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1 Introduction

Our package allows for power calculations across a range of common scenarios that a user might
select. Each scenario is categorized by two choices. First, the user chooses the planned experimental
design (e.g., clustered data, with randomization within cluster). Second, the user makes a choice
of the planned analytic model they would use for the data (e.g. a multilevel model with random
impacts). To provide a concrete example, throughout we assume an education setting where we
have students (level 1) nested within schools (level 2) nested, in the three-level case, within districts
(level 3).

The design is characterized by the number of levels of nesting (e.g., students in schools, no dis-
tricts, would be two levels) and the level of randomization (e.g., randomization of schools would be
randomization at level two).

The model choices are a bit more complex, and we discuss them in detail below. In particular, for
each model we support, we create a taxonomy by noting what modeling choice is used at each level
of the model, and how covariates are used.

For all designs and models, we only support estimating the causal effect of a binary treatment.

The outline of this appendix is as follows. In the introduction, we provide notation, a taxonomy for
models, an explanation of user-set parameters, and an outline the power estimation strategy. The
bulk of the appendix then provides detailed information about each supported scenario, including
the assumed model and consequent standard error formula. We then describe the data generating
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Param Description
M Number of outcomes
n̄ Number of level 1 units in each level 2 group (assumed constant

across level 2 groups)
J Number of level 2 units in each level 3 group (assumed constant

across level 3 groups)
K Number of level 3 units
T̄ Proportion of the sample that is assigned to the treatment group

(assumed constant across groups)

N Total number of units: N =
∑K

k=1

∑J
j=1 n̄

Sid Categorical variable indicating the membership of individual i to a
level 2 group

Did Categorical variable indicating the membership of individual i to a
level 3 group

Yijmk Observed outcome for unit i in level 2 group j in level 3 group k
for outcome m

Tijk Binary treatment assignment for unit i in level 2 group j in level 3
group k

Vkm Vector of level 3 covariates
g3,m Number of level 3 covariates for outcome m
Xjkm Vector of level 2 covariates
g2,m Number of level 2 covariates for outcome m
Cijkm Vector of level 1 covariates
g1,m Number of level 1 covariates for outcome m

Table 1: Observed quantities.

process that we used for the package validation; this section might also be useful for readers who
wish to understand the models and assumptions more deeply. The final two sections provide explicit
formula linking the user-specified parameters used for power analysis to the full set of parameters
used for data generation, followed by derivations of these formula.

1.1 Notation

To define our models, we first assume a set of observed quantities, shown in Table 1, such as sample
sizes, the outcomes, and covariates. For all notation, we use i to index level 1 (individuals), j to
index level 2 (schools), k to index level 3 (districts), and m to index outcomes.

We define an impact as the difference in outcome when Tijk = 1 compared to when Tijk = 0. Define
Yijkm(Tijk = 1), or Yijkm(1) for short, as the potential outcome given Tijk = 1, and Yijkm(0) as the
potential outcome given Tijk = 0. We can then define the average treatment impact for outcome m
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at different levels:

Level 1: θ1,jkm =
1

n̄

n̄∑
i=1

[Yijkm(1)− Yijkm(0)] for a given school j in district k. (1)

Level 2: ψ1,km =
1

J

J∑
j=1

θ1,jkm for district k. (2)

Level 3: Ξ1,m =
1

K

K∑
k=1

ψ1,km. (3)

For three-level designs, our estimand is the average district treatment impact Ξ1,m; for two-level
designs the average school impact ψ1,m; and for one-level designs the average student impact θ1,m.
We only consider person-weighted estimands, where each level 1 unit is equally weighted. If we have
different sample sizes within a level, such as having different numbers of students in each school,
we could alternatively consider estimands that weight by the size of the school.

We also use group mean outcomes under no treatment at different levels:

Level 1: θ0,jkm =
1

n̄

n̄∑
i=1

Yijkm(0) for a given school j in district k. (4)

Level 2: ψ0,km =
1

J

J∑
j=1

θ0,jkm for district k. (5)

Level 3: Ξ0,m =
1

K

K∑
k=1

ψ0,km. (6)

We call the means of levels two and three “grand” means because they are the means of means.
These quantities are listed in Table 2.

1.2 Model taxonomy

All of our models are variants of regression models. Depending on specification we might have fixed
or random effects at different levels. Table 3 lists our notation we use for the latent parameters
associated with these models. The residual intercepts and impacts are deviations from the respective
group means. For example, u1,jkm would be how School j in District k’s average treatment effect
for outcome m was different from the average impact in District k, i.e., u1,jkm = θ1,jkm − ψ1,km.

Using our full set of notation, we can create a model taxonomy based on the modeling choices used
for all the intercepts and impacts. In particular we determine for each level:

• Whether the level 2 and level 3 intercepts are:

– fixed (u0,jkm and/or w0,jkm are fixed effects)

– random (u0,jkm and/or w0,jkm are considered to be Normally distributed, allowing for
partial pooling).

• Whether the level 2 and level 3 treatment effects are:
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Param Description
Yijmk(Tijk = 0) Potential outcome for unit i in level 2 group j in level 3 group

k for outcome m given control treatment
Yijmk(Tijk = 1) Potential outcome for unit i in level 2 group j in level 3 group

k for outcome m given active treatment
Ξ0,m Grand mean outcome under no treatment across level 3 units

for outcome m
Ξ1,m Grand mean impact across level 3 units for outcome m
ψ0,km Grand mean outcome under no treatment across level 2 units

in level 3 unit k for outcome m
ψ1,km Grand mean impact across level 2 units in level 3 unit k for

outcome m
θ0,jkm Mean outcome under no treatment for individuals in level 2

unit j in level 3 unit k for outcome m
θ1,jkm Mean impact on individuals in level 2 unit j in level 3 unit k

for outcome m

Table 2: Means and average impacts.

– constant, e.g., all units are modeled as having a single average impact (u1,jkm = 0 and/or
w1,km = 0).

– fixed, with each unit has an individual estimated impact making the u1,jkm or w1,jkm

fixed effects constrained to have mean 0, with an additional overall mean impact.

– random, with u1,jkm and w1,km modeled as Normally distributed around an overall mean
impact.

On Table 3, the variance terms can be thought of either as the variance of some random effect or
as the variance of some fixed effects across the groups in the sample.

In addition, for each level the user can plan to adjust for baseline covariates, unless there are fixed
effects at that level or below (if you have a dummy variable for each group in a level, a covariate at
that level would be co-linear with those dummies). The coefficient vectors listed on Table 3 would
be estimated in models that use the baseline covariates as controls in the estimation process.

1.3 PowerUp!

For users familiar with PowerUp! (Dong and Maynard, 2013; Bulus et al., 2022), Table 4 provides a
reference for translating notation between PowerUp! and this document. Note that in some models,
PowerUp! includes treatment by covariate interactions, allowing for, in principle, heterogeneous
treatment effects correlated with said covariates. We do not allow for this, as including treatment by
covariate interactions adds complexity with estimation of average treatment effects, and is unlikely
to help with the precision of an overall average impact estimate. We view covariate by treatment
interactions as primarily for modeling treatment effect heterogeneity, which is not the goal of this
package or project. When this difference between PowerUp! and our approach occurs, it is noted.
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Param Description
w0,km Level 3/District residual intercepts
w1,km Level 3/District residual impacts
η20,m Variance of level 3 intercepts for outcome m
η21,m Variance of level 3 impacts for outcomem (cross-district treat-

ment heterogeneity)
ξm Coefficient vector of level 3 covariates Vkm

u0,jkm Level 2/School residual intercepts
u1,jkm Level 2/School residual impacts
τ 20,m Variance of level 2 intercepts for outcome m
τ 21,m Variance of level 2 impacts for outcome m (cross-school treat-

ment heterogeneity)
δm Coefficient vector of level 2 covariates Xjkm

rijkm Level 1/Individual intercepts
σ2
m Variance of individual/level 1 residuals

γm Coefficient vector of individual/level 1 covariates Cijkm

Table 3: Latent parameters capturing variation. “Residual” indicates deviations from an overall
group mean or expectation.

1.4 Scenario naming convention

We denote the research design by d, followed by the number of levels and randomization level, so
“d3.1” is a 3-level design with randomization at level 1. The model is denoted by m, followed
by the level and the assumption for the intercepts, either f or r and then the assumption for the
treatment impacts, c, f , or r. For example, m3ff2rc means at level 3, we assume fixed intercepts
and fixed treatment impacts, and at level 2 we assume random intercepts and constant treatment
impacts. The full design and model are specified by concatenating these together, e.g., d2.1 m3fc.

Examples:

• d2.1 m2rr: 2 level, individual assignment, level 2 random intercept and random treatment
effect. Corresponds to PowerUP! blocked i1 2r.

• d3.2 m3ff2rc: 3 level, level 2 assignment, level 3 fixed intercepts and fixed treatment ef-
fects, level 2 random intercepts and constant treatment effects. Corresponds to PowerUP!
blocked c2 3f.

Table 5 shows the list of supported scenarios and their corresponding names in PowerUp!

1.5 Control parameters

To calculate power, a user must choose assumed values for some of the latent parameters. However,
for certain parameters, the user may instead have more intuition about likely values of functions of
these parameters, rather than the parameters themselves. For example, rather than choosing the
values of the coefficients for all the level 3 covariates one has (ξm), the user would set R2

3,m, the
amount of level three variation explained by the covariates. These derived parameters, which are
functions of unobserved parameters, are listed in Table 6. We refer to these derived parameters as
“control” parameters because they are set, or controlled, by the user.

