
JSS Journal of Statistical Software
February 2024, Volume 108, Issue 4. doi: 10.18637/jss.v108.i04

gcimpute: A Package for Missing Data Imputation

Yuxuan Zhao
Cornell University

Madeleine Udell
Stanford University

Abstract

This article introduces the Python package gcimpute for missing data imputation.
Package gcimpute can impute missing data with many different variable types, including
continuous, binary, ordinal, count, and truncated values, by modeling data as samples
from a Gaussian copula model. This semiparametric model learns the marginal distribu-
tion of each variable to match the empirical distribution, yet describes the interactions
between variables with a joint Gaussian that enables fast inference, imputation with
confidence intervals, and multiple imputation. The package also provides specialized ex-
tensions to handle large datasets (with complexity linear in the number of observations)
and streaming datasets (with online imputation). This article describes the underlying
methodology and demonstrates how to use the software package.

Keywords: missing data, single imputation, multiple imputation, Gaussian copula, mixed
data, imputation uncertainty, Python.

1. Introduction
Missing data is ubiquitous in modern datasets, yet most machine learning algorithms and sta-
tistical models require complete data. Thus missing data imputation forms the first critical
step of many data analysis pipelines. The difficulty is greatest for mixed datasets, includ-
ing continuous, binary, ordinal, count, nominal and truncated variables. Mixed datasets
may appear either as a single dataset recording different types of attributes or an inte-
grated dataset from multiple sources. For example, social survey datasets are generally
mixed since they often contain age (continuous), demographic group variables (nominal),
and Likert scales (ordinal) measuring how strongly a respondent agrees with certain stated
opinions, such as the five category scale: Strongly disagree, disagree, neither agree nor dis-
agree, agree, strongly agree. The Cancer Genome Atlas Project (https://www.cancer.gov/
ccg/research/genome-sequencing/tcga) is an example of integrated mixed dataset: It con-
tains gene expression (microarray, continuous), mutation (binary) and microRNA expression

https://doi.org/10.18637/jss.v108.i04
https://orcid.org/0000-0001-8410-8534
https://orcid.org/0000-0002-3985-915X
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga

2 gcimpute: Missing Data Imputation in Python

(RNA-seq count) data. Imputation may be challenging even for datasets with only continuous
variables if variables have very different scales and variability.
The Gaussian copula model nicely addresses the challenges of modeling mixed data by sep-
arating the multivariate interaction of the variables from their marginal distributions (Liu,
Lafferty, and Wasserman 2009; Hoff 2007; Fan, Liu, Ning, and Zou 2017). Specifically, this
model posits that each data vector is generated by first drawing a latent Gaussian vector and
then transforming it to match the observed marginal distribution of each variable. In this
way, ordinals result from thresholding continuous latent variables. A copula correlation ma-
trix fully specifies the multivariate interaction and is invariant to strictly monotonic marginal
transformations of the variables.
Zhao and Udell (2020b) propose to impute missing data by learning a Gaussian copula model
from incomplete observation and shows empirically the resulting imputation achieves state-
of-the-art performance. Following this line of work, Zhao and Udell (2020a) develop a low
rank Gaussian copula that scales well to large datasets, and Zhao, Landgrebe, Shekhtman,
and Udell (2022) extend the model to online imputation of a streaming dataset using online
model updates. This article introduces an additional methodological advance by extending the
Gaussian copula model to support truncated variables. Truncated variables are continuous
variables that are truncated to an interval (which may be half-open) (see Section 2.1 and
Table 2 for precise definition). One example is the zero-inflated variable: A non-negative
variable with excess zeros, which often appears when a continuous variable is measured by a
machine that cannot distinguish small values from zero.
Reliable decision-making with missing data requires a method to assess the uncertainty in-
troduced by imputation. Typically, imputation software quantifies uncertainty either by pro-
viding explicit confidence intervals for imputation, or providing multiple imputations (Rubin
1996). Multiple imputations allow the end user to incorporate imputation uncertainty into
subsequent analysis, for example, by conducting the desired analysis on each imputed dataset
and combining the results. Zhao and Udell (2020a) derive analytical imputation confidence
intervals when all variables are continuous. In this article, we further develop a multiple impu-
tation method for Gaussian copula imputation. Furthermore, we provide confidence intervals
based on multiple imputation that are valid for mixed data.
The gcimpute package is available at https://pypi.org/project/gcimpute/ and imple-
ments the methodology presented in Zhao and Udell (2020a,b); Zhao et al. (2022) and the
new advances mentioned above: It supports imputation for continuous, binary, ordinal, count,
and truncated data, confidence intervals, multiple imputation, large-scale imputation using
the low rank Gaussian copula model, and online imputation. Nominal variables cannot be
directly modeled by a Gaussian copula model, but gcimpute also accepts nominal variables
by one-hot encoding them into binary variables.
We present the technical background in Section 2 and demonstrate how to use gcimpute
through examples drawn from real datasets in Section 3.

Why not other copulas? There exist many other copula models (see Jaworski, Durante,
Hardle, and Rychlik 2010). However, model estimation for other copula models from incom-
plete data is not well studied, and the conditional distribution required by the imputation
task rarely admits a closed form. These two challenges together make accurate imputation
using other copula models very difficult.

https://pypi.org/project/gcimpute/

Journal of Statistical Software 3

Method Large n and small p Large n and large p

gcimpute Yes Yes
Amelia Yes No
mice Yes No
missForest Yes No
missMDA No Yes
softImpute No Yes
GLRM No Yes

Table 1: Suitability of imputation methods for different p (number of variables). For small
n (number of samples) scenarios, simple imputation methods such as mean imputation are
recommended due to limited information.

1.1. Software for missing data imputation

There are many software implementations available for imputing missing data, with R (R
Core Team 2023) offering the greatest variety (Mayer, Sportisse, Josse, Tierney, and Vialaneix
2022). Most imputation packages in Python (Van Rossum et al. 2011) re-implement earlier
R packages. For instance, missingpy (Bhattarai 2018) re-implements missForest (Stekhoven
2022) in R; sklearn.impute.IterativeImputer in Python (in scikit-learn, Pedregosa et al. 2011)
re-implements mice (Van Buuren and Groothuis-Oudshoorn 2011) in R; sklearn.impute.-
KNNImputer in Python re-implements impute (Hastie, Tibshirani, Narasimhan, and Chu
2023) in R.
An imputation package will tend to work best on data that matches the distributional assump-
tions used to develop it. The popular package Amelia (Honaker, King, and Blackwell 2011)
makes the strong assumption that the input data is jointly normally distributed, which cannot
be true for mixed data. Package missMDA (Josse and Husson 2016) imputes missing data
based on principal component analysis, and handles mixed data by one-hot encoding nomi-
nal variables. Package mice and missForest iteratively train models to predict each variable
from all other variables. They handle mixed data by choosing appropriate learning methods
based on each data type. Package missForest uses random forest models as base learners and
performs well provided there are sufficient samples with non-linear relationship. In general, it
yields more accurate imputations than mice, which uses variants of linear models (Stekhoven
and Bühlmann 2012). In the computational experience of the authors, gcimpute outperforms
missForest on binary, ordinal and continuous mixed data (Zhao and Udell 2020b). When the
data includes nominal variables, which are poorly modeled by any of the other assumptions
(low rank, joint normality, or Gaussian copula), missForest generally works best.
The imputation methods mentioned above typically perform better when the sample size n is
large, as there is more information available to learn from. When n is small, simple imputation
methods like mean imputation are often recommended due to the limited amount of available
information. Amelia, mice, and missForest can work well when the number of variables p
is small, but run too slowly for large p. Methods with weaker structural assumptions like
gcimpute and missForest yield better imputations, as they are able to learn more complex
relationships among the variables. Methods that rely on a low rank assumption scale well
to large datasets. They tend to perform well when both n and p are large, as these data
tables generally look approximately low rank (Udell and Townsend 2019), but can fail when

4 gcimpute: Missing Data Imputation in Python

either n or p is small. Low rank imputation methods include missMDA, softImpute (Hastie
and Mazumder 2021), GLRM (Udell, Horn, Zadeh, and Boyd 2016) and the low rank model
from gcimpute. Hence, gcimpute provides a compelling imputation method for data of all
moderately large sizes. We summarize our recommendation in Table 1.
There are also a few copula based imputation packages in R. Package sbgcop (Hoff 2018) uses
the same model as gcimpute but provides a Bayesian implementation using a Markov Chain
Monte Carlo (MCMC) algorithm. Package gcimpute uses a frequentist approach to achieve
the same level of accuracy as sbgcop but much more quickly (Zhao and Udell 2020b). Package
mdgc (Christoffersen 2023) amends the algorithm in Zhao and Udell (2020b) by using a higher
quality approximation for certain steps in the computation, improving model accuracy but
significantly increasing the runtime when the number of variables is large (p > 100). Package
CoImp (Di Lascio and Giannerini 2019) uses only complete cases to fit the copula model and
is unstable when most instances have missing values. In contrast, gcimpute can robustly fit
the model even when every instance contains missing values. Moreover, gcimpute is the first
copula package to fit moderately large datasets (large p), by assuming the copula has low
rank structure, and the first to fit streaming datasets, using online model estimation.

