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Abstract

Certain events can make the structure of volatility of financial returns to change,
making it nonstationary. Models of time-varying conditional variance such as generalized
autoregressive conditional heteroscedasticity (GARCH) models usually assume station-
arity. However, this assumption can be inappropriate and volatility predictions can fail
in the presence of structural changes in the unconditional variance. To overcome this
problem, in the time-varying (TV-)GARCH model, the GARCH parameters are allowed
to vary smoothly over time by assuming not only the conditional but also the uncon-
ditional variance to be time-varying. In this paper, we show how useful the R package
tvgarch (Campos-Martins and Sucarrat 2023) can be for modeling nonstationary volatility
in financial empirical applications. The functions for simulating, testing and estimating
TV-GARCH-X models, where additional covariates can be included, are implemented in
both univariate and multivariate settings.

Keywords: tvgarch, financial volatility, nonstationary GARCH models, time-varying parame-
ter models.

1. Introduction

In the autoregressive conditional heteroscedasticity (ARCH) class of models proposed by
Engle (1982), the variable of interest u; is decomposed multiplicatively as

Up = oMy, or > 0, ne ~ iid(0,1), t=1,...,n, (1)

where af is the conditional variance of wu;, 7; is a real-valued standardized innovation with
mean zero and unit variance (e.g., the standard normal), and n is the sample size. In Engle
(1982), u; was the error term of a dynamic linear regression of inflation. So the conditional
standard deviation o; was the uncertainty of the inflation forecast conditional on the past.
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However, it is in finance that ARCH models have become the most popular. There, u; is
financial return, either raw or demeaned (i.e., u; has mean zero), and the conditional variance
o? is a measure of the variability or volatility of return conditional on the past. Specifications
within the ARCH class has proved particularly useful to model volatility clustering, a common
characteristic of financial returns. In Engle and Russell (1998), it was noted that ARCH
models can also be used to model non-negative variables, say, the trading volume of financial
assets, the duration between financial trades, and so on. This interpretation of ARCH models
is known as the multiplicative error model (MEM), see Brownlees, Cipollini, and Gallo (2012)
for a survey. In what follows, we will focus exclusively on the financial return interpretation

of Ut.

Stationary and nonstationary volatility

Define the conditional variance (i.e., volatility) as o7 = E(u?|F;_1), where F;_1 is a suitable
conditioning set (typically the information available up to and including ¢ — 1). In standard
approaches, the conditional variance process {o?} is stationary. This implies that the uncon-
ditional variance E(c?) is constant over time. History in general, however, and recent events
in particular, show that financial volatility is not necessarily stationary. Events such as the
2008 global financial crisis and, more recently, the COVID-19 pandemic, can ultimately make
the structure (e.g., baseline level or persistence) of financial volatility to change, making it
nonstationary. This has important implications for statistical inference and financial deci-
sion making. Lamoureux and Lastrapes (1990), Mikosch and Starica (2004), and Hillebrand
(2005), for example, showed that ignoring changes in the unconditional volatility can lead to
spurious persistence and long-memory effects. Next, these distortions may affect risk estima-
tion (e.g., Andreou and Ghysels 2008), asset allocation (e.g., Pettenuzzo and Timmermann
2011), and estimates of the equity premium (e.g., Pastor and Stambaugh 2001), to mention
but a few.

The most common volatility model is the stationary version of the first order generalized
ARCH (GARCH) model, i.e., the standard GARCH(1, 1), which was proposed by Bollerslev
(1986):

02 =w+au? | + Bol |, w,a >0, 0<pB<L (2)

The GARCH is the volatility analogue of the autoregressive moving average (ARMA) model.
(In fact, as is well-known, the standard GARCH(1, 1) admits an ARMA(1, 1) representation
with heteroscedastic noise, see Francq and Zakoian 2019, p. 18.) Empirical comparisons sug-
gest the standard GARCH(1, 1) fares well in many financial applications (see e.g., Hansen and
Lunde 2005). However, numerous extensions have been proposed to account for the additional
characteristics typically found in financial returns (see e.g., Francq and Zakoian 2019 for a
survey). This includes, amongst other, higher order models, asymmetry or “leverage” (good
news and bad news affect volatility differently and so have a different predictive ability) and
covariates. Most extensions assume the volatility process {o?} is stationary.

Notwithstanding the usefulness and success of stationary GARCH models in describing the
dynamic structure of financial volatility clustering, they will be misspecified if volatility is
nonstationary. A remedy to this shortcoming is the time-varying (TV) GARCH model of
Amado and Terasvirta (2013, 2017), i.e., the key ingredient of the tvgarch package. In TV-
GARCH models the conditional variance is decomposed multiplicatively as

0-152 = gthta g, ht > 07 (3)
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where {g;} is a non-stochastic process and h; is a “rescaled” stationary GARCH specification,
e.g.,

hi = w+ ag? | + Bh? 4 where ¢ = ul/g;. (4)
Often, g; is interpreted as the “long-term” component and h; is interpreted as the “short-term”
component. Henceforth, we will also refer to ¢g; as the TV component and h; as the GARCH
component. The o7 = g;h; is still the conditional variance, but the unconditional volatility
E(c?) = gFE(¢?) is now time-varying if g; changes over time. Of course, the stationary
GARCH is obtained as a special case when g; is constant. In Amado and Terasvirta (2013,
2017), the TV component is made up of logistic transition functions. This means ¢; changes
smoothly over time. However, abrupt changes can suitably be characterized by setting the
speed of transition parameter sufficiently high, see Section 2.1. For a survey of multiplicative
decompositions of volatility, see Amado, Silvennoinen, and Terésvirta (2019).

A survey of software

Many publicly available softwares for statistics and econometrics contain modules for station-
ary volatility modeling. The most general and well-known R packages available for simulation,
estimation and forecasting of GARCH models include the fGarch (Wuertz, Chalabi, Setz,
Maechler, and Boshnakov 2024), rugarch (Galanos 2023) and garchx (Sucarrat 2021) pack-
ages for univariate series, and the rmgarch (Galanos 2022) package for multivariate series.
Popular R packages for estimating stationary stochastic volatility models include stochvol and
factorstochvol (Hosszejni and Kastner 2021) for, respectively, the univariate and the multi-
variate case. The recent R package tvgarch (Campos-Martins and Sucarrat 2023) implements
the nonstationary TV-GARCH model, and is intended for the simulation, testing and mod-
eling of nonstationary volatility in financial empirical applications. This package is on the
Comprehensive R Archive Network (CRAN) since January 28, 2021. Even though other R
or commercial packages are available for the modeling of volatility nonstationarity, to the
best of our knowledge, tvgarch is the first, both inside and outside the R universe, to offer
nonstationary volatility modeling with smooth transition logistic functions.

A summary of the main features of each R package available for modeling nonstationary
volatility, namely MSGARCH (Ardia, Bluteau, Boudt, Catania, and Trottier 2019), segM-
Garch (Cho and Korkas 2019) and tvgarch, is provided in Table 1. The novelties in tvgarch,
which distinguishes it from the other two packages, are also highlighted. They differ from tv-
garch in several ways. When the transition between volatility regimes is rather abrupt and as-
sumed to be governed by a latent discrete Markov process, this is called the Markov-switching
GARCH model (see, e.g., Hamilton and Susmel 1994). This model can be implemented using
the R package MSGARCH (Ardia et al. 2019). Additionally to the way the nonstationary
TV component is modeled, the key differences between the two packages lie in the modeling
of the stationary GARCH component. The package tvgarch assumes a fairly flexible GARCH
component by allowing the user to specify higher orders for the ARCH and GARCH terms (in
addition to leverage effects) and to add explanatory variables. If the speed of transition turns
out to be zero (meaning no transition exists and so volatility is stationary and its parameters
remain constant), the different models collapse into their stationary GARCH counterparts.
The GARCH component of either a stationary or nonstationary GARCH model is estimated
by calling the garchx () function of the R package garchx (Sucarrat 2021), on which the pack-
age tvgarch depends. Also, because estimation is carried out by pseudo or quasi maximum
likelihood (QML) in the package tvgarch, there is no need to specify a distribution for the
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MSGARCH segMGarch tvgarch

Nonstationary volatility v v v
Abrupt transitions v v v
Smooth transitions v
Exogenous transition variables v
QML (robust to misspecified density) v v
Higher ARCH and GARCH orders v v
Asymmetry v v
Higher asymmetry order v
Covariates (X) v
Test for nonstationarity v v
Multivariate v v