6



PowerUp! PUMP Description
β0j θ0,jkm Mean outcome under no treatment for school j in dis-

trict k
β1j θ1,jkm Mean impact for school j in district k
Xij Cijkm Individual covariates
β2j γm Coefficient vector for individual covariates Cijkm

γ00 ψ0,km Grand mean outcome under no treatment across schools
in district k

γ10 ψ1,km Grand mean impact across schools in district k
Wjk Xjkm School covariates
γ01k δm Coefficient vector for school covariates Xjkm

µ0j u0,jkm School intercepts
µ1j u1,jkm School impacts
τ 22|W τ 20,m Variance of school random effects

τ 22 τ 20,m + δ2m Overall variance of schools
τ 2T2|W τ 21,m Variance of school impacts

ρ2 ICC2 Intraclass correlation (unconditional) for level 2
ω2 ω2 Ratio of variation of impacts to residuals for level 2
τ2T2 κu Correlations between school random effects and impacts
ξ000 Ξ0,m Grand mean outcome under no treatment across dis-

tricts
ξ100 Ξ1,m Grand mean impact across districts
Vk Vkm District covariates
ξ001 ξm Coefficient vector for district covariates Vkm

ζ00 w0,km District intercepts
ζ10 w1,km District impacts
τ 23|V η20,m Variance of district random effects

τ 23 η20,m + ξ2m Overall variance of districts
τ 2T3|V η21,m Variance of district impacts

τ3T3 κw Correlations between district random effects and im-
pacts

Table 4: Correspondence of parameters with PowerUp!

We next provide further clarification on these control parameters. To keep the formulae for intraclass
correlation coefficients (ICCs) and R2 terms simple and clear, we assume we only have a single
covariate at each level for the purpose of these derivations. We further assume that all covariates
have unit variance and are group-mean centered.1 Group-mean centering means covariates can only
explain variation at their level; in practice, raw lower-level covariates could explain variation in
higher levels, if they systematically differ by group (e.g., individual student tests might capture the
“contextual effect” that could be predicted with school-level average test scores). This again allows
for clean formula for how covariates can impact the overall standard errors.

1A group-mean centered covariate is when you subtract the mean covariate value off for each group in turn. For
example, to group-mean center student math tests, you would calculate school-average math test for each school, and
then subtract that off of the individual student scores. The school-level mean of a group-mean-centered covariate
will always be zero.
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PUMP Model Name in PowerUp! Other Names
d1.1 m1c n/a Simple randomization
d2.1 m2fc bira2 1c RICC
d2.1 m2ff bira2 1f
d2.1 m2fr or d2.1 m2rr bira2 1r FIRC and RIRC
d2.2 m2rc cra2 2r
d3.1 m3rr2rr bira3 1r
d3.2 m3ff2rc bcra3 2f
d3.2 m3fc2rc n/a
d3.2 m3rr2rc bcra3 2r
d3.3 m3rc2rc cra3 3r

Table 5: Scenarios (designs and models) supported in PUMP.

Param Description
ESm average treatment impact in effect size units
ICC3,m level 3 (district) intraclass correlation
ω3,m ratio of variation of district average impacts to district intercepts
R2

3,m percent of district variation explained by level 3 (district) covariates
Vkm

ICC2,m level 2 (school) intraclass correlation
ω2,m ratio of variation of school average impacts to school intercepts
R2

2,m percent of school variation explained by level 2 (school) covariates
Xjkm

R2
1,m percent of individual variation explained by level 1 (individual) co-

variates Cijkm

Table 6: Control parameters.

Using the simplifying assumptions of single, centered, covariates are without real loss of general-
ity. Expressing scenarios in terms of the overall parameters such as the R2 measures allows for
representing our models in this massively simplified way. Thus, in the package itself and in our
explanation of the Scenarios in Section 2, we explicitly allow for the models to contain multiple and
arbitrary covariates. For using the power formula that derive from the simpler models, researchers
simply input total R2 and ICC values that include the full explanatory power of all covariates for
a given level. The results will be equivalent.

Effect size. The first control parameter, the effect size, is defined as the average treatment effect
divided by the total control variation:

ESm =
ATEm√

V ar(Yijkm(0))
=

ATEm√
(ξ2m + γ2m) + (δ2m + η20,m) + (τ 20,m + σ2

m)
. (7)

Remember that the definition of the ATE changes depending on the model: for three-level models
it corresponds to the average district treatment effect Ξ1,m, for two-level models the average school
treatment effect ψ1,m, and for one-level models the average student treatment effect θ1,m.
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Note. We can also define the effect size in terms of the level one treatment and control means. We
can define the following quantities:

µC,m =
1

KJn̄

K∑
k=1

J∑
j=1

n̄∑
n=1

Yijkm(0) (8)

µT,m =
1

KJn̄

K∑
k=1

J∑
j=1

n̄∑
n=1

Yijkm(1). (9)

Then, the effect size is

ESm =
µT,m − µC,m√
V ar(Yijkm(0))

. (10)

The equivalence between µT,m − µC,m and ATEm holds because we assume independence between
sample size and any treatment impact heterogeneity (e.g., we don’t have a setting where larger
schools have a systematically different treatment impact size from smaller schools).

ICC. The ICCs are unconditional Intraclass Correlations, meaning they include the variation
explained by covariates. Because we assume all covariates are group-mean centered and have unit
variance, we get the pairing structure of terms in the equations below.

ICC3,m =
V ar(ψ0,km)

V ar(Yijkm(0))
=

ξ2m + η20,m
(ξ2m + η20,m) + (δ2m + τ 20,m) + (γ2m + σ2

m)
(11)

ICC2,m =
V ar(θ0,jkm | ψ0,km)

V ar(Yijkm(0))
=

δ2m + τ 20,m
(ξ2m + η20,m) + (δ2m + τ 20,m) + (γ2m + σ2

m)
. (12)

The squared coefficients γ2m, δ
2
m, and ξ2m represent the total predictive power of the covariates at

each level. The tighter the coupling of a covariate and outcome, the more the overall outcome
variation will be due to that covariate. For the multiple-covariate version, replace those terms with,
e.g., V ar(γ ′

mCijkm). The second term of each pair is due the variation in the intercepts themselves:
this is variation not explainable by the covariates in the data.

Impact variation. The quantity ω is the ratio between the variation in average impact of a unit
and the variation in the control-side mean of a unit.

ω3,m =
V ar(ψ1,km)

V ar(ψ0,km)
=

η21,m
ξ2m + η20,m

(13)

ω2,m =
V ar(θ1,jkm | ψ1,km)

V ar(θ0,jkm | ψ0,km)
=

τ 21,m
δ2m + τ 20,m

. (14)
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Covariate-outcome relationships. The R2 expressions are the percent of variation at a par-
ticular level predicted by covariates. The group-mean centering makes these formulae only involve
covariates at the same level as the R2; this again is a simplification of convenience. The standard
error formula for the models in the remainder of the document are general, however, and a user
would not need to group-mean center or rescale any covariate in practice.

R2
3,m = 1− V ar(w0,km)

V ar(ψ0,km)
= 1−

η20,m
ξ2m + η20,m

(15)

R2
2,m = 1− V ar(u0,jkm)

V ar(θ0,jkm | Did)
= 1−

τ 20,m
δ2m + τ 20,m

(16)

R2
1,m = 1− V ar(rijkm)

V ar(Yijkm(0) | Sid, Did)
= 1− σ2

m

γ2m + σ2
m

. (17)

1.6 Power estimation strategy

The same strategy is followed for all designs. First, we lay out a model for our outcomes, Yijkm.
Next, we calculate the standard error of the average treatment effect estimate. When expressing
the estimated treatment effect as an effect size, the standard error is given by:

Qm ≡ SE
(
ÊSm

)
= SE

(
ÂTEm√
VARm

)
=

1√
VARm

SE
(
ÂTEm

)
. (18)

The standard error formulae are derived assuming there is no treatment variation other than that
explicitly captured by the model; in general, if there is additional variation then this could induce
heteroskedasticity which could impact power and, in principle, validity. This could come up if
different models for the same design are being compared, e.g., for d2.1 designs, if the m2fc model
is being compared to the m2fr model, with the first assuming the same impact across sites and the
second heterogeneous impacts across sites. Unless impact heterogeneity is substantial, however, the
standard error formula will be essentially correct; we recommend ignoring this potential source of
approximation error in the course of conducting power analyses.

When analyzing actual data, we would, to estimate Qm, plug in known values for T̄ , J , and n̄.
Any other parameters would be replaced by sample estimates. Then, when testing the mth null
hypothesis, ESm = 0, the test statistic for a t-test is given by

tm ≡ ÊSm

Q̂m

. (19)

When the null is true, tm follows a t distribution with mean 0 and degrees of freedom dfm, which
depends on the design and model.

For power calculations we calculate, given our assumptions on the design and selected model, a
reasonable value for Qm. We can then calculate the power to detect an impact expressed in effect
size units.

From the power formulae, we can also calculate MDES and sample size requirements. From Dong
and Maynard (2013), in general the MDES can be estimated as
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MDES = MTdf ×
SE√
VAR

, (20)

where MTdf is known as the multiplier and is the sum of two t statistics based on degrees of freedom
df . For one-tailed tests, MTdf = tα+t1−β where α is the type I error rate and β is the desired power.
For two-tailed tests, MTdf = tα/2 + t1−β. For more details, see Dong and Maynard (2013, page 31)
or Bloom (2006, page 22). Manipulating this expression then results in sample size formulae.

A note on effect sizes. In describing the standard error of our estimators in terms of effect size,
we need to carefully identify what we mean by an “effect size.” We commonly think of an effect
size as the size of an impact relative to some reference amount of variation. If the reference amount
of variation is different, then the effect size, for the same absolute effect, will also be different. This
concern of what the denominator should be can create some tension regarding some of the power
formula.

In a 2 level design, “one might define the effect size in terms of a standard deviation based on
the variance between level 1 units, σ2

1, the variance between level 2 units, σ2
2, or the total variance

σ2
1 +σ

2
2” (Spybrook et al., 2014a). We follow the definition of using the total variance over all levels

in the denominator, which is made explicit in Equation 7.

This is most obviously a concern with fixed effect regression. In particular, relative to overall
variation, if we increase the ICC at level 2 or level 3, then there is less variation (relative to the
reference variation) in level 1; thus an increased ICC will increase power for fixed effect regression.
This is simply the realized gains of a blocked experiment. If the effect size is calculated relative to
within-group variation, however, this gain would not be seen.