2. Mathematical background
Package gcimpute fits a Gaussian copula model on a data table with missing entries and uses
the fitted model to impute missing entries. It can return a single imputed data matrix with
imputation confidence intervals, or multiple imputed data matrices. Once a Gaussian copula
model is fitted, it can also be used to impute missing entries in new out-of-sample rows.
Let us imagine that we wish to use gcimpute on a data table X with n rows and p columns.
We refer to each row x of X as a sample, and each column as a variable. Package gcimpute is
designed for datasets whose variables admit a total order: That is, for any two values of the
same variable x1 and x2, either x1 > x2 or x1 ≤ x2. Each variable may have a distinct type:
For example, numeric, Boolean, ordinal, count, or truncated. Nominal variables do not have
an ordering relationship. By default, gcimpute encodes nominal variables as binary variables
using a one-hot encoding, although other encodings are possible. However, this encoding is
not self-consistent for the copula model. We advise users to model their features directly
as ordinal or binary, if possible. Package gcimpute learns the univariate distribution of each
variable without any distributional assumption, and then estimates the multivariate structure
based on the learned univariate distribution.
Package gcimpute offers specialized implementations for large datasets and streaming datasets.
Large datasets with many samples or many variables can use an efficient implementation that
exploits mini-batch training, parallelism, and low rank structure. For streaming datasets, it
can impute missing data immediately upon seeing a new sample and update model parame-
ters without remembering all historical data. This method is more efficient and can offer a
better fit for non-stationary data.

2.1. Gaussian copula model

The Gaussian copula (Hoff 2007; Liu et al. 2009; Fan et al. 2017; Feng and Ning 2019;
Zhao and Udell 2020b) models complex multivariate distributions as transformations of latent
Gaussian vectors. More specifically, it assumes that the complete data x ∈ Rp is generated

Journal of Statistical Software 5

Type

Continuous Distribution x has CDF F .
f(z) F −1(Φ(z))
f−1(x) Φ−1(F (x))

Ordinal Distribution x has probability mass function P(x = i) = pi, for i = 1, ..., k.

f(z) max
{

i :
∑i−1

l=0 pl ≤ Φ(z) <
∑i

l=0 pl

}
, with p0 = 0

f−1(x)
{

z :
∑x−1

l=0 pl ≤ Φ(z) <
∑x

l=0 pl

}
, with p0 = 0

Truncated Distribution x is truncated into [α, β], with P(x = α) = pα, P(x = β) = pβ,
and CDF F̃ conditional on x ∈ (α, β), which satisfies
F̃ (α) = 0 and F̃ (β) = 1.

f(z)


α, Φ(z) ≤ pα

F̃ −1
(

Φ(z)−pα

1−pα−pβ

)
, Φ(z) ∈ (pα, 1 − pβ)

β, Φ(z) ≥ 1 − pβ

f−1(x)


{z : Φ(z) ≤ pα}, x = α

Φ−1
(
pα + (1 − pα − pβ)F̃ (x)

)
, x ∈ (α, β)

{z : Φ(z) ≥ 1 − pβ}, x = β

Table 2: For any random variable x admitting a total order, there exists a unique monotonic
transformation f such that f(z) = x for a random standard Gaussian z. For each data type
of x, this table includes its distribution specification, the marginal f , and the set inverse
f−1(x) = {z : f(z) = x} of the marginal. Three different types of truncated variables are
summarized together: (1) α = −∞ and pα = 0 corresponds to lower truncated x; (2) β = ∞
and pβ = 0 corresponds to upper truncated x; (3) finite α, β and positive pα, pβ corresponds
to two sided truncated x. Φ(·) denotes the CDF of a standard normal variable.

as a monotonic transformation of a latent Gaussian vector z ∈ Rp:

x = (x1, . . . , xp) = (f1(z1), . . . , fp(zp)) := f(z), for z ∼ N (0, Σ).

The marginal transformations f1, . . . , fp : R → R match the distribution of the observed
variable x to the transformed Gaussian f(z) and are uniquely identifiable given the cumula-
tive distribution function (CDF) of each variable xj . This model separates the multivariate
interaction from the marginal distribution, as the monotone f establishes the mapping from
the latent variables to the observed variables while Σ fully specifies the dependence structure.
We write x ∼ GC(Σ, f) to denote that x follows the Gaussian copula model with marginal f
and copula correlation Σ.

Variables and their marginals. When the variable xj is continuous, fj is strictly mono-
tonic. When the variable xj is ordinal (including binary as a special case), fj is a monotonic
step function (Zhao and Udell 2020b). The copula model also supports one or two sided
truncated variables. A one sided truncated variable is a continuous variable truncated either
below or above. A variable x truncated below α has a CDF F shown below (at realization
x = x∗):

F (x∗) = P(x = α)1(x∗ ≥ α) + (1 − P(x = α))F̃ (x∗),

6 gcimpute: Missing Data Imputation in Python

TRANSFORMATION

Figure 1: Three monotonic transformations of a Gaussian variable. The third column depicts
the transformations that map the data distribution, visualized as both probability distribution
function (histogram approximation) and cumulative distribution function (analytical form),
in the left two columns to the data distribution in the right two columns.

where F̃ is the CDF of a random variable and satisfies F̃ (α) = 0. An upper truncated variable
and two sided truncated variable are defined similarly. The CDF of a truncated variable is
a strictly monotonic function with a step either on the left (lower truncated) or the right
(upper truncated) or both (two sided truncated). The expression of fj as well as their set
inverse f−1

j (xj) := {zj | fj(zj) = xj} are given in Table 2. In short, fj explains how the data
is generated, while f−1

j denotes available information for model inference given the observed
data. Figure 1 depicts how a Gaussian variable is transformed into an exponential variable, a
lower truncated variable, and an ordinal variable. Figure 2 depicts the dependency structure
induced by a Gaussian copula model: It plots randomly drawn samples from 2D Gaussian
copula model with the same marginal distributions from Figure 1. It shows that the Gaussian
copula model is much more expressive than the multivariate normal distribution.

By default, gcimpute categorizes a count variable to one of the above variable types based
on its distribution (see Section 3.1 for the rule). Package gcimpute also provides a Poisson
distribution modeling for count variables. The difference embodies in how to estimate fj and
f−1

j . In short, the estimation of fj and f−1
j are different depending on if there is a parametric

form of the function to be estimated. We defer its detailed discussion to Section 2.3 after
introducing marginal transformation estimation.

Journal of Statistical Software 7

2 0 2

2

0

2

Ga
us

sia
n

va
r x

1

Gaussian var x2

0 1

2

0

2

Exponential var x2

0 2

2

0

2

Lower truncated var x2

0 1 2

2

0

2

Ordinal var x2

0 1
0.0

0.5

1.0

1.5

Ex
po

ne
nt

ia
l v

ar
 x

1

0 2
0.0

0.5

1.0

1.5

0 1 2
0.0

0.5

1.0

1.5

0 2
1

0

1

2

Lo
we

r t
ru

nc
at

ed
 v

ar
 x

1

0 1 2

1

0

1

2

0 1 2
0

1

2

Or
di

na
l v

ar
 x

1

Figure 2: Scatter plot of samples from several 2D Gaussian copula models with different
marginals. The data is generated by sampling (z1, z2) from a 2D Gaussian distribution with
zero mean, unit variance and 0.65 correlation and computing x1 = f1(z1) and x2 = f2(z2),
where f1 and f2 denote the transformations corresponding to the marginals for each model.
For Gaussian marginals (1st row and 1st column), the transformation is the identity. For other
marginals, the corresponding transformations are plotted as the third column of Figure 1.

