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Abstract

For randomized controlled trials (RCTs) with a single intervention’s impact being mea-
sured on multiple outcomes, researchers often apply a multiple testing procedure (such
as Bonferroni or Benjamini-Hochberg) to adjust p values. Such an adjustment reduces
the likelihood of spurious findings, but also changes the statistical power, sometimes sub-
stantially. A reduction in power means a reduction in the probability of detecting effects
when they do exist. This consideration is frequently ignored in typical power analyses, as
existing tools do not easily accommodate the use of multiple testing procedures. We in-
troduce the PUMP (Power Under Multiplicity Project) R package as a tool for analysts to
estimate statistical power, minimum detectable effect size, and sample size requirements
for multi-level RCTs with multiple outcomes. PUMP uses a simulation-based approach
to flexibly estimate power for a wide variety of experimental designs, number of out-
comes, multiple testing procedures, and other user choices. By assuming linear mixed
effects models, we can draw directly from the joint distribution of test statistics across
outcomes and thus estimate power via simulation. One of PUMP’s main innovations is
accommodating multiple outcomes, which are accounted for in two ways. First, power
estimates from PUMP properly account for the adjustment in p values from applying a
multiple testing procedure. Second, when considering multiple outcomes rather than a
single outcome, different definitions of statistical power emerge. PUMP allows researchers
to consider a variety of definitions of power in order to choose the most appropriate types
of power for the goals of their study. The package supports a variety of commonly used
frequentist multi-level RCT designs and linear mixed effects models. In addition to the
main functionality of estimating power, minimum detectable effect size, and sample size
requirements, the package allows the user to easily explore sensitivity of these quantities
to changes in underlying assumptions.
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1. Introduction
The PUMP (Power Under Multiplicity Project) R package (R Core Team 2023) fills an impor-
tant gap in open-source software tools for designing multi-level randomized controlled trials
(RCTs) with adequate statistical power. With PUMP, researchers can estimate statistical
power, minimum detectable effect size (MDES), and needed sample size for multi-level exper-
imental designs. In a multi-level design, units are nested within hierarchical structures such
as students nested within schools nested within school districts. The statistical power is cal-
culated for estimating the impact of a single intervention on multiple outcomes. The package
uses a frequentist framework of linear mixed effects regression models, which is currently the
prevailing framework for estimating impacts from experiments in education and other social
policy research.
Using education research as a motivating example, we introduce the PUMP package to allow
for directly answering experimental design questions that take multiple outcomes and multiple
testing procedures (MTPs) into account, such as:

• How many schools would I need in my study to detect a given effect on at least three
of my five outcomes? (Assuming I have a fixed number of students per school.)

• What size effect can I reliably detect on each outcome, given a planned MTP across all
my outcomes?

• How would the power to detect a given effect change if only half my outcomes truly
experienced an impact?

We note, however, that the problem of power estimation for multi-level RCTs is not exclusive
to the educational setting.
To our knowledge, none of the existing software tools for power calculations allow researchers
to account for multiple hypothesis tests and the use of a MTP. MTPs adjust p values to
reduce the likelihood of spurious findings when researchers are testing for effects on multiple
outcomes.1 This adjustment can result in a substantial change in statistical power, greatly
reducing the probability of detecting effects when they do exist. Unfortunately, when design-
ing studies, researchers who plan to test for effects on multiple outcomes and employ MTPs
frequently ignore the power implications of the MTPs.
Also, as researchers change their focus from one outcome to multiple outcomes, multiple
definitions of statistical power emerge (Chen, Luo, Liu, and Mehrotra 2011; Dudoit, Shaffer,
and Boldrick 2003; Senn and Bretz 2007; Westfall, Tobias, and Wolfinger 2011). The PUMP
package allows researchers to consider multiple definitions of power, selecting those most
suited to the goals of their study. The definitions of power with multiple outcomes include:

• Individual power : The probability of detecting an effect of at least a particular size
(specified by the researcher) for a given hypothesis test. Individual power corresponds
to how power is defined when the focus is on a single outcome. In the case of multiple
outcomes, individual power is the probability of detecting an effect after adjustment
with a MTP. With multiple outcomes, the researcher may specify different sizes for
each outcome.

1Alternatively, MTPs can decrease the critical values for rejecting hypothesis tests. For ease of presentation,
this paper focuses on the approach of adjusting p values.
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• 1-minimal power : The probability of detecting effects of at least a particular size (which
can vary by outcome) on at least one outcome out of all measured outcomes. Similarly,
the researcher can consider d-minimal power for any d less than the number of outcomes,
or fractional powers, such as 1/2-minimal power (the power to detect effects on at least
50% of the outcomes).

• Complete power : The power to detect effects of at least a particular size on all outcomes.

As noted in Porter (2018), the prevailing default in many studies – individual power – may or
may not be the most appropriate type of power when multiple outcomes are being considered.
If the researcher’s goal is to find statistically significant estimates of effects on most or all
primary outcomes of interest, then their power may be much lower than anticipated. On the
other hand, if the researcher’s goal is to find statistically significant estimates of effects on at
least one or a small proportion of outcomes, their power may be much better than anticipated.
Typically, 1-minimal power, even after applying a MTP, is higher than individual power for a
hypothesis test on a single, pre-specified outcome. By not accounting for both the challenges
and opportunities arising from multiple outcomes, a researcher may find they have wasted
resources. They may have designed an underpowered study that cannot detect the desired
effect sizes, or they may have designed an overpowered study that had a larger sample size
than necessary.
The methods in the PUMP package build on those introduced in Porter (2018). This earlier
paper focused on a single RCT design and model – a multisite RCT with the blocked ran-
domization of individuals, in which effects are estimated using a model with block-specific
intercepts and with the assumption of constant effects across all units. This earlier paper
also did not produce software to assist researchers in implementing its methods. With this
current paper and with the introduction of the PUMP package, we extend the methodology
to eleven multi-level RCT designs and models. Also, while Porter (2018) focused on estimates
of power, PUMP goes further to also estimate MDES and sample size requirements that take
multiplicity adjustments into account.
PUMP extends functionality of the popular PowerUp! tool (which includes a R package called
PowerUpR, a spreadsheet, and a R shiny application), which computes power or MDES for
multi-level RCTs with a single outcome (Dong and Maynard 2013; Bulus, Dong, Kelcey, and
Spybrook 2022). For a wide variety of RCT designs with a single outcome, researchers can
take advantage of closed-form solutions and numerous power estimation tools. For example,
in education and social policy research, see Dong and Maynard (2013); Hedges and Rhoads
(2010); Spybrook, Bloom, Congdon, Hill, Martinez, and Raudenbush (2011). However, closed-
form solutions are difficult or impossible to derive when a MTP is applied to a setting with
multiple outcomes. Instead, we use a simulation-based approach to achieve estimates of power
for multiple outcomes.
The package uses a frequentist framework of linear mixed effects regression models, which
allows straightforward modeling of the multi-level nature of an experiment. The package only
applies to estimating the impacts from experiments with a single, binary treatment. PUMP
supports experiments with up to three levels: Level one is the lowest level, containing in-
dividuals or units (students), level two nests level one units into groups (schools), and level
three nests level two units into groups (school districts). We consider a variety of models with
different combinations of fixed and random effects within the linear mixed effects framework.2

2Other options include nonparametric or Bayesian methods, but these are less prevalent in applied research
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We explain these models in detail in the technical appendix available in the supplementary
file v108i06-appendix.pdf. Designed-based inference will often map onto these models. See
Schochet (2016) for an overview of designed-based inference in RCT contexts. See Miratrix,
Weiss, and Henderson (2021) for design-based inference for two-level multisite experiments
and Schochet, Pashley, Miratrix, and Kautz (2021) for blocked, cluster randomized experi-
ments.
We now define some essential terminology. We define the causal impact (our estimand) on a
particular outcome m as the average treatment effect of the intervention across units at the
highest level of our research design. We use the term “impact” and “effect” interchangeably.
For example, for a three-level experiment, the causal impact is the average treatment effect
across districts. We call the impact a grand mean, because it is a mean of means: first,
we calculate the mean treatment effect for students within each district, and then we take
the mean across these means. For a two-level experiment, we take the grand mean across
schools, and for a one-level experiment, the causal impact is the average treatment effect
across students.
The MDES is the smallest true effect size the study can detect with the desired statistical
significance level, in standard deviation units. The term “effect size” generally refers to a
standardized mean difference effect size (Bloom 2006), which is the difference in mean out-
comes for the treatment group and the control group divided by an index standard deviation
such as the standard deviation of the measured outcome for the entire control group or,
in some cases, some larger reference population. Researchers often use effect sizes in order
to compare outcomes with different scales. For studies with two or more levels, there are
multiple possibilities for defining variation (Spybrook, Hedges, and Borenstein 2014). In a
two-level design, “one might define the effect size in terms of a standard deviation based on
the variance between level one units, σ2

1, the variance between level two units, σ2
2, or the

total variance σ2
1 + σ2

2” (Spybrook et al. 2014). We follow the final definition, using the total
variance over all levels in the denominator of effect size. We do not include any treatment
heterogeneity in the standard deviation used to calculate effect sizes, however. Using total
variation, and not including treatment variation, means the unit of standardization will be
preserved regardless of how units are blocked or organized, and regardless of the degree of
impact heterogeneity. Total variation is also considered a more conservative choice, closest
to mimicking the variation one would find in larger reference populations (see, e.g., Weiss,
Bloom, Verbitsky-Savitz, Gupta, Vigil, and Cullinan 2017). Other effect size definitions can
be accommodated via simply rescaling the desired effect sizes entered into or read off of the
package by the ratio of the target metric to total variation.
The package includes three core functions:

• pump_power() for calculating power given an experimental design and assumed model
and MDES.

• pump_mdes() for calculating MDES given a target power and sample sizes.

• pump_sample() for calculating the required sample size at a given level for achieving a
given target power for a given MDES and sample sizes at other levels.

(Gelman, Hill, and Yajima 2012, 2007). One might also use generalized linear mixed models such as logistic
regression; this would be a future extension.
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For any of these core functions, the user begins with two main choices. First, the user
chooses the combination of the design and model of the RCT. As previously noted, the
PUMP package covers a range of multi-level designs and models that researchers typically
use in practice, with up to three levels of hierarchy. Second, the user chooses the MTP to be
applied. PUMP supports five common MTPs: Bonferroni, Holm, single-step and step-down
versions of Westfall-Young, and Benjamini-Hochberg.
After these two main choices, the user must also make a variety of decisions about assumed
parameters of the data generating distribution. The package allow users to easily explore
power over a range of possible values of many of these parameters. This exploration encourages
the user to determine the sensitivity of estimates to different assumptions. PUMP also visually
displays results. These additional functions include:

• pump_power_grid(), pump_mdes_grid(), and pump_sample_grid() for calculating the
given output over a range of possible parameter values.

• update() to re-run an existing calculation with a small number of parameters updated.

• plot() on PUMP-generated objects to generate plots (including grid outputs).