Defining effect size, i.e., the reference variation, is not consistent across all power calculators, as is
discussed in, for example, Spybrook et al. (2014b). It can even differ within the same calculator;
the PowerUp! framework, for example, includes between cluster variation for random effects models
and does not for fixed effect equivalents. Similarly, OD Plus defines effect size differently for cluster
randomized designs (where it includes between-cluster variation) and randomized block designs
(where it uses only within-block residual variation); see Tables 2 and 3 in Spybrook et al. (2014b).
We try to keep the models aligned by always using the same reference variation of overall or total
variation.

An alternate approach for aligning fixed vs. random effect models is to include variance explained
by the fixed effects in the R2 measure; for example, if there is substantial district variation, this
can be captured with a higher level two R2, if we consider the district ids of schools as level two
covariates. To make our formula more directly comparable, we do not take this route, but one can
use our package and obtain the same results by selecting an appropriate R2 and then setting the
next higher level ICC to 0.

Required user-provided values. In the above sections, we have defined a large number of
quantities, including latent, observed, and control quantities. We summarize all of the quantities
that the user needs to specify in order to estimate power:

• Minimum detectable effect size (MDES) for each outcome.
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• Sample sizes at each level (n̄, J , K).

• ICC values at each level for each outcome.

• R2 values at each level for each outcome.

• ω values at each level for each outcome.

• Number of covariates at each level.

These parameters are also summarized in Table 3 in the main text.
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2 Scenarios

2.1 d1.1 designs: 1 level, randomization at level 1

This is the classic individually randomized experiment where we allocate some fraction of a single
set of units to treatment.

The randomization scheme is simple random sampling:

T.x <- randomizr::simple_ra(N = nbar, prob = Tbar)

2.1.1 Constant effects (d1.1 m1c)

PowerUp! name. Not applicable.

Design. 1-level design, randomization at level 1

Model. constant intercepts, constant treatment effects, no school or district covariates.

The model for estimating impacts on outcome m is given by:

Yijkm = θ1,mT + θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm. (21)

Standard error. The standard error of the treatment effect estimate is:

Qm =

√
(1−R2

1,m)

T̄ (1− T̄ )n̄
. (22)

Degrees of freedom. The degrees of freedom are given by:

dfm = n̄− g1,m − 1. (23)

Sample size formula. The sample size formulae are:

n̄ =

(
MTdf

MDES

)2( 1−R2
1,m

T̄ (1− T̄ )

)
. (24)

Code syntax. The R model is:

Yobs ~ 1 + T.x + C.ijk

13



2.2 d2.1 designs: 2 levels, randomization at level 1

This section of designs comprise what are usually referred to as multisite experiments. In a multisite
experiment, we have a collection of sites (here, schools) and are able to randomize the individuals
within each site into treatment and control. This allows for estimating an average impact for each
site, in principle. That being said, we are usually interested in estimating some overall summary
of impacts across all our sites. These are also called blocked experiments, especially if the sites are
viewed as fixed.

Critically, there are four different estimands we might consider: the average impact for persons vs.
impact for sites, and the average impact of the sample we have (often referred to as finite-population)
vs. the average impact of the population where the sample came from (often referred to as the super-
population). When sites are equal sized, a common assumption for power calculations, the site and
person average will be the same. We therefore ignore it here. For finite- vs. super-population, we
have to be more careful. Some estimation strategies target a finite-population estimand. In this
document, the ones that do are d2.1 m2fc and d2.1 m2ff. The d2.1 m2fc estimation strategy does
because it assumes a constant treatment impact; given this assumption, there is no uncertainty due
to the sample itself as all samples have the same average impact by assumption. The d2.1 m2ff
estimation strategy allows each school to have an individually estimated impact, but due to using
fixed effects rather than random, it is evaluating the sample at hand. See Miratrix et al. (2021)
for further, in-depth, discussion. Estimators that target the super-population need to take any
uncertainty of the sample being representative of the super-population into account. Here, the one
that does this is d2.1 m2fr, with a model of each school having an average impact drawn from some
random distribution.

Regardless of the model used to analyze these data, the randomization scheme is the same. It is
simple random sampling within each school, with proportion T̄ units assigned to treatment in each
school. In R, we could randomize this way as so:

T.x <- randomizr::block_ra( S.id, prob = Tbar )

2.2.1 Constant effects (d2.1 m2fc, or RICC)

PowerUp! name. bira2 1c

Design. 2-level design, randomization at level 1 (blocked).

Model. fixed intercepts, constant treatment effect, no school covariates.

When we assume constant effects, each school has its own fixed intercept for the control outcome,
and the treatment effect is modeled as constant across schools. We can also call this a fixed
effects, constant treatment coefficient model, or RICC (Miratrix et al., 2021). This model allows
some schools to have higher average outcomes than others (allowed for with the fixed effects), but
assumes the treatment impact is the same.

The model for estimating impacts on outcome m is given by:

Yijkm = ψ1,mTijk + θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm (25)

θ0,jkm = ψ0,km + u0,jkm.
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Reduced form. The reduced form is:

Yijkm = ψ1,mTijk + ψ0,km +

g1,m∑
p=1

γmpCijkmp + u0,jkm + rijkm, (26)

and distributions:

rijkm ∼ N
(
0, σ2

m

)
. (27)

Standard error. The standard error is given by:

Qm =

√
(1− ICC2,m)(1−R2

1,m)

T̄ (1− T̄ )Jn̄
. (28)

See below for important details on this specific formula, and how it differs from PowerUp!

Degrees of freedom. The degrees of freedom are given by:

dfm = Jn̄− g1,m − J − 1. (29)

Parameter assumptions. The constant effects model means that we assume no treatment vari-
ation across our sites, i.e.,:

• ω2,m = 0.

PowerUp! Differences. PowerUp! assumes there is no ICC2,m term (i.e., it assumes ICC2,m = 0)
while we allow for it. This can be viewed as within (PowerUp!) vs. overall (this work) effect size
metrics. We discuss this more next.

Sample size formulae. The sample size formulae are:

J =

(
MTdf

MDES

)2((1− ICC2,m)(1−R2
1,m)

n̄T̄ (1− T̄ )

)
(30)

n̄ =

(
MTdf

MDES

)2((1− ICC2,m)(1−R2
1,m)

JT̄ (1− T̄ )

)
. (31)

Code syntax. The R model is:

Yobs ~ 0 + T.x + C.ijk + S.id

The 0 coupled with the S.id gives each school an independently estimated intercept rather than
selecting one school as a reference category; the overall mean parameter ψ0,km is thus left implicit in
the R call. One could estimate it by averaging the individual fixed effect coefficients for the dummy
variables generated by S.id.
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Remark on effect sizes. The standard error of the treatment effect estimate not in effect size
units is (this taken from the PowerUp! documentation):

SE(ÂTEm) =

√
1

T̄ (1− T̄ )Jn̄
· σm. (32)

To convert this to an effect size, we need to scale by overall variation. Unfortunately, under a
fixed effect model, there is no natural way to express this as we have not parameterized how the
individual site intercepts, the δ0,jkm, vary. PowerUp! therefore indexes by within group variation,
which is

V ar(Yijkm(0)|Sid) =
σ2
m

1−R2
1,m

,

using the formula for R2
1,m of

R2
1,m = 1− σ2

m

V ar(Yijkm(0)|Sid)
.

The above expression captures the predictive power of our individual-level covariates on the out-

comes within a given school. If we divide the above SE(ÂTEm) formula by
√
σ2
m/(1−R2

1,m) we

get the reported standard error formula for Qm of

Q̃m =

√
1−R2

1,m

T̄ (1− T̄ )Jn̄
,

with the tilde denoting that these effect size units are in terms of within-school variation. Equiva-
lently, this formula assumes the blocks (schools) are all homogeneous, which both goes counter to
the design principles of blocking and also is known to generally not hold when evaluating schools.
If we want the more classic effect size indexed by overall variation, we need to go further.

Assume we have an ICC2,m, an assumed measure of how much overall (control-side) variation is at
the school level:

ICC2,m = 1− V ar(Yijkm(0)|Sid))

V ar(Yijkm(0))
.

This ICC is even defined for a finite sample, if we view the above as comparing the empiri-
cal (pooled) within-group variation to full variation. Rearranging this gives V ar(Yijkm(0)) =
V ar(Yijkm(0)|Sid)/(1− ICC2,m).

We can then plug this and the R2
1,m formula together to get

V ar(Yijkm(0)) =
σ2
m

1−R2
1,m

· 1

1− ICC2,m

.

If we use this expression to scale our SE formula, we obtain our formula listed above.
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2.2.2 Fixed effects (d2.1 m2ff)

PowerUp! name. bira2 1f

Design. 2-level design, randomization at level 1 (blocked).

Model. fixed intercepts, fixed treatment effects, no school covariates.

The constant effects model assumes treatment is the same for each block. If it is not, and the blocks
are different sizes or have different proportions of units treated, the constant effects estimator is
precision-weighted and can thus be biased. Some may instead choose to allow each school to have
its own estimated impact, with a second averaging step where we calculate an overall site-average
of the site specific impact estimates.

We do this by interacting our site fixed effects with treatment. Now each school has its own fixed
intercept for the control outcome, and each school also has its own fixed coefficient for the treatment
effect. We can also call this a fixed effects with interactions model (Miratrix et al., 2021).

In practice, the power calculations for this model will be the same as for constant effects, unless we
allow for block size variation or variable proportion treated.