2.2. Missing data imputation

Package gcimpute uses the observed entries, along with the estimated dependence structure of
the variables, to impute the missing entries. In this section, let us suppose we have estimates
of the model parameters f and Σ and see how to impute the missing entries. We discuss how
to estimate the model parameters in the next section.

8 gcimpute: Missing Data Imputation in Python

Every sample is independent conditional on f and Σ, so we may independently consider how
to impute missing data in each sample. For a sample x ∼ GC(Σ, f), let us denote the observed
variables as O and the missing variables as M, so xO is a vector of length | O | that collects
the observed entries. Since x ∼ GC(Σ, f), there exists z ∼ N (0, Σ) such that x = f(z). Our
first task is to learn the distribution of the missing entries in the latent space. Denote ΣI,J

as the sub-matrix of Σ with rows in I and columns in J . Now, z is multivariate normal, so

zM | zO ∼ N (ΣM,OΣ−1
O,OzO, ΣM,M − ΣM,OΣ−1

O,OΣO,M).

We can map this distribution to a distribution on xM using the marginal transformation f .

Observations and their latent consequences. To estimate the distribution of zM, we
must model the distribution of zO using the observed values xO. For an observed continuous
variable value xj , the corresponding zj takes value f−1

j (xj) with probability 1. For an observed
ordinal variable value xj , f−1

j (xj) is an interval, since fj is a monotonic step function. Hence
the distribution of zj conditional on xj is a truncated normal in the interval f−1

j (xj). For
an observed truncated variable xj , zj takes value f−1

j (xj) with probability 1 if xj is not the
truncated value, otherwise is a truncated normal in the interval f−1

j (xj).
If only a single imputation is used, gcimpute will first compute the conditional mean of zM
given xO, and then return the imputation by applying the transformation f . If multiple
imputations are used, gcimpute will instead sample from the conditional distribution of zM
given xO, and then transform the sampled values by applying the transformation f .
Package gcimpute can return confidence intervals for any single imputation. If all observed
variables xO are continuous, zO has all probability mass at a single point and thus zM has
a multivariate normal distribution. In this scenario, gcimpute first computes the normal
confidence interval and then transforms it through f to produce a confidence interval for
the imputation. In other cases, gcimpute computes an approximate confidence interval by
assuming that zO has all probability mass at its conditional mean given xO and then computes
the normal confidence interval of zM as it does for all continuous variables. The approximated
confidence intervals are still reasonably well calibrated if there are not too many ordinal
variables. Otherwise, gcimpute provides a safer approach to build confidence intervals by
performing multiple imputation and taking a confidence interval on the empirical percentiles
of imputed values.

2.3. Algorithm
Inference for the Gaussian copula model estimates the marginal transformations f1, . . . , fp,
as well as their inverses, and the copula correlation matrix Σ. The estimate of the marginal
distribution and its inverse relies on the empirical distribution of each observed variable. The
marginals may be consistently estimated under a missing completely at random (MCAR)
mechanism. See Little and Rubin (2019, Chapter 1.3) for precise definition of missing mech-
anisms. Otherwise, these estimates are generally biased: For example, if larger values are
missing with higher probability, the empirical distribution is not a consistent estimate of the
true distribution.
Estimating the copula correlation Σ is a maximum likelihood estimate (MLE) problem. Es-
timates for the correlation are consistent under the missing at random (MAR) mechanism,
provided the marginals are known or consistently estimated (Little and Rubin 2019).

Journal of Statistical Software 9

Marginal transformation estimation. As shown in Table 2, both fj and f−1
j only depend

on the distribution of the observed variable xj . Thus to estimate the transformation, we must
estimate the distribution of xj , for example, by estimating the CDF and quantile function (for
continuous and truncated) or the probability of discrete values with positive probability mass
(for ordinal and truncated). Package gcimpute uses the empirical CDF, quantile function, or
discrete probability as estimates.
All imputed values are obtained through estimated fj , and thus the empirical quantile esti-
mate of F −1

j . For continuous variables, a linear interpolated fj is used so that the imputation
is a weighted average of the observed values. For ordinal variables, the imputation is the most
likely observed ordinal level.
Suppose you know a parametric form of fj for the observed data. Can you use this informa-
tion? Should you use this information? (1) Yes, you can use this information. We include
a capacity to do this in our package. (2) No, you probably should not. We have never seen
a case in which using the parametric form helps in our simulation study. For example, for
Poisson (count) data with a small mean, most likely values are observed, so treating the
data as ordinal works well. For Poisson data with a large mean, the empirical distribution
misses certain values, so certain values will never appear as imputations. Yet we find that
fitting a parametric form instead barely outperforms. We believe that the dangers of model
misspecification generally outweigh the advantage of a correctly specified parametric model.
Parametric and nonparametric models differ most in their predictions of tail events. Alas,
these predictions are never very reliable: It is difficult to correctly extrapolate the tail of a
distribution from the bulk (Clauset, Shalizi, and Newman 2009).

Copula correlation estimation. Package gcimpute uses an expectation maximization
(EM) algorithm to estimate the copula correlation matrix Σ. Suppose x1, . . . , xn are n i.i.d.
samples from a Gaussian copula model, with observed parts {xi

Oi
}i=1,...,n. Denote their corre-

sponding latent Gaussian variables as z1, . . . , zn. At each E-step, the EM method computes
the expected covariance matrix of the latent variables zi given the observed entries xi

Oi
,

i.e., 1
n

∑n
i=1 E[zi(zi)⊤ | xi

Oi
] and 1

n

∑n
i=1 E[zi | xi

Oi
] . The M-step finds the MLE for the

correlation matrix of z1, . . . , zn: It updates the model parameter Σ as the correlation matrix
associated with the expected covariance matrix computed in the E-step. Each EM step has
computational complexity O(np3) (for dense data).

2.4. Acceleration for large datasets

Package gcimpute runs quickly on large datasets by exploiting parallelism, mini-batch training
and low rank structure to speed up inference. Our EM algorithm parallelizes easily: The most
expensive computation, the E-step, is computed as a sum over samples and thus can be easily
distributed over multiple cores.
When the number of samples n is large, users can invoke mini-batch training to accelerate
inference (Zhao et al. 2022), since a small batch of samples already gives an accurate estimate
of the full covariance. This method shuffles the samples, divides them into mini-batches, and
uses an online learning algorithm. Concretely, for the t-th mini-batch, gcimpute computes the
copula correlation estimate, Σ̂, using only this batch and then updates the model estimate as

Σt = (1 − ηt)Σt−1 + ηtΣ̂, (1)

10 gcimpute: Missing Data Imputation in Python

where Σt denotes the correlation estimate and ηt ∈ (0, 1) denotes the step size at iteration
t. To guarantee convergence, the step size {ηt} must be monotonically decreasing and satisfy∑∞

t=0 η2
t <

∑∞
t=0 ηt = ∞. This online EM algorithm converges much faster as the model

is updated more frequently. Zhao et al. (2022) report the mini-batch algorithm can reduce
training time by up to 85%.

When the number of variables p is large, users can invoke a low rank assumption on the
covariance to speed up training. This low rank Gaussian copula (LRGC, Zhao and Udell
2020a) assumes a factor model for the latent Gaussian variables:

z = W t + ϵ, where W ∈ Rp×k, t ∼ N (0, Ik), ϵ ∼ N (0, σ2Ip) with σ2 > 0,

for some rank k ≪ p. The k-dimensional t denotes the data generating factors and ϵ denotes
random noise. Consequently, the copula correlation matrix has a low rank plus diagonal
structure: Σ = WW ⊤ + σ2Ip. This factorization decreases the number of parameters from
O(p2) to O(pk) and decreases the per-iteration complexity from O(np3) to O(npk2) for dense
data. For sparse data, the computation required is linear in the number of observations.
Thus, gcimpute can easily fit datasets with thousands of variables (Zhao and Udell 2020a).

2.5. Imputation for streaming datasets

Package gcimpute provides an online method to handle imputation in the streaming set-
ting: As new samples arrive, it imputes the missing data immediately and then updates the
model parameters. The model update is similar to offline mini-batch training as presented in
Equation 1, with Σ̂ estimated from the new samples. Online imputation methods can outper-
form offline imputation methods for non-stationary data by quickly adapting to a changing
distribution, while offline methods are restricted to a single, static model.