The PUMP package is available on CRAN at https://CRAN.R-project.org/package=PUMP.
The authors of the PUMP package have also created a web application built with R shiny
(Chang et al. 2023). This web application calls the PUMP package and allows users to
conduct calculations with a user-friendly interface, but it is less flexible than the package,
with a focus on simpler scenarios (e.g., 10 or fewer outcomes). The app can be found at
https://public.mdrc.org/pump/.
The remainder of this paper is organized as follows. In Section 2, we introduce Diplomas
Now, an educational experiment, to be used as a running example throughout the paper.
In Section 3, we provide a summary of the multiple testing problem. Also in Section 3, we
present an overview of the statistical challenges introduced by multiple hypothesis testing
and how MTPs protect against spurious impact findings. In Section 4, we introduce our
methodology for estimating power when taking the use of MTPs into account. This section
also briefly discusses our validation process. Section 5 discusses the various choices a user
must make when using the package, including the designs and models, MTPs, and key design
and model parameters. Section 6 provides a detailed presentation of the PUMP package with
multiple examples of using the package’s functions to conduct calculations for our education
RCT example. Section 7 is a brief conclusion.

2. Diplomas Now
We illustrate our package using an example of a published RCT that evaluated a secondary
school model called Diplomas Now. The Diplomas Now model is designed to increase high
school graduation rates and post-secondary readiness. Evaluators conducted a RCT com-
paring schools who implemented the model to business-as-usual. We refer to this example
throughout this paper to illustrate key concepts and to illustrate the application of the PUMP
package.

https://CRAN.R-project.org/package=PUMP
https://public.mdrc.org/pump/
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The Diplomas Now model, created by three national organizations, Talent Development, City
Year, and Communities In Schools, targets underfunded urban middle and high schools with
many students who are not performing well academically. The model aims to transform
these schools to better support students who fall off the path to high school graduation.
Diplomas Now, with MDRC as a partner, was one of the first validation grants awarded as
part of the Investing in Innovation (i3) competition administered by the federal Department
of Education.

We follow the general design of the Diplomas Now evaluation, conducted by MDRC. The
initial evaluation included two cohorts of schools, with each cohort implementing for two years
(2011–2013 for Cohort 1 and 2012–2014 for Cohort 2). The cohorts included 62 secondary
schools (both middle and high schools) in 11 school districts that agreed to participate.
These schools were grouped in randomization blocks defined by district, cohort, and school
type, and then randomized within these blocks. We would therefore say this RCT contains
three levels (student, school, and randomization block), with random assignment at level
two. We note that for clarity, we generally refer to level three as the “district level” rather
than “randomization block” level. Schools assigned to the active treatment group were given
the Diplomas Now model, while the schools in the control treatment group continued their
existing school programs or implemented other reform strategies of their choosing (Corrin,
Sepanik, Rosen, and Shane 2016).

The evaluation focused on three categories of outcomes: Attendance, Behavior, and Course
performance, called the “ABC’s”, with multiple measures for each category. In addition, the
evaluation measured an overall ABC composite measure of whether a student is above given
thresholds on all three categories. This grouping constitutes 12 total outcomes of interest.
Evaluating each of the 12 outcomes independently would not be good practice, as the chance
of a spurious finding would not be well controlled. The authors of the MDRC report pre-
identified three of these outcomes as primary outcomes before the start of the study in order
to reduce the problem of multiple testing. We, by contrast, use this example to illustrate what
could be done if there was uncertainty as to which outcomes should be primary. In particular,
we illustrate how to conduct a power analysis to plan a study where one uses multiple testing
adjustment, rather than predesignation, to account for the multiple outcome problem.

There are different guidelines for how to adjust for groupings of multiple outcomes in edu-
cation studies. For example, Schochet (2008) recommends organizing primary outcomes into
domains, conducting tests on composite domain outcomes, and applying multiplicity cor-
rections to composites across domains. The What Works Clearinghouse applies multiplicity
corrections to findings within the same domain rather than across different domains. We do
not provide recommendations for which guidelines to follow when investigating impacts on
multiple outcomes. Rather, we address the fact that researchers across many fields are in-
creasingly applying MTPs and therefore need to correctly estimate power, MDES and sample
size requirements accounting for this choice. In our example, we elect to do a power analysis
separately for each of the three outcome groups of the ABC outcomes to control familywise
error rather than overall error. This strategy means we adjust for the number of outcomes
within each group independently. For illustration purposes, we focus on one outcome group,
attendance, which we will assume contains five separate outcomes.
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3. Overview of multiple testing
Our motivating example illustrates that researchers are often interested in testing the effec-
tiveness of a single intervention on multiple outcomes.3 The resulting multiplicity of statistical
hypothesis tests can lead to spurious findings of effects. Multiple testing procedures counter-
act this problem by adjusting p values for effect estimates; generally, p values are adjusted
upward to require a higher burden of proof. When not using a MTP, the probability of find-
ing false positives increases, sometimes dramatically, with the number of tests. When using
a MTP, this probability is controlled. The error inflation in multiple testing means that we
cannot draw reliable conclusions about the existence of effects above a specified size unless a
MTP is properly applied. For more background on multiple testing, see the section “Overview
of Multiple Testing” in Porter (2018).
The MTPs that are the focus of this paper have three key features that affect statistical
power: (1) whether the MTP is a familywise procedure or a false discovery rate procedure;
(2) whether the MTP is single-step or stepwise; and (3) whether the MTP takes the correlation
between test statistics into account. Below we briefly explain each of these features of MTPs
and provide discussion of the new parameter specifications induced by some of these features
when estimating power.
FWER and FDR. Some MTPs control the familywise error rate (FWER), while others control
the false discovery rate (FDR). The FWER is the type I error as a rate across the entire set
or “family” of multiple hypothesis tests. The MTPs introduced by Bonferroni (Dunn 1959,
1961), Holm (Holm 1979), and Westfall and Young (Westfall and Young 1993) control the
FWER. The FDR, introduced by Benjamini and Hochberg (Benjamini and Hochberg 1995), is
the expected proportion of all rejected hypotheses that are erroneously rejected. The choice
between a procedure that controls FWER or FDR will depend on the context. FWER is
more stringent and may be preferred when even a single false positive could lead to the wrong
conclusion. On the other hand, researchers may choose FDR control if they are willing to
accept a few false positives. FDR control is often chosen when the total number of hypotheses
is large. A side remark is that MTPs may provide either “weak control” or “strong control” of
the error rate they target. For more information on weak and strong control, see Appendix A.
Single-step and stepwise approaches. Every MTP can be categorized as either a “single-step”
or “stepwise” procedure. Single-step procedures adjust each p value independently of the
other p values. Stepwise procedures adjust p values in a sequential manner, adjusting based
on the number of null hypotheses that have already been rejected in previous steps. Gen-
erally, stepwise procedures are less conservative and preserve more power than single-step
approaches. The Bonferroni and Westfall-Young single-step procedures are single-step; the
Holm, Benjamini-Hochberg, and Westfall-Young step-down procedures are stepwise proce-
dures. Note that stepwise procedures may be “step-down” or “step-up,” referring to whether
a procedure begins with the smallest p value, and thus the largest effect size (step-down), or
the largest p value (step-up).
Due to the dependencies of adjustments in stepwise MTPs, a new assumption must be consid-
ered when estimating power under multiplicity: The proportion of outcomes on which there
are truly impacts, or, equivalently, the number of false null hypotheses. Assuming effects

3Testing the effectiveness of an intervention for multiple subgroups, at multiple points in time, or across
multiple treatment groups also results in a multiplicity of statistical hypotheses and can also lead to spurious
findings of effects, but this is beyond the scope of this paper.
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on all outcomes might seem reasonable, as hypotheses of effects often drive the selection of
outcomes in the first place. But, if this assumption is incorrect, the probability of detecting
effects can be substantially diminished. If we assume that some effects are truly null, we must
change our notion of power for d-minimal and complete power. See Appendix A for more
details.
Correlation between test statistics. MTPs vary on whether they directly take into account the
correlation between test statistics. The Bonferroni, Holm, and Benjamin-Hochberg procedures
do not take the correlation structure into account. When the test statistics are correlated,
Bonferroni and Holm still provide strong FWER control, but they adjust p values more than
is necessary in that case. In contrast, both the Westfall-Young MTPs directly incorporate
the correlation structure into the adjustment procedure, because the joint distribution of the
test statistics under the complete null hypothesis is generated using the observed data.
The correlation between test statistics is a parameter a researcher must specify in order to
estimate power, MDES or sample size requirements when using a MTP. One challenge for
an analyst is to translate an assumption about the correlation between outcomes, which is
a more intuitive quantity, to the correlation between test statistics, which is the quantity
which factors into power calculations. When fitting a separate regression model for the
impact on each outcome, the

(M
2

)
correlations between test statistics are equal to the pairwise

correlations between the residuals in the M impact models (Porter 2018). As a rule of thumb,
we use the assumed correlations between outcomes as a proxy for the correlations between
test statistics, although there may be some discrepancy between these sets of correlations.
We expect the discrepancy between the correlation between outcomes and test statistics to
be generally small, and for the discrepancy to not substantially affect power. However, as
a sensitivity check we recommend using the correlation checker tool built into the package
(discussed in Section 6.5.5) to check the correlation between test statistics for a given design,
model, and set of parameter values.

4. Estimating power, MDES and sample size

4.1. Power estimation approach

We take an innovative simulation-based approach to estimating power, as introduced in Porter
(2018). This approach also forms the foundation for estimating MDES and sample size. For a
single outcome, we can often use closed-form algebraic expressions, which are derived from the
assumed model. However, with multiple outcomes, finding such expressions can be difficult, or
even impossible. In cases where it is possible to find a closed-form expression, we would need
to find expressions for every design and model, MTP, and definition of power. Importantly, we
would also need to find new expressions for any possible number of outcomes, which quickly
becomes an intractable problem. Furthermore, in some cases, such as permutation-based
procedures like Westfall-Young approaches, a closed-form solution does not exist. To avoid
these complexities, we rely on simulation. The approach outlined below can estimate power
for any scenario.
If we were to rely on a full simulation approach, we could use the following method to estimate
power. We introduce this full simulation approach to provide intuition, but use a simplified
and less computationally intensive approach in the package, as discussed below.
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1. Simulate a data sample according to the joint alternative hypothesis. First, we for-
mulate what we will refer to as the joint alternative hypothesis, which is the set of
outcomes we assume to have treatment effects above the desired sizes. We define
ATEm (average treatment effect) to be the treatment impact for outcome m, with
M total outcomes. In the Diplomas Now model, ATEm is the grand mean treatment
effect across randomization blocks, and is defined in Equation 3. If we have M = 5
outcomes, as in the Diplomas Now study, one possible joint alternative hypothesis is
that all outcomes have effects above specified sizes: HA : ATE1 > 0.125,ATE2 >
0.2,ATE3 > 0.1,ATE4 > 0.1,ATE5 > 0.05. Another possible joint alternative hy-
pothesis is one where only the first two outcomes have effects above the desired sizes:
HA : ATE1 > 0.125,ATE2 > 0.2,ATE3 = ATE4 = ATE5 = 0. Once our joint alter-
native hypothesis is specified, we would generate simulated data under this hypothesis.
To simulate data, we also need to specify additional parameters to permit data gener-
ation (see Section 5.2 and the technical appendix for further details). For example, for
the Diplomas Now experiment, we would assume a specific data generating process to
allow us to simulate synthetic students, schools, and randomization blocks, including
covariates, outcomes, and treatment assignment. This process would involve specifying
parameter values such as R2 values, the amount of outcome variation explained by co-
variates at each level, and then translating these parameter choices into data-generating
parameters, such as the coefficient values for covariates in a linear model.