Table 1: A feature-based comparison of the R packages MSGARCH (Ardia et al. 2019),
segMGarch (Cho and Korkas 2019) and tvgarch (Campos-Martins and Sucarrat 2023) for
modeling nonstationary volatility with GARCH estimation.

error term as is the case for the package MSGARCH. Finally, in a Markov-switching GARCH
model, the volatility forecasts are quickly adjusted to changes in the unconditional volatility.
In the smooth transition setting, because the transitions between volatility states are ruled
by a transition variable, the way volatility forecasts are computed will depend on both the
speed of transition and/or whether this variable is deterministic (e.g., time) or stochastic
(e.g., past or realized volatility). Another R package that allows nonstationary volatility is
segMGarch (Cho and Korkas 2019), which provides a segmentation algorithm for detecting
change-points in high-dimensional GARCH processes. It allows for multiple points of change,
which are common to a subset or all of the component time series in either/both conditional
variances or/and conditional correlations. A similar segmentation approach is proposed by
Amado and Terésvirta (2014) for testing and estimating nonstationary volatility using the
TV-GARCH model. The unconditional variance of a long stock return series is modeled
by dividing the time series into non-overlapping segments each comprising at least of 1500
observations, applying the strategy to them and combining the results into a single model.

Another strongly related nonstationary volatility model, which is also based on a multiplica-
tive decomposition of the conditional variance, is the spline GARCH model (Engle and Rangel
2008). It allows the unconditional variance to change smoothly over time, but the transition
is rather described as an exponential quadratic spline function of time. The closest the spline
GARCH model can be to the TV-GARCH is when time (scaled between zero and one) is
selected as the transition variable in the logistic transition function. In this setting, both
models are able to describe dominant changes in the (unconditional) volatility of a time se-
ries of financial returns. The spline GARCH model can be implemented with the module
GQ@QRCH (Laurent 2018) of OxMetrics (Doornik 2018), where the number of knots (and of
equally spaced intervals over the sample period) has to be specified by the user. In the module,
additional explanatory variables are also allowed.

As it turns out, models such as the TV-GARCH, where structural changes in the unconditional
variance are allowed, also help in explaining the long-range dependence and the integrated
GARCH effect of financial return series (Mikosch and Starica 2004; Amado and Terdsvirta
2013). Volatility models of strong persistence such as the integrated GARCH (Engle and
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Bollerslev 1986) or the fractionally integrated GARCH (Baillie, Bollerslev, and Mikkelsen
1996) can be implemented with the module G@RCH (Laurent 2018) of OxMetrics (Doornik
2018) or the R package rugarch (Galanos 2023).

Main functions

For most users, the main functions of the package tvgarch are tvgarch (), tvgarchTest () and
mtvgarch(). The function tvgarch() estimates a univariate TV-GARCH model, whereas
mtvgarch() estimates a multivariate TV-GARCH model. The function tvgarchTest () im-
plements a test procedure that tries to identify the number of changes in the unconditional
volatility. It is important to carry out this procedure before estimating a TV-GARCH model,
since the parameters of a TV-GARCH model are not identified if one tries to estimate more
changes in the unconditional volatility than there actually is. Section 3 contains a more
detailed overview of the main functions of tvgarch.

On reproducibility

Estimation in our package is via numerical optimization procedures. So users may experience
that their results differ from the ones reported in this paper, even if the same code is used.
This may be due to differences in hardware, OS, R version, package versions or the setting
in options(). The results in this paper have been obtained using MS Windows Pro 64-bit
version 10.0.19045, R 4.3.1 (R Core Team 2024), tvgarch 2.4 (Campos-Martins and Sucarrat
2023), garchx 1.5 (Sucarrat 2021), numDeriv 2016.8-1.1 (Gilbert and Varadhan 2019), dc-
cmidas 0.1.0 (Candila 2024) on a Lenovo ThinkPad X390 Yoga with an Intel i7-8565U CPU
at 1.80GHz chip. All packages are available on CRAN.

Organization of paper

The remainder of this paper is organized as follows. The next section describes univariate and
multivariate TV-GARCH models (Sections 2.1-2.4), and gives an overview of aspects related
to estimation (Section 2.5). Section 3 provides an overview of the main functions of the
package tvgarch. In Section 4, we show how to simulate either a univariate or a multivariate
time series with nonstationary volatility using the R package tvgarch. Section 5 contains an
application to real data. Specifically, an illustration of the testing and estimation strategies
for modeling nonstationary financial volatility is given. This is done first for a single series
of financial returns and then for a multivariate time series, where not only the conditional
variances but also the conditional correlations of returns are estimated. Finally, Section 6
concludes.

2. The TV-GARCH model

The TV-GARCH model of Amado and Terdsvirta (2013, 2017) is the key ingredient of the
tvgarch package. To recall, the univariate TV-GARCH model specifies the financial return
uy (raw or demeaned) as

Up = oMy, oy > 0, ne ~ 1id(0, 1), th = gihy, t=1,...,n,

where o7 is the conditional variance, 7; is a zero mean and unit variance innovation, g; is
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the non-stochastic TV component, h; is the rescaled GARCH component and n is the sample
size, see Equations 14 above.

2.1. The TV component, g;

The non-stochastic TV component g; takes the simplest form when it is described by a
single logistic transition function, and a single transition. We will refer to this as the TV(1)
specification:

g = 0o+ 0G(v,ct/n), 0 < do, —dp < 01,

1

G(v,ct/n) [ s rym——e 0 <7, ce (0,1).
The TV(1) is thus characterized by the four parameters 99 = (dg, d1,7, ¢)’. The parameter &;
is the total transition size, since the logistic function G varies between 0 and 1. In the special
case where the transition size is zero, i.e., 1 = 0, then g¢; is constant and equal to dg. In
this case v and ¢ are not identified in estimation, since any pair of admissible values (v, ¢) is
compatible with g; = dg for all ¢. It is therefore important to identify the number of transitions
before estimation, see Section 5.2.1. Notice that the parameter restriction —dy < 41 ensures
0 < g¢ for all t. The c is the mid-point of the location of transition, and is expressed as
a fraction of the sample. For example, if ¢ = 0.5 and n = 100, then the mid-point of the
location of transition is ¢ = ¢ - n = 50. Locations of transition are expressed as fractions due
to the asymptotic estimation theory that we rely on, see Amado and Terédsvirta (2013). The
~ is the speed of transition: The higher, the faster and more abrupt. In fact, as v — oo,
the function G tends to a step function with the step at ¢. The lower 7 is, the slower the
transition is. Notice that time enters as scaled time in G, i.e., t/n € (0,1]. Again, this is due
to the asymptotic estimation theory. More generally, ¢/n is a transition variable governing the
change in the unconditional variance. In principle, any non-stochastic continuous transition
variable s; € [0,1] can be used. So s; = t/n is a special case. The left panel of Figure 1 plots
the TV(1) for transition speeds v = 10, 25,50 when 6y = §; = 1 and s; = t/n.

The number of locations of transition in g; can be increased in three ways. The first restricts
transition sizes and transition speeds to be equal across locations:

g = 00+ 01G(v,¢;5), 0 < dg + 01,
. 1
Gy, e 81) = <1+€XP{—’YH(St—Cl)}> ) 1 < S e (5)
=1

Here, the number of transitions is 7, so this is a TV(7) specification. The parameters to
be estimated are 99 = (dg,d1,c’)’. The right panel of Figure 1 plots an example with two
locations, ¢ = (0.25,0.75)’, for transition speeds v = 10, 25,50 when s; = t/n.

The second way the number of locations of transition can be increased, allows the transition
sizes and transition speeds to differ across locations:

E k
g = S0+ 8iGi(veiis),  0<do+ ) dj
j=1 =1
1

L4 exp {—v;(st —¢j)}

G(7]7 C]7 St)
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(a) c=0.5. (b) ¢; = 0.25 and ¢ = 0.75.

Figure 1: The logistic function with one and two locations of transition for different values of
the speed of transition, i.e., v = 10, 25, 50.