Package gcimpute responds to the changing distribution by updating its estimate of param-
eters f and Σ after each sample is observed. The marginal estimate only uses the m most
recent data points, so the model forgets stale data and the empirical distribution requires
constant memory. The hyperparameter m should be chosen to reflect how quickly the distri-
bution changes. A longer window works better when the data distribution is mostly stable
but has a few abrupt changes. On the other hand, if the data distribution changes rapidly, a
shorter window is needed. The correlation Σ is updated according to the online EM update
after observing each new mini-batch, using a constant step size ηt ∈ (0, 1). A constant step
size ensures the model keeps learning from new data and forgets stale data.

Streaming datasets may have high autocorrelation, which can improve online imputation. By
default, gcimpute imputes missing entries by empirical quantiles of the most recent stored
observations. However, it also supports allocating different weights to different stored ob-
servations and imputing missing entries by empirical weighted quantiles. Package gcimpute
provides an implementation using decaying weights for the m stored observations: dt with
d ∈ (0, 1] for each time lag t = 1, ..., m. The decay rate d should be tuned for best perfor-
mance. This approach interpolates between imputing the last observed value (as d → 0) and
the standard Gaussian copula imputation (when d = 1). The user may also supply their own
choice of weights.

Journal of Statistical Software 11

3. Software usage
This article demonstrates how to use the Python implementation of gcimpute (an R implemen-
tation, gcimputeR, is available at https://github.com/udellgroup/gcimputeR), i.e., two
model classes GaussianCopula and LowRankGaussianCopula, whose core methods are dis-
played in Table 3. Our examples rely on some basic Python modules for data manipulation
and plotting:

>>> import numpy as np
>>> import pandas as pd
>>> import time
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> from tabulate import tabulate

3.1. Basic usage

To demonstrate the basic usage of gcimpute, we use demographic data from the 2014 Gen-
eral Social Survey (GSS) data (https://gss.norc.org/): We consider the variables age
(AGE), highest degree (DEGREE), income (RINCOME), subjective class identification (CLASS),
satisfaction with the work (SATJOB), weeks worked last year (WEEKSWRK), general happiness
(HAPPY), and condition of health (HEALTH). All variables are ordinal variables encoded as
integers, with varying number of ordinal categories. The integers could represent numbers,
such as 0, 1, . . . , 52 for WEEKSWRK, or ordered categories, such as 1 (“Very happy”), 2 (“Pretty
happy”), 3 (“Not too happy”) for the question “How would you say things are these days?”
(HAPPY). Many missing entries appear due to answers like “Don’t know”, “No answer”, “Not
applicable”, etc. Variable histograms are plotted in Figure 3 using the following code:

>>> from gcimpute.helper_data import load_GSS
>>> data_gss = load_GSS()
>>> fig, axes = plt.subplots(2, 4, figsize = (12, 6))

Method Description

fit Fit a Gaussian copula from (incomplete) data
transform Impute incomplete data using a Gaussian copula
fit_transform Impute incomplete data using the Gaussian copula fitted

from itself
fit_transform_evaluate Conduct an evaluation on imputed data returned at each

iteration during model fitting
sample_evaluation Sample multiple imputed data using a Gaussian copula
get_params Get parameters of the fitted Gaussian copula
get_vartypes Get the specified variable types used in model fitting
get_confidence_interval Get the confidence intervals for the imputed missing entries

Table 3: Overview of the core methods for both the ‘GaussianCopula’ class and the
‘LowRankGaussianCopula’ class.

https://github.com/udellgroup/gcimputeR
https://gss.norc.org/

12 gcimpute: Missing Data Imputation in Python

20 40 60 80
0

20

40

60

80

100

AGE, 0.00 missing

0 1 2 3 4

0

200

400

600

800

1000

1200

DEGREE, 0.00 missing

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

11
.0

12
.0

0

200

400

600

800

RINCOME, 0.40 missing

1.
0

2.
0

3.
0

4.
0

0

200

400

600

800

1000

1200
CLASS, 0.01 missing

1.
0

2.
0

3.
0

4.
0

0

200

400

600

800

1000
SATJOB, 0.25 missing

0 20 40
0

200

400

600

800

1000

WEEKSWRK, 0.01 missing

1.
0

2.
0

3.
0

0

250

500

750

1000

1250

HAPPY, 0.00 missing

1.
0

2.
0

3.
0

4.
0

0

200

400

600

800
HEALTH, 0.33 missing

Figure 3: Histogram plots for GSS variables. There are 2538 samples in total.

>>> for i, col in enumerate(data_gss):
... ax_index = np.unravel_index(i, (2, 4))
... if col in ["AGE", "WEEKSWRK"]:
... data_gss[col].dropna().hist(ax = axes[ax_index], bins = 60)
... else:
... to_plot = data_gss[col].dropna().value_counts().sort_index()
... to_plot.plot(kind = "bar", ax = axes[ax_index]
... _title = f"{col}, {data_gss[col].isna().mean():.2f} missing"
... axes[ax_index].set_title(_title)
>>> plt.tight_layout()

We mask 10% of the observed entries uniformly at random as a test set to evaluate our
imputations.

>>> from gcimpute.helper_mask import mask_MCAR
>>> gss_masked = mask_MCAR(X = data_gss, mask_fraction = 0.1)

The Python package has an API consistent with the sklearn.impute module (Buitinck et al.
2013). To impute the missing entries in an incomplete dataset, we simply create a model and
call fit_transform(). The default choice uses training_mode = “standard”, correspond-
ing to the algorithm in Zhao and Udell (2020b).

>>> from gcimpute.gaussian_copula import GaussianCopula
>>> model = GaussianCopula()
>>> Ximp = model.fit_transform(X = gss_masked)

To compare imputation performance across variables with different scales, we use scaled mean
absolute error (SMAE) for each variable: The MAE of imputations scaled by the imputation

Journal of Statistical Software 13

AG
E

DE
GR

EE

RI
NC

OM
E

CL
AS

S

SA
TJ

OB

W
EE

KS
W

RK

HA
PP

Y

HE
AL

TH

AGE

DEGREE

RINCOME

CLASS

SATJOB

WEEKSWRK

HAPPY

HEALTH

0.02

0.23 0.36

0.18 0.39 0.33

0.2 0.14 0.17 0.17

-0.37 0.22 0.26 0.08 0.05

-0.01 0.18 0.13 0.18 0.3 0.12

-0.14 0.34 0.17 0.25 0.17 0.34 0.33 0.3

0.2

0.1

0.0

0.1

0.2

0.3

Figure 4: The estimated latent copula correlation among GSS variables.

MAE of median imputation. As shown below, the Gaussian copula imputation improves over
median imputation by 10.9% on average.

>>> from gcimpute.helper_evaluation import get_smae
>>> smae = get_smae(Ximp, x_true = data_gss, x_obs = gss_masked)
>>> print(f"SMAE average over all variables: {smae.mean():.3f}")

SMAE average over all variables: 0.866

We can also extract the copula correlation estimates to see which variables are correlated, as
in Figure 4. Interestingly, DEGREE and CLASS have the largest positive correlation 0.39, while
WEEKSWRK and AGE have the largest negative correlation −0.37.

>>> corr_est = model.get_params()["copula_corr"].round(2)
>>> mask = np.zeros_like(corr_est)
>>> mask[np.triu_indices_from(mask)] = True
>>> names = data_gss.columns
>>> sns.heatmap(
... corr_est, xticklabels = names, yticklabels = names,
... annot = True, mask = mask, square = True, cmap = "vlag"
...)

Determining the variable types

The choice of variable type can have a strong effect on inference and imputation. Pack-
age gcimpute defines five variable types: "continuous", "ordinal", "lower_truncated",
"upper_truncated" and "twosided_truncated". Package gcimpute provides good default

14 gcimpute: Missing Data Imputation in Python

guesses of data types, which we used in the previous call. After fitting the model, we can
query the model to ask which variable type was chosen as shown below. Only AGE is treated
as continuous; all other variables are treated as ordinal. No variable is treated as truncated.

>>> for k, v in model.get_vartypes(feature_names = names).items():
>>> print(f'{k}: {", ".join(v)}')

continuous: AGE
ordinal: DEGREE, RINCOME, CLASS, SATJOB, WEEKSWRK, HAPPY, HEALTH
lower_truncated:
upper_truncated:
twosided_truncated:

We can specify the type of each variable in model.fit_transform() directly. Otherwise, the
default setting works well. It guesses the variable type based on the observed value frequency.
A variable is treated as continuous if its mode’s frequency is less than 0.1. A variable is treated
as lower/upper/two sided truncated if its minimum’s/maximum’s/minimum’s and maximum’s
frequency is more than 0.1 and the distribution, excluding these values, is continuous by
the previous rule. All other variables are ordinal. The default threshold value 0.1 works
well in general, but can be changed using the parameter min_ord_ratio in the model call
GaussianCopula(). For example, let us look at the frequency of the min, max, and mode for
each GSS variable.