2. Estimate impacts on the simulated data. Given simulated data, we could fit M regres-
sion models (specified to match the experimental design and model assumptions). For
the models supported by PUMP, the relevant functions would be lm(), lmer() from the
lme4 package (Bates, Mächler, Bolker, and Walker 2015), and
interacted_linear_estimators() from the blkvar package.4 From the model out-
put we extract the test statistics tm for the estimated impacts, one statistic for each
outcome, along with estimated standard errors.

3. Calculate unadjusted p values. The test statistics and standard errors would in turn give
raw (unadjusted) p values. We can either calculate these by hand, or use the p values
routinely returned by regression functions. For Diplomas Now, for example, we could
run a multi-level regression model of each attendance measure on treatment status and
student and school covariates, and extract p values from the regression outputs.

4. Repeat above steps (1 through 3) for a large number of iterations. Denote the number
of iterations tnum. Repeating steps 1-3 tnum times results in a matrix of unadjusted
p values which we call F, and is of dimension tnum×M . One row corresponds to one set
of simulated raw p values from regressions for the five attendance outcomes of interest
for Diplomas Now.

5. Adjust p values. For each row, corresponding to one simulated data set, the M raw
p values corresponding to the M hypothesis tests can be adjusted according to the
desired multiple testing procedure. This process generates a new matrix G of adjusted
p values (again of dimension tnum×M). For Bonferroni, Holm, and Benjamini-Hochberg
adjustments, we use the function p.adjust in R (found in the stats package). We
developed our own functions for implementing adjustment using the Westfall-Young

4This package is currently under development on GitHub; see https://github.com/lmiratrix/blkvar

https://github.com/lmiratrix/blkvar


10 PUMP: Estimating Power for Multiple Outcomes

procedures. One row corresponds to one set of simulated adjusted p values for the five
attendance outcomes of interest for Diplomas Now.

6. Calculate hypothesis rejection indicators. For any MTP, the matrix of adjusted p values
G can then be compared with a specified value of α (the default is 0.05, but the value
can be changed by the user). For each row, corresponding to one iteration of simulated
data, we record whether or not the null hypothesis was rejected for each outcome. This
process results in a new matrix H, which contains hypothesis rejection indicators (still
of dimension tnum ×M). Using H, we can compute all definitions of power.

7. Calculate power. To compute the different definitions of power:

• Individual power for outcome m is the proportion of the tnum rows in which the
null hypothesis m was rejected (the mean of column m of H). We would have
five different individual power values for Diplomas Now, corresponding to each
outcome of interest.

• d-minimal power is the proportion of the tnum rows in which at least d of the M
hypotheses were rejected.5 For Diplomas Now, we could consider 1-minimal power
through 4-minimal power.

• Complete power is the proportion of the tnum rows in which all of the null hy-
potheses were rejected based on the raw p values rather than adjusted p values
(based on the matrix G rather than H.) See Appendix A for an explanation of
why we calculate complete power using the raw p values. We would be interested
in complete power if we want to evaluate whether Diplomas Now resulted in im-
provement for every single attendance outcome of interest. With five outcomes,
this criteria is a relatively strict indicator of success.

This full simulation approach for estimating power would be computationally intensive be-
cause of the need to generate and analyze a full simulated data set at each iteration. We
can simplify this process by skipping the simulation of data and modeling steps. Given an
assumed model and a specified correlation structure for the test statistics, we can directly
sample from f(t1, . . . , tM ), the joint alternative distribution of the test statistics. This short-
cut vastly improves both the simplicity and the speed of computation. In summary, our
approach is:

1. Generate draws of test statistics t1, . . . , tM under the joint alternative hypothesis. This
step produces a tnum ×M matrix E.

2. Calculate unadjusted p values. This produces the matrix F, as in the procedure above.

3. Adjust p values. This produces the matrix G, as in the procedure above.

4. Calculate hypothesis rejection indicators. This produces the matrix H, as in the proce-
dure above.

5. Calculate power.
5Note that others refer to 1-minimal power simply as “minimal power” (Maurer and Mellein 1988; Chen

et al. 2011; Westfall et al. 2011), “disjunctive power” (Bretz, Hothorn, and Westfall 2010), or “any pair” power
(Ramsey 1978). Chen et al. (2011) use the terminology of “r-power” for what is referred to here as d-minimal
power for d > 1.
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We now describe how to sample from f(t1, . . . , tM ) directly. First, we assume a particular
research design and model. In our example based on the Diplomas Now study, the research
design is a three-level experiment, with randomization at level two. We plan for analyzing
our data with a linear regression model with fixed intercepts at the randomization block level,
random intercepts at the school level, and a constant treatment impact across schools and
randomization blocks. Denote ATEm as the treatment impact for outcome m.
We express treatment impacts in terms of effect sizes:

ESm = ATEm√
VARm

,

where ATEm is the average treatment effect for outcome m, and VARm is the variance of
the control outcome (the variance of the outcome across all units who receive no treatment).
Remember that the definition of the ATE changes depending on the model: for three-level
models it corresponds to the average district treatment effect, for two-level models the av-
erage school treatment effect, and for one-level models the average student treatment effect.
Equation 4 shows the effect size formula for the Diplomas Now model. In order to calculate
power, we also need the standard error of the impact in effect size units, which we denote as

Qm = SE(ÊSm).

The standard error Qm is a consequence of the assumed model and a variety of parameters;
our technical appendix shows formulae for Qm for all the designs and models our package
supports. In our Diplomas Now example, Qm will be a function of the number of students,
schools, and randomization blocks; the proportion of treated units; the number of student and
school covariates; the explanatory power of the student and school covariates; the proportion
of variation in the outcome explained by schools and randomization blocks; and the amount of
impact variation relative to the amount of mean variation. These parameters will be discussed
in more detail in Section 5.2. Some parameters, such as the proportion of units treated, will
generally be known, while others, such as the R2 at different levels, would need to be supplied
by the user through either estimation on pilot data or assumptions based on prior knowledge.
Given the effect sizes ESm and the standard errors Qm, we can determine the distribution of
the vector of test statistics. When testing the hypothesis for outcome m, the test statistic for
a t test is:

tm = ÊSm

Q̂m

.

Under the alternative hypothesis for outcome m, tm has a t distribution with degrees of
freedom df , also determined by the model, and mean ESm/Qm. Finally, in addition to the
parameters above, we also need to choose the correlation matrix between test statistics to
sample from the joint distribution of f(t1, . . . , tM ). With these distributions specified, we can
calculate p values.
This approach of simulating test statistics builds on work by Bang, Jung, and George (2005),
who use simulated test statistics to identify critical values based on the distribution of the
maximum test statistics. Their approach produces the same estimates as the approach de-
scribed here for the single-step Westfall-Young MTP. As an alternative to a simulation-based
approach, Chen et al. (2011) derived explicit formulae for d-minimal powers of stepwise pro-
cedures and for complete power of single-step procedures, but only for 1, 2, or 3 tests. The
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approach presented here is more generally applicable, as it can be used for all MTPs, for any
number of tests, and for all definitions of power discussed in the present paper.
Remark. The p value adjustment using Westfall-Young procedures is the most complex cor-
rection procedure, so we briefly outline it here. Similar to above, we first explain a full
simulation approach, and then discuss our simplification. Under a full simulation approach,
we would first generate a single data set under the joint alternative hypothesis and calculate a
set of M observed test statistics. Then, we would permute the single simulated data set, say
B = 3, 000 times, implicitly assuming the joint null hypothesis, and calculate test statistics
on each of these permuted data sets. This process generates an empirical distribution of B
test statistics under the joint null distribution. Next, we compare the distribution of observed
test statistics to the generated distribution of test statistics under the joint null distribution
to calculate p values. We would then re-generate a new simulated data set, and repeat the
process. If we were to generate tnum = 10, 000 data sets under the joint alternative hypoth-
esis, for each of these data sets we generate B = 3, 000 permuted data sets under the joint
null, so we would have to analyze 10, 000 × 3, 000 data sets!
When we skip the step of simulating data, then for each iteration in 1, . . . , tnum we first
generate a set of M observed test statistics from the joint alternative distribution. Then, we
draw B samples of test statistics under the joint null rather than permuting the data B times.
Under the null hypothesis, tm has a t distribution with degrees of freedom df and mean zero.
As before, we then compare the distribution of observed test statistics to the distribution of
test statistics under the joint null distribution to calculate p values.
In summary, Westfall-Young procedures are computationally intensive, so the approach of
skipping the simulated data step is particularly helpful here. Generating test statistics directly
instead of generating and permuting data substantially reduces computational time.

4.2. Determining MDES and sample size
Frequently, a researcher’s main concern with power is calculating either the MDES for each
outcome in a given study, or determining the necessary sample size to achieve a target power
given a specified set of MDES values. In Diplomas Now, for example, we might want to know
what sample sizes we would need to detect at least one significant effect across our outcomes
if all the outcomes had a specified effect size (corresponding to 1-minimal power) and we were
planning on using the Holm procedure.
For pump_mdes() and pump_sample(), the user provides a particular target power, say 80%.
The method then solves a stochastic optimization problem to determine a value (of sample
size or MDES) that is within a specified tolerance of the target power with high probability.
We discuss the algorithm for MDES, although the approach for determining sample size is
the same.
The algorithm first determines an initial range of MDES values that likely contain the target
MDES. This initial range is calculated using formulae for unadjusted power based on the
standard errors and degrees of freedom. In particular, from Dong and Maynard (2013), in
general the MDES for a single outcome can be estimated as

MDES = MTdf × SE/σm,

where MTdf , the “multiplier,” is the sum of two t statistics with degrees of freedom df . For
one-tailed tests, MTdf = t⋆α + t⋆1−β where α is the type I error rate and β is the desired power.
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For two-tailed tests, MTdf = t⋆α/2 + t⋆1−β. We do not explain the details of the derivations
of the multiplier here; for more details and understanding, see Dong and Maynard (2013) or
Bloom (2006). These expressions can be further manipulated to obtain sample size formulae;
see our technical appendix for all formulae used in the package.
We can calculate our initial range by manipulating the α and β values in the above. First,
to calculate the preliminary lower bound, we apply the formula above as given, because
individual unadjusted power is generally the least conservative adjustment and thus will give
the smallest possible MDES. To calculate the preliminary upper bound, we apply the formula
using α/M to correspond to a Bonferroni correction, which is generally the most conservative
adjustment and thus will give the largest possible MDES.
We also adjust β to account for different power types. For example, if we are interested
in complete power, we need a larger upper bound than for individual power: In order to
have a complete power of 80%, we would need each outcome to have an individual power
of 0.8(1/M), assuming independence. If we are interested in minimal power, we must have a
smaller lower bound: In order to have 1-minimal power of 80%, each outcome would only
need to have individual power of 1 − (1 − 0.8)(1/M). We ignore correlation in the setting of
the initial bounds because the bounds do not need to be strict, given the adaptive nature of
the subsequent search.
Once the initial range is established, we use pump_power() with the complete array of design
parameters to obtain rough (using a small tnum, or number of simulation trials) estimates
of power for five initial values across this range. We then fit a scaled logistic curve to these
five points, and identify where the curve crosses the desired power level. After fitting an
initial curve, we iterate, repeatedly calculating power for the targeted point and using the
result to update the logistic curve model. At any point, if the current fitted curve’s range
does not contain the target power, the algorithm extrapolates for the next step. With each
iteration we increase tnum to increase precision as we narrow in on the final answer, and
with each update to our estimated power curve, we weigh the collection of observations by
their precisions (determined by corresponding tnum value). Once a test point achieves an
estimated target power to within tolerance, we conduct an additional simulation check using
a high number of replicates to verify the proposed answer is within a specified tolerance of
the target power; if it is not, we continue the iterative search. The default tolerance is 1%, so
given a target power of 80%, we stop when we find a MDES that gives an estimated power
between 79% and 81%.
In practice, due to the monotonic nature of the logistic functional form, our algorithm gener-
ally converges fairly rapidly. However, in certain edge cases the algorithm may fail to converge
on a value within tolerance. For more information on applying the search algorithm, see the
sample size vignette in the package documentation.