The number of transitions is k, i.e., one transition in each logistic function. The parameters
to be estimated are now 99 = (8',v/,¢'), where § = (80,61,...,0%), v = (71,---,%) and
¢ = (c1,...,c¢)'. Notice that, here, a more complicated set of parameter restrictions on the

0;’s are needed to ensure 0 < g; for all ¢.
The third way the number of locations of transition can be increased, combines the first two

ways:

k k
g = o+ 6;Gi(y.cis),  0<d+ Y 4 (6)

j= i=1
75 -1
Gi(vj,cjisy) = <1 +€XP{%‘ 11 (s le)}) : (7)
=1

So the number of logistic functions is k, and the number of transitions is Zle Tj

2.2. The rescaled GARCH component, h;
To recall, the first order rescaled GARCH(1, 1) specification is given by

he=w+agi+Bhiy  where ¢} =ui/gi,

see Equation 4. The parameter 0 < w is the intercept, 0 < a is the ARCH parameter and
0 < B is the GARCH parameter. Further restrictions can be imposed on « and 3 to guarantee
the stationarity of {h;}. In particular, weak stationarity holds if and only if o + 5 < 1.

While the GARCH(1, 1) specification is widely used, it is well-known that it is not satisfac-
tory in the presence of asymmetry or “leverage” (asymmetry is often attributed to financial
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leverage). That is, volatility tends to be higher after negative returns. Usually, such asymme-
try is accommodated by including the product of the lagged indicator term 1(¢;—1 < 0) and
¢?_,, where 1(A) is equal to 1 when A holds and zero otherwise. This leads to the rescaled
asymmetric GARCH(1, 1):

he = w + a¢i_; + Bhi_y + A¢_11(dr-1 < 0).

We will also refer to this specification as the GARCH(1,1,1).

First order models are often sufficient to describe the dynamics in empirical applications.
When they do not suffice, then more general GARCH(p, ¢, ) models can be specified:

q p T
he=w+Y aif ;+ > Bihe—j+ Y Ndi ;1(d—; <0).
j=1 j=1 j=1

The p, g and r refer to the GARCH, ARCH and asymmetry order, respectively.

Finally, to accommodate the possible influence of stationary covariates, a GARCH(p, ¢, r)-X
model can be specified, where ‘X’ indicates the inclusion of stationary covariates:

q P r
he=w+ Y a;df j+ Y Bih—j+ > Xid7 jL(dr—j < 0) + ¢'xq. (8)
Jj=1 Jj=1 Jj=1

To ensure h; is positive for every ¢, each entry of the v x 1 covariate vector x; must be non-
negative for all ¢. Also, the following parameter restrictions must hold: w > 0,a; > 0,5 =
L...,q, 3 >20,5=1,...,p, \; 20,7 =1,...,rand ¢; > 0,5 = 1,...,v,. These parameter
restrictions are implemented inside the function tvgarch() during estimation, and cannot be
altered by the user.

2.3. The TV-GARCH(p, q¢,r)-X model

At its most general, the TV component in Equations 6-7 is combined with the GARCH(p, ¢, r)-
X component in Equation 8 to form the TV-GARCH(p, ¢, 7)-X model. In most cases, however,
a simple specification with few terms is sufficient for the problem at hand. For this reason,
the default of the function tvgarch() is to estimate the TV(1)-GARCH(1, 1) specification:

01
1+exp(—7(t/T —c¢))’

In Section 5 we discuss how estimation of this and other specifications proceed in practice.

gt = 0o + he = w+ gy | + Bhi_1.

2.4. The multivariate TV-GARCH(p, ¢,7)-X

In conditional correlation GARCH models, the conditional covariances are usually assumed to
have a multiplicative decomposition, where the conditional variances are modeled separately
from the conditional correlations. See Bauwens, Laurent, and Rombouts (2006) for a survey
on multivariate GARCH modeling.

In this class of models, the conditional variances and/or the conditional correlations can be
further multiplicatively decomposed when processes are nonstationary. Much attention has
been dedicated to the decomposition of nonstationary conditional variances into short- and
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long-term variance components, which can then be modeled separately. For a recent survey on
GARCH models with multiplicative decomposition of conditional variances (and conditional
correlations), we refer to Amado et al. (2019).

The general conditional correlation GARCH model can be described as follows. Let u, =
(Uit ..., ume) denote the vector of financial returns (raw or demeaned). Throughout, we
assume E(u¢|F;—1) = 0,,, where 0,, denotes an m x 1 zero vector and F;_; contains the
information available until time ¢ — 1. Henceforth, our focus is on the conditional covariance
matrix of u;, H;, where H; = E(u,u}|F;—1). We assume H; exists and is positive definite for
all £.

The conditional covariance matrix of u;, Hy, is multiplicatively decomposed as follows:

H; = D,G;P,G;Dy, 9)

where D; = diag{h}{g, RN hi,{f } is a diagonal matrix containing the rescaled conditional

standard deviations, where hj; is assumed to follow a GARCH(p;, ¢;, 7i)-X; structure as defined
in Equation 8, and G; = diag {gitﬂ, e ,gin/f} is a diagonal matrix of the positive-valued
and deterministic functions, g¢;:, describing the TV component in Equations 6-7. In the
GARCH-X component, p; indicates the ARCH order, ¢; the GARCH order, r; the asymmetry
order, and X; that covariates are also included in the ith variance equation. P; is a positive
definite matrix that contains the time-varying conditional correlations p;j;, 7,5 = 1,...,m,
with p;j = 1 when i = j.

In the dynamic conditional correlation GARCH model of Engle (2002), the conditional cor-
relations of financial returns are computed as a function of the past information and given by
the dynamic matrix process

Qi =(1-6—0)Q+0m_1m,_1 +62Q;1, (10)

where 61 > 0, 03 > 0, 6; + 60> < 1 and Q is the unconditional correlation matrix of the
volatility standardized residuals, i7,. The parameter restrictions are imposed to ensure positive
definiteness of Q;, which ensure that also the time-varying conditional correlations P; are also
positive definite. To obtain valid correlation coefficients, the correlation matrix is rescaled as
follows:

P; = diag(Q;)/*Qudiag(Q;) /% (11)

A special case is nested in this model when conditional correlations are time-invariant, i.e.,
P; = P in which case the model becomes the constant conditional correlation GARCH model
(Bollerslev 1990). Francq and Zakoian (2019, Chapter 10) and Amado et al. (2019, Section
5) contains surveys of multivariate GARCH models.

In practice, testing and estimation of the variance component of the conditional covariance
matrix are carried out equation by equation (Francq and Zakoian 2012, 2016). Estimation
of the correlation component is then carried out conditionally on the estimated variances
completing the two-step estimation procedure; see Engle (2002).

2.5. Estimation

In the univariate case, estimation of the parameters in g; and h; is implemented with tvgarch ().
On an average contemporary laptop, estimation of a TV(1)-GARCH(1,1) model with n ~
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2000 typically takes 1-5 seconds. Estimation is via quasi maximum likelihood (QML). The
word “quasi” means estimation is by means of maximum likelihood (ML) based on a normal
density, but estimates are nevertheless consistent (subject to suitable regularity conditions)
even if the density of the innovations {r;} is not normal. Due to the numerical complexity of
the problem, estimation is implemented with the iterative two step method derived by Amado
and Terdsvirta (2013), which is an adaption of the maximization by parts method of Song,
Fan, and Kalbfleisch (2005). Let 9 = (9",99) denote the full set of parameters, where
9" are the parameters of the GARCH component hy, and 99 are the parameters of the TV
component ¢;. In each iteration ¢, the parameter 9 is estimated in the first step, and then
the parameter 9" is estimated in a second step. Next, the estimation results from iteration
1 are used for the next iteration ¢ + 1. This iterative procedure continues until convergence.
In each iteration, the first step calls the function constrOptim() internally, and the second
step calls the function garchx () from the package garchx internally, which invokes nlminb ().
To ensure the estimation procedure proceeds correctly from one component to another, and
from one iteration to the next, user-specification of the arguments in constrOptim() and
garchx () is limited. Currently, only the arguments initial.values (a numeric vector) and
opt (an integer equal to 0, 1 or 2) are available to control the numerical optimization proce-
dure. The former argument can be used to user-specify the starting values of the parameters.
The latter argument controls the scaling of the speed parameters y;,7 = 1,..., k. This is use-
ful, since their estimates can converge towards very large values, causing numerical problems
when computing the standard errors. To overcome this, the speed parameters can be scaled.
If opt = 0, no scaling is applied. This is the default for the tv() function and the func-
tions for simulating TV-GARCH processes, namely the tvgarchSim() and mtvgarchSim()
functions. When opt = 1, then the speed of transition, +, is replaced by ~/sd(s;), where
sd denotes the sample standard deviation. Finally, if opt = 2, exp(7) is used in place of ~.
To avoid having the speed of transition converging to a very large number, opt = 2 is the
default. Notice also that, internally, the speed parameters are by default bounded from above
by 250 when opt = 0 or opt = 1, and by In250 when opt = 2. This can be changed via
the upper.speed argument in tvgarch(). A sketch of the theory behind the estimation of a
univariate nonstationary GARCH model is provided in Appendices A and B.