The model for estimating impacts on outcome m is given by:

Yijkm = θ1,jkmTijk + θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm (33)

θ0,jkm = ψ0,km + u0,jkm

θ1,jkm = ψ1,km + u1,jkm,

and distributions:

rijkm ∼ N
(
0, σ2

m

)
. (34)

Reduced form. The reduced form is:

Yijkm = (ψ1,km + u1,jkm)Tijk + ψ0,km +

g1,m∑
p=1

γmpCijkmp + u0,jkm + rijkm. (35)

Standard error. The standard error of the treatment effect estimate (and therefore the sample
size formula) are all the same as in the constant effects model, i.e. for SE we have:

Qm =

√
(1− ICC2,m)(1−R2

1,m)

T̄ (1− T̄ )Jn̄
. (36)

Degrees of freedom. However, the degrees of freedom are different due to the additional interac-
tion terms we need to estimate:

dfm = Jn̄− g1,m − 2J. (37)

PowerUp! Differences. Just as with the constant model, PowerUp! assumes there is no ICC2,m

term while we allow for it. This can be viewed as within (PowerUp!) vs. overall (this work) effect
size metrics; see the discussion at the end of the constant effects model, above, for more detail.
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Sample size formula. The sample size formulae are:

J =

(
MTdf

MDES

)2((1− ICC2,m)(1−R2
1,m)

n̄T̄ (1− T̄ )

)
(38)

n̄ =

(
MTdf

MDES

)2((1− ICC2,m)(1−R2
1,m)

JT̄ (1− T̄ )

)
. (39)

Code syntax. The R model is:

Yobs ~ 0 + T.x:S.id - T.x + C.ijk

The ‘- T.x’ term forces a separate impact estimate for each school (which come from the interaction
term of T.x:S.id). Neither ψ0,km or ψ1,km are explicitly estimated; you would obtain estimates by
averaging the corresponding individual estimates. If schools are different sizes, different weighting
choices are possible here (see, again, Miratrix et al. (2021)). Standard error estimates are also
obtained by aggregating the squared standard error estimates for the individual schools.
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2.2.3 Random effects (d2.1 m2fr and d2.1 m2rr, or FIRC and RIRC)

PowerUp! name. bira2 1r

Design. 2-level design, randomization at level 1 (blocked).

Model. random intercepts, random treatment effect, school covariates for intercept. PowerUp!
also includes interaction terms of treatment and school covariates to allow for modeling treatment
effect heterogeneity; we do not include this.

If we are interested in generalizing from our sample to a super-population, we may wish to view
the sample of schools themselves as representative of something larger. Then, if some schools have
different average impacts than other schools, we have to account for the possibility that our sample
of schools has an overall average impact different from the target population. We can account for
this additional uncertainty with a random effects model that has a random effect for the school-level
average impacts.

The classic random effects model gives each school both a random intercept for the control average
outcome (the intercept), and a random coefficient for the treatment effect. This is also known as
the RIRC model: random intercept, random coefficient. Recently, researchers also use a variant of
this model, the Fixed Intercept, Random Coefficient (FIRC) model to account for concerns such as
varying proportions of units treated in different schools.2 For power calculations, FIRC and RIRC
have the same performance (they are also similar in practice; see Miratrix et al. (2021)).

For RIRC, the model for estimating impacts on outcome m is given by:

Yijkm = θ1,jkmTijk + θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm (40)

θ0,jkm = ψ0,km +

g2,m∑
r=1

δmrXjkmr + u0,jkm

θ1,jkm = ψ1,km + u1,jkm,

and random effect and residual distributions of:(
u0,jkm
u1,jkm

)
∼ N

((
0
0

)
,

(
τ 20,m κummτ0,mτ1,m

κummτ1,mτ0,m τ 21,m

))
(41)

rijkm ∼ N
(
0, σ2

m

)
.

For FIRC, we only have the random effects model on the u1,jkm, and have fixed effects for the u0,jkm.
For RIRC, we assume bivariate Normal effects with variances τ 20,m and τ 21,m and correlation κumm.
The correlation structure κumm does not heavily impact the distribution of the final test statistic.

Reduced form. The reduced form is:

Yijkm = (ψ1,km + u1,jkm)Tijk + ψ0,km (42)

+

g2,m∑
r=1

δmrXjkmr +

g1,m∑
p=1

γmpCijkmp + u0,jkm + rijkm.

2For fitting this model in R, see https://cares-blog.gse.harvard.edu/post/fitting-firc/.
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Standard error. The standard error of the treatment effect estimate is given by:

Qm =

√
ICC2,mω2,m

J
+

(1− ICC2,m)(1−R2
1,m)

T̄ (1− T̄ )Jn̄
. (43)

Note that this formula is simply the formula for d2.1 m2fc with an additional term of ICC2,mω2,m/J .
The new term captures the additional uncertainty from extrapolating from our sample to the super-
population. Qm with this model, therefore, will be larger than the prior models to the extent that
the schools differ in terms of their impact variation (the ICC2,mω2,m term is simply the variation in
the random impact terms scaled by our overall variation).

Degrees of freedom. The degrees of freedom are given by:

dfm = J − g1,m − 1. (44)

PowerUp! Differences. PowerUp! assumes that school and district covariates also influence the
treatment impact:

θ1,jkm = ψ1,km +

g2,m∑
r=1

ϕmrXjkmr + u1,jkm.

We do not make this assumption. The result of this is that we assume, in their notation, that
R2

2T = 0, where R2
2T is the percent of treatment variation explained by level 2 covariates. This

assumption affects the first term in the standard error formula.

Sample size formula. The sample size formulae are:

J =

(
MTdf

MDES

)2(
ICC2,mω2,m +

(1− ICC2,m)(1−R2
1,m)

T̄ (1− T̄ )n̄

)
(45)

n̄ =
(1− ICC2,m)(1−R2

1,m)

T̄ (1− T̄ )

(
J
(
MDES
MTdf

)2
− ICC2,mω2,m

) . (46)

Code syntax. The R model is, for RIRC:

Yobs ~ 1 + T.x + X.jk + C.ijk + (1 + T.x | S.id)

For FIRC it is:

Yobs ~ 0 + T.x + X.jk + C.ijk + S.id + (0 + T.x | S.id)
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2.3 d2.2 designs: 2 levels, randomization at level 2

These are commonly called cluster randomized experiments, with the schools being the clusters.

The randomization scheme is a simple random sample of JT̄ schools assigned to treatment:

T.x <- randomizr::cluster_ra( S.id, prob = Tbar )

2.3.1 Random effects (d2.2 m2rc)

PowerUp! name. cra2 2r

Design. 2-level design, randomization at level 2 (clusters).

Model. random intercepts, constant treatment effect for all schools, school covariates for intercept.

The model for estimating impacts on outcome m is given by:

Yijkm = θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm (47)

θ0,jkm = ψ0,km + θ1,mTjk +

g2,m∑
r=1

δmrXjkmr + u0,jkm,

and distributions:

u0,jkm ∼ N
(
0, τ 20,m

)
(48)

rijkm ∼ N
(
0, σ2

m

)
.

Reduced form. The reduced form is:

Yijkm = θ1,mTjk + ψ0,km +

g2,m∑
r=1

δmrXjkmr +

g1,m∑
p=1

γmpCijkmp + u0,jkm + rijkm. (49)

Standard error. The standard error of the treatment effect estimate is given by:

Qm =

√
ICC2,m(1−R2

2,m)

T̄ (1− T̄ )J
+

(1− ICC2,m)(1−R2
1,m)

T̄ (1− T̄ )Jn̄
. (50)

Degrees of freedom. The degrees of freedom are given by:

dfm = J − g1,m − 2. (51)

Parameter assumptions. The constant effects model means that we assume no treatment vari-
ation across our sites, i.e.:

• ω2,m = 0.
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Sample size formula. The sample size formulae are:

J =

(
MTdf

MDES

)2( n̄ICC2,m(1−R2
2,m) + (1− ICC2,m)(1−R2

1,m)

T̄ (1− T̄ )n̄

)
(52)

n̄ =
(1− ICC2,m)(1−R2

1,m)

T̄ (1− T̄ )J
(
MDES
MTdf

)2
− ICC2,m(1−R2

2,m).
(53)

Code syntax. The R model is:

Yobs ~ 1 + T.x + X.jk + C.ijk + (1 | S.id)
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2.4 d3.1 designs: 3 levels, randomization at level 1

In these designs we have schools nested in districts, and students nested in schools. The only
difference here, as compared to blocked individual randomization with two levels, is the third level
of district. Since we are randomizing at the student level, this will only impact how we think about
where variation is in terms of our effect size units.

In this context, if we are interested in the finite-sample impacts, other than for calculating our
reference variation for effect sizes, the districts do not matter. We can simply use the prior two
level fixed effect designs if we lump district variation into the ICC2,m terms. In particular, one
could use d2.1 m2ff or d2.1 m2fc for the three level case by just entering ICC2,m + ICC3,m in for
ICC2,m. In fact, we cannot have district random or fixed effects given school-level fixed effects due
to collinearity.

For superpopulation impacts, we can either view the districts and schools as random draws, or the
districts as fixed, with schools randomly drawn within them. This gives the two models discussed
below.

Regardless, the randomization scheme is: simple random sampling occurs within each school, with
proportion T̄ units assigned to treatment in each school.

T.x <- randomizr::block_ra( S.id, prob = Tbar )

2.4.1 Random effects (d3.1 m3rr2rr)

PowerUp! name. bira3 1r

Design. 3-level design, randomization at level 1 (blocked).

Model. random intercepts for district, random treatment effects for district, random intercepts
for school, random effects for schools, school and district covariates for intercepts. PowerUp! also
allows for school and district covariates for cross-site impact heterogeneity.

The model for estimating impacts on outcome m is given by:

Yijkm = θ1,jkmTijk + θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm (54)

θ0,jkm = ψ0,km +

g2,m∑
r=1

δmrXjkmr + u0,jkm

θ1,jkm = ψ1,km + u1,jkm

ψ0,km = Ξ0,m +

g3,m∑
s=1

ξmsVkms + w0,km

ψ1,km = Ξ1,m + w1,km,
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and distributions: (
w0,km

w1,km

)
∼ N

((
0
0

)
,

(
η20,m κwmmη0,mη1,m

κwmmη1,mη0,m η21,m

))
(
u0,jkm
u1,jkm

)
∼ N

((
0
0

)
,

(
τ 20,m κummτ0,mτ1,m

κummτ1,mτ0,m τ 21,m

))
(55)

rijkm ∼ N
(
0, σ2

m

)
.

Reduced form. The reduced form is:

Yijkm = (Ξ1,jkm + w1,km + u1,jkm)Tijk + Ξ0,km (56)

+

g3,m∑
s=1

ξmsVkms +

g2,m∑
r=1

δmrXjkmr +

g1,m∑
p=1

γmpCijkmp

+ w0,km + u0,jkm + rijkm.