>>> def key_freq(col):
... freq = col.value_counts(normalize = True)
... _min, _max = col.min(), col.max()
... freqmid = freq.drop(index = [_min, _max])
... key_freq = {
... "mode": freq.max(), "min": freq[_min], "max": freq[_max],
... "mode_freq_nominmax": freqmid.max()/freqmid.sum()
... }
... return pd.Series(key_freq).round(2)
>>> table = data_gss.apply(lambda x : key_freq(x.dropna())).T
>>> print(tabulate(table, headers = "keys", tablefmt = "psql"))

+----------+--------+-------+-------+-----------------+
| | mode | min | max | mode_nominmax |
|----------+--------+-------+-------+-----------------|
AGE	0.02	0	0.01	0.02
DEGREE	0.5	0.13	0.11	0.66
RINCOME	0.62	0.02	0.62	0.26
CLASS	0.46	0.09	0.03	0.52
SATJOB	0.5	0.5	0.05	0.81
WEEKSWRK	0.44	0.31	0.44	0.13
HAPPY	0.55	0.31	0.13	1
HEALTH	0.47	0.26	0.07	0.7
+----------+--------+-------+-------+-----------------+

Journal of Statistical Software 15

Only AGE has mode frequency below 0.1 and thus is treated as continuous. All other vari-
ables have strong concentration on a single value, even after removing the min and max,
so these are treated as ordinal. WEEKSWRK is an interesting example. It has 53 levels, yet
75% of the population works either 0 or 52 weeks per year: Thus it is not treated as a
continuous variable. Interestingly, if we insist that WEEKWRK be treated as continuous, the
algorithm diverges! We discuss this phenomenon in an online vignette (https://github.
com/udellgroup/gcimpute/blob/master/Examples/Trouble_shooting.ipynb).

Monitoring the algorithm fitting

Package gcimpute considers the model to have converged when the model parameters no
longer change rapidly: It terminates when ∥Σt+1 − Σt∥F /∥Σt∥F falls below the specified tol,
where Σt is the model parameter estimate at the t-th iteration and ∥·∥F denotes the Frobenius
norm. In practice, the default value tol = 0.01 works well and the algorithm converges in
less than 30 iterations in most cases.
Tracking the objective value may also be useful. The objective value is the marginal likelihood
at the observed locations, averaged over all instances. When all variables are continuous, gcim-
pute computes the exact likelihood. In other cases, gcimpute computes an approximation to
the likelihood. The approximation behaves well in most cases including those with all ordinal
variables: It monotonically increases during the fitting process and finally converges. Setting
verbose = 1 allows to monitor the parameter updates and the objective during fitting.

>>> model = GaussianCopula(verbose = 1)
>>> Ximp = model.fit_transform(X = gss_masked)

Iter 1: copula parameter change 0.0847, likelihood -9.6374
Iter 2: copula parameter change 0.0484, likelihood -9.5680
Iter 3: copula parameter change 0.0284, likelihood -9.5239
Iter 4: copula parameter change 0.0176, likelihood -9.4982
Iter 5: copula parameter change 0.0115, likelihood -9.4828
Iter 6: copula parameter change 0.0078, likelihood -9.4732
Convergence achieved at iteration 6

Using a tolerance tol that is too small can require many more iterations and can cause
overfitting. Hence users may wish to tune tol for a specific dataset for best performance
using fit_transform_evaluate(). This function runs the EM algorithm for specified n_iter
iterations and evaluates the imputed dataset using the provided eval_func at each iteration.
The function eval_func should take an imputed dataset as input and output the desired
evaluation results. We can design eval_func to evaluate the imputation accuracy or the
prediction accuracy of a supervised learning pipeline with the imputed dataset as feature
matrix. For example, to evaluate the mean SMAE of the GSS dataset for up to 15 iterations,
we can run the following code:

>>> m = GaussianCopula(verbose = 1)
>>> def err(x):
... return get_smae(x, x_true = data_gss, x_obs = gss_masked).mean()
>>> r = m.fit_transform_evaluate(gss_masked, eval_func = err, num_iter = 15)

https://github.com/udellgroup/gcimpute/blob/master/Examples/Trouble_shooting.ipynb
https://github.com/udellgroup/gcimpute/blob/master/Examples/Trouble_shooting.ipynb

16 gcimpute: Missing Data Imputation in Python

2 4 6 8 10 12 14
Run iterations

0.8650

0.8675

0.8700

0.8725

0.8750

0.8775

0.8800

0.8825

0.8850

SM
AE

Imputation error versus run iterations

Figure 5: The imputation error among GSS variables is plotted w.r.t. the number of iterations
run in gcimpute. Satisfying results emerge after four iterations.

>>> plt.plot(list(range(1, 16, 1)), r["evaluation"])
>>> plt.title("Imputation error versus run iterations")
>>> plt.xlabel("Run iterations")
>>> plt.ylabel("SMAE")

Iter 1: copula parameter change 0.0847, likelihood -9.6374
Iter 2: copula parameter change 0.0484, likelihood -9.5680
Iter 3: copula parameter change 0.0284, likelihood -9.5239
Iter 4: copula parameter change 0.0176, likelihood -9.4982
Iter 5: copula parameter change 0.0115, likelihood -9.4828
Iter 6: copula parameter change 0.0078, likelihood -9.4732
Iter 7: copula parameter change 0.0055, likelihood -9.4669
Iter 8: copula parameter change 0.0040, likelihood -9.4628
Iter 9: copula parameter change 0.0029, likelihood -9.4599
Iter 10: copula parameter change 0.0022, likelihood -9.4580
Iter 11: copula parameter change 0.0016, likelihood -9.4566
Iter 12: copula parameter change 0.0012, likelihood -9.4556
Iter 13: copula parameter change 0.0009, likelihood -9.4549
Iter 14: copula parameter change 0.0007, likelihood -9.4544
Iter 15: copula parameter change 0.0006, likelihood -9.4541

Shown in Figure 5, the imputation error fluctuates in a small range from 0.865 to 0.868
after four iterations. The default parameter setting of tol = 0.01 would have stopped at
iteration 6.

3.2. Acceleration for large datasets

In this section, we will see how to speed up gcimpute with the acceleration tools described in
Section 2.4. To use parallelism with m cores, we call GaussianCopula(n_jobs = m). To use
mini-batching training, we set training_mode as "minibatch-offline" also in the model
call GaussianCopula(). The low rank Gaussian copula is invoked using a different model

Journal of Statistical Software 17

call LowRankGaussianCopula(rank = k) with desired rank k. Mini-batch training for the
low rank Gaussian copula is more challenging and remains for future work, as the low rank
update is nonlinear. Nevertheless, for large n and large p, the parallel low rank Gaussian
copula already converges quite rapidly.

Accelerating datasets with many samples: Mini-batch training
Mini-batch training requires choosing a decaying step size {ηt} in Equation 1, a batch size
and a maximum number of iterations. The default setting can be simply invoked by calling
GaussianCopula(training_mode = "minibatch-offline") or explicitly as below:

model_minibatch = GaussianCopula(
training_mode = "minibatch-offline",
stepsize_func = lambda t, c = 5: c / (c + t),
batch_size = 100,
num_pass = 2

)

The step size sequence ηt must satisfy ηt ∈ (0, 1) for all t and
∑∞

t=1 η2
t <

∑∞
t=1 ηt = ∞. By

default, we recommend using ηt = c/(c + t) with c > 0. We find it generally suffices to tune
c in the range (0, 10). The default setting c = 5 works well in many of our experiments.
Mini-batch training requires a batch size s ≥ p to avoid inverting a singular matrix (Zhao
et al. 2022). In practice, it is easy to select s ≥ p, since problems with large p should use
LowRankGaussianCopula() instead.
The maximum number of iterations matters more for mini-batch methods, because the
stochastic fluctuation over mini-batches makes it hard to decide convergence based on the
parameter update. Instead of specifying an exact maximum number of iterations, it may be
more convenient to select a desired number of complete passes through the data (epochs),
i.e., max_iter=

⌈
n
s

⌉
×num_pass with s as the mini-batch size. Often using num_pass= 2 (the

default setting) or 3 gives satisfying results.
We now run mini-batch training with the defaults on the GSS dataset:

>>> t1 = time.time()
>>> model_minibatch = GaussianCopula(training_mode = "minibatch-offline")
>>> Ximp_batch = model_minibatch.fit_transform(X = gss_masked)
>>> t2 = time.time()
>>> print(f"Runtime: {t2 - t1:.2f} seconds")
>>> smae_batch = get_smae(Ximp_batch, x_true = data_gss, x_obs = gss_masked)
>>> print(f"Imputation error: {smae_batch.mean():.3f}")

Runtime: 2.35 seconds
Imputation error: 0.871

Let us also re-run and record the runtime of the standard training mode:

>>> t1 = time.time()
>>> _ = GaussianCopula().fit_transform(X = gss_masked)
>>> t2 = time.time()
>>> print(f"Runtime: {t2 - t1:.2f} seconds")

18 gcimpute: Missing Data Imputation in Python

Runtime: 7.17 seconds

Mini-batch training reduces runtime by 68% and achieves very similar imputation accuracy
compared to standard training (imputation error 0.866).

