unifies the estimation and harmonizes the post-estimation analysis of a diverse set of market
models with various structural assumptions. Its methods are used for estimating, simulating,
and analyzing five market models; a market clearing model and four short side rule models.
In addition, the package provides methods to aggregate, summarize, and visualize the fitted
models. Special emphasis is given to the analysis of market shortages.

The article begins by reviewing the equilibrium and disequilibrium econometrics upon which
it relies. Then, it dwells into the details of its object-oriented design of the common interface
implementation and compares the package’s content with its closest software alternatives.
Next, the core functionality of the package is exemplified via an empirical example using
the classic dataset of Fair and Jaffee (1972). Based on this dataset, examples of estimating,
visualizing, and summarizing the five market models of the package are presented. Finally, the
obtained market fits are further used to illustrate the post estimation functionality capabilities
of the package concerning fitted (unobserved) demanded and supplied quantities, as well as
predicted shortages.

The estimation functionality of markets is based on analytic gradient and Hessian expressions
for the likelihoods of the implemented market models. These expressions are not available
in other statistical software. This implementation feature attributes to markets a computa-
tional edge in terms of estimation time efficiency. The article documents the computational
benefits of the package’s estimation functionality by presenting a series of estimation time
statistics based on data collected from large-scale benchmarking simulations. Compared to
the fastest estimation alternative not using the expressions employed by default in markets,
the benchmark statistics indicate that one can estimate the models of the package from 1.84
(equilibrium model) to 8.7 (stochastic adjustment model) times faster.
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A. Installation
When building markets from its source code, parts of the package’s native functionality
are enabled or disabled based on the availability of two shared libraries in the target ma-
chine. Specifically, the package attempts to locate the GSL and the threading building
blocks library (tbb), which are used in the native likelihood maximization routine for the
equilibrium model. Native sources are compiled with the macros _MARKETS_HAS_GSL_ and
_MARKETS_HAS_EXECUTION_POLICIES_ defined, if correspondingly gsl and tbb are located.
The function maximize_log_likelihood relies on the gsl_multimin.h header. If gsl is not
located in the target system, maximize_log_likelihood becomes vacuous. The function is
still exported by the package, but calling it results to void execution. This scenario cannot
occur in builds for which the RcppGSL package (Eddelbuettel and François 2023) is installed.
When installing from CRAN using install.packages, RcppGSL is also installed among
other dependencies, and the GSL functionality is enabled by default.
The dependency on tbb comes from the GCC implementation of the par_unseq execution
policy of the C++17 standard. At the moment of writing, the par_unseq feature is supported
by two C++ compilers, namely GCC (version 9 and above) and MSVC (version 19.28 and above).
The GCC implementation of par_unseq requires linking to the tbb library. Thus, markets
examines whether par_unseq is available in the system during configuration. If this is the case,
it enables the -std=c++17 compilation flag, links to tbb when building with GCC, and enables
some parallelization optimizations in the gradient calculations of maximize_log_likelihood.
If tbb is not located, versions of the native sources with serialized gradient calculations are
compiled.

B. Simulation details
Two simulation options are available for each market model provided by markets. The user
can generate a dataset based on the stochastic process implied by a market model (i) with
and (ii) without initializing a model object. Option (i) accommodates situations when the
data is intended to be used with a single setup, while (ii) when used with multiple setups.
These two options are accessed by correspondingly calling the methods simulate_model and
simulate_data. The first method is a wrapper of the second method combined with a
constructor call. The simulation functionality is employed by the unit tests of markets, some
of its documentation examples and vignettes, and the benchmarking exercises of this article.
All simulation functions follow the baseline specifications for demand and supply equations
given by Equations 1 and 2. In equilibrium model simulations, prices are not simulated.
Instead, they are calculated so that the market clears, i.e.,

Pn,t =
∑k

j=1

(
ηs

j − ηd
j

)
Xj

n,t + βs
0 − βd

0 +
∑ks

j=1 βs
j Xj,s

n,t −
∑kd

j=1 βd
j Xj,d

n,t + us
n,t − ud

n,t

αd − αs
.