4.3. Package validation

We completed extensive validation checks to ensure our power calculation procedures are cor-
rect. First, we compared our power estimates in scenarios with only one outcome, M = 1, to
those from the PowerUpR package. Without a multiple testing procedure adjustment, our
estimates match. Second, in order to validate our estimates under multiplicity, we followed
the full simulation approach outlined above, in Section 4.1. The simulation approach involves
generating many iterations of full data sets according to the assumed design and model, calcu-
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lating p values, and calculating an empirical estimate of power. Using a binomial distribution
we constructed Monte Carlo confidence intervals for the true power from the full simulation
approach. Then, we validated that the PUMP estimates fall within these confidence intervals.
A more detailed explanation of the validation procedure can be found in Appendix B, and
full validation code and results are in a supplementary GitHub repository https://github.
com/MDRCNY/pump_validate. For some scenarios, we have some apparent discrepancies from
PowerUpR, but these result from different modeling choices. For example, for certain models
PowerUp! assumes the intraclass correlation is zero, while we allow for nonzero values. In
the technical appendix, we note any different choices between our approach and PowerUp! ’s
approach for each model.

5. User choices
In this section, we outline the choices a user must make when calculating power, MDES, or
sample size.

5.1. Designs and models

When planning a study, the researcher first has to identify the design of the experiment,
including the number of levels, and the level at which randomization occurs. These decisions
can be a mix of the realities of the context (e.g., the treatment must be applied at the school
level, and students are naturally nested in schools, making for a cluster randomization), or
deliberate (e.g., the researcher groups similar schools to block their experiment in an attempt
to improve power). Second, based on the design and the inferential goals of the study, the
researchers choose an assumed model, including whether intercepts and treatment impacts
should be treated as constant, fixed, or random. For the same experimental design, the analyst
can sometimes choose from a variety of possible models, and these two decisions should be
kept conceptually separated from each other.
The design. The PUMP package supports designs with one, two, or three levels, with ran-
domization occurring at any level. For example, a design with two levels and randomization
at level one is a blocked design (or equivalently a multisite experiment), where level two forms
the blocks (blocks being groups of units, some of which are treated and some not). Ideally,
the blocks in a trial will be groups of relatively homogeneous units, but frequently they are
a consequence of the units being studied (e.g., evaluations of college supports, with students,
the units, nested in colleges, the blocks). A design with two levels and randomization at level
two is commonly called a cluster design (e.g., a collection of schools, with treatment applied to
a subset of the schools, with outcomes at the student level); here the schools are the clusters,
with a cluster being a collection of units which is entirely treated or entirely not. We can
also have both blocking and clustering: Randomizing schools within districts, creating a se-
ries of cluster-randomized experiments, would be a blocked (by district), cluster-randomized
experiment, with randomization at level two.
The model. Given a design, the researcher can select a model via a few modeling choices. In
particular the researcher has to decide, for each level beyond the first, about the intercepts
and the estimated treatment impacts:

• Whether level two and level three intercepts are:

https://github.com/MDRCNY/pump_validate
https://github.com/MDRCNY/pump_validate
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– Fixed (f): We have a separate intercept for each unit.
– Random (r): We have a separate intercept for each unit as above, but model the

collection of intercepts as Normally distributed, allowing for partial pooling.

• Whether level two and level three treatment impacts are:

– Constant (c): We model all units within a group as having the same average
impact.

– Fixed (f): We allow each block or cluster within a level to have its own individual
estimated impact (we can only do this if we have treated and control units within
said block or cluster).

– Random (r): We allow variation as with fixed, but model the collection of treat-
ment impacts as Normally distributed around a grand mean impact. Modeling
treatment impact as a random effect implicitly targets a superpopulation context
where the sites are themselves a sample from a larger population. Modeling im-
pacts as fixed or constant, on the other hand, targets a finite population context.
Thus, depending on the inferential goal of the analyst (whether they want their
estimate to only apply to the units at hand, or whether they want to generalize
to a larger population), they might prefer one model over another. See Miratrix
et al. (2021) for further discussion.

We denote the research design by d, followed by the number of levels and randomization
level, so d3.1 is a three-level design with randomization at level one. The model is denoted
by m, followed by the level and the assumption for the intercepts (f or r), and then the
assumption for the treatment impacts (c, f, or r). For example, m3ff2rc means at level
three, we assume fixed intercepts and fixed treatment impacts, and at level two we assume
random intercepts and constant treatment impacts. The full design and model are specified by
concatenating these together, e.g., d3.1_m3ff2rc. The Diplomas Now model, for example,
is d3.2_m3fc2rc, as we explain below.
The full list of supported design and model combinations is shown in Table 1. The user can
see this information in the package by calling pump_info(), which provides the designs and
models, MTPs, power definitions, and model parameters. Calling pump_info() with comment
= TRUE provides additional detail; this additional output is shown in Table 2. We also include
the corresponding names from PowerUp! where appropriate. For more details about each
combination of design and model, see the technical appendix.

Diplomas Now

We walk through the design and model for the Diplomas Now example.
The design. As noted above, the RCT contains three levels with random assignment at level
two. In our notation, this is a d3.2 design. The MDRC researchers conducted randomization
of the schools within blocks defined by district, school type, and year of roll-out. After some
schools were dropped from the study due to structural reasons, the researchers were left with
29 high schools and 29 middle schools grouped in 21 random assignment blocks. Within each
block, schools were randomized to the active treatment or business-as-usual, resulting in 32
schools in the treatment group, and 30 schools in the control group.
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Code Design Model PowerUp! Parameters

d1.1_m1c d1.1 m1c - R2.1
d2.1_m2fc d2.1 m2fc bira2_1c R2.1, ICC.2
d2.1_m2ff d2.1 m2ff bira2_1f R2.1, ICC.2
d2.1_m2fr d2.1 m2fr bira2_1r R2.1, ICC.2, omega.2
d2.1_m2rr d2.1 m2rr - R2.1, ICC.2, omega.2
d2.2_m2rc d2.2 m2rc cra2_2r R2.1, R2.2, ICC.2
d3.1_m3rr2rr d3.1 m3rr2rr bira3_1r R2.1, ICC.2, omega.2, ICC.3, omega.3
d3.2_m3ff2rc d3.2 m3ff2rc bcra3_2f R2.1, R2.2, ICC.2, ICC.3
d3.2_m3fc2rc d3.2 m3fc2rc - R2.1, R2.2, ICC.2, ICC.3
d3.2_m3rr2rc d3.2 m3rr2rc bcra3_2r R2.1, R2.2, ICC.2, ICC.3, omega.3
d3.3_m3rc2rc d3.3 m3rc2rc cra3_3r R2.1, R2.2, ICC.2, R2.3, ICC.3

Table 1: Supported designs and models: Summary.

Code Description

d1.1_m1c 1 level, level 1 rand / constant impacts model
d2.1_m2fc 2 levels, level 1 rand / fixed intercepts, constant impacts
d2.1_m2ff 2 levels, level 1 rand / fixed intercepts, fixed impacts
d2.1_m2fr 2 levels, level 1 rand / fixed intercepts, random impacts (FIRC)
d2.1_m2rr 2 levels, level 1 rand / random intercepts & impacts (RIRC)
d2.2_m2rc 2 levels, level 2 rand / random intercepts, constant impacts
d3.1_m3rr2rr 3 levels, level 1 rand / level 3 random intercepts, random impacts, level

2 random intercepts, random impacts
d3.2_m3ff2rc 3 levels, level 2 rand / level 3 fixed intercepts, fixed impacts, level 2

random intercepts, constant impacts
d3.2_m3fc2rc 3 levels, level 2 rand / level 3 fixed intercepts, constant impact, level 2

random intercepts, constant impact
d3.2_m3rr2rc 3 levels, level 2 rand / level 3 random intercepts, random impacts, level

2 random intercepts, constant impacts
d3.3_m3rc2rc 3 levels, level 3 rand / level 3 random intercepts, constant impacts, level

2 random intercepts, constant impacts

Table 2: Supported designs and models: Model details.

The model. Given the design, we next need to specify how we will analyze our data; this
choice also determines which design parameters we will need to specify. Following the original
Diplomas Now report, we plan on using a multi-level model with fixed effects at level three, a
random intercept at level two, and a single treatment coefficient. We represent this model as
m3fc2rc. The 3fc means we are including block fixed effects, and not modeling any treatment
impact variation at level three. The 2rc means random intercept and no modeled variation
of treatment within each block (the c is for constant). The Diplomas Now report authors
call their model a “two-level” model, but this is not quite aligned with the language of this
package. In particular, fixed effects included at level two are actually accounting for variation
at level three; we therefore identify their model as a three-level model with fixed effects at
level three.
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Combined design and model. Our final combination of design and model is d3.2_m3fc2rc.
For full detailed information about this design and model, see Section 2.5.1 of the technical
appendix.
Equations. The observed outcome for student i in school j in randomization block k for
outcome m is Yijkm. Our assumed model is:

Yijkm = θ0,jkm + γmCijkm + rijkm

θ0,jkm = ψ0,km + Ξ1,mTjk + δmXjkm + u0,jkm

ψ0,km = Ξ0,m + w0,km,

with distributions:

u0,jkm ∼ N
(
0, τ2

0,m

)
.

To explain the model, we consider one line at a time. The first line describes how the observed
outcomes are a function of school membership and individual-level factors. The second line
describes how school-level average outcomes are a function of district membership and school-
level factors (including treatment). The third line describes how districts vary.

• An individual’s outcome Yijkm is a linear combination of a level one mean θ0,jkm under
control treatment, a level one covariate Cijkm and its coefficient γm, and a residual
rijkm. We assume rijkm ∼ N(0, σ2

m), although we do not model the individual residuals
as random effects.

• The level one grand mean θ0,jkm can be decomposed into a level two grand mean ψ0,km

under control treatment, the level two treatment indicator Tjk and treatment impact
Ξ1,m, a level two covariate Xjkm and its coefficient δm, and a random school-level
intercept u0,jkm ∼ N(0, τ2

0,m).

• The level two grand mean ψ0,km can be decomposed into a level three grand mean Ξ0,m

plus a fixed third-level intercept w0,km; we have no level three covariate for this model
due to the third-level fixed effects. We assume the fixed effects w0,km have variance
η2

0,m.