In the multivariate case, estimation of the parameters is implemented with mtvgarch().
Estimation is carried out with the equation by equation approach of Francq and Zakoian
(2012) using the univariate estimation procedure described above. In other words, each
equation entails a call to tvgarch() internal to mtvgarch(). Next, after the estimation of
the parameters of the conditional variances, the standardized residuals are used to estimate
the dynamic conditional correlation (DCC) model of Engle (1982). This is optional and can
be controlled via the argument dcc in mtvgarch(). See Appendix C for more details on the
dynamic conditional correlations.

3. An overview of the package

For the average user, the main functions of the tvgarch package are tvgarch(), tvgarchTest ()
and mtvgarch(). The function tvgarch() estimates a univariate TV-GARCH model and re-
turns an object of class "tvgarch". The function tvgarchTest () implements a test procedure
to identify how many transitions or changes there are in the unconditional volatility. In em-
pirical applications, it is important to carry out this test before estimating a TV-GARCH
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model, since the parameters of the TV-GARCH model are not identified if one tries to esti-
mate more transitions than there actually is. The function mtvgarch() estimates a multivari-
ate TV-GARCH model and returns an object of class "mtvgarch". Note that the function
tvgarchTest () can also be used prior to the estimation of a multivariate TV-GARCH model.

Some users will be interested in simulating from TV-GARCH models. To this end, the func-
tions tv (), tvgarchSim() and mtvgarchSim() can be used. The function tv() can be used
to simulate from the non-stochastic component g, i.e., the dynamics of the time-varying
unconditional volatility. This can be useful to obtain a detailed idea of how the different
parameters affect the transition dynamics. The function tvgarchSim() simulates from a uni-
variate TV-GARCH, whereas mtvgarch() simulates from a multivariate TV-GARCH model.

Here follows a summary of the main characteristics of these functions:

e tvgarch(): Estimate a univariate TV-GARCH model.

Main arguments: A univariate time series y — e.g., an object of class "vector", "ts" or
"zoo" (Zeileis and Grothendieck 2005) — an integer vector order.g that specifies the
general g; component in Equations 6—7 and an integer vector order.h that specifies the
GARCH(p, q,r) component h; in Equation 8. Additional covariates can be included via
the xreg argument.

Value: A list of class "tvgarch".

S3 methods: coef(), fitted(), logLik(), nobs(), plot(), predict(), print(),
quantile(), residuals (), summary (), toLatex(), vcov(). Typehelp(coef.tvgarch)
for detailed documentation of the methods.

e tvgarchTest(): A test procedure to identify the number of transitions.

Main arguments: A time series y (e.g., an object of class "vector", "ts" or "zoo") and
the significance level alpha (the default is 0.05) to be used in the procedure.

Value: A list of class "tvgarchTest". The entry named "order.g" contains the
number of transitions suggested by the test procedure. The entry named "mat" provides
the details of the non-robust test procedure, whereas the entry named "matRob" contains
the details the robust version. To recall, “robust” means robust to non-normality of the
innovations, i.e., the n’s.

53 methods: Same as those of tvgarch(), type help(coef.tvgarchTest) for detailed
documentation. Note that the values returned from these methods are always those
of a GARCH(1, 1) specification estimated under the assumption that the unconditional
volatility is constant.

o mtvgarch(): Estimate a multivariate TV-GARCH model.

Main arguments: A multivariate time series y (e.g., an object of class "matrix", "ts"
or "zoo"), a matrix order.g in which row ¢ specifies the g; component of equation i, a
matrix order.h in which row ¢ specifies the h;; component of equation ¢, and a logical
dcc that determines whether constant (FALSE, the default) or time-varying dynamic
(TRUE) conditional correlations should be fitted.

Value: A list of class "mtvgarch".
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58 methods: Same as those of tvgarch(), type help(coef .mtvgarch) for detailed doc-
umentation of the methods.

e tv(): Simulate the dynamics of the component g, i.e., unconditional volatility.

Main arguments: The number of observations n, a numeric vector location with the
scaled locations (i.e., values between 0 and 1) of the transitions and a numeric vector
speed with the transition speeds.

Value: A time-series of class "zoo" (default) ordered by scaled time. Optionally, by
setting as.zoo = FALSE, the returned series is of class "vector".

e tvgarchSim(): Simulate from a univariate TV-GARCH model.

Main arguments: The number of observations n, the arguments that specify the g,
component (intercept.g, size, speed and location), and the arguments that specifies
the GARCH model, i.e., the hy component (intercept.h, arch, garch, asym, xreg).

Value: A univariate time-series of class "zoo" (default). For more detailed output, set
verbose = TRUE.

e mtvgarchSim(): Simulate from a multivariate TV-GARCH model.

Main arguments: The number of observations n, the arguments that specify the g,
component (intercept.g, size, speed and location), the arguments that specifies
the GARCH model, i.e., the hy component (intercept.h, arch, garch, asym, xreg),
and the arguments that specify the conditional correlations (R, dcc, dcc. par).

Value: A multivariate time-series of class "zoo" (default). For more detailed output,
set verbose = TRUE.

4. Simulation from TV-GARCH models

Simulating TV-GARCH processes can be very useful. For example, to study the finite sample
properties of estimators or test statistics, simulated data are needed. We may also be inter-
ested in specific cases (e.g., a multivariate TV-GARCH model with very high correlations),
which can be difficult to find empirically, or making predictions (e.g., when constructing
confidence intervals using parametric bootstrapping).

Nonstationary GARCH processes can be simulated with the tvgarchSim() function for a uni-
variate times series or the mtvgarchSim() function for an m-dimensional series, in which case
the simulated univariate models constitute a nonstationary vector GARCH from correlated
innovations.

4.1. Simulating the TV component

To simulate the values of the logistic transition function in Equation 6, the auxiliary function
tv() of tvgarch can be used. The transition variable is defined by the xtv argument. When
xtv = NULL, the transition variable is a proxy for time, scaled between 0 and 1, for a total
of n observations. When xtv = NULL, the argument n has to be provided. To construct the
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Figure 2: The time series of returns simulated from a TV(1)-GARCH(1, 1) model.

transition variable xtv when xtv = NULL for 1000 observations, the following code can be
used:

R> n <- 1000
R> stime <- seq(1:n)/n

This is similar to the code in the tv() function used to construct the transition variable xtv
when xtv = NULL. The variable xtv can be returned if the argument verbose = TRUE. The
following code can be used to generate the values of the logistic function in Equation 5 with
v = 10 and a single location of transition with the mid-point of change at ¢ = 0.5:

R> Git <- tv(speed = 10, location = 0.5, n = 1000)

By default, the values returned by tv() is a vector of class "zoo", but this can be changed
via the zoo argument. Graph (a) in Figure 1 contains a plot of the values, together with plots
of speed = 25 and speed = 50. The higher the speed, the faster or more abrupt transition.

If instead two locations of change are assumed at ¢; = 0.25 and ¢y = 0.75, then the following
code produces such logistic function values:

R> G2t <- tv(speed = 10, location = c(0.25, 0.75), n = 1000)

Graph (b) in Figure 1 contains a plot of these values, together with plots of speed = 25 and
speed = 50. Again, the higher the speed, the faster or more abrupt transitions.

4.2. Simulating from a univariate TV-GARCH model

The simplest TV-GARCH model is simulated by default. The following code allows us to
obtain a time series with 1000 observations whose conditional variance is simulated from a
TV(1)-GARCH(1, 1) model and to store the observations in an object called uSim:

13
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R> set.seed(123)
R> uSim <- tvgarchSim(n = 1000)

The simulated series of returns are visualized in Figure 2, from where it can be seen that the
simulated returns become more volatile in the second half of the simulated sample (this path
is obtained by assuming one transition whose mid-point of change coincides with the median
observation).