Accelerating datasets with many variables: Low rank structure

The low rank Gaussian copula (LRGC) model accelerates convergence by decreasing the num-
ber of model parameters. Here we showcase its performance on a subset of the MovieLens1M
dataset (Harper and Konstan 2015): The 400 movies with the most ratings and users who
rated at least 150 of these movies in the scale of {1, 2, 3, 4, 5}. That yields a dataset consisting
of 914 users and 400 movies with 53.3% of ratings observed. We further mask 10% entries for
evaluation.

>>> gcimpute.helper_data import load_movielens1m
>>> data_movie = load_movielens1m(num = 400, min_obs = 150)
>>> movie_masked = mask_MCAR(X = data_movie, mask_fraction = 0.1)

We run GaussianCopula() as well as LowRankGaussianCopula(rank = 10). Our goal is not
to choose the optimal rank, but rather show the runtime comparison between two models.

>>> from gcimpute.low_rank_gaussian_copula import LowRankGaussianCopula
>>> a = time.time()
>>> model_movie_lrgc = LowRankGaussianCopula(rank = 10)
>>> m_imp_lrgc = model_movie_lrgc.fit_transform(X = movie_masked)
>>> print(f"LRGC runtime {time.time() - a:.2f} seconds.")
>>> a = time.time()
>>> model_movie_gc = GaussianCopula()
>>> m_imp_gc = model_movie_gc.fit_transform(X = movie_masked)
>>> print(f"GC runtime {time.time() - a:.2f} seconds.")

LRGC runtime 10.09 seconds.
GC runtime 56.75 seconds.

Here we already see that LRGC already reduces the runtime by 82% compared to the standard
Gaussian copula, although the number of variables p = 400 is not particularly large. When
the number of variables is much larger, the acceleration is also more important. Moreover,
LRGC improves the imputation error from 0.613 to 0.577, as shown below.

>>> from gcimpute.helper_evaluation import get_mae
>>> mae_gc = get_mae(imp_gc, x_true = data_movie, x_obs = movie_masked)
>>> mae_lrgc = get_mae(imp_lrgc, x_true = data_movie, x_obs = movie_masked)
>>> print(f"LRGC imputation MAE: {mae_lrgc:.3f}")
>>> print(f"GC imputation MAE: {mae_gc:.3f}")

LRGC imputation MAE: 0.577
GC imputation MAE: 0.613

Journal of Statistical Software 19

0

50

100

150
CrudeOilPrice

20

40

60

80
StockVolatility

20

40

60

GoldVolatility

5

10

15

20

BondSpread

2008
2010

2012
2014

2016
2018

2020

90

100

110

120

DollarIndex

2008
2010

2012
2014

2016
2018

2020
0.0

0.5

1.0

1.5

2.0

2.5

InflationRate

2008
2010

2012
2014

2016
2018

2020
0

1

2

3
InterestRate

2008
2010

2012
2014

2016
2018

2020

1.2

1.4

1.6
USDtoEuroRate

Figure 6: Values of eight selected FRED economic variables from 2008-06-03 to 2020-12-31
are plotted. For CrudeOilPrice, StockVolatility and GoldVolatility, the units are US dollars.
For BondSprea, the unit is percentage. For other variables, the units are the ratios to a
baseline (a historical value).

3.3. Imputation for streaming datasets
Package gcimpute’s "minibatch-online" training mode performs streaming imputation: As
new samples arrive, it imputes the missing data immediately and then updates the model
parameters. We showcase its performance on eight daily recorded economic time series vari-
ables from the Federal Reserve Bank of St. Louis (FRED, https://fred.stlouisfed.org/),
consisting of 3109 days from 2008-06-03 to 2020-12-31. The selected eight variables are di-
verse and among the most popular economic variables in FRED: Gold volatility index, stock
volatility index, bond spread, dollar index, inflation rate, interest rate, crude oil price, and
US dollar to Euro rate, shown in Figure 6.

>>> from gcimpute.helper_data import load_FRED
>>> fred = load_FRED()
>>> fred.plot(
... subplots = True, layout = (2, 4), figsize = (16, 6),
... legend = False, title = fred.columns.to_list()
...)

Here we consider a scenario in which some variables are observed as soon as they are generated,
while others are observed after a lag of one day. The goal is to predict the unobserved
variables each day. We use stock StockVolatility and CrudeOilPrice as two unobserved
variables. Each day, using a fitted Gaussian copula model, we predict their values based on
both their historical values (through the marginal) and the six other observed variables at
that day (through the copula correlation). After we make our prediction, the actual values
are revealed and used to update the Gaussian copula model. Package gcimpute conveniently
supports this task. Let us first create a Gaussian copula model to impute streaming datasets
(training_mode = "minibatch-online"), shown as below.

>>> model = GaussianCopula(
... training_mode = "minibatch-online",

https://fred.stlouisfed.org/

20 gcimpute: Missing Data Imputation in Python

... window_size = 10,

... const_stepsize = 0.1,

... batch_size = 10,

... decay = 0.01

...)

Three hyperparameters control the learning rate of the model: window_size controls the
number of recent observations used for marginal estimation; const_stepsize controls the
size of the copula correlation update; and batch_size is the frequency of the copula corre-
lation update. In contrast, decay only controls the imputation and does not influence the
model update (decay rate d in Section 2.5). Smaller values of decay put less weight on old
observations, i.e., forget stale data faster. In economic time series, yesterday’s observation
often predicts today’s value well. We use a small value decay = 0.01, so that the imputation
depends most strongly on yesterday’s observation, but interpolates all values in the window.
These parameters can be tuned for best performance.
Next, to conduct the experiment described above, we prepare two data matrices with one row
for each temporal observation: X for imputing missing entries and X_true for updating the
model. We use first 25 rows to initialize the model.

>>> Xmasked = fred.assign(StockVolatility = np.nan, CrudeOilPrice = np.nan)
>>> Ximp = model.fit_transform(X = Xmasked, X_true = fred, n_train = 25)

More concretely, a Gaussian copula model receives the t-th row of X, imputes its missing
entries, and then is asked to update parameters of the model using the t-th row of X_true.
X_true must agree with X at all observed entries in X, but may reveal additional entries
that are missing in X. By default, X_true = None, indicating no additional entries beyond X
are available. In this example, two columns of Xmasked are missing: StockVolatility and
CrudeOilPrice. All other columns are fully observed. All columns in fred are fully observed.
We now evaluate the imputation performance and compare against a simple but powerful
alternative, yesterday’s observation. The predicted series of both methods are almost visu-
ally indistinguishable from the true values in Figure 6, but the Gaussian copula predictions
perform better on average, with lower mean squared error (MSE).

>>> n_train = 25
>>> for i, col in enumerate(["CrudeOilPrice", "StockVolatility"]):
... _true = fred[col][n_train:].to_numpy()
... _err_yes = fred[col][n_train - 1:-1].to_numpy() - _true
... _err_GC = Ximp[n_train:, i] - _true
... print(f"MSE of {col}:")
... print(f"Gaussian Copula Pred: {np.power(_err_GC, 2).mean():.3f}")
... print(f"Yesterday Value Pred: {np.power(_err_yes, 2).mean():.3f}")

MSE of CrudeOilPrice:
Gaussian Copula Pred: 3.672
Yesterday Value Pred: 4.313
MSE of StockVolatility:
Gaussian Copula Pred: 3.998
Yesterday Value Pred: 4.368

Journal of Statistical Software 21

3.4. Imputation uncertainty

So far we have seen several methods to impute missing data. Package gcimpute also provides
functionality to quantify the uncertainty of the imputations: Multiple imputation, confidence
interval for a single imputation, and relative reliability for a single imputation. We present the
first two notions here, since they are widely used. The third, relative reliability, ranks the im-
putation quality among all imputed entries, which is well suited for the top-k recommendation
task in collaborative filtering (Zhao and Udell 2020a).