In basic model’s simulations, prices are simulated similarly to the remaining control variables.
The demanded and supplied quantities are subsequently calculated, and the observed quantity
is determined by the short side rule (Equation 4). In the directional model, prices are also
simulated similarly to the remaining controls. Then, price differences are calculated, and the
quantities are set according to the separation rule of the sample. If the condition ∆Pn,t ≥
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0 =⇒ Dn,t ≥ Sn,t is satisfied, the traded quantity is calculated using the supply equation. If
not, it is calculated by the demand equation. An out-of-sample initial price value is drawn for
the deterministic adjustment model, and the remaining prices are then sequentially generated
by the rule

Pn,t =
∑k
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j
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Xj
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The procedure for the stochastic adjustment is similar to that of the deterministic adjustment
model. The price generation rule with stochastic dynamics is given by

Pn,t =
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where Einstein summation notation over j is used to save some space. The simulation methods
perform various validity checks in the generated data and instruct the user to reparametrize
the model if any of them fails. For instance, it is ensured that simulated samples of disequi-
librium models do not exclusively contain demand or supply observations.
A call to simulate_data requires specifying the model that is to be simulated by passing the
corresponding model string used in initialization calls as the first argument. The number of ob-
servations is set by the product of the arguments nobs (number of subjects) and tobs (number
of time points). The model parameters are specified by alpha_d, beta_d0, beta_d, eta_d,
alpha_s, beta_s0, beta_s, eta_s, gamma, beta_p0, beta_p, sigma_d, sigma_s, sigma_p,
rho_ds, rho_dp, rho_sp. The argument names follow the notation of this article, and cor-
respond to the symbols of Equations 1, 2, 4, 7 and 8. The default value of all variances is
one, and the correlations is zero. The caller can optionally pass values for the seed, verbose,
price_generator, and control_generator arguments. The last two options expect a func-
tion callback that is given an integer n and returns n randomly generated values. The default
generators return standard normally distributed values.
The simulate_model call extends the calling convention of simulate_data. The given param-
eter and generator arguments passed down to simulate_data are specified as a list through
the simulation_parameters input argument. Values for the optional arguments seed and the
verbose can be specified separately from the simulation_parameters list. Any additional
arguments given to simulate_model are passed down to the specified model’s construction
call.

C. Comparison of equilibrium estimates
The equilibrium_model can be estimated using different methods and tools having distinct
characteristics. The two stage least square method is recommended because it is the least
computationally intensive method. Maximum likelihood estimation can still be helpful when
comparing equilibrium and disequilibrium models via information criteria. In most systems,
there are either no, or negligible gains from resorting to the native optimization option that the
package offers. For estimation exercises with large datasets, native optimization functionality
can be faster in systems with many processors, such as computing clusters. Nevertheless, all
approaches give similar results.
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The exercise of this appendix exemplifies the above claim by comparing the estimates obtained
by fitting the equilibrium model using different tools and methods for a simulated dataset with
20, 000 observations. The simulated equilibrium model has, besides prices and a constant, two
demand covariates (Xd

1 and Xd
2 ), one supply covariate (Xs

1), and two market-wide covariates
(X1 and X2). Moreover, it allows for temporal correlation between demand and supply shocks
(ρ). R Code 14 uses simulate_model to simulate the model (see Appendix B for details on
simulation functionality).

R Code 14: Equilibrium model simulation.

R> seed <- 25
R> parameters <- list(nobs = 4000, tobs = 10, alpha_d = -1.7,
+ beta_d0 = 14.9, beta_d = c(2.3, -1.2), eta_d = c(-1.3, -1.1),
+ alpha_s = 1.6, beta_s0 = 10.2, beta_s = c(-1.3), eta_s = c(2.5, 2.2),
+ sigma_d = 2.1, sigma_s = 2.5, rho_ds = -0.1)
R> mdl <- simulate_model("equilibrium_model", parameters, seed, verbose = 2)

Info: This is Equilibrium model.

R Code 15 uses the available options in markets to estimate the simulated model. The
function maximize_log_likelihood wraps GSL calls to estimate the equilibrium model using
gsl_multimin_fdfminimizer_vector_bfgs2. The arguments objective_tolerance and
gradient_tolerance control the accuracy of the optimization. The step argument sets the
first trial step size that the minimizer uses. See the GSL documentation (Galassi and Gough
2009) for more information about the used multidimensional minimization routines.

R Code 15: Equilibrium model estimation.