Covariates can be at level one, two, or three. Level two covariates, for example, would not
vary for individuals within a given level two group, but could be different for different level
two groups. We assume only one covariate is observed per level without loss of generality;
the case of multiple covariates can be reduced to the single covariate corresponding to the
linear projection of the outcome on the full set of covariates. The only difference would be the
degrees of freedom loss in estimation. We also assume all covariates are group mean centered
within their next higher level groups, so only covariates at a particular level can explain
variance at that level (see Raudenbush and Bryk 2002, pp. 31–35, for further discussion).
Centering can be done without loss of generality: If the mean of a level one covariate varies
across level two units, for example, it can be split into the group-mean centered version at level
one and an additional level two covariate of the group means. We finally assume covariates
are standardized to unit variance; as we measure covariate influence by different R2 measures,
this can be done without loss of generality as well.
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Each unit has two potential outcomes: Yijkm(Tijk = 1) is the potential outcome given the
active treatment, and Yijkm(Tijk = 0) is the potential outcome given the control treatment.
We can then define average treatment effects for outcome m at different levels:

Level 1: θ1,jkm = 1
n̄

n̄∑
i=1

[Yijkm(1) − Yijkm(0)] for a given school j in district k. (1)

Level 2: ψ1,km = 1
J

J∑
j=1

θ1,jkm for district k. (2)

Level 3: Ξ1,m = 1
K

K∑
k=1

ψ1,km. (3)

We call the means at levels two and three “grand means” because they are means of means.
We are interested in estimating Ξ1,m, the grand mean treatment effect across randomization
blocks. Here, we assume a constant treatment impact across schools and randomization
blocks, so θ1,jkm = ψ1,km = Ξ1,m.
For calculating power, we are interested in the effect size, which is the difference in means
divided by the total control variation:

ESm = ATEm√
VAR(Yijkm(0))

= Ξ1,m√
(ξ2

m + γ2
m) + (δ2

m + η2
0,m) + (τ2

0,m + σ2
m)
. (4)

The reduced form model is:

Yijkm = Ξ0,m + Ξ1,mTjk + δmXjkm + γmCijkm

+ w0,km + u0,jkm + rijkm.

This reduced form leads us to the formula we would use if we were fitting this model in R
using the lme4 package.

R> lmer(Yobs ~ 0 + T.jk + X.jk + C.ijk + D.id + (1 | S.id), data = data)

In this formula, S.id is a categorical variable denoting the school membership of each unit,
and D.id is the categorical variable denoting district membership. Each level of D.id will be
converted to a fixed effect. Each level of S.id will be modeled as a random effect.

5.2. Model parameters

Table 3 shows the parameters that can affect Qm, the standard error, for different designs
and models. The first column shows the mathematical notation as introduced in this text and
the technical appendix, the second column shows the name of the parameter in the PUMP
package, and the third column contains a description of the parameter. Note that some of
the parameters are scalars (J), while others are allowed to be vectors (R2

2 can be a M -vector
of the R2 values for level two for each outcome m).
A few parameters warrant more explanation.
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Notation Parameter Description

n̄ nbar Scalar; harmonic mean of number of level 1 units
per level 2 unit (students per school)

J J Scalar; harmonic mean of number of level 2 units
per level 3 unit (schools per district)

K K Scalar; number of level 3 units (districts)
T̄ Tbar Scalar; proportion of units assigned to treatment
g1 numCovar.1 Scalar; number of level 1 (individual) covariates
g2 numCovar.2 Scalar; number of level 2 (school) covariates
g3 numCovar.3 Scalar; number of level 3 (district) covariates
R2

1 R2.1 Scalar/vector; percent of variation explained by
level 1 covariates

R2
2 R2.2 Scalar/vector; percent of variation explained by

level 2 covariates
R2

3 R2.3 Scalar/vector; percent of variation explained by
level 3 covariates

ICC2 ICC.2 Scalar/vector; level 2 intraclass correlation
ICC3 ICC.3 Scalar/vector; level 3 intraclass correlation
ω2 omega.2 Scalar/vector; ratio of variance of level 2 average

impacts to level 2 random intercepts
ω3 omega.3 Scalar/vector; ratio of variance of level 3 average

impacts to level 3 random intercepts
ρ rho Scalar; correlation between all pairs of test

statistics

Table 3: PUMP model parameters.

• ICC is the unconditional intraclass correlation, and gives a measure of variation at a
particular level of the model. The ICC for each level is defined as the ratio of the
variance at that level divided by the overall variance of the individual outcomes. The
ICC includes the variation due to covariates. It does not include variation due to
treatment impact. ICC is defined on levels two and three. In the Diplomas Now model,
these quantities are:

ICC3,m = VAR(ψ0,km)
VAR(Yijkm(0)) =

η2
0,m(

η2
0,m

)
+

(
δ2

m + τ2
0,m

)
+ (γ2

m + σ2
m)

(5)

ICC2,m = VAR(θ0,jkm | ψ0,km)
VAR(Yijkm(0)) =

δ2
m + τ2

0,m(
η2

0,m

)
+

(
δ2

m + τ2
0,m

)
+ (γ2

m + σ2
m)
, (6)

where the η2
0,m term is the variance of the district-level fixed effects, or, in other words,

the variance of the mean control-side outcome of the districts. Based on these defini-
tions, ICC2,m + ICC3,m ≤ 1.

• ω is the ratio between impact variation at a level and the variation in intercepts (in-
cluding covariates) at that level. It is a measure of treatment impact heterogeneity. ω
is defined on levels two and three. In the Diplomas Now model, we assume ω3,m = 0
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and ω2,m = 0, i.e., there is no treatment impact variation. In general, these quantities
are defined as:

ω3,m = VAR(ψ1,km)
VAR(ψ0,km)

ω2,m = VAR(θ1,jkm | ψ1,km)
VAR(θ0,jkm | ψ0,km) .

• R2, defined for each level, is the percent of variation at a level that can be predicted by
covariates. Pilot data can be used to achieve reasonable estimates of R2s in practice.
For two-level data, an analyst can first split any lower level covariate into a lower level
group-mean centered covariate and higher level group mean covariate before estimating
the relevant level-specific R2s; this will capture the total explanatory power of covariates
for explaining variation at level one and level two. For three-level data, the level two
group means (and any other level two covariate) can again be split by de-meaning
within level three groups. In the Diplomas Now model, given our assumption of single,
group-mean centered covariates at each level, the R2 quantities are as follows:

R2
2,m = 1 − VAR(u0,jkm)

VAR(θ0,jkm | Did) = 1 −
τ2

0,m

δ2
m + τ2

0,m

(7)

R2
1,m = 1 − VAR(rijkm)

VAR(Yijkm(0) | Sid, Did) = 1 − σ2
m

γ2
m + σ2

m

. (8)

The denominator in R2
2,m is the within-randomization block variation of the school mean

outcomes under control treatment, so that we are only quantifying variation at level two.
The denominator of R2

1,m is the variation of student outcomes within a school, so that
we are only quantifying variation at level one.

All of these expressions are defined for each outcome, so each outcome can have a different
value. These expressions above have been adapted to the Diplomas Now setting, but for more
general formulae for these expressions (that apply to all designs and models) see the technical
appendix, which outlines the assumed data-generating process and the resulting expressions
for ICC, ω, and R2.
In addition to design parameters, there are additional parameters that control the precision
and speed of the power estimates themselves:

• tnum is the number of test statistics generated in order to estimate power. A larger
number of test statistics results in greater computation time, but also a more precise
estimate of power. The pump_mdes() and pump_sample() have additional tnum param-
eters to further control the precision of the search, if desired.

• B is the number of Westfall-Young permutations. Again, there is a trade-off between
precision and computation time.

• parallel.WY.cores specifies the number of cores to use for parallel computation of
the Westfall-Young step-down procedure, which is the most computationally intensive
MTP. The default of 1 does not result in parallel computation. Parallelization is done
using parApply from the parallel package.
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Single-step Accounts for
Procedure Control or stepwise correlation

Bonferroni (BF) FWER Single-step No
Holm (HO) FWER Stepwise No
Westfall-Young single-step (WY-SS) FWER Single-step Yes
Westfall-Young step-down (WY-SD) FWER Stepwise Yes
Benjamini-Hochberg (BH) FDR Stepwise No

Table 4: Summary of MTP procedures.

5.3. Multiple testing procedures

Here we provide a review of the multiple testing procedures supported by the PUMP package:

• Bonferroni (BF): Adjusts p values by multiplying them by M to ensure strong control
of the FWER. Bonferroni is a simple procedure, but the most conservative.

• Holm (HO): A step-down version of Bonferroni. Starting from smallest to largest,
p values are sequentially adjusted by different multipliers. Holm is less conservative
than Bonferroni for larger p values.

• Benjamini-Hochberg (BH): A sequential, step-up procedure that controls the FDR. Us-
ing the BH method, only null hypotheses with p values below a certain threshold are
rejected, where the threshold is determined by the number of tests and the level α.

• Single-step Westfall-Young (WY-SS): A permutation-based procedure for controlling
the FWER, which directly takes into account the joint correlation structure of the
outcomes. In the single-step approach, all outcomes are adjusted by using the permuted
distribution of the minimum p value. Although Westfall-Young procedures are less
conservative while still protecting against false discoveries, they are computationally
very intensive.

• Step-down Westfall-Young (WY-SD): A similar approach to the single-step procedure,
except that outcomes are adjusted sequentially from smallest to largest according to the
permuted distributions of the corresponding sequential p values.

Table 4 from Porter (2018) summarizes the important features for each of the MTPs supported
by PUMP. For a more detailed explanation of each MTP, see Appendix A of Porter (2018).

6. Using the PUMP package
In this section, we illustrate how to use the PUMP package, using our example motivated by
the Diplomas Now study. Given the study’s design, we ask a natural initial question: What
size of impact could we reasonably detect after using a MTP to adjust p values to account
for our multiple outcomes?
We mimic the planning process one might use for planning a study similar to Diplomas Now
(e.g., if we were planning a replication trial in a slightly different context). To answer this



22 PUMP: Estimating Power for Multiple Outcomes

question we therefore first have to decide on our experimental design and modeling approach.
We also have to determine values for the associated design parameters that accompany these
choices. In the following sections, we walk through selecting these parameters (sample size,
control variables, intraclass correlation coefficients, impact variation, and correlation of out-
comes). We calculate MDES for the resulting context and determine how necessary sample
sizes change depending on what kind of power we desire. We finally illustrate some sensitivity
checks, looking at how MDES changes as a function of ICC, ρ, and the number of assumed
null outcomes.

6.1. Establishing needed design parameters

To conduct power, MDES, and sample size calculations, we first specify the design, sample
sizes, analytic model, and level of statistical significance. We also must specify parameters
of the data generating distribution that match the selected design and model. All of these
numbers have to be determined given resource limitations, or estimated using prior knowl-
edge, pilot studies, or other sources of information. For further discussion of selecting these
parameters see, for example Bloom (2006) and Dong and Maynard (2013). For discussion in
the multiple testing context, especially with regards to the overall power measures such as
1-minimal or complete power, see Porter (2018); the findings there are general, as they are
a function of the final distribution of test statistics. The key insight is that power is a func-
tion of only three summarizing elements: The individual-level standard errors, the degrees of
freedom, and the correlation structure of the test statistics. Once we calculate these three
elements using the overall design and various design parameters, we can directly simulate the
t statistics and calculate power.
Sample sizes. We assume equal size randomization blocks and schools, as is typical of most
power analysis packages. For our context, this gives about three schools per randomization
block; we can later do a sensitivity check where we increase and decrease this number to see
how power changes. The Diplomas Now report states there were 14, 950 students, yielding
around 258 students per school. Normally we would use the geometric means of schools per
randomization block and students per school as our design parameters, but that information
is not available in the report. We assume 50% of the schools are treated; our calculations will
be approximate here in that we could not actually treat exactly 50% in small and odd-sized
blocks.
Control variables. We next need values for the R2 of the possible covariates. Remember our
definition of R2 in Equations 7–8: The percent of variation at a level predicted by covariates
specific to that level. The report does not provide these quantities, but it does mention
covariate adjustment in the presentation of the model. Given the types of outcomes we
are working with, it is unlikely that there are highly predictive individual-level covariates,
but our prior year school-average attendance measures are likely to be highly predictive of
corresponding school-average outcomes. We thus set R2

1 = 0.1 and R2
2 = 0.5. We assume five

covariates at level one and three at level two; this decision, especially for level one, usually
does not matter much in practice, unless sample sizes are very small (the number of covariates
along with sample size determine the degrees of freedom for our planned tests).
To provide some additional intuition, R2

1 = 0.1 means that:

0.1 = 1 − VAR(rijkm)
VAR(Yijkm(0) | Sid, Did) ,
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so
σ2

m

γ2
m + σ2

m

= 0.9.