Standard error. The standard error of the treatment effect estimate is given by:

Qm =

√
ICC3,mω3,m

K
+

ICC2,mω2,m

JK
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )JKn̄
. (57)

Degrees of freedom. The degrees of freedom are given by:

dfm = K − 1. (58)

This is a very conservative degrees of freedom.

PowerUp! Differences. Similar to the two-level blocked model, in PowerUp! they further
assume that school and district covariates also influence the treatment impact:

θ1,jkm = ψ1,km +

g2,m∑
r=1

ϕmrXjkmr + u1,jkm

ψ1,km = Ξ1,m +

g3,m∑
s=1

ζmrVkms + w1,km,

but we do not make this assumption. In PowerUp! terms, we assume R2
3T = 0 and R2

2T = 0. The
interaction terms change the degrees of freedom from dfm = K − g3,m − 1 to dfm = K − 1.

Sample size formula. The sample size formulae are:

K =

(
MTdf

MDES

)2(
ICC3,mω3,m +

ICC2,mω2,m

J
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )Jn̄

)
(59)

J =
(1− ICC2,m − ICC3,m)(1−R2

1,m) + T̄ (1− T̄ )n̄ICC2,mω2,m

T̄ (1− T̄ )n̄

(
K
(
MDES
MTdf

)2
− ICC3,mω3,m

) (60)

n̄ =
(1− ICC2,m − ICC3,m)(1−R2

1,m)

T̄ (1− T̄ )

(
JK

(
MDES
MTdf

)2
− JICC3,mω3,m − ICC2,mω2,m

) . (61)
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Code syntax. The R model is:

Yobs ~ 1 + T.x + V.k + X.jk + C.ijk + (1 + T.x | S.id) + (1 + T.x | D.id)

2.4.2 Fixed district effects (d3.1 m3ff2rr)

PowerUp! name. None.

Design. 3-level design, randomization at level 1 (blocked).

Model. fixed intercepts and treatment effects for district, random intercepts and treatment effects
for schools, school covariates for intercepts, individual covariates.

The model for estimating impacts on outcome m is a mild tweak of the prior model–we just replace
the random terms at level 3 with fixed effects:

Yijkm = θ1,jkmTijk + θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm (62)

θ0,jkm = ψ0,km +

g2,m∑
r=1

δmrXjkmr + u0,jkm

θ1,jkm = ψ1,km + u1,jkm

ψ0,km = Ξ0,m + w0,km

ψ1,km = Ξ1,m + w1,km,

and distributions: (
u0,jkm
u1,jkm

)
∼ N

((
0
0

)
,

(
τ 20,m κummτ0,mτ1,m

κummτ1,mτ0,m τ 21,m

))
(63)

rijkm ∼ N
(
0, σ2

m

)
.

Reduced form. The reduced form is:

Yijkm = (Ξ1,jkm + w1,km + u1,jkm)Tijk + Ξ0,km (64)

+

g2,m∑
r=1

δmrXjkmr +

g1,m∑
p=1

γmpCijkmp

+ w0,km + u0,jkm + rijkm.

Standard error. The standard error of the treatment effect estimate is given by:

Qm =

√
ICC2,mω2,m

JK
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )JKn̄
. (65)

Degrees of freedom. The degrees of freedom are given by:

dfm = JK −K − 1. (66)
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Sample size formula. The sample size formulae are:

K =

(
MTdf

MDES

)2(
ICC2,mω2,m

J
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )Jn̄

)
(67)

J =

(
MTdf

MDES

)2(
ICC2,mω2,m

K
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )Kn̄

)
(68)

n̄ =
(1− ICC2,m − ICC3,m)(1−R2

1,m)

T̄ (1− T̄ )

(
JK

(
MDES
MTdf

)2
− ICC2,mω2,m

) . (69)

Code syntax. The R model is:

Yobs ~ 0 + T.x:D.id - T.x + X.jk + C.ijk + D.id + (1 + T.x | S.id)

As with the other models with fixed effects interacted with treatment, the individual district-level
impact estimates would then be averaged to get the overall impact estimate.
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2.5 d3.2 designs: 3 levels, randomization at level 2

These are commonly called blocked, cluster-randomized experiments. You find these if, for example,
schools are randomized within a set of districts, or teachers are randomized within a set of schools
(with students as outcomes in both cases).

The randomization scheme is: simple random sampling occurs within each district, with JT̄ schools
assigned to treatment in each district. In R we have:

T.x <- randomizr::block_and_cluster_ra( blocks = D.id, clusters = S.id, prob = Tbar )

2.5.1 Constant effects (d3.2 m3fc2rc)

PowerUp! name. None.

Design. 3-level design, randomization at level 2 (blocked cluster).

Model. fixed intercepts for districts, constant treatment effect for districts, random intercepts for
schools, constant effects for schools within a district, school covariates for intercept.

The model for estimating impacts on outcome m is given by:

Yijkm = θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm (70)

θ0,jkm = ψ0,km + Ξ1,mTjk +

g2,m∑
r=1

δmrXjkmr + u0,jkm

ψ0,km = Ξ0,m + w0,km,

and distributions:

u0,jkm ∼ N
(
0, τ 20,m

)
(71)

rijkm ∼ N
(
0, σ2

m

)
.

Reduced form. The reduced form is:

Yijkm = Ξ1,mTjk + Ξ0,m +

g2,m∑
r=1

δmrXjkmr +

g1,m∑
p=1

γmpCijkmp (72)

+ w0,km + u0,jkm + rijkm.

Standard error. The standard error of the treatment effect estimate is given by:

Qm =

√
ICC2,m(1−R2

2,m)

T̄ (1− T̄ )JK
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )JKn̄
. (73)

Degrees of freedom. The degrees of freedom are given by:

dfm = K(J − 1)− g2,m. (74)

Parameter assumptions. This model assumes no variation of impacts between schools, and no
variation at the district level:
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• ω2,m = 0.

• ω3,m = 0.

Sample size formula. The sample size formulae are:

K =

(
MTdf

MDES

)2(ICC2,m(1−R2
2,m)

T̄ (1− T̄ )J
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )Jn̄

)
(75)

J =

(
MTdf

MDES

)2(ICC2,m(1−R2
2,m)

T̄ (1− T̄ )K
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )Kn̄

)
(76)

n̄ =
(1− ICC2,m − ICC3,m)(1−R2

1,m)

T̄ (1− T̄ )JK
(
MDES
MTdf

)2
− ICC2,m(1−R2

2,m)
. (77)

Code syntax. The R model is:

Yobs ~ 0 + T.x + X.jk + C.ijk + D.id + (1 | S.id)
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2.5.2 District fixed effects interacted with treatment (d3.2 m3ff2rc)

PowerUp! name. bcra3 2f

Design. 3-level design, randomization at level 2 (blocked cluster).

Model. fixed intercepts for districts, fixed treatment effects for districts, random intercepts for
schools, constant effects for schools within a district, school covariates for intercept.

This model allows for treatment variation at the district level, resulting in K district-specific impact
estimates. The model is given by:

Yijkm = θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm (78)

θ0,jkm = ψ0,km + ψ1,kmTjk +

g2,m∑
r=1

δmrXjkmr + u0,jkm

ψ0,km = Ξ0,m + w0,km

ψ1,km = Ξ1,m + w1,km,

and distributions:

u0,jkm ∼ N
(
0, τ 20,m

)
(79)

rijkm ∼ N
(
0, σ2

m

)
.

Note that both w0,km and w1,km are fixed effects with no distribution placed on them. The random
effect version of this model comes next.

Reduced form. The reduced form is:

Yijkm = (Ξ1,m + w1,km)Tjk + Ξ0,m +

g2,m∑
r=1

δmrXjkmr +

g1,m∑
p=1

γmpCijkmp (80)

+ w0,km + u0,jkm + rijkm.

Standard error. The standard error of the treatment effect estimate is given by:

Qm =

√
ICC2,m(1−R2

2,m)

T̄ (1− T̄ )JK
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )JKn̄
. (81)

Degrees of freedom. The degrees of freedom are given by:

dfm = K(J − 2)− g2,m. (82)

Parameter assumptions. This model assumes no variation of impacts between schools within a
district:

• ω2,m = 0.
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PowerUp! Differences. The PowerUp! formula assumes ICC3,m = 0. This assumption is
equivalent to measuring effect size relative to within-district variation as compared to total variation.

Sample size formula. The sample size formulae are:

K =

(
MTdf

MDES

)2(ICC2,m(1−R2
2,m)

T̄ (1− T̄ )J
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )Jn̄

)
(83)

J =
n̄ICC2,m(1−R2

2,m) + (1− ICC2,m − ICC3,m)(1−R2
1,m)

n̄T̄ (1− T̄ )K
(
MDES
MTdf

)2 (84)

n̄ =
(1− ICC2,m − ICC3,m)(1−R2

1,m)

T̄ (1− T̄ )JK
(
MDES
MTdf

)2
− ICC2,m(1−R2

2,m)
. (85)

Code syntax. The R model is:

Yobs ~ 0 + T.x * D.id - T.x + X.jk + C.ijk + (1 | S.id)

The overall treatment effect is calculated as the average of the T.x interaction terms. The standard
error is calculated as the square root of a weighted sum of the district-specific standard errors
squared. When districts are unequal in size, one has different choices as to how to weight these
averages.
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2.5.3 Random effects (d3.2 m3rr2rc)

PowerUp! name. bcra3 2r

Design. 3-level design, randomization at level 2 (blocked cluster).

Model. random intercepts for districts, random treatment effect for districts, random intercepts
for schools, constant effects for schools within a district, school and district covariates for intercept.
PowerUp! also allows for district covariates for treatment effects.