By default, the independent innovations, 7:,¢t = 1,...,n, are random draws from a stan-
dard normal distribution. This can be changed through the innovations argument of the
tvgarchSim() function, where the innovations are supplied as an n x 1 vector. In the de-
fault setting, opt = 0 and because the transition variable is not specified (i.e., xtv = NULL),
st = t/n. The arguments of tvgarchSim() can be described as follows:

e order.g is an integer vector of length k£ that indicates the number of locations in each
logistic transition function of the TV component, recall Equations 6-7. The default,
order.g = 1, means the conditional variance of the time series is nonstationary with
a single transition function and a single location parameter. By contrast, if order.g =
c(1,2), then the TV component contains one location in the first logistic function, and
two locations in the second logistic function. That is, a total of three transitions.

e order.h is an integer vector of length 3 that indicates the GARCH, ARCH and asym-
metry order for each series, i.e., order.h = (p,q, ), recall Equation 8. The default is
order.h = c(1,1,0), i.e., a standard GARCH(1, 1) without asymmetry. To produce
asymmetric effects, the third item (the asymmetry order), which is zero by default,
needs to be changed to, e.g., order.h = c(1,1,1).

o intercept.gis ascalar, which indicates the value of the intercept in the TV component,
dg- By default, intercept.g = 1.2. If, for instance, the time series were stationary,
then there would be of course no need to specify the value of the intercept in the TV
component nor any of the following three arguments.

o size is a vector of length k£ that contains the values of the size coefficients, d;,j =
1,...,k. By default, size = 5.

» speed is a vector that contains the values of the speed coefficients, ~;, 7 = 1,...,k. The
default setting is speed = 25. For identification of the nonstationary variance model,
v > 0. However, the range of possible values for this parameter is different according
to the choice of opt. For instance, when opt = 2, small negative values of the speed of
transition are possible.

e location is a vector that contains the values of the locations of transitions, c;;,j =
1,...,k,l=1,...,kj. The mid-point of change in the default model (i.e., with a single
transition function) occurs at ¢1;7 = 0.5 and can be coded by setting location = 0.5.
If more than one location parameter and/or transition function, the location values
should be provided for each transition in a single vector such that c;1 < ¢jo < --- <
¢jk;»J = 1,..., k. As an example, when order.g = 2 and location = c(0.2,0.8), a
TV(2) component is simulated whose logistic transition function is symmetric around
(612 — 011)/2 = (0.8 — 0.2)/2 = 0.3.
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e intercept.h is a scalar, which indicates the value of the intercept in the GARCH
component, w. By default, intercept.h = 0.2.

e arch is a vector of length ¢ that contains the ARCH coefficients used in the simulations,
aj,j=1,...,q. The default value is given by arch = 0.1.

» garch is a vector of length p that contains the values of the GARCH coefficients, 3;, j =
1,...,p. By default, this is set to garch = 0.8.

e asym is a vector of length r that contains the values of the asymmetry parameters,
Aj,j = 1,...,7. By default, no asymmetric effects are assumed, i.e., asym = NULL.
If instead we want the conditional variance to show asymmetric effects (meaning the
order.h has been changed such that r # 0), then the r values of the asymmetry
coefficients should be provided using the asym argument.

e xreg is a vector of length n that contains the impacts of the stationary covariates. The
default is NULL, i.e., no regressors.

o opt an integer (0,1 or 2) that indicates whether the speed parameter in the TV com-
ponent should be scaled, and if so how (more details in the help pages). The default is
0, i.e., no scaling.

The default values above are chosen according to the results usually found in financial em-
pirical applications. Naturally, these can and should be adjusted to the empirical problem at
hand.

4.3. Simulating from a multivariate TV-GARCH model

The first argument of mtvgarchSim() is the number of observations to simulate n, and the
second argument is the number of time series to be simulated m. By default, a bivariate process
is simulated, i.e., m = 2. Also by default, both conditional variances are nonstationary and
follow a TV(1)-GARCH(1, 1) model. By constrast, the simulated conditional correlations are
constant under the default, but can have the dynamic structure of Equations 10-11 if the dcc
argument of the mtvgarchSim() function is switched to TRUE by the user. A combination
of stationary and nonstationary variance equations with or without leverage effects and/or
covariates is possible by user-specifying the other arguments in mtvgarchSim(). For example,
the following code simulates a bivariate time series, where the first follows a nonstationary
TV(1)-GARCH(1,1) model and the second a nonstationary TV(1)-GARCH(1,1,1) model
(or TV(1)-GJR(1)-GARCH(1, 1) following the literature on GARCH models with asymmetric
effects introduced by Glosten, Jagannathan, and Runkle 1993), and stores the simulated series
in an object called mSim:

R> mSim <- mtvgarchSim(n = 1000, order.h = c(1,1,0,1,1,1), asym = 0.01)

It is straightforward to change the innovations argument in mtvgarchSim(), in which case
an n X m matrix of innovations can be provided rather than assuming random draws from
a standard normal. Other relevant arguments are explained below and more examples are
provided. For notational convenience, the first subscript identifies the time series. If only two
subscripts are shown, then the second subscript identifies the parameter. Whenever three
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subscripts are necessary (if more than one location parameter is assumed), then the second
subscript identifies the transition function while the third is used to identify the parameter.

o order.gis an m x max ({k;}]*) integer matrix (a vector can also be provided in which
case the matrix() function with the argument byrow = TRUE is then applied) that
indicates the number of locations of transition in each logistic transition function of the
TV components. By default, order.g = c(1, 1). This means the conditional variance
of each time series is nonstationary with a single transition function with one location
parameter. If, for instance, order.g = c(1,0), this means the conditional variance
of the first time series remains the same as in the default model, but the conditional
variance of the second one is now stationary.

e order.h is an m x 3 matrix of integers where the first column controls the GARCH
order, the second the ARCH order and the third the asymmetry order of each GARCH-
X component. By default, a standard GARCH(1, 1) process is assumed for each times
series. In the code example above, where order.h = ¢(1,1,0,1,1,1), the conditional
variance of the second time series contains asymmetric effects, but not the first condi-
tional variance.

o intercept.g is a vector of length m that contains the values of the intercepts in the TV
components. By default, the intercepts in each TV(1) component are set to 19 = 1.2
and d90 = 1 (i.e., intercept.g = c(1.2, 1)). If, for instance, the second time series
were stationary, then there would be no need to specify the value of the intercept in the
TV component of the second series.

o size is an m X max ({k;}*,) numeric matrix which provides the values of the size
coefficients, ;5,1 = 1,...,m, j = 1,...,max ({k;}~;). By setting size = c(3, 5),
the size for the first (and single) transition is d;; = 3 and d2; = 5 for, respectively, the
first and second series.

o speed is similar to size and provides the values of the speed coefficients, v;;,¢ =
1,...,m, j=1,...,max ({k;}[",). By setting speed = c(10, 25), the speed of tran-
sition in the first (and single) transition of the first time series, v;; = 10 and for the
second time series, o1 = 25.

o location is an m X max ({k;}/;) matrix that includes the values of the location of
transition in each transition function. To get some insight on the form of this matrix,
consider a single transition function for both times series with two locations in the
first and one in the second. To simulate a bivariate series with nonstationary variance
equations of that form, location should be a 2 x 2 matrix with a zero value assigned to
the second location of transition in the logistic transition function of the second series.
Whenever a location of transition does not apply, the value attributed should be zero
(even though the value will not be used, in practice). The mid-point of change for the
example above with one location of transition is the default, i.e., ¢;1 = 0.5 for the first
series and c91 = 0.8 for the second series.

e intercept.h is a vector of length m that contains the values of the intercepts in the
GARCH component, w;,7 = 1,...,m. By default, intercept.h = ¢(0.2,0.3).
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o arch is the m x max({¢;}/*,) matrix containing the ARCH coefficients used in the
simulations, a;;,7 = 1,...,¢q;. The default values are given by arch = ¢(0.1,0.05)

o garch is the m x max({p; }*,) matrix containing the values of the GARCH coefficients,
Bij»j =1,...,pj. By default, this is set to garch = ¢(0.8, 0.9).

o asym is an m x max({r;}/";) matrix containing the values of asymmetry parameters,
Xij,J =1,...,7;. Because only the second series assumes asymmetry effects of news on
the conditional variance, asym = 0.01.

e R is the matrix of constant conditional correlations, p;j¢,%,j = 1,...,m, with p;;; = 1
when ¢ = j. The unique pairwise correlation between the two time series is, by default,
assumed to be 0.6. This is simply coded as R = c(1, 0.6, 0.6, 1).