R> optim_fit <- estimate(mdl)
R> gsl_fit <- estimate(mdl, optimizer = "gsl", control = list(
+ step = 1e-0, maxit = 1e+4, objective_tolerance = 1e-2,
+ gradient_tolerance = 1e-2))
R> ls_fit <- estimate(mdl, method = "2SLS")

Table 3 summarizes the results. Parentheses report absolute differences between the estimated
and simulated parameters. The last row calculates the average mean absolute error for each
estimation option.

D. Model initialization
Section 4 uses the equilibrium_model, dise_basic, dise_deterministic_adjustment,
dise_directional, and , dise_stochastic_adjustment to initialize and estimate the corre-
sponding market models in a single call. Package markets provides methods to separate these
two steps, which can be convenient in some workflows. Market models can be constructed
without being estimated using the new function. Subsequently, the market_fit objects can
be obtained by calling estimate with a previously constructed model object as an argument.
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Coefficient Simulated ls gsl optim

D_P −1.70 −1.7421 (0.0421) −1.7421 (0.0421) −1.7421 (0.0421)
D_CONST 14.90 14.9590 (0.0590) 14.9590 (0.0590) 14.9590 (0.0590)
D_Xd1 2.30 2.3250 (0.0250) 2.3250 (0.0250) 2.3250 (0.0250)
D_Xd2 −1.20 −1.2130 (0.0130) −1.2130 (0.0130) −1.2130 (0.0130)
D_X1 −1.30 −1.3582 (0.0582) −1.3582 (0.0582) −1.3582 (0.0582)
D_X2 −1.10 −1.1556 (0.0556) −1.1556 (0.0556) −1.1556 (0.0556)

S_P 1.60 1.5990 (0.0010) 1.5990 (0.0010) 1.5990 (0.0010)
S_CONST 10.20 10.2091 (0.0091) 10.2091 (0.0091) 10.2091 (0.0091)
S_Xs1 −1.30 −1.2922 (0.0078) −1.2922 (0.0078) −1.2922 (0.0078)
S_X1 2.50 2.5055 (0.0055) 2.5055 (0.0055) 2.5055 (0.0055)
S_X2 2.20 2.2197 (0.0197) 2.2197 (0.0197) 2.2197 (0.0197)

D_VARIANCE 4.41 4.5676 (0.1576) 4.5675 (0.1575) 4.5676 (0.1576)
S_VARIANCE 6.25 6.1995 (0.0505) 6.1993 (0.0507) 6.1995 (0.0505)
RHO −0.10 −0.1090 (0.0090) −0.1090 (0.0090) −0.1090 (0.0090)

Mean abs. error − 0.0366 0.0367 0.0366

Table 3: Comparison of equilibrium estimation methods and tools.

D.1. Initialization

The initialization arguments of the constructors for all models mostly coincide. Each model
initialization requires specifying the model class, the used data frame, the identifiers of the
dataset, the quantity and price variables, and the demand and supply right-hand side spec-
ifications. The construction operation for the stochastic adjustment model, which involves
nontrivial price dynamics, additionally requires specifying the price equation. Furthermore,
one can choose whether the initialized model should allow the shocks of the stochastic equa-
tions to be correlated and the verbosity level with which the operations of the constructed
object should emit messages to the user.
R Code 16 constructs objects for each model using the corresponding initialization options of
R Codes 2–6 of Section 4. The constructors create model formulas (see Section 4.2) using the
quantity, price, subject, time (left-hand side of formula), demand, supply, and, if present,
price_dynamics arguments (right-hand side of formula). These variables quantity, price,
subject, and time are expected to be of type language and the variable demand, supply, and
price_dynamics are expected to follow the syntax of formula. Indicator variables for factor
type columns included in the market equations are automatically created by the constructors.

R Code 16: Model initialization.
R> eq <- new("equilibrium_model",
+ quantity = HS, price = RM, subject = ID, time = TREND,
+ demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
+ supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
+ house_data)
R> da <- new("diseq_deterministic_adjustment",
+ quantity = HS, price = RM, subject = ID, time = TREND,
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+ demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
+ supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
+ house_data, verbose = 2)

Info: This is Deterministic Adjustment model.
Warning: Dropping 14 rows due to missing values.
Info: Dropping 1 row to generate 'LAGGED_RM'.
Info: Sample separated with 18 rows in excess supply and 111 rows in

excess demand states.