This means the variation in residuals σ2
m describes 90% of the level one variation (excluding

variation due to treatment impact).
ICCs. We also need a measure of where variation occurs: The individual, the school, or the
randomization block level. As explained earlier, we capture this measure with ICCs, one for
level two and one for level three. ICC measures specify overall variation in outcome across
levels, e.g., do we see relatively homogeneous students within schools that are quite different,
or are the schools generally the same with substantial variation within them? We typically
would obtain ICCs from pilot data or external reports on similar data. We here specify a
level two ICC of 0.05, and a level three ICC of 0.4. We set a relatively high level three ICC as
we expect our school type by district randomization blocks to isolate variation; in particular
we might believe middle and high school attendance rates would be markedly different.
Returning to Equation 5, for level three ICC we have

0.4 = VAR(ψ0,km)
VAR(Yijkm(0)) .

This expression means that the variance of level two means (modeled using school-level fixed
intercepts) explains 40% of the total variation (excluding variation due to treatment impact).
Correlation of outcomes. We finally need to specify the number of and relationship among our
outcomes and associated test statistics. For illustration, we select attendance as our outcome
group. We assume we have five different attendance measures. The main decision regarding
outcomes is the correlation of our test statistics. As a rough proxy, we use the correlation
of the outcomes at the level of randomization; in our case this would be the correlation of
school-average attendance within each block. We believe the attendance measures would be
fairly related, so we select ρ = 0.4 for all pairs of outcomes. This value is an estimate, and
we strongly encourage exploration of different values of this correlation choice as a sensitivity
check for any conducted analysis. As a final step, we use the PUMP correlation checker
to determine if an outcome correlation of 0.4 results in a test statistic correlation of 0.4,
and check if any difference impacts our conclusions about power. Selecting a candidate ρ is
difficult, and will be new for those only familiar with power analyses of single outcomes; we
need to more research in the field, both empirical and theoretical, to further guide this choice.
If the information were available, we could specify different values for the design parameters
such as the R2s and ICCs for each outcome, if we thought they had different characteristics;
for simplicity we do not do this here. The PUMP package also allows specifying different
pairwise correlations between the test statistics of the different outcomes via a matrix of ρs
rather than a single ρ; also for simplicity, we do not do that here.
Once we have established initial values for all needed parameters, we first conduct a baseline
calculation, and then explore how MDES or other quantities change as these parameters
change.

6.2. Calculating MDES
We now have an initial planned design, with a set number of schools and students. But is
this a large enough experiment to reliably detect reasonably sized impacts? To answer this
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MTP Adjusted.MDES D1indiv.power

HO 0.106 0.797

Table 5: MDES estimate.

question we calculate the minimum detectable effect size (MDES), given our planned analytic
strategy, for our outcomes.
To identify the MDES of a given setting we use the pump_mdes method, which conducts a
search for a MDES that achieves a target level of power. The MDES depends on all the design
and model parameters discussed above, but also depends on the type of power and target
level of power we are interested in. For example, we could determine what size effect we can
reliably detect on our first outcome, after multiplicity adjustment. Or, we could determine
what size effects we would need across our five outcomes to reliably detect an impact on at
least one of them. We set our goal by specifying the type (power.definition) and desired
power (target.power).
Here, for example, we find the MDES if we want an 80% chance of detecting an impact on
our first outcome when using the Holm procedure:

R> library("PUMP")
R> m <- pump_mdes(d_m = "d3.2_m3fc2rc", MTP = "HO",
+ target.power = 0.80, power.definition = "D1indiv", M = 5, J = 3,
+ K = 21, nbar = 258, Tbar = 0.50, alpha = 0.05, numCovar.1 = 5,
+ numCovar.2 = 3, R2.1 = 0.1, R2.2 = 0.7, ICC.2 = 0.05, ICC.3 = 0.4,
+ rho = 0.4)

The results are easily made into a nice table (Table 5) via the knitr::kable() command:

R> knitr::kable(m, digits = 3, booktabs = TRUE, position = "t!",
+ caption = "MDES estimate.") %>%
+ kableExtra::kable_styling( position = "center")

The answers pump_mdes() gives are approximate, as we are calculating them via simulation.
To control accuracy, we can specify a tolerance (tol) of how close the estimated power needs
to be to the desired target along with the number of iterations in the search sequence (via
start.tnum, tnum, and final.tnum). The search will stop when the estimated power is
within tol of target.power, as estimated by final.tnum iterations. Lower tol and higher
tnum values will give more exact results (and take more computational time).
Changing the type of power is straightforward: For example, to identify the MDES for
1-minimal power (i.e., what effect size do we have to assume across all observations such
that we will find at least one significant result with 80% power?), we simply update our result
with our new power definition:

R> m2 <- update(m, power.definition = "min1")

mdes result: d3.2_m3fc2rc d_m with 5 outcomes
target min1 power: 0.80
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MTP Adjusted.MDES min1.power SE
HO 0.08048574 0.78425 0.01

(5 steps in search)

The update() method can replace any number of arguments of the prior call with new ones,
making exploration of different scenarios very straightforward.6 Our results show that if we
just want to detect at least one outcome with 80% power, we can reliably detect an effect of
size 0.08 (assuming all five outcomes have effects of at least that size).
When estimating power for multiple outcomes, it is important to consider cases where some
of the outcomes in fact have null, or very small, effects, to hedge against circumstances such
as one of the outcomes not being well measured. One way to do this is to set two of our
outcomes to no effect with the numZero parameter:

R> m3 <- update(m2, numZero = 2)

mdes result: d3.2_m3fc2rc d_m with 5 outcomes
target min1 power: 0.80

MTP Adjusted.MDES min1.power SE
HO 0.08971374 0.79125 0.01

(13 steps in search)

The MDES goes up, as expected: When there are not effects on some outcomes, there are
fewer good chances for detecting an effect. Below we provide a deeper dive into the extent to
which numZero can affect power estimates.

6.3. Determining necessary sample size

The MDES calculator tells us what we can detect given a specific design. We might instead
want to ask how much larger our design would need to be in order to achieve a desired
MDES. In particular, we might want to determine the needed number of students per school,
the number of schools per randomization block, or the number of randomization blocks to
detect an effect of a given size. The pump_sample method will search over any one of these.
The typesample parameter specifies the level for which we are determining the sample size:

• nbar is the average number of students per school (level one units per level two group),

• J is the average number of schools per randomization block (level two units per level
three group), and

• K is the number of randomization blocks (level three units).

To calculate sample size for a three-level model, we must know the sample size of two of the
levels, and then we can determine the needed sample size of the third. For example, if we
know that there are 258 students on average per school, and we know that we want to have
10 randomization blocks, how many schools should we put in each randomization block?

6The update() method re-runs the underlying call of pump_mdes(), pump_sample(), or pump_power() with
the revised set of design parameters. You can even change which call to use via the type parameter.
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Power definition No adjustment Holm adjustment

Individual outcome 1 0.7 0.53
Individual outcome 2 0.7 0.52
Individual outcome 3 0.7 0.53
Individual outcome 4 0.7 0.53
Individual outcome 5 0.7 0.53

Mean individual 0.7 0.53

1-minimum 0.81
2-minimum 0.64
3-minimum 0.51
4-minimum 0.39

Complete 0.33

Table 6: Power table.

Below, we instead assume we have a fixed randomization block size of 3, and we calculate how
many blocks we would need to achieve a MDES of 0.10 for 1-minimal power (this answers the
question of how big of an experiment we need in order to have an 80% chance of finding at
least one outcome significant, if all outcomes had a true effect size of 0.10).

R> smp <- pump_sample(d_m = "d3.2_m3fc2rc", MTP = "HO",
+ typesample = "K", target.power = 0.80, power.definition = "min1",
+ tol = 0.01, MDES = 0.10, M = 5, nbar = 258, J = 3, Tbar = 0.50,
+ alpha = 0.05, numCovar.1 = 5, numCovar.2 = 3, R2.1 = 0.1,
+ R2.2 = 0.7, ICC.2 = 0.05, ICC.3 = 0.40, rho = 0.4)

sample result: d3.2_m3fc2rc d_m with 5 outcomes
target min1 power: 0.80

MTP Sample.type Sample.size min1.power SE
HO K 16 0.797 0.01

(18 steps in search)

We would need only 16 blocks, rather than the originally specified 21, giving 48 total schools
in our study, to achieve 80% 1-minimal power.
We recommend checking the MDES and sample size outputs, as the estimation error combined
with the stochastic search can give results a bit off the target power in some cases. A check
is easy to do; simply run the found design through pump_power(), which directly calculates
power for a given scenario, to see if we recover our original target power (we can use update()
and set the type to power to pass all the design parameters automatically). When we do this,
we can also increase the number of iterations to get more precise estimates of power, as well:

R> p_check <- update(smp, type = "power", tnum = 50000,
+ long.table = TRUE)

As shown in Table 6, when calculating power directly, we get power for all the implemented
definitions of power applicable to the design. The first five rows of Table 6 are the powers for
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Figure 1: Power estimates as sample size changes.

rejecting each of the five outcomes – they are (up to simulation error) the same since we are
assuming the same MDES and other design parameters for each. The “mean individual” is
the mean individual power across all outcomes. The first numeric column is power without
adjustment, and the second has our power estimate with the listed p value adjustment (Holm
in our example).
The next rows show different multi-outcome definitions of power. In particular, 1-minimum
shows the chance of rejecting at least one hypothesis. The complete row shows the power to
reject all hypotheses; it is only defined if all outcomes are specified to have a non-zero effect.7

In Figure 1 we can look at a power curve of our pump_sample() call to assess how sensitive
power is to our level two sample size:8

R> plot(smp)

Remark. In certain settings, a wide range of sample sizes may result in very similar levels
of power. In this case, the algorithm may return a sample size that is larger than necessary.
This pattern mainly occurs for sample sizes at lower levels of the hierarchy; e.g., for nbar for
all models, and for nbar and J for three-level models. Thus, we recommend always plotting
the output so that we can see if there are flat regions in the power curve. In addition, due
to the nature of the search algorithm or structural issues, occasionally the algorithm may
not converge. For example, in some settings the power curves hit an asymptote, such that
even an infinite sample size would not be able to reach a particular target power. For a more
detailed discussion of these challenges, see the package sample size vignette.

6.4. Comparing adjustment procedures
It is easy to rerun the above power calculation using the Westfall-Young step-down procedure
or other procedures of interest. Alternatively, simply provide a list of procedures you wish to

7The package does not show power for these without adjustment for multiple testing, as that power would
be grossly inflated and meaningless.