To make use of other arguments which allow us to include covariates in the model, let us
first generate a set of two covariates. The following code generates 1000 observations for
two random variables with mean zero and unit variance, squares them and stores them in an
object called mX:

R> mX <- matrix(rnorm(1000*2)~2, 1000, 2)

xreg is the argument that provides the set of stationary covariates. Next, the following
code simulates a similar multivariate TV-GARCH-X model but now with two covariates in
the GARCH-X component of the first time series. The coefficients for each covariate are,
respectively, (17 = 0.01 and (32 = 0.02. The simulated series are then stored in an object
called mSim2:

R> mSim2 <- mtvgarchSim(n = 1000, order.x = c¢(1,0,0,1), xreg = mX,
+ par.xreg = c(0.01, 0.02))

In some applications, there may be the case that past information driving the volatility of
one time series helps to predict the variance of other series. Volatility spillovers occur when
past squared returns (ARCH) and/or variances (GARCH) of a series affect the variance of
another return series. Since estimation in the package tvgarch is performed equation by
equation, volatility spillovers are allowed only through the ARCH terms, i.e., past squared
returns. Provided that the argument xreg = NULL, the default, and order.x, an m x m
binary matrix, is non-zero, volatility spillovers can be accommodated in the GARCH-X com-
ponent as additional covariates. In that setting, the covariates in the GARCH-X component
include lagged squared returns of the multivariate data. Note that, when assuming volatility
spillovers, only first-order lagged returns, variances and asymmetry terms are possible (i.e.,
maximum order.h = (1,1,1)). The covariates x; = ¢? ; will then be used to account for the
volatility spillovers. The covariates to be included in the GARCH-X component of each time
series are selected by the non-zero entries of the order.x argument. (Note that the diagonal
elements of par.xreg should all be zero, even though they are never used in practice.) If
order.x has non-zero off-diagonal elements and xreg = NULL, then volatility spillovers are
included as covariates multiplied by the coefficients provided in par.xreg. This argument
is an m X m numeric matrix containing the coefficients of the covariates, in this case, the
cross-series information. Volatility spillovers are allowed in the multivariate mtvgarchSim()
and mtvgarch() functions.

17
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As an example, consider a bivariate TV-GARCH-X model. Suppose the first-order lagged
squared standardized returns of the second series affect the GARCH-X component of the
first series. Moreover, assume that the spillover coefficient, i.e., the parameter associated to
variable CZ’%,t—l in the GARCH-X component of the first series, (12, is equal to 0.02. The
GARCH(1, 1)-X component for the first time series thus has the form

hig = 0.2+ 0.1¢2 ,_y + 0.8h1 -1 +0.0203, ;.

The following code simulates such bivariate time series with (uni-directional) volatility spillovers
and stores it in an object called mSim3:

R> mSim3 <- mtvgarchSim(n = 1000, order.x = c¢(0,1,0,0), par.xreg = 0.02,
+  verbose = TRUE)

By changing the logical argument verbose, the object mSim stores other information and
simulated series (e.g., the innovations). It is possible to check which variables are included
in each GARCH-X component and all the parameter values used in the simulations. For
instance, considering the example above and switching verbose = TRUE, the GARCH-X pa-
rameters used to simulate the two time series with volatility spillovers can be printed by
typing mSim3$par. h:

intercept archl garchl lag(y272)
yi 0.2 0.10 0.8 0.02
y2 0.3 0.05 0.9 0.00

5. Empirical illustration

This section contains three parts. The first, Section 5.1, introduces the data we use for our
illustrations. Next, Section 5.2 provides a detailed illustration of the volatility modeling of
a single return series. Finally, Section 5.3 illustrates the estimation of a multivariate model,
both its volatilities and its dynamic conditional correlations.

5.1. The data

The financial data we use for our illustrations are from the datasets ftsel00, sp500 and
nasdagq in the R package dcecmidas (Candila 2024). The datasets contain the daily open and
close prices — as well as their realized variances (computed using intra-day 5-minute returns,
see (Andersen and Bollerslev 1998)) — of the three major stock indices FTSE 100, S&P 500
and NASDAQ. For simplicity, we merge the closing prices of the three stocks so they all cover
the same sample period, and we remove rows with missing values. To do this, we use the
following code, which also saves the three series in a time series object called stocks_p:

R> library("dccmidas")

R> stocks_p <- merge(ftselO00[, "close_price"], sp500[, "close_price"],
+ join = "left")

R> stocks_p <- merge(stocks_p, nasdaq[, "close_price"], join = "left")
R> stocks_p <- na.omit(stocks_p)

R> colnames(stocks_p) <- c("ftsel00", "sp500", "nasdaq")
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Figure 3: The daily log-returns (in percent) on the NASDAQ index.

For very long sample periods, more than one structural change or shift is to be expected
in the unconditional variance of returns. The modeling strategy of Amado and Terdsvirta
(2013, 2017), where the estimation and testing procedures are applied to the full sample,
works well for a small number of transitions. When the parameters in the GARCH model
are very unstable making the unconditional variance change often, a solution to guarantee
all transitions are captured is to divide the series into smaller periods, applying the strategy
to them and combining the results into a single model; see Amado and Terdsvirta (2014).
To keep the illustration simple, we only consider the period around the 2008 global financial
crisis (i.e., excluding the observations around the dot.com bubble and the recent COVID-19
pandemic). We thus consider the daily prices between December 31, 2003 and December 31,
2013. This is done as follows:

R> stocks_p <- stocks_plindex(stocks_p) >= "2003-12-31 GMT", ]
R> stocks_p <- stocks_p[index(stocks_p) < "2014-01-01 GMT", ]

Finally, the following code computes and saves the log-returns in % (i.e, multiplied by 100):
R> stocks_r <- (diff(log(stocks_p)) * 100)[-1, ]
where the first observation is dropped for a new total of 2466 observations.

5.2. Modeling a single series of stock returns

To illustrate the modeling of a univariate time series, we focus on the daily log-returns of the
nasdaq index. The code to select this series can be

R> nasdaq r <- stocks_r[, "nasdaq"]
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The series of daily log-returns on the NASDAQ index, nasdaq_r, is plotted in Figure 3. Two
characteristics are clear from the figure. The first is the presence of volatility clustering: large
(small) returns tend to be followed by large (small) returns, which provides a clear indication
that the conditional variance is not constant. The second characteristic is that the returns
are systematically more volatile during the 2008 global financial crisis. This may suggest that
also the unconditional variance is not constant. The larger returns will be reflected in higher
volatility during this crisis period, compared to the periods at the beginning and end of the
sample period, where volatility is expected to be rather low and stable. The global financial
crisis may have not only caused the conditional variance to change, but also the unconditional
variance.

Identifying the number of transitions

Before estimating a TV-GARCH model, we first need to identify the number of transitions
or changes in unconditional variance. This is important, since the estimator of the TV-
GARCH model is not identified (asymptotically) if it specifies more transitions than there
actually is (i.e., assumption AG2 in Amado and Terasvirta 2013 does not hold). The function
tvgarchTest () implements a procedure proposed by Amado and Terédsvirta (2017) to iden-
tifiy the number of transitions. The procedure consists of a sequence of Lagrange-multiplier
(LM) tests. Under the initial null hypothesis, the unconditional variance is constant and a
stationary GARCH model with constant parameters is sufficient to describe the dynamics of
the conditional variance. Under the alternative, the unconditional variance is time-varying
and should be modeled as a smoothly changing function of the transition variable used to
perform the test. The results from tvgarchTest() can thus be used to guide the choice of
the number of transitions in specifying a suitable TV-GARCH model. More details about the
test is provided in Appendix D.