Multiple imputation

Multiple imputation creates several imputed copies of the original dataset, each having poten-
tially different imputed values. The uncertainty due to imputations can be propagated into
subsequent analyses by analyzing each imputed dataset. See Little and Rubin (2019, Chap-
ter 5.4) for a more detailed introduction to multiple imputation. One common use case for
multiple imputation is supervised learning with missing entries: A researcher creates multiple
imputed feature datasets, then trains a model with each imputed training feature dataset and
predicts with each imputed test feature vector. Finally, they pool all predictions into a single
prediction, for example, using the mean or majority vote. An ensemble model like this often
outperforms a single model trained from a single imputation.
We show how to use multiple imputation in gcimpute on a regression task from UCI datasets,
the white wine quality dataset (Cortez, Cerdeira, Almeida, Matos, and Reis 2009). This
dataset has 11 continuous features and a rating target for 4898 samples. The (transposed)
header of the dataset is shown below.

>>> gcimpute.helper_data import load_whitewine
>>> wine = load_whitewine()
>>> print(tabulate(wine.head().T, headers = "keys", tablefmt = "psql"))

+----------------------+---------+---------+---------+----------+----------+
| | 0 | 1 | 2 | 3 | 4 |
|----------------------+---------+---------+---------+----------+----------|
fixed acidity	7	6.3	8.1	7.2	7.2
volatile acidity	0.27	0.3	0.28	0.23	0.23
citric acid	0.36	0.34	0.4	0.32	0.32
residual sugar	20.7	1.6	6.9	8.5	8.5
chlorides	0.045	0.049	0.05	0.058	0.058
free sulfur dioxide	45	14	30	47	47
total sulfur dioxide	170	132	97	186	186
density	1.001	0.994	0.9951	0.9956	0.9956
pH	3	3.3	3.26	3.19	3.19
sulphates	0.45	0.49	0.44	0.4	0.4
alcohol	8.8	9.5	10.1	9.9	9.9
quality	6	6	6	6	6
+----------------------+---------+---------+---------+----------+----------+

We now randomly mask 30% of entries and fit a Gaussian copula model to the masked dataset.

22 gcimpute: Missing Data Imputation in Python

>>> X = data_wine.to_numpy()[:, :-1]
>>> Xmasked = mask_MCAR(X, mask_fraction = 0.3)
>>> model_wine = GaussianCopula()
>>> Ximputed = model_wine.fit_transform(X = Xmasked)

Now we use the first 4000 instances as a training dataset and the remaining 898 instances as
test dataset. Since the goal is to show how to use multiple imputation, we use a simple linear
model as the prediction model. Now, let us first examine the MSE of the linear model fitted
on the complete feature dataset.

>>> from sklearn.metrics import mean_squared_error as MSE
>>> from sklearn.linear_model import LinearRegression as LR
>>> Xtrain, Xtest = X[:4000], X[4000:]
>>> y = wine["quality"]
>>> ytrain, ytest = y[:4000], y[4000:]
>>> ypred = LR().fit(Xtrain, ytrain).predict(Xtest)
>>> np.round(MSE(ytest, ypred), 4)

0.5121

Now let us examine the MSE of the linear model fitted on the single imputed dataset.

>>> Xtrain_imp, Xtest_imp = Ximputed[:4000], Ximputed[4000:]
>>> ypred_imp = LR().fit(Xtrain_imp, ytrain).predict(Xtest_imp)
>>> np.round(MSE(ytest, ypred_imp), 4)

0.5295

Not surprisingly, replacing 30% feature values with the corresponding imputation hurts the
prediction accuracy. Now let us draw 5 imputed datasets, train a linear model and get
prediction for each imputed dataset, and derive the final prediction as the average across 5
different predictions. As shown below, the mean-pooled prediction improves upon the results
from single imputation and has performance results very close to those of using the complete
dataset.

>>> Ximputed_mul = model_wine.sample_imputation(Xmasked, num = 5)
>>> ypred_mul_imputed = []
>>> for i in range(5):
... Ximputed = Ximputed_mul[..., i]
... _Xtrain_imp, _Xtest_imp = Ximputed[:4000], Ximputed[4000:]
... _ypred = LR().fit(_Xtrain_imp, ytrain).predict(_Xtest_imp)
... ypred_mul_imputed.append(_ypred)
>>> ypred_mul_imputed = np.array(ypred_mul_imputed).mean(axis = 0)
>>> np.round(MSE(ytest, ypred_mul_imputed), 4)

0.5152

Journal of Statistical Software 23

The preceding example learns a single imputation model from both the training set and the
test set, rather than learning an imputation model on the training set and then applying it to
the test set. The reason for this choice is that more samples improve imputation accuracy and
we assume the training and test sets have the same feature distribution. This assumption is
plausible in many scenarios, for example, when the train set and test set are randomly split.
However, when this assumption fails, we can use a safer alternative: Train imputation models
and impute missing values on the training set and the test set separately.

Imputation confidence intervals

Confidence intervals (CI) are another important measure of uncertainty. Package gcimpute
can return a CI for each imputed value: For example, a 95% CI should contain the true missing
data with probability 95%. In general, these CI are not symmetric around the imputed value
due to the nonlinear transformation f . We will continue to use the white wine dataset for
illustration. After fitting the Gaussian copula model, we can obtain the imputation CI as
shown below.

>>> ct = model_wine.get_confidence_interval()
>>> upper, lower = ct["upper"], ct["lower"]

By default, the method get_confidence_interval() extracts the imputation CI of the data
used to fit the Gaussian copula model, with significance level alpha = 0.05. The empirical
coverage of the returned CI is 0.943, as shown below. Hence we see the constructed CI are
well calibrated on this dataset.

>>> missing = np.isnan(Xmasked)
>>> Xmissing = X[missing]
>>> cover = (lower[missing] < Xmissing) & (upper[missing] > Xmissing)
>>> np.round(cover.mean(), 3)

0.943

The default setting uses an analytic expression to obtain the CI. As in Section 2.2, when some
variables are not continuous, a safer approach builds CI using empirical quantiles computed
from multiple imputed values. Let us now construct the quantile CI and compare them
with the analytical counterparts. Here we follow the default setting to use 200 samples for
computing quantiles. As shown below, the quantile CI has almost the same empirical coverage
rate as the analytical CI, validating that the CI are well calibrated.

>>> ct_q = model_wine.get_confidence_interval(type = "quantile")
>>> upper_q, lower_q = ct_q["upper"], ct_q["lower"]
>>> cover_q = (lower_q[missing] < X_missing) & (upper_q[missing] > X_missing)
>>> np.round(cover_q.mean(), 3)

0.942

24 gcimpute: Missing Data Imputation in Python

4. Concluding remarks
Package gcimpute supports a variety of missing data imputation tasks including single impu-
tation, multiple imputation, imputation confidence intervals, as well as imputation for large
datasets and streaming datasets. As a complement to this article, we provide usage vignettes
(https://github.com/udellgroup/gcimpute/blob/master/Examples) detailing more spe-
cific topics such as trouble shooting, relative reliability for a single imputation, etc.
Although this article focuses on missing data imputation, gcimpute can also be used to fit a
Gaussian copula model to complete mixed datasets. The resulting latent correlations may be
useful to understand multi-view data collected on the same subjects from different sources. As
far as we know, no other software supports Gaussian copula estimation for mixed continuous,
binary, ordinal and truncated variables. Fan et al. (2017) only support continuous and binary
mixed data; Feng and Ning (2019) support continuous, binary and ordinal mixed data; Yoon,
Carroll, and Gaynanova (2020) support continuous, binary and zero-inflated (a special case
of truncated) mixed data.
Package gcimpute estimates the model provably well when data is missing uniformly at ran-
dom (MCAR), and can estimate the copula provably well given the marginals if the data
is missing at random (MAR). Adapting the theory to handle data missing not at random
(MNAR) is challenging. However, we find empirically that gcimpute still performs reason-
ably well in this setting. Indeed, many different missing patterns may be called MNAR, and
imputation methods designed for one MNAR mechanism do not necessarily outperform on
other MNAR data due to this heterogeneity. We advise users to make the choice by evaluating
on a validation dataset.