8The points on the plots show the evaluated simulation trials, with larger points corresponding to more
iterations and greater precision.
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Figure 2: Power estimates across definitions and MTPs.

compare. If you provide a list, the package will re-run the power calculator for each item on
the list. Here we obtain power for our scenario using Bonferroni, Holm and Westfall-Young
adjustments, and plot the results using the default plot() method in Figure 2:

R> p2 <- update(p_check, MTP = c("BF", "HO", "WY-SD"), tnum = 5000,
+ parallel.WY.cores = 2)
R> plot(p2)

To speed up computation, we reduce tnum because of the computationally intensive nature of
the WY-SD procedure. We also set parallel.WY.cores = 2 to parallelize the computation
across 2 cores.
The Westfall-Young step-down adjustment, which is more computationally intensive but can
be less conservative, exploits the correlation in our outcomes (rho = 0.4). However, in this
scenario it does not result in a substantial difference in individual power compared to the
Holm procedure.

6.5. Exploring sensitivity to design parameters

Within the PUMP package we have two general ways of exploring design sensitivity. The first
is with update(), which allows for quickly generating a single alternate scenario. To explore
sensitivity to different design parameters more systematically, use the grid() functions, which
calculate power, MDES, and sample size for all combinations of a set of passed parameter
values. There are two main differences between the two approaches. First, the grid functions
allow for systematic exploration of many possible combinations, while update() only allows
the user to explore one value at a time. Second, update() allows for different values of a
parameter for the different outcomes. In contrast, the grid functions do not allow design
parameters, including MDES, to vary across outcomes, and assumes the same parameter
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value across all outcomes. This assumption is made for simplicity of syntax. When faced
with contexts where it is believed that these parameters do vary, we recommend using average
values for the broader searches, and then double-checking a small set of potential final designs
with the pump_power() method.
We first illustrate the update() approach, and then turn to illustrating grid() across three
common areas of exploration: ICCs, the correlation of test statistics, and the assumed number
of non-zero effects. The last two are particularly important for multiple outcome contexts.
For efficiency of future calculations, before proceeding we save a power call with a smaller
tnum to reduce computation time.

R> pow <- update(p_check, tnum = 10000)

Exploring power with update()

Update allows for a quick change of some of the set of parameters used in a prior call; we saw
update() used several times above. As a further example, here we examine what happens if
the ICCs are more equally split across levels two and three:

R> p_b <- update(pow, ICC.2 = 0.20, ICC.3 = 0.25)
R> print(p_b)

power result: d3.2_m3fc2rc d_m with 5 outcomes
MTP D1indiv D2indiv D3indiv D4indiv D5indiv indiv.mean min1 min2 min3

None 0.2616 0.2563 0.2629 0.2606 0.2577 0.25982 NA NA NA
HO 0.1130 0.1082 0.1110 0.1115 0.1072 0.11018 0.2961 0.1292 0.0679
min4 complete

NA NA
0.0381 0.0274
0.000 <= SE <= 0.002

We immediately see that either our assumption of little variation in level two or substantial
variation in level three mattered a great deal for power.
When calculating power for a given scenario, it is also easy to vary many of our design
parameters by outcome. For example, if we thought we had better predictive covariates for
our second outcome, we might try:

R> p_d <- update(pow, R2.1 = c(0.1, 0.3, 0.1, 0.2, 0.2),
+ R2.2 = c(0.4, 0.8, 0.3, 0.2, 0.2))
R> print(p_d)

power result: d3.2_m3fc2rc d_m with 5 outcomes
MTP D1indiv D2indiv D3indiv D4indiv D5indiv indiv.mean min1 min2 min3

None 0.4512 0.8783 0.4057 0.3723 0.3680 0.49510 NA NA NA
HO 0.2614 0.6904 0.2287 0.2115 0.2077 0.31994 0.7493 0.4051 0.2327
min4 complete

NA NA
0.1347 0.0991
0.001 <= SE <= 0.002
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Notice how the individual powers are heavily changed. The d-minimal powers naturally take
the varying outcomes into account as we are calculating a joint distribution of test statistics
that will have the correct marginal distributions based on these different design parameter
values.
After several calls to update(), we may lose track of where we are; to find out, we can always
check details with print_design() or summary():

R> summary( p_d )

power result: d3.2_m3fc2rc d_m with 5 outcomes
MDES vector: 0.1, 0.1, 0.1, 0.1, 0.1
nbar: 258 J: 3 K: 16 Tbar: 0.5
alpha: 0.05
Level:

1: R2: 0.1 / 0.3 / 0.1 / 0.2 / 0.2 (5 covariates)
2: R2: 0.4 / 0.8 / 0.3 / 0.2 / 0.2 (3 covariates) ICC: 0.05 omega: 0
3: fixed effects ICC: 0.4 omega: 0

rho = 0.4
MTP D1indiv D2indiv D3indiv D4indiv D5indiv indiv.mean min1 min2 min3

None 0.4512 0.8783 0.4057 0.3723 0.3680 0.49510 NA NA NA
HO 0.2614 0.6904 0.2287 0.2115 0.2077 0.31994 0.7493 0.4051 0.2327
min4 complete

NA NA
0.1347 0.0991
0.001 <= SE <= 0.002
(tnum = 10000)

Using update allows for targeted comparison of major choices, but if we are interested in how
power changes across a range of options, we can do this more systematically with the grid()
functions, as we do next.

Exploring the effect of the ICC

We above saw that the ICC does affect power considerably. We next extend this evaluation
by exploring a range of options for both level two and three ICCs, so we can assess whether
our power is sufficient across a set of plausible values. The update_grid() call makes this
straightforward: We pass our baseline scenario along with lists of parameters to additionally
explore.
We can then easily visualize the variation in 1-minimal power by calling plot() on the object,
shown in Figure 3.

R> gridICC <- update_grid(pow, ICC.2 = seq(0, 0.30, 0.05),
+ ICC.3 = seq(0, 0.60, 0.20))
R> plot(gridICC, power.definition = "min1")

Note that in addition to update_grid(), there are also base functions pump_power_grid(),
pump_mdes_grid(), and pump_sample_grid().
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Figure 3: Power estimates as ICC changes.

We see that higher ICC2 radically reduces power to detect anything and ICC3 does little. To
understand why, we turn to our standard error formula for this design and model:

Qm =
√

ICC2(1 −R2
2)

T̄ (1 − T̄ )JK
+ (1 − ICC2 − ICC3)(1 −R2

1)
T̄ (1 − T̄ )JKn̄

.

In the above, the n̄ = 258 students per group makes the second term very small compared to
the first, regardless of the ICC2 or ICC3 values. The first term, however, is a direct scaling of
ICC2; changing it will change the standard error, and therefore power, a lot. To understand
patterns for other designs, all provided designs and models implemented in the package are
discussed, along with corresponding formula such as these, in the technical appendix.
For grid searches we recommend reducing the number of iterations, via tnum, to speed up
computation. As tnum shrinks, we will get increasingly rough estimates of power, but even
these rough estimates can help us determine trends.

Exploring the effect of ρ

The correlation of test statistics, ρ, is a critical parameter for how power will play out across
the multiple tests. The effect of the correlation parameter may vary across definitions of
power. For example, consider 2-minimal power: On one hand, correlated statistics make
individual adjustment less severe, and on the other correlation means we succeed or fail all
together. We can explore this relationship relatively easily by letting rho vary as so:

R> gridRho <- update_grid(pow, MTP = c("BF", "WY-SD"),
+ rho = seq(0, 0.9, by = 0.15), tnum = 500, B = 3000)

We then plot our results in Figure 4.

R> plot(gridRho)
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Figure 4: Power estimates as rho changes.
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First, we see that the Westfall-Young single-step procedure does result in somewhat higher
power than Bonferroni for many power definitions. Second, the effect on individual adjustment
is flat, as anticipated. Third, 1-minimal power and 2-minimal power fall as rho increases, while
complete power climbs. See Porter (2018) for further discussion of the effect of correlation on
power; while the paper focuses on the multisite randomized trial context, the lessons learned
there apply to all designs, as the only substantive differences between different design and
modeling choices is in how we calculate the unadjusted distribution of their test statistics.

Exploring the effect of null outcomes

We finally explore varying the number of outcomes with no effects. This exploration is an
important way to hedge a design against the possibility that some number of the identified
outcomes are measured poorly, or are simply not impacted by treatment. We use a grid
search, varying the number of outcomes that have no treatment impact via the numZero
design parameter in Figure 5:
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R> gridZero <- update_grid(pow, numZero = 0:4, M = 5)
R> plot(gridZero, nrow = 1)

There are other ways of exploring the effect of weak or null effects on some outcomes. In
particular, the pump_power() and pump_sample() methods allow the researcher to provide
an MDES vector with different values for each outcome, including 0s for some outcomes. The
grid() functions, by contrast, take a single MDES value for the non-null outcomes, with a
separate specification of how many of the outcomes are 0. (This single value plus numZero
parameter also works with pump_power() if desired.)

Checking the correlation between test statistics

Section 3 discussed that PUMP takes the correlation between test statistics as a parameter.
We generally use the assumed correlation between outcomes as a proxy for the correlation
between test statistics, even though that approximation may not be exact. To make sure this
assumption is not substantially affecting the power estimates, as a final step we use a built-
in function to check the correlation between test statistics given our assumed model. The
approach used by the checker tool mirrors the package validation approach. We generate S
iterations of simulated data, and for each iteration calculate test statistics for each outcome,
resulting in a matrix of dimension S×M . Then, we estimate the pairwise correlations between
the columns of this matrix. Due to the repeated simulation and analysis steps, the correlation
checker can take several minutes (or longer) to run. Models with random effects or impacts
have a much greater computation time than those without.
By default, the simulation process assumes the same correlation structure between all variables
that vary by outcome: Covariates, random effects, and random impacts. Thus, if we have
five outcomes, it assumes that each outcome has a single covariate, and those covariates have
correlation ρ. One setting that would likely have this correlation structure is if the outcomes
were test scores on different subjects (math, science, reading, etc.), and each outcome has a
corresponding pre-test score as a covariate.
However, in the Diplomas Now example we instead assume that covariates are shared across
outcomes. Thus, we set our correlation structure to have a correlation of 1 between covariates
across outcomes. The parameters rho.V, rho.X, and rho.C correspond to the correlation
matrices for covariates at levels three, two, and one. For more information about other
parameters for simulating data, including all the correlation matrices, see the package vignette
on simulating data.

R> covariate.corr.matrix <- gen_corr_matrix(M = 5, rho.scalar = 1)
R> cor.tstat <- check_cor(pow, rho.V = covariate.corr.matrix,
+ rho.X = covariate.corr.matrix, rho.C = covariate.corr.matrix,
+ n.sims = 500)

The function outputs a correlation matrix. Given that we assume all the pairwise correlations
are the same, we can take the mean across them to get a single estimate of the correlation
between test statistics.

R> est.cor <- mean(cor.tstat[lower.tri(cor.tstat)])
R> print(est.cor)

[1] 0.3172791
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We find that the estimated correlation between test statistics is close, but not equal, to our
assumed correlation between outcomes, 0.4. If there was a substantial discrepancy between
these two values, we would want to run a final check on power using the found correlation to
determine if the discrepancy affected our power estimates.

6.6. Calls and methods

For user reference, we wrap up with a brief summary of the package functionality.
Package calls. First, we summarize the main package calls.
The base functions are:

• pump_power() for calculating power given an experimental design and assumed model
and MDES.

• pump_mdes() for calculating MDES given a target power and sample sizes.

• pump_sample() for calculating the required sample size at a given level for achieving a
given target power for a given MDES and sample sizes at other levels.