The following code implements the identification procedure for the nasdaq return series,
nasdaq_r, using scaled time as the transition variable (default):

R> tvgarchTestObj <- tvgarchTest(nasdaq_r)

which returns an object of class "tvgarchTest". To extract the number of transitions sug-
gested by the procedure, use function summary(). To extract the estimation results of the
model under the initial null hypothesis, i.e., the stationary GARCH(1, 1) model, extraction
functions are available similar to those for objects of class "tvgarch". See Post estimation
below for more details. By typing tvgarchTestObj, the GARCH(1, 1) estimation results,
which include the estimated parameters, the standard errors and the optimized log-likelihood
value, and all test results are all printed as follows:

Date: Tue Jul 4 10:39:44 2023
Testing GARCH(1,1), i.e., the model under HO, against
TV-GARCH(1,1), i.e., the model under H1:

Estimation results for model under HO:
Model: GARCH(1,1)

intercept.h archil garchl
Estimate: 0.0213933 0.0714765 0.9139542
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Std. Error: 0.0065884 0.0113774 0.0125204
Log-likelihood: -3816.104

Transition variable in TV-GARCH(1,1): time
Results from the Non-Robust TR™2 Test:

NonRobTR2 p-value

HO:B3=B2=B1=0 10.7801 0.0130
HO03:B3=0 3.3314 0.0680
H02:B2=0|B3=0 7.2128 0.0072

HO1:B1=0|B3=B2=0 0.2467 0.6194
Results from the Robust TR™2 Test:

RobTR2 p-value
HO:B3=B2=B1=0 10.8985 0.0123
HO03:B3=0 3.5003 0.0614
HO02:B2=0|B3=0 7.1331 0.0076
HO1:B1=0|B3=B2=0 0.7243 0.3947

Single
No. of locations (alpha = 0.05) 2

The results above suggest the unconditional variance is not constant, and that it should be
modeled by two transitions.

Both versions of the TR? test are reported, namely the non-robust and the robust test statis-
tics. Recall, here, “robust” means robustness to non-normality of the innovations, i.e., the n;’s.
For each of the two versions, the first result reported corresponds to testing the hypothesis
that all three coeflicients are zero and the subsequent results from testing the hypothesis that
each coefficient is zero conditionally on the other coefficients being also zero. See Appendix D
for more details. Henceforth, we focus on the robust results.

The significance level is set via the alpha argument of tvgarchTest (). By default, this is
0.05. When the p value from the general test exceeds alpha, the test fails to reject the null
hypothesis Hg, which means the transition variable selected provides no evidence for variance
nonstationarity. The function returns a zero as there is no transition and so no locations of
transition. If, however, the p value is less than the selected alpha, Hj can be rejected providing
evidence for nonstationary variance according to the selected transition variable defined by
xtv. The observed p value from this general misspecification test is 0.0123, which is smaller
than alpha. We therefore reject the general null hypothesis that all coefficients in Equation 12
are zero at the 5% confidence level. This result thus provides evidence in favyze of time-varying
parameters and so that variance is nonstationary. Conditionally on the rejection of Hy, the
tvgarchTest () function tests and prints the sequence of nested hypotheses in Equation 13
to determine the number of locations of transition in the logistic transition function. The
selection rule for k; is based on the lowest p value. If Hps is rejected with a lower (higher)
p value than Hy;, then k4 = 3 (k; = 1), which is the value printed as output. If, however,
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Hyo is rejected with a lower p value than the other two, then k3 = 2. In this empirical
example, the lowest p value is 0.0076, which corresponds to two locations of transition. The
tvgarchTest () returns the number of locations of transition in the single logistic transition
function for a transition variable defined by the argument xtv. We now proceed with the
modeling of the conditional variance by estimating a TV(2)-GARCH-X model, where the
structure of the GARCH-X component has to be determined. Information criteria and/or
visual inspection of the series can be useful in selecting the appropriate conditional variance
model.

Some additional notes on the testing strategy. Notice that the test statistics are computed
conditional on the choice of the transition variable, s;, meaning that rejection of the constancy
hypothesis is valid for a particular transition variable. By default, xtv = NULL meaning
s¢ = t/n and the logistic transition function is deterministic. By changing the xtv argument,
any continuous transition variable can be used, including stochastic variables.

Estimation

In the tvgarch() function, the order.h argument specifies the GARCH(p, ¢, r) part of Equa-
tion 8, and order.g specifies the g, component to be estimated. Both arguments have the
same structure as in tvgarchSim(), see Section 4.2.

The test procedure above suggests there are two transitions. To estimate a TV(2)-GARCH(1,1)
model in which the transition size and speed are the same at each location, recall Equation 5,
simply set order.g equal to 2:

R> tvgarchEst <- tvgarch(y = nasdaq r, order.g = 2)

The estimation results are thus saved in an object of class "tvgarch" called tvgarchEst, and
typing tvgarchEst prints:

Date: Tue Jul 4 10:42:45 2023
Model: TV(2)-GARCH(1,1)
Method: maximization by parts
No. of iterations: 49

No. of observations: 2466

* TV specification (long-term component) x*

Optimization: linearly-constrained
Transition variable: time

intercept: 3.433546 (fixed from first iteration)
sizel speedl locationl location2

Estimate:  -2.134989 5.5214574 0.3602065 0.790451

Std. Error: 0.062759 0.5822143 0.0069976 0.004645

* GARCH specification (short-term component) *
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Optimization: box-constrained
Message (nlminb): relative convergence (4)

intercept archl garchl
Estimate: 0.0137868 0.0647036 0.9159871
Std. Error: 0.0041438 0.0110393 0.0131253

Log-likelihood: -3812.191

Post estimation

The iterative optimization algorithm for fitting the TV(2)-GARCH(1, 1) model reached con-
vergence after 49 iterations, but notice that this and the other estimation result may vary
slightly across operating systems, software versions and other configurational settings (recall
the section on reproducibility in the Introduction). The estimated parameters and corre-
sponding standard errors are printed for each component of the conditional variance. In the
TV component, the estimate of the intercept is 0y = 3.433546, and the estimate of the size
parameter is 61 = —2.134989. To help understand how the estimated variance from the TV
component evolves over time, it is useful to have a look at the estimated logistic transition
function plotted in the top left graph of Figure 4. The estimated deterministic component, gy,
is the blue or smoother of the lines in the top right graph of the figure. At the beginning of the
sample, it is equal to 0 4 61 = 1.298557 (i.e., when Gy = 1). Then it starts to increase some
months before the most acute phase of the global financial crisis. It remains at this higher
level (approximately equal to 30) during the crisis until it eventually evolves in a descending
way towards the initial level.

To date the transitions, the following code extracts the closest possible value of the transition
variable xtv used in the estimation called stime2 to the estimated first location of transition,
611:

R> coef.g <- coef(tvgarchEst, spec = "tv")
R> c11 <- coef.g["location1"]

R> stime2 <- tvgarchEst$xtv

R> stime2[which.min(abs(stime2 - c11))]

which returns:

2007-08-09
0.3600973

The first transition has been estimated to have a mid-point of change (the change being an
increase in variance) on 9 August 2007. This is the day the mortgage crisis went global (Barr
2017). The second location of transition, ¢12, corresponds to 21 November 2011, the mid-
point of a decrease in the variance towards the initial level. Thereafter, the variance remains
low and fairly stable.

The estimated speed parameter is relatively high meaning the transition (i.e., break) is fairly
abrupt or fast. By default, this parameter is scaled in the estimation, i.e., opt = 2. To
obtain the estimated value of 7, we can simply compute 47 = exp(5.5214574), which is
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Figure 4: The estimated logistic transition function (upper left) and conditional standard
deviation (lower right) from a TV(2)-GARCH(1, 1) model as well as its TV component (up-
per right, blue) and the GARCH component (lower left). For comparison, the conditional
standard deviation from a stationary GARCH(1, 1) model is also shown (upper right, black).
All plots for the NASDAQ index returns.

approximately equal to the default upper bound, i.e., 250. By changing the opt argument
of function tvgarch(), we can opt for no scaling if opt = 0. Nevertheless, results (not
shown here to save space) are similar. The default upper bound of 250 is due to numerical
considerations, but can be changed by the user via the upper.speed argument in tvgarch().

To plot the estimated conditional standard deviation (and/or its components), we can use the
extraction function plot.tvgarch(). Applying it on an object of class "tvgarch" returns
three plots with the estimated conditional standard deviations, i.e., from the TV-GARCH
model and its two components, where spec = "tvgarch" is the default. To get individual
plots instead, type
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R> plot(tvgarchEst, spec "tv", ylim = c(0.5,4.5), main = "")
R> plot(tvgarchEst, spec = "garch", ylim = c(0.5,4.5))

R> plot(sqrt(fitted(tvgarchEst)), ylim = c(0.5,4.5), type = "1",
+ ylab = uu’ xlab = "n)

R> title("TV-GARCH")

where we opt for plots to have all the same scale. These are shown in Figure 4 below.