The model for estimating impacts on outcome m is the same as that for m3ff2rc (Equation 78),
except we place a distribution on the w0,km, w1,km pairs and allow for covariates at level three. This
gives:

Yijkm = θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm (86)

θ0,jkm = ψ0,km + ψ1,kmTjk +

g2,m∑
r=1

δmrXjkmr + u0,jkm

ψ0,km = Ξ0,m +

g3,m∑
s=1

ξmsVkms + w0,km

ψ1,km = Ξ1,m + w1,km,

and distributions:

u0,jkm ∼ N
(
0, τ 20,m

)
(87)(

w0,km

w1,km

)
∼ N

((
0
0

)
,

(
η20,m κwmmη0,mη1,m

κwmmη1,mη0,m η21,m

))
rijkm ∼ N

(
0, σ2

m

)
.

Reduced form. The reduced form is:

Yijkm = (Ξ1,m + w1,km)Tjk + Ξ0,m (88)

+

g3,m∑
s=1

ξmsVkms +

g2,m∑
r=1

δmrXjkmr +

g1,m∑
p=1

γmpCijkmp

+ w0,km + u0,jkm + rijkm.

Standard error. The standard error of the treatment effect estimate is given by:

Qm =

√
ICC3,mω3,m

K
+

ICC2,m(1−R2
2,m)

T̄ (1− T̄ )JK
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )JKn̄
. (89)

Degrees of freedom. The degrees of freedom are given by:

dfm = K − 1. (90)

Parameter assumptions. This model assumes no variation of impacts between schools within a
district:

• ω2,m = 0.
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PowerUp! Differences. Similar to other blocked models model, PowerUp! further assumes that
district covariates also influence the treatment impact:

ψ1,km = Ξ1,m +

g3,m∑
s=1

ζmrVkms + w1,km.

We do not make this assumption. In PowerUp! terms, we assume R2
3T = 0. This also impacts our

degrees of freedom formula, which is dfm = K − 1 instead of dfm = K − g3,m − 1.

Sample size formula. The sample size formulae are:

K =

(
MTdf

MDES

)2(
ICC3,mω3 +

ICC2,m(1−R2
2,m)

T̄ (1− T̄ )J
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )Jn̄

)
(91)

J =
n̄ICC2,m(1−R2

2,m) + (1− ICC2,m − ICC3,m)(1−R2
1,m)

n̄T̄ (1− T̄ )

(
K
(
MDES
MTdf

)2
− ICC3,mω3

) (92)

n̄ =
(1− ICC2,m − ICC3,m)(1−R2

1,m)

T̄ (1− T̄ )J

(
K
(
MDES
MTdf

)2
− ICC3,mω3,m

)
− ICC2,m(1−R2

2,m)

. (93)

Code syntax. The R model is:

Yobs ~ 1 + T.x + V.k + X.jk + C.ijk + (1 | S.id) + (1 + T.x | D.id)
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2.6 d3.3 designs: 3 levels, randomization at level 3

These designs have randomization at the top level. They are cluster randomized, but we can model
the nesting structure within cluster. Because randomization is at the top level, we cannot have
random or fixed effects for district impacts or school impacts, restricting the models possible for
this design.

The randomization scheme is: simple random sampling occurs across districts, with KT̄ districts
assigned to treatment.

T.x <- randomizr::cluster_ra( D.id, prob = Tbar )

2.6.1 Random effects (d3.3 m3rc2rc)

PowerUp! name. cra3 3r

Design. 3-level design, randomization at level 3 (cluster).

Model. random intercepts for districts, constant treatment effects for districts, random intercepts
for schools, constant treatment effects for schools, school and district covariates for intercept.

The model for estimating impacts on outcome m is given by:

Yijkm = θ0,jkm +

g1,m∑
p=1

γmpCijkmp + rijkm (94)

θ0,jkm = ψ0,km +

g2,m∑
r=1

δmrXjkmr + u0,jkm

ψ0,km = Ξ0,m + Ξ1,mTk +

g3,m∑
s=1

ξmsVkms + w0,km,

and distributions:

u0,jkm ∼ N
(
0, τ 20,m

)
(95)

w0,jkm ∼ N
(
0, η20,m

)
rijkm ∼ N

(
0, σ2

m

)
.

Reduced form. The reduced form is:

Yijkm = Ξ1,mTk + Ξ0,m +

g3,m∑
s=1

ξmsVkms +

g2,m∑
r=1

δmrXjkmr +

g1,m∑
p=1

γmpCijkmp. (96)

+ w0,km + u0,jkm + rijkm.

Standard error. The standard error of the treatment effect estimate is given by:

Qm =

√
ICC3,m(1−R2

3,m)

T̄ (1− T̄ )K
+

ICC2,m(1−R2
2,m)

T̄ (1− T̄ )JK
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )JKn̄
. (97)
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Degrees of freedom. The degrees of freedom are given by:

dfm = K − g3,m − 2. (98)

Parameter assumptions. The constant effects model means that we assume no treatment vari-
ation across our sites, i.e.:

• ω2,m = 0.

• ω3,m = 0.

Sample size formula. The sample size formulae are:

K =

(
MTdf

MDES

)2(ICC3,m(1−R2
3,m)

T̄ (1− T̄ )
+

ICC2,m(1−R2
2,m)

T̄ (1− T̄ )J
+

(1− ICC2,m − ICC3,m)(1−R2
1,m)

T̄ (1− T̄ )Jn̄

)
(99)

J =
n̄ICC2,m(1−R2

2,m) + (1− ICC2,m − ICC3,m)(1−R2
1,m)

n̄

(
T̄ (1− T̄ )K

(
MDES
MTdf

)2
− ICC3,m(1−R2

3,m)

) (100)

n̄ =
(1− ICC2,m − ICC3,m)(1−R2

1,m)

T̄ (1− T̄ )JK
(
MDES
MTdf

)2
− JICC3,m(1−R2

3,m)− ICC2,m(1−R2
2,m)

. (101)

Code syntax. The R model is:

Yobs ~ 1 + T.x + V.k + X.jk + C.ijk + (1 | S.id) + (1 | D.id)
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3 The data generating process

We now discuss the assumed data generating process (DGP), indexed by parameters directly tied
to the structural equations we use. For simplicity, we outline a DGP that contains at most one
covariate per level. In particular, we generate, for each outcome, a single covariate with zero mean
and unit variance at each level, and then follow the full random effects model (3rr2rr). The data
generating process is done via a series of stages that are detailed below:

1. Generate the K districts by first generating covariates, then random effects.

2. Generate the K × J schools in a similar manner to districts.

3. Generate the K × J × n̄ students, including the student-level potential outcomes.

4. Randomize the students according to the specified design, and calculate final observed out-
comes.

To use the data generator, we need to have values for all the model parameters. This involves
translating the user parameters to these model parameters; we discuss how we do this in Section 4.

For two- or one-level data, we just follow our full recipe with a single unit at the higher levels, and
with setting the higher level design parameters for variable importance and variation to 0.

3.1 Determine DGP parameters

We have already discussed most of the required parameters in Section 1. However, there are a few
additional parameters required to generate data that do not directly feed into our equations for
single-outcome power or MDES. These are the correlations shown in Table 7.

The parameters used in this section need to be picked based on desired aggregate relationships
of the full data. See the next section for how to translate parameters such as ICC to the DGP
parameters

Param Description
ρV Correlation matrix of district covariates Vk·
ρw0 Correlation matrix of district random effects w0,k·
ρw1 Correlation matrix of district impacts w1,k·
κw Diagonal matrix of correlations between district random effects and

impacts, composed of entries {κwm} = Corr(w0,km, w1,km)
ρX Correlation matrix of school covariates Xjk·
ρu0 Correlation matrix of school random effects u0,jk·
ρu1 Correlation matrix of school impacts u1,jk·
κu Diagonal matrix of correlations between school random effects and

impacts, composed of entries {κum} = Corr(u0,jkm, u1,jkm)
ρC Correlation matrix of individual covariates Cijk·
ρr Correlation matrix of individual residuals rijk·

Table 7: Correlation parameters.
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3.2 Generate level 3 (district) data

3.2.1 Level 3 covariates

Each outcome has its own district-level covariate, Vkm with k = 1, . . . , K and m = 1, . . . ,M . For
example, district average reading and math pre-tests, used for adjusting reading and math outcomes,
respectively (in practice we might imagine adjusting each outcome with both, but in the case of
few districts this might not be a good idea due to degrees of freedom issues). We have E(Vkm) = 0
and V ar(Vkm) = 1. We assume a correlation between the covariates across outcomes, so we define
ρV as a M ×M symmetric correlation matrix, with ρVij the value in row i and column j.

 Vk1
...

Vkm

 ∼ N


 0

...
0

 ,

 1 · · · ρV1M
... 1

...
ρVM1 · · · 1


 . (102)

3.2.2 Level 3 outcomes

Let ψ0,km be the grand mean outcome under no treatment for district k, and ψ1,km be the grand
mean impact across schools for district k. We define them in terms of overall grand means with
district-specific offsets:

ψ0,km = Ξ0,m + ξmVkm + w0,km (103)

ψ1,km = Ξ1,m + w1,km, (104)

where Ξ0,m is the grand mean outcome under no treatment across all districts, and Ξ1,km is the
grand mean impact across districts. Without loss of generality, we will set Ξ0,m = 0 for all m. Ξ1,km

has to be set by the user.

We generate the random effects w0,km and w1,km via a multivariate normal distribution, and then
calculate the ψ0,km and ψ1,km by plugging everything in to the above equations.

To generate the random effects, we first specify E(w0,km) = 0 and V ar(w0,km) = η20,m. We then set
the pairwise correlation between w0,km and w0,km′ for outcomes m and m′ as ρw0

mm′ . We store the
full set of correlations in a correlation matrix ρw0 (with a 1 diagonal).

This gives our m-vectors of random district-level intercepts as multivariate normal: w0,k1
...

w0,kM

 ∼ N


 0

...
0

 ,

 η20,1 · · · ρw0
1Mη0,1η0,M

...
. . .

...
ρw0
M1η0,Mη0,1 · · · η20,M


 = N (⃗0,Σw0). (105)

Similarly, we have E(w1,km) = 0, V ar(w1,km) = η21,m, and an M ×M correlation matrix ρw1 , giving

a distribution for the random impact residuals of N (⃗0,Σw1): w1,k1
...

w1,kM

 ∼ N


 0

...
0

 ,

 η21,1 · · · ρw1
1Mη1,1η1,M

...
. . .