References

Bhattarai A (2018). missingpy: Missing Data Imputation for Python. Python package version
0.2.0, URL https://pypi.org/project/missingpy.

Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer
P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013).
“API Design for Machine Learning Software: Experiences from the scikit-learn Project.” In
ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122.

Christoffersen B (2023). mdgc: Missing Data Imputation Using Gaussian Copulas. R package
version 0.1.7, URL https://CRAN.R-project.org/package=mdgc.

Clauset A, Shalizi CR, Newman MEJ (2009). “Power-Law Distributions in Empirical Data.”
SIAM Review, 51(4), 661–703. doi:10.1137/070710111.

Cortez P, Cerdeira A, Almeida F, Matos T, Reis J (2009). “Modeling Wine Preferences by
Data Mining from Physicochemical Properties.” Decision Support Systems, 47(4), 547–553.
doi:10.1016/j.dss.2009.05.016.

Di Lascio FML, Giannerini S (2019). CoImp: Copula Based Imputation Method. R package
version 1.0, URL https://CRAN.R-project.org/package=CoImp.

https://github.com/udellgroup/gcimpute/blob/master/Examples
https://pypi.org/project/missingpy
https://CRAN.R-project.org/package=mdgc
https://doi.org/10.1137/070710111
https://doi.org/10.1016/j.dss.2009.05.016
https://CRAN.R-project.org/package=CoImp

Journal of Statistical Software 25

Fan J, Liu H, Ning Y, Zou H (2017). “High Dimensional Semiparametric Latent Graphical
Model for Mixed Data.” Journal of the Royal Statistical Society B, 79(2), 405–421. doi:
10.1111/rssb.12168.

Feng H, Ning Y (2019). “High-Dimensional Mixed Graphical Model with Ordinal Data:
Parameter Estimation and Statistical Inference.” In The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 654–663.

Harper FM, Konstan JA (2015). “The Movielens Datasets: History and Context.” ACM
Transactions on Interactive Intelligent Systems, 5(4), 1–19. doi:10.1145/2827872.

Hastie T, Mazumder R (2021). softImpute: Matrix Completion via Iterative Soft-Thresholded
SVD. R package version 1.4-1, URL https://CRAN.R-project.org/package=softImpute.

Hastie T, Tibshirani R, Narasimhan B, Chu G (2023). impute: Imputation for Microarray
Data. doi:10.18129/B9.bioc.impute. R package version 1.76.0.

Hoff PD (2007). “Extending the Rank Likelihood for Semiparametric Copula Estimation.”
The Annals of Applied Statistics, 1(1), 265–283. doi:10.1214/07-aoas107.

Hoff PD (2018). sbgcop: Semiparametric Bayesian Gaussian Copula Estimation and Impu-
tation. R package version 0.980, URL https://CRAN.R-project.org/package=sbgcop.

Honaker J, King G, Blackwell M (2011). “Amelia II: A Program for Missing Data.” Journal
of Statistical Software, 45(7), 1–47. doi:10.18637/jss.v045.i07.

Jaworski P, Durante F, Hardle WK, Rychlik T (2010). Copula Theory and Its Applications.
Springer-Verlag. doi:10.1007/978-3-642-12465-5.

Josse J, Husson F (2016). “missMDA: A Package for Handling Missing Values in Multivariate
Data Analysis.” Journal of Statistical Software, 70(1), 1–31. doi:10.18637/jss.v070.i01.

Little RJA, Rubin DB (2019). Statistical Analysis with Missing Data, volume 793. John
Wiley & Sons.

Liu H, Lafferty J, Wasserman L (2009). “The Nonparanormal: Semiparametric Estimation
of High Dimensional Undirected Graphs.” Journal of Machine Learning Research, 10(10).

Mayer I, Sportisse A, Josse J, Tierney N, Vialaneix N (2022). “R-Miss-Tastic: A Unified
Platform for Missing Values Methods and Workflows.” The R Journal, 14, 244–266. doi:
10.32614/rj-2022-040.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M, Duchesnay E (2011). “scikit-learn: Machine Learning in Python.” Journal of Machine
Learning Research, 12, 2825–2830.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rubin DB (1996). “Multiple Imputation after 18+ Years.” Journal of the American Statistical
Association, 91(434), 473–489. doi:10.1080/01621459.1996.10476908.

https://doi.org/10.1111/rssb.12168
https://doi.org/10.1111/rssb.12168
https://doi.org/10.1145/2827872
https://CRAN.R-project.org/package=softImpute
https://doi.org/10.18129/B9.bioc.impute
https://doi.org/10.1214/07-aoas107
https://CRAN.R-project.org/package=sbgcop
https://doi.org/10.18637/jss.v045.i07
https://doi.org/10.1007/978-3-642-12465-5
https://doi.org/10.18637/jss.v070.i01
https://doi.org/10.32614/rj-2022-040
https://doi.org/10.32614/rj-2022-040
https://www.R-project.org/
https://doi.org/10.1080/01621459.1996.10476908

26 gcimpute: Missing Data Imputation in Python

Stekhoven DJ (2022). missForest: Nonparametric Missing Value Imputation Using Random
Forest. R package version 1.5, URL https://CRAN.R-project.org/package=missForest.

Stekhoven DJ, Bühlmann P (2012). “MissForest – Non-Parametric Missing Value Imputation
for Mixed-Type Data.” Bioinformatics, 28(1), 112–118. doi:10.1093/bioinformatics/
btr597.

Udell M, Horn C, Zadeh R, Boyd S (2016). “Generalized Low Rank Models.” Foundations
and Trends® in Machine Learning, 9(1), 1–118. doi:10.1561/2200000055.

Udell M, Townsend A (2019). “Why Are Big Data Matrices Approximately Low Rank?”
SIAM Journal on Mathematics of Data Science, 1(1), 144–160. doi:10.1137/18m1183480.

Van Buuren S, Groothuis-Oudshoorn K (2011). “mice: Multivariate Imputation by Chained
Equations in R.” Journal of Statistical Software, 45(3), 1–67. doi:10.18637/jss.v045.
i03.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Yoon G, Carroll RJ, Gaynanova I (2020). “Sparse Semiparametric Canonical Correlation
Analysis for Data of Mixed Types.” Biometrika, 107(3), 609–625. doi:10.1093/biomet/
asaa007.

Zhao Y, Landgrebe E, Shekhtman E, Udell M (2022). “Online Missing Value Imputation and
Change Point Detection with the Gaussian Copula.” In Proceedings of the AAAI Conference
on Artificial Intelligence.

Zhao Y, Udell M (2020a). “Matrix Completion with Quantified Uncertainty through Low
Rank Gaussian Copula.” In Advances in Neural Information Processing Systems, volume 33.

Zhao Y, Udell M (2020b). “Missing Value Imputation for Mixed Data via Gaussian Copula.” In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 636–646.

Affiliation:
Yuxuan Zhao
Department of Statistics and Data Science
Cornell University
Ithaca, NY 14850, United States of America
E-mail: yz2295@cornell.edu
URL: https://sites.coecis.cornell.edu/yuxuanzhao/

https://CRAN.R-project.org/package=missForest
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1561/2200000055
https://doi.org/10.1137/18m1183480
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://www.python.org/
https://www.python.org/
https://doi.org/10.1093/biomet/asaa007
https://doi.org/10.1093/biomet/asaa007
mailto:yz2295@cornell.edu
https://sites.coecis.cornell.edu/yuxuanzhao/

Journal of Statistical Software 27

Madeleine Udell
Management Science and Engineering
Stanford University
Stanford, CA 94305, United States of America
E-mail: udell@stanford.edu
URL: https://web.stanford.edu/~udell/

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

February 2024, Volume 108, Issue 4 Submitted: 2022-08-22
doi:10.18637/jss.v108.i04 Accepted: 2023-06-30

mailto:udell@stanford.edu
https://web.stanford.edu/~udell/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v108.i04

	Introduction
	Software for missing data imputation

	Mathematical background
	Gaussian copula model
	Missing data imputation
	Algorithm
	Acceleration for large datasets
	Imputation for streaming datasets

	Software usage
	Basic usage
	Determining the variable types
	Monitoring the algorithm fitting

	Acceleration for large datasets
	Accelerating datasets with many samples: Mini-batch training
	Accelerating datasets with many variables: Low rank structure

	Imputation for streaming datasets
	Imputation uncertainty
	Multiple imputation
	Imputation confidence intervals

	Concluding remarks