R> dr <- new("diseq_directional",
+ quantity = HS, price = RM, subject = ID, time = TREND,
+ demand = TREND + W + CSHS + L1RM + L2RM,
+ supply = RM + TREND + W + MA6DSF + MA3DHF + MONTH,
+ house_data
+ )
R> bs <- new("diseq_basic",
+ quantity = HS, price = RM, subject = ID, time = TREND,
+ demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
+ supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
+ house_data, verbose = 2, correlated_shocks = FALSE
+ )

Info: This is Basic model.
Warning: Dropping 14 rows due to missing values.

R> sa <- new("diseq_stochastic_adjustment",
+ quantity = HS, price = RM, subject = ID, time = TREND,
+ demand = RM + TREND + W + CSHS + MONTH,
+ supply = RM + TREND + W + L1RM + L2RM + MA6DSF + MA3DHF + MONTH,
+ price_dynamics = TREND + L2RM + L3RM,
+ house_data |> dplyr::mutate(L3RM = dplyr::lag(RM, 3)),
+ correlated_shocks = FALSE
+ )

D.2. Model summaries

The show and summary functions display short and more extended information about con-
structed model objects in the standard output. R Code 17 gives an example of the dis-
played information. The output of these two commands is also displayed at the beginning of
market_fit object summaries (see R Code 7).

R Code 17: Model objects’ output operations.
R> show(dr)

Directional Model for Markets in Disequilibrium:
Demand RHS : D_TREND + D_W + D_CSHS + D_L1RM + D_L2RM
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Supply RHS : S_RM + S_TREND + S_W + S_MA6DSF + S_MA3DHF +
S_MONTH

Short Side Rule : HS = min(D_HS, S_HS)
Separation Rule : RM_DIFF >= 0 then D_HS >= S_HS
Shocks : Correlated

R> summary(sa)

Stochastic Adjustment Model for Markets in Disequilibrium:
Demand RHS : D_RM + D_TREND + D_W + D_CSHS + D_MONTH
Supply RHS : S_RM + S_TREND + S_W + S_L1RM + S_L2RM +

S_MA6DSF + S_MA3DHF + S_MONTH
Price Dynamics RHS: I(D_HS - S_HS) + TREND + L2RM + L3RM
Short Side Rule : HS = min(D_HS, S_HS)
Shocks : Independent
Nobs : 128
Sample Separation : Not Separated
Quantity Var : HS
Price Var : RM
Key Var(s) : ID, TREND
Time Var : TREND

D.3. Estimation

Model objects are estimated by calling estimate. For completeness, R Code 18 replicates the
estimations of Section 4.3. Essentially, the elements of the list estimation_options in the
calls of R Codes 2–6 are directly passed as input arguments when calling estimate.

R Code 18: Model estimation.
R> eq <- estimate(eq, control = list(maxit = 5e3))
R> da <- estimate(da, control = list(maxit = 5e3))
R> dr <- estimate(dr, method = "Nelder-Mead", control = list(maxit = 5e3))
R> start <- coef(eq)
R> start <- start[names(start) != "RHO"]
R> bs <- estimate(bs, start = start, control = list(maxit = 5e3))
R> sa <- estimate(sa, control = list(maxit = 5e3), standard_errors = c("W"))

The optimization method is selected by the method argument of the estimate function. When
the passed value is among "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", and "Brent",
the model is estimated using full information maximum likelihood. When the method is set
equal "2SLS" for the equilibrium model the model is estimated using two-stage least squares.
The default value of the gradient argument is "calculated", which instructs the estimate
call to use analytically calculated gradient expressions whenever compatible with the opti-
mization method. Alternatively, numerical gradient approximation can be used by setting
gradient equal to "numeric".
The argument hessian accepts one of the values "skip", "numerical", and "calculated".
The default is to use the "calculated" Hessian for the models that expressions are available
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and the "numerical" Hessian in other cases. Calculated Hessian expressions are only available
for the basic and directional models. The "skip" option abstains from calculating the Hessian.
If the Hessian calculation is not skipped, "homoscedastic", "heteroscedastic", or clus-
tered standards errors can be calculated by setting the input argument standard_errors.
The default value is "homoscedastic". If the option "heteroscedastic" is passed, the
variance-covariance matrix is calculated using heteroscedasticity adjusted standard errors by
the sandwich estimator. Clustered standard errors are calculated when a vector with variable
names is supplied (see, e.g., the stochastic adjustment model estimation in R Code 18). In
this case, the variance-covariance matrix is calculated by grouping the score matrix based on
the passed variables.
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