...
ρw1
M1η1,Mη1,1 · · · η21,M


 = N (⃗0,Σw1). (106)
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We also need to specify the correlation of the random intercepts with the random impacts within
each outcome. In particular, for outcome m, we want the joint distribution, (w0,km, w1,km) to be
bivariate normal with correlation κwm:(

w0,km

w1,km

)
∼ N

[(
0
0

)
,

(
η20,m κwmη0,mη1,m

κwmη1,mη0,m η21,m

)]
, (107)

We can also collect the κwm into a diagonal matrix κw.

The three distributions above can be combined into a large 2M -dimensional multivariate gaussian
distribution:

(w0,k1, . . . , w0,kM , w1,k1, . . . , w1,km) ∼MVNorm(⃗0,Σw
full), (108)

with

Σw
full =

(
Σw0 Σw

Σ′
w Σw1

)
. (109)

The Σw contains the intercept-impact covariances in Equation 107, but also have other elements.
In Section 5.2 we derive these, assuming a working linear model of the individual elements. This
gives Σw as

Σw =

 κw1 η0,1η1,1 · · · 1
2
(κw1 ρ

w1
1M + κwMρ

w0
1M) η0,1η1,M

...
. . .

...
1
2
(κwMρ

w1
M1 + κw1 ρ

w0
M1) η0,Mη1,1 · · · κwMη0,Mη1,M

 . (110)

Note how the diagonals correspond to the off-diagonal in Eq 107; this is what gives us the proper
pairwise correlation of random intercept and random impact residual within each outcome. In most
situations, we set κw = 0, so Σw is a matrix of all 0.

3.3 Generate level 2 (school) data

The schools’ Xjkm, θ0,jkm, θ1,jkm are all generated in the same way the district outcomes are gener-
ated. Just as with districts, each outcome has its own school-level covariate.

As with the district-level covariates, we have E(Xjkm) = 0 and V ar(Xjkm) = 1, and ρX is aM×M
symmetric correlation matrix that allows generation of the covariates.

Each school j in district k has its average outcome under no treatment θ0,jkm and its average
impacts θ1,jkm, and they are generated by first generating all the random effects, and then plugging
everything into

θ0,jkm = ψ0,km + δmXjkm + u0,jkm (111)

θ1,jkm = ψ1,km + u1,jkm. (112)

The (u0,jkm, u1,jkm) follow a multivariate Normal structure as in Section 3.2.2. We have V ar(u0,jkm) =
τ 20,m and V ar(u1,jkm) = τ 21,m. Also Cov(u0,jk·) = ρu0 and Cov(u1,jk·) = ρu1 . Finally, they relate to
each other with Corr(u0,jkm, u1,jkm) = κum. Thus, we have a matrix Σu that is constructed like Σw,
where Σu

m,m′ = κumρ
u1

mm′τ0,mτ1,m′ .

We can easily convert from three-level to two-level models. If there are no districts, then ψ0,km =
Ξ0,m and ψ1,km = Ξ1,m for all k. Essentially, we set wkm = 0, wkm = 0, and ξm = 0 for all k.
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3.4 Generate level 1 (individual) data

3.4.1 Level 1 covariates

Individuals have individual level covariates, one for each outcome Cijkm. For example, group-mean
centered reading and math scores. We assume these are homoskedastic and have the same mean
across sites. As with previous covariates, we have E(Cijkm) = 0 and V ar(Cijkm) = 1, and ρC is a
M ×M symmetric correlation matrix.

3.4.2 Level 1 outcomes

For each outcome, the outcome model for the individual is

Yijkm(0) = θ0,jkm + γmCijkm + rijkm (113)

Yijkm(1) = Yijkm(0) + θ1,ijkm, (114)

where Yijkm(0) is potential outcome m under no treatment for individual i in school j in district k,
and θijkm is the unit’s individual causal effect.

We assume constant treatment effects for individuals in the same school, θijkm = θ1,jkm, but this
assumption could be relaxed to allow for individual treatment-level heterogeneity.

As with previous covariates, we have E(Cijkm) = 0 and V ar(Cijkm) = 1, and ρC is a M × M
symmetric correlation matrix.

Finally, individual-level residuals are distributed E(rijkm) = 0 and V ar(rijkm) = 1, and ρr is a
M ×M symmetric correlation matrix.

3.4.3 Reduced form

Putting the levels together, we have:

Yijkm(0) = Ξ0,m + ξmVkm + δmXjkm + γmCijkm + w0,km + u0,jkm + rijkm (115)

Yijkm(1) = Yijkm(0) + Ξ1,m + w1,km + u1,jkm. (116)

3.5 Summary: Generating the full table of potential outcomes

1. For k = 1, . . . K, and m = 1, . . .M :

(a) Generate district covariates Vkm.

(b) Generate district residuals w0,km and w1,km.

(c) Calculate district grand means ψ0,km and average impacts ψ1,km.

2. For j = 1, . . . J , and m = 1, . . .M :

(a) Generate school covariates Xjkm.

(b) Generate school residuals u0,jkm and u1,jkm.

(c) Calculate school grand means θ0,jkm and average impacts θ1,jkm.

3. For i = 1, . . . N and for m = 1, . . .M :
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(a) Generate individual covariates, Cijkm

(b) Generate individual residuals rijkm.

(c) Generate predicted baseline outcomes (Yijkm(0) without residuals).

(d) Add residuals to the predicted outcomes to get Yijkm(0)

(e) Calculate Yijkm(1) by adding the treatment model to the Yijkm(0).

3.6 Generate observed data

Once we have our full set of potential outcomes, we generate treatment assignments to generate
the observed outcomes. We generate our treatment assignment, Tijk for all i = 1, . . . , nj and
j = 1, . . . , J and k = 1, . . . , K. Once we have our set of Tijk (no matter how they were obtained)
we calculate the observed outcomes

Y obs
ijkm = Yijkm(0)(1− Tijk) + Yijkm(1)Tijk. (117)

3.6.1 Randomization schemes

We can assign at the district, school, or individual level depending on the design we are generating
data for.

• Blocked individual randomization: simple random sampling occurs within each school, with
n̄T̄ units assigned to treatment in each school.

• Cluster 2-level randomization: simple random sampling occurs across schools, with JT̄ schools
assigned to treatment.

• Blocked cluster 2-level randomization: school level assignment occurs within each district,
with JT̄ schools assigned to treatment in each district.

• Cluster 3-level randomization: simple random sampling occurs across districts, with KT̄
districts assigned to treatment.

4 Tuning the DGP parameters

We define two main classes of parameters: model parameters and control parameters. Model
parameters, listed in Tables 1, 2, 3 and 7, are the ones that define the DGP. We use them directly
to simulate data. The control parameters, defined in Table 6, are more interpretable and can be
used to indirectly tune (i.e. specify) the model parameters. In short, control parameters are set by
the user, and then are converted to the model parameters that are fed into the DGP.

We break our model parameters into sets:

• Set 1: {M,J,K, njk,Ξ0,m,ρ
D,ρw,ρz,ρX ,ρu,ρv,ρC ,κwz,κuv, pj} are set directly by the user.

• Set 2: {N,ψ0,km, ψ1,km, θ0,jkm, θ1,jkm, Yijkm(0), Yijkm(1)} are functions of parameters that are
set directly.

• Set 3: {Ξ1,m, η
2
0,m, η

2
1,m, τ

2
0,m, τ

2
1,m, ξm, δm, γm} are tuned through the control parameters.
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The mechanism that maps the control parameters introduced in Section 1.5 to the model parameters
come from several derived relationships that we provide in the following sections.

4.1 Calculating the variation in random effects and impacts

We can have variation at the individual, school, and district level. We want to be able to tune the
proportion of variation in each of these levels. We are interested in the expression for unconditional
(covariate-free) ICC on the control side.

Using Equation 115, we have the variance of the control side as:

V arm(Yijkm(0)) = ξ2mV arm(Vkm) + δ2mV arm(Xjkm) + γ2mV arm(Cijkm) + η20,m + τ 20,m + σ2
m

= ξ2m + η20,m + δ2m + τ 20,m + γ2m + σ2
m.

assuming all covariates have a variance of 1.

Which leads to our definitions of ICC, as previously defined in Equations 11-12.

ICC3,m =
V ar(ψ0,km)

V ar(Yijkm(0))
=

ξ2m + η20,m(
ξ2m + η20,m

)
+
(
δ2m + τ 20,m

)
+ (γ2m + σ2

m)

ICC2,m =
V ar(θ0,jkm)

V ar(Yijkm(0))
=

δ2m + τ 20,m(
ξ2m + η20,m

)
+
(
δ2m + τ 20,m

)
+ (γ2m + σ2

m)
.

4.2 Calculating the covariate coefficients

4.2.1 Calculating the level 3 covariate coefficient ξm

The regression coefficients for the level 3 covariates, ξm, are dictated by the desired R2 values.
Thus, we would like to find ξm as a function of R2

3,m, i.e., the proportion of variance between level
3 districts predicted by level 3 covariates.

We start with

R2
3,m = 1− V ar(w0,km)

V ar(ψ0,km)

= 1−
η20,m

ξ2mV ar(Vkm) + η20,m
,

leading to

ξm =

√
η20,mR

2
3,m

V ar(Vkm)(1−R2
3,m)

=

√
η20,mR

2
3,m

1−R2
3,m

.

4.2.2 Calculating the level 2 covariate coefficient δm

We start with our level-2 R2 being defined as the proportion of variance in level-2 schools explained
by level-2 covariates:
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R2
2,m = 1− V ar(u0,jkm)

V ar(θ0,jkm | Did)
,

where the conditioning V ar(θ0,jkm | Did) denotes the variance of outcomes within a particular
district. This expands to

R2
2,m = 1−

τ 20,m
δ2mV ar(Xjkm | Did) + τ 20,m

.