Exploratory functions are:

• pump_power_grid(), pump_mdes_grid(), and pump_sample_grid() for calculating the
given output over a range of possible parameter values.

• update() to re-run an existing calculation with a small number of parameters updated.

• update_grid() to re-run an existing calculation but over a grid of possible parameter
values.

Methods. Second, we summarize methods that can be applied to PUMP-generated objects.
The PUMP package returns two types of S3 objects.

• ‘pumpresult’ objects are returned from single scenario calls: pump_power(),
pump_mdes(), pump_sample(), and calls to update().

• ‘pumpgridresult’ objects are returned from grid calls: pump_power_grid(),
pump_mdes_grid(), pump_sample_grid(), and calls to update_grid().

The package has a variety of methods that can be called directly on ‘pumpresult’ objects.

• print() displays a concise summary of the most relevant inputs and results of the call.

• summary() prints a more extensive output, containing a full summary of both the full
list of inputs and the results of the call.

• print_context() provides a summary of the user inputs, including the design and
model and the parameter values.

• plot() returns different plots tailored to whether the results are for power, MDES, or
sample size:
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– For power objects, it displays power across all power definitions and MTPs.
– For MDES and sample size objects, by default it displays a power curve showing

how power changes as sample size or MDES changes.
– For MDES and sample size objects, the user can instead request a diagnostic plot

of the power search algorithm using type = "search".

• power_curve() returns a data frame of power values over a range of MDES or sample
size values.

• search_path() returns the search history of the search algorithm for MDES and sample
size calls.

• transpose_power_table() converts a power table between wide and long formats.

• as.data.frame() casts the object to a data frame of the results.

• gen_sim_data() generates a set of simulated data using a data-generating process from
the assumed design, model, and parameters. For more details about functions to simu-
late data, see the package vignette on simulating data.

• check_cor() checks the correlation between test statistics using a simulation approach.

Many of the above methods also apply to ‘pumpgridresult’ objects, although some are not
relevant to grid objects. The main difference in behavior between the ‘pumpresult’ and
‘pumpgridresult’ objects is the output of plot() function. For an example of plot() called
on a ‘pumpresult’ object, see Figure 2. In contrast, for an example of plot() called on a
grid object, see Figure 3. For grid objects, the plot() function plots a facet wrap displaying
how power changes across all MTPs, power definitions, and varying parameters provided
during the grid call. If the user wants a smaller set of results, they can specify a single
power.definition, or use var.vary to only plot variation in one parameter value. If the
grid call varied multiple parameters, then each plot averages power across all other factors to
plot main effects. For example, in Figure 3, the first plot averages over all values of ICC.3 to
show how power varies with just ICC.2, and the second plot does the opposite.

7. Conclusion
We introduce the Power Under Multiplicity Project (PUMP) R package, which estimates
power for multi-level randomized control trials with multiple outcomes. PUMP allows users
to estimate power, MDES, and sample size requirements for a wide variety of commonly used
RCT designs and models across different definitions of power and applying different MTPs.
The functionality of PUMP fills an important gap, as existing tools do not allow researchers
to conduct power, MDES or sample size calculations when applying a MTP in a RCT.
The main advantage of the PUMP package is to provide easily accessible estimation proce-
dures so that users can properly account for power when making adjustments for multiple
hypothesis testing. However, one of the additional strengths of the package is the ease with
which a user can explore the effect of different designs, models, and parameter assumptions
on power, MDES or sample size. Even if a user is only interested in a single outcome, PUMP
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provides useful functionality for more robust power calculations. A user can and should try a
range of parameter values to determine the sensitivity of the power of their study to different
assumptions; this package simplifies that process.
In addition to this paper, there is a variety of supporting information.

• The package is available on CRAN, https://CRAN.R-project.org/package=PUMP.

• The code is available on GitHub, https://github.com/MDRCNY/PUMP.

• An online interface is available at https://public.mdrc.org/pump/.

• The technical appendix contains detailed information about each design and model, the
assumed data generating process, and precise descriptions of parameters such as ICC
and ω. It is a useful reference not just for users of the package, but also as a general
summary of frequentist multi-level models.

• The package has an additional vignette on understanding sample size calculations, which
can present unique challenges when calculating sample sizes below the top level.

• The package has supplementary functions that allow a user to simulate data from multi-
level models. Although these functions are not directly related to the power calculations,
we provide them as a potentially useful tool. A short vignette explains these functions.

• The code and results for validating the package are in a separate repository, https:
//github.com/MDRCNY/pump_validate.
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A. Technical details for multiple testing procedures

Weak and strong control. A MTP “provides weak control of the FWER or the FDR at level
α if the control can only be guaranteed when all null hypotheses are true, e.g., when the
effects on all outcomes are zero. A MTP provides strong control of the FWER or FDR at
level α if the control is guaranteed even when some null hypotheses are true and some are
false, e.g., when there may be effects on at least some outcomes. Of course, strong control
is preferred” (Porter 2018). The single-step and step-down Westfall Young MTPs always
provide at least weak control of the FWER. In order for these procedures to provide strong
control of the FWER, they require the assumption of subset pivotality (Ge, Dudoit, and Speed
2003). The distribution of the unadjusted test statistics or p values is said to have subset
pivotality if for any subset of null hypotheses, the joint distribution of the test statistics or
of the p values for the subset is identical to the distribution under the complete null. A
consequence of this assumption is that the permutation of test statistics or p values can be
done under the complete null hypothesis rather than under the unknown partial hypothesis
(Ge et al. 2003).
Minimal and complete power definitions. As noted in Porter (2018), under the assumption
that some effects are truly null, we must change our notion of power for d-minimal powers
(e.g., 1-minimal power, 1/3-minimal power, etc.). While individual power is defined based on
the probability of correctly rejecting false nulls, the definition for d-minimal power includes
the probability of erroneous rejections of the true nulls in the set. For example, 1/3-minimal
power is defined as the probability of detecting effects on at least 1/3 of the total outcomes
M , regardless of the number of outcomes with true effects. That is, 1/3-minimal power is not
defined as the probability of detecting effects among the M outcomes on which the effects
truly exist. This reframing of power is necessary for power to be consistent. If d-minimal
power were defined based on rejecting only false nulls, then the value and interpretation would
change depending on what assumption the researcher is making about the number of false
nulls, which is an unknown quantity. For example, with M = 5 outcomes, the probability of
detecting at least one effect would be very different depending on whether we assume all five
outcomes are false nulls, or whether we assume only two of them are false nulls.
Complete power, which is the probability of detecting effects on all outcomes, has similar
issues. We define complete power only in the context where all effects are assumed to be false
nulls; if any outcomes are assumed to be true nulls, then complete power is undefined.
Calculating complete power. There is an additional technical note about the calculation of
complete power, which has also been referred to as “conjunctive power” (Bretz et al. 2010)
and “all pairs power” (Ramsey 1978). To calculate complete power, we do not need to adjust
the p values, and can instead reject each individual test based on the unadjusted p values.
Complete power is the power of the omnibus test constructed by whether or not we reject all
the null hypotheses. This test was originally introduced as the intersection-union test because
the null hypothesis is expressed as a union and the alternative hypothesis is expressed as
an intersection (Berger 1982; Berger and Hsu 1996). Berger (1982) showed that if all the
individual tests are level α, the intersection-union test is also a level α test. To provide
some intuition, we do not need to adjust p values for complete power because it is a special
case where we must reject all the hypothesis tests. Thus, there is no way for the omnibus
test to be rejected by chance because of a favorable configuration (Chen et al. 2011). For
example, consider a case in which we have four tests, with two false nulls and two true nulls.
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If we consider 3-minimal power, we just need one of the two true negatives to be rejected by
chance alone, and there are two ways for this to occur. For complete power, there is only one
way for us to reject all of the nulls. The downside of an intersection-union test is that it is
conservative: The FWER is generally less than α. For example, if we have two independent
tests with type I error α, then if both of are true negatives, the probability of a type I error
for the omnibus test (the probability of rejecting both null hypotheses) is α2 (Deng, Xu, and
Wang 2008).

B. Validation
In order to validate that our power estimates are working as intended, we compared three
different methods of estimating power:

• PUMP
• Monte Carlo simulations
• PowerUpR

First, for all types of power definitions and adjustments, we compare PUMP to the estimated
power obtained from full Monte Carlo simulations. We follow the simulation approach out-
lined in detail in Section 4.1. For each of S iterations, we simulate data and calculate p values.
After completing all iterations, we calculate power and a 95% confidence interval for the true
power value, assuming a conservative standard error of

√
0.25/S. For individual, unadjusted

power, we also compute values from PowerUpR.
To validate the estimates, we first check that the PUMP and PowerUpR estimates match. In
some settings we expect some discrepancies between these values because PUMP has different
assumptions than PowerUp! for certain models. For details about differences between PUMP
and PowerUp! assumptions, see the Technical Appendices. Second, we check that the PUMP
estimate is within the Monte Carlo confidence interval.
We also validate MDES and sample size calculations. For MDES, we choose one default
scenario for each design and model, then input the already-calculated individual power and
see if the output MDES is the same as the original input MDES. Similarly, for sample size
validation, we input the already-calculated individual power and see if the output sample size
(nbar, J, and K depending on design) is the same as the original input sample size. Our unit
testing code conducts additional tests of this nature.

B.1. Simulation parameters

In order to validate that the method works in a wide range of scenarios, we vary the following
parameters. For most scenarios, we vary only one parameter at a time. Thus, to test varying
ρ, we set ρ = 0.2 with all other parameters being set to the default values, and try another
scenario with ρ = 0.8 with all other parameters being set to the default values. Table 7 shows
the default parameter values and the other values we apply in order to test out the effect of
varying that parameter.
We do not vary:

• M = 3.
• J and K are fixed across all scenarios for a given design and model.
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Parameter Default Other values

school size n̄ 50 75, 100
R2 0.1 0.6
ρ 0.5 0.2, 0.8
MDES (0.125, 0.125, 0.125) (0.125, 0, 0)
ICC 0.2 0.7
ω 0.1 0.8

Table 7: Validation parameters.

Figure 6: Validation plot.

B.2. Validation results

Figure 6 is an example of a graph we use for validation. The green dots are PUMP estimate
of power, the red dot is the PowerUpR estimate of power, and the 95% confidence intervals
based on the Monte Carlo simulations are shown in blue. To validate that PUMP produces
the expected result, we want to see the red and green points match, and for the green point
to be within the blue interval. Figure 6 shows the results across different types of power and
different MTPs. We repeat this plot for a variety of different parameter values for each design
and model.
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MTP Adjusted MDES D1indiv Power Target MDES

Bonferroni 0.122 0.447 0.125
BH 0.127 0.578 0.125
Holm 0.125 0.540 0.125

Table 8: MDES validation.

MTP Sample.type Sample.size D1indiv.power

Bonferroni J 21 0.500
BH J 21 0.580
Holm J 20 0.544

Table 9: Sample size validation.

For MDES and sample size calculations we put in our found power, and then see if the
pump_mdes() function returns the MDES we originally plugged in to achieve this power. In
Table 8, the first column shows the calculated MDES, the middle column is the power we
plugged into the calculation, and the last column shows the MDES that we are targeting.
Thus, ideally we want the first and last columns to match.
Similarly, we validate our sample size calculations. Using our found power, we see if
pump_sample() returns the original sample size. In Table 9, we are targeting a sample size
of J = 20.
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