Since our Xjkm are generated independent of district, the conditional variance is the same as the
overall variance. This gives

R2
2,m = 1−

τ 20,m
δ2mV ar(Xjkm) + τ 20,m

,

leading to

δm =

√
τ 20,mR

2
1,m

V ar(Xjkm)(1−R2
2,m)

=

√
τ 20,mR

2
2,m

1−R2
2,m

.

4.2.3 Calculating the coefficient for the Level 1 variable (γm)

Similar to level 2, we start with our level 1 R2 being defined as the proportion of level 1 variance
in individuals explained by level 1 covariates:

R2
1,m = 1− σ2

m

var(Yijkm(0) | Sid)
,

where the conditioning denotes the variance of outcomes within a particular school.

We find

R2
1,m = 1− σ2

m

γ2mvar(Cijkm | Sid) + σ2
m

= 1− σ2
m

γ2mvar(Cijkm) + σ2
m

.

Rearrange to get

γm =

√
σ2
mR

2
1,m

var(Cijkm)(1−R2
1,m)

=

√
R2

1,m

1−R2
1,m

.
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4.3 Calculating the grand mean impacts Ξ1,m

The grand mean impact is a function of effect size. The effect size is simply the overall impact in
standard deviation units, with the standard deviation usually being the marginal standard deviation
of the control side:

Ξ1,m = ESm · SDm(Yijkm(0)), (118)

where SDm(Yijkm(0)) denotes the standard deviation over i, j, and k for fixed outcome m. We have
already noted V arm(Yijkm(0)) = ξ2m + γ2m + δ2m + η20,m + τ 20,m + σ2

m.

4.4 Final results

The above produce the following system of equations:

ICC3,m =
ξ2m + η20,m

ξ2m + η20,m + δ2m + τ 20,m + γ2m + 1

ICC2,m =
δ2m + τ 20,m

ξ2m + η20,m + δ2m + τ 20,m + γ2m + 1

ξm =

√
η20,mR

2
3,m

1−R2
3,m

δm =

√
τ 20,mR

2
2,m

1−R2
2,m

γm =

√
R2

1,m

1−R2
1,m

.

We solve the system to find our model parameters in terms of our user parameters:

γ2m =
R2

1,m

1−R2
1,m

(119)

δ2m =
R2

2,m

1−R2
1,m

ICC2,m

1− ICC3,m − ICC2,m

(120)

ξ2m =
R2

3,m

1−R2
1,m

ICC3,m

1− ICC3,m − ICC2,m

(121)

τ 20,m =
1−R2

2,m

1−R2
1,m

ICC2,m

1− ICC3,m − ICC2,m

(122)

η20,m =
1−R2

3,m

1−R2
1,m

ICC3,m

1− ICC3,m − ICC2,m

. (123)

For details on the algebra, see Section 5.

And finally we set:

η21,m = ω3,m

(
η20,m + ξ2m

)
(124)

τ 21,m = ω2,m

(
τ 20,m + δ2m

)
. (125)
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5 Derivations

5.1 Derivations of parameter translation formulae

In this section we derive the formulae used to map user parameters to model parameters given
above. We first lay out some expressions we will later use in the main derivations:

τ 20,m =
δ2m(1−R2

2,m)

R2
2,m

δ2m + τ 20,m = δ2m +
δ2m(1−R2

2,m)

R2
2,m

=
δ2mR

2
2,m + δ2m − δ2mR

2
2,m

R2
2,m

,

giving

δ2m + τ 20,m =
δ2m
R2

2,m

.

We also note:

ICC3,m

ICC2,m

=
ξ2m + η20,m
δ2m + τ 20,m

ξ2m + η20,m =
ICC3,m(δ

2
m + τ 20,m)

ICC2,m

=
ICC3,mδ

2
m

R2
2,mICC2,m

.

And finally it is easy to re-express γ2m + 1:

γm =

√
R2

1,m

1−R2
1,m

γ2m + 1 =
R2

1,m

1−R2
1,m

+ 1

=
1

1−R2
1,m

.

Let’s start by plugging some of these into our expression for ICC2 to find δm:
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ICC2,m =
δ2m + τ 20,m

ξ2m + η20,m + δ2m + τ 20,m + γ2m + 1

=

δ2m
R2

2,m

ICC3,mδ2m
R2

2,mICC2,m
+ δ2m

R2
2,m

+ γ2m + 1

δ2m
R2

2,m

= ICC2,m

(
ICC3,mδ

2
m

R2
2,mICC2,m

+
δ2m
R2

2,m

+ γ2m + 1

)
δ2m = ICC3,mδ

2
m + ICC2,mδ

2
m + ICC2,mR

2
2,m(γ

2
m + 1)

δ2m =
ICC2,mR

2
2,m(γ

2
m + 1)

1− ICC3,m − ICC2,m

=
ICC2,mR

2
2,m

(1− ICC3,m − ICC2,m)(1−R2
1,m)

.

Proceeding by a similar method, we can use ICC3 to find ξm:

ξ2m =
ICC3,mR

2
3,m

(1− ICC3,m − ICC2,m)(1−R2
1,m)

.

Now we can plug in to find τ 20,m:

τ 20,m =
δ2m(1−R2

2,m)

R2
2,m

=
ICC2,mR

2
2,m

(1− ICC3,m − ICC2,m)(1−R2
1,m)

(1−R2
2,m)

R2
2,m

=
ICC2,m(1−R2

2,m)

(1− ICC3,m − ICC2,m)(1−R2
1,m)

.

And similarly:

η20,m =
ICC3,m(1−R2

3,m)

(1− ICC3,m − ICC2,m)(1−R2
1,m)

.

5.2 Derivation of off-diagonal correlations of outcomes

We directly specify most of the 2M × 2M covariance matrix of the random effects for districts
and schools. The off-diagonal terms, however, need to be derived as natural consequences of these
choices. One could specify these off-diagonal terms directly, as long as the resulting matrix were
positive definite, but we can also view them as artifacts of the other correlations coupled with a
simplifying linear model. That is what we do here.
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Remember that we define κwm as the correlation of the intercept and impact for outcome m, which
corresponds to the correlation for the diagonals. We can also collect the κwm into a diagonal matrix
κw.

In particular, consider the correlation cor(w0,km, w1,km′) between the random effect for outcome m
and random impact residual for outcomem′. If there is a non-zero correlation between (w0,km, w1,km),
and a non-zero correlation between (w1,km, w1,km′), then, unless something is offsetting it, we will
have a non-zero correlation between (w0,km, w1,km′).

In path analysis, we consider all paths that could induce correlations between two variables (w0,km, w1,km′).
One path is w0,km—w1,km—w1,km′ . Another path is w0,km—w0,km′—w1,km′ . Below, we show the
derivation for the correlation due to the first path. We do not show the derivation for the second
path, as it follows the same pattern.

Let’s assume there is a linear relationship between the two pairs of variables with known correlations.

w0,km = a+ bw1,km + C

w1,km = d+ ew1,km′ + F,

where C and F are error terms.

First, let’s find the definitions of b and e in terms of notation we have already defined: ρw1

mm′ , κwm,
η20,m, and η

2
1,m.

5.2.1 Finding the linear coefficients.

Finding b. First, we find b in terms of our original notation. Based on the linear relationships,
we have:

Cov(w0,km, w1,km) = Cov(a+ bw1,km + C,w1,km)

= bCov(w1,km, w1,km) + Cov(C,w1,km)

= bη21,m.

Now to relate b to our original notation, we defined Cor(w0,km, w1,km) = κwm, and Cov(w0,km, w1,km) =
κwmη0,mη1,m. This means we can solve for b in terms of our original variables:

bη21,m = κwmη0,mη1,m

b =
κwmη0,m
η1,m

.

Finding e. Next, we find e. Based on the linear relationships, we have:

Cov(w1,km, w1,km′) = Cov(d+ ew1,km′ + F,w1,km′)

= eCov(w1,km′ , w1,km′) + Cov(F,w1,km′)

= eη21,m′ .

Now to relate e to our original notation, we defined Cor(w1,km, w1,km′) = ρw1

mm′ , and Cov(w1,km, w1,km′) =
ρw1

mm′η1,mη1,m′ . This means we can solve for e in terms of our original variables:

eη21,m′ = ρw1

mm′η1,mη1,m′

e =
ρw1

mm′η1,m
η1,m′

.
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5.2.2 Finding the covariance expression.

Next, we re-arrange our expressions to be in terms of the common variable w1,km′ .

w0,km = a+ b(d+ ew1,km′ + F ) + C

Now, we plug in our new expression to find the covariance.

Cov(w0,km, w1,km′) = Cov (a+ bd+ bew1,km′ + bF + C,w1,km′)

= Cov (bew1,km′ + bF + C,w1,km′)

= beCov(w1,km′ , w1,km′) + bCov(F,w1,km′) + Cov(C,w1,km′)

= beCov(w1,km′ , w1,km′)

= beη21,m′ .

Finally, we substitute in our values of b and e.

Cov(w0,km, w1,km′) =
κwmη0,m
η1,m

ρw1

mm′η1,m
η1,m′

η21,m′

= κwmρ
w1

mm′η0,mη1,m′ .

5.2.3 Second path.

As mentioned above, another path is w0,km—w0,km′—w1,km′ . Considering this path, by similar
derivation to the first path, we would find:

Cov(w0,km, w1,km′) = κwm′ρw0

mm′η0,mη1,m′ .

5.2.4 Total covariance.

To find the total covariance, we take the average covariance over the two paths. We take the average
so that the diagonals have the correct correlation κwm, which we already defined as the correlation
of the intercept and impact for outcome m.

Cov(w0,km, w1,km′) =
1

2
(κwmρ

w1

mm′ + κwm′ρw0

mm′) η0,mη1,m′ . (126)

5.2.5 Constructing the non-symmetric matrix Σw.

We can now construct our full matrix Σw, noting that for m = m′, ρw1

mm′ = ρw0

mm′ = 1:

Σw =

 κw1 η0,1η1,1 · · · 1
2
(κw1 ρ

w1
1M + κwMρ

w0
1M) η0,1η1,M

...
. . .

...
1
2
(κwMρ

w1
M1 + κw1 ρ

w0
M1) η0,Mη1,1 · · · κwMη0,Mη1,M

 . (127)
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