The conditional standard deviation estimated assuming a TV (2)-GARCH(1, 1) model is plot-
ted in the lower right panel. For comparison, the conditional standard deviation estimated
assuming a stationary GARCH(1, 1) model (black) is plotted alongside the conditional stan-
dard deviation from the TV component of the TV(2)-GARCH(1, 1) model (blue) in the upper
right panel. The TV component looks similar to a smoothed conditional mean of the esti-
mated GARCH component. The baseline variance appears to have persistently increased
months before 2008 and remained at this higher level during the global financial crisis. It
eventually returned to the level observed before the crisis. The estimated conditional stan-
dard deviation from the GARCH component of the TV(2)-GARCH(1, 1) model plotted in the
lower left panel of Figure 4 is obtained by standardizing the raw returns by the square root
of the estimated TV component. As can be observed, volatility appears more stable. Ideally,
a statistical test should be used to test this post estimation. In particular, to test whether
additional transition functions are necessary. Such tests are not yet available in tvgarch, but
other post estimation analyses are possible as outlined below.

To report the results in equation form, the extraction function toLatex () can be used. Simply
type toLatex(tvgarchEst) to obtain the following after compilation of the INTEX code:

2
he = 0.0138 + 0.06472=L 4 0.9160%,_,
(0.0041)  (0.0110)g¢—1  (0.0131)

g = 3.4335 — 2.1350@1(5.5215, 0.3602,0.7905;t/n)
(-) (0.0628)  (0.5822) (0.0070) (0.0046)

Log-likelihood: — 3812.1914 n = 2466
Additional extraction functions include:

o coef (tvgarchEst): Coeflicient estimates. The argument spec can be used to specify
whether the function should only extract the optimal parameters in the TV component
(i.e., by choosing spec = "tv") or in the GARCH-X component (in which case, spec
= "garch"). For all coefficient estimates, spec = "tvgarch". Only relevant for TV-
GARCH-X models.

o fitted(tvgarchEst): Fitted conditional variance, 62,t = 1,...,n, by default, i.e.,
when spec = "tvgarch". To extract only the TV component, §;, choose spec = "tv".
For the GARCH-X component, h;, select spec = "garch" instead.

e logLik(tvgarchEst): Optimized log-likelihood value.
e nobs(tvgarchEst): Number of observations used in the estimation.

e plot(tvgarchEst): Plots of the estimated conditional standard deviation. If spec =
"tv", it plots the conditional standard deviation from the TV component in the (nonsta-
tionary) TV-GARCH-X model alongside the conditional standard deviation estimated
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assuming a (stationary) GARCH-X model for comparison. If spec = "garch" instead,
then the conditional standard deviation from the GARCH-X component in the TV-
GARCH-X model is plotted. If spec = "tvgarch", the two aforementioned plots can
be obtained alongside the (full) conditional standard deviation from the TV-GARCH-X
model.

predict (tvgarchEst): Predictions of the conditional variance. When conditional vari-
ance is nonstationary, the user can provide the new values for the transition variable
using the argument newxtv. If left unchanged, then the predicted TV component of
the conditional variance will simply be equal to its intercept, i.e., §ryip = 50, where
h denotes the period ahead. The predicted values for the GARCH component are ob-
tained similarly to those obtained by using the extraction function predict.garchx()
in package garchx; see Sucarrat (2021). When explanatory variables are included, the
new values must be provided using the newxreg argument.

print (tvgarchEst): Print of estimation results (parameters and standard errors).

quantile(tvgarchEst): Fitted quantile(s), the default corresponds to 97.5% value-
at-risk. This function for objects of class "tvgarch" is similar to function quantile.
garchx () in garchx; see Sucarrat (2021).

residuals(tvgarchEst): Volatility standardized residuals.
summary (tvgarchEst): A summary of the estimation.
toLatex (tvgarchEst): KTEX print of result (equation form).

veov(tvgarchEst): Full coeflicient-covariance when spec = "tvgarch". The argu-
ment spec can be used to specify whether the function should only extract the covari-
ance matrix of the parameters in the TV component (i.e., by choosing spec = "tv")
or in the GARCH-X component (in which case, spec = "garch").

Modeling multivariate stock returns

As an empirical application of the function mtvgarch(), we consider a multivariate time
series comprising ftse100, sp500 and nasdaq. For modeling the conditional variances, we
implement the procedure described in the previous section equation by equation. For this
reason, we will omit the variance results for nasdaq and focus on the two other stock return
series in this section before we proceed to the estimation of the conditional correlations. The
series of closing prices are converted into log-returns for all indices.

We first test the constancy of the parameters in the GARCH component for every constituent
series using the function tvgarchTest (). This can be done with the following loop, where
the number of locations of parameters in the TV component is stored for each series in a
vector called stocks_k:

R> m

<- ncol(stocks_r)

R> stocks_k <- matrix(0, m, 1)
R> for (i in 1:m) {

+

+ }

stocks_k[i] <- summary(tvgarchTest (stocks_r[, i]))
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Figure 5: The estimated volatility from a stationary GARCH(1, 1) model (black) and the TV
component from the TV(1)-GARCH(1,1) model (blue) for the FTSE 100 (left) and the SP
500 (right) index returns.

R> rownames (stocks_k) <- colnames(stocks_r)
R> colnames(stocks_k) <- "k1"

To check the number of location parameters in the single transition function of each series,
type stocks_k, which gives

ki
ftsel00 1
sp500 1
nasdaq 2

According to the test results, the stationary GARCH model is misspecified for all time series
and a TV-GARCH model would be a more appropriate specification for the conditional vari-
ance. Specifically, the test results suggest a TV(1)-GARCH(1, 1) model should be estimated
for £tse100 and sp500, and a TV(2)-GARCH(1, 1) model for nasdaq. The different TV-
GARCH models are estimated, equation by equation, followed by the constant conditional
correlations and the results are saved in an object of class "mtvgarch" called ccctvgarchEst
using the code:

R> ccctvgarchEst <- mtvgarch(y = stocks_r, order.g = stocks_k)

Similar to the univariate case, we can plot the estimated conditional standard deviation
using plot.mtvgarch(). This function calls the equivalent function for the univariate case,
i.e., plot.tvgarch() for each object of class "tvgarch" (m objects will be created within

mtvgarch()). By using the following,

R> plot(ccctvgarchEst, spec = "tv")



28 Modeling Nonstationary Financial Volatility with the R Package tvgarch

we obtain three plots, one for each times series of stock returns in the multivariate sample. By
choosing spec = "tv", each plot shows the estimated conditional standard deviation from a
stationary GARCH(1, 1) model (black) and the TV component of the TV(1)-GARCH(1,1)
model (blue). Figure 5 presents the plots for ftse100 (left) and sp500 (right), where the plot
for nasdaq has been omitted as this one is already shown in the upper panel of Figure 4.

Similar to the univariate case, to print the results from estimating a multivariate TV-GARCH-
X model with mtvgarch(), we can simply type ccctvgarchEst, use print.mtvgarch() or
summary.mtvgarch(). The estimation results of each constituent stock return series is printed
together with the constant or dynamic conditional correlation results (depending on the logical
argument dcc of mtvgarch()). Alternatively, by typing

R> toLatex(ccctvgarchEst)
we obtain the following estimated variance equations in KTEX format:

2
hi = 0.0223+0.0895 241 +0.8921h1 44
(0.0080)  (0.0163)g1¢—1  (0.0201)

g1t = 0.4429 +0. 7906G1(5 5215;0.3482;t/n)
(=) (0.0486)  (0.4552)  (0.0043)’

Log-likelihood: — 3323.4869 n = 2466
> Y31

hoy = 0.0266 4+ 0.0783= +0.9015hy 1
(0.0075) ~ (0.0121)G2,4—1  (0.0131)

Gor = 0.4401 4 0.6587G(5.5215;0.3448; t /n)
(=) (0.0474) (0. 4102) (0. 0044)

Log-likelihood: — 3407.4655 n = 2466

hg = 0.0138 4 0.0647=2=1 Vi +0.9160hs ;1

(0.0041)  (0.0110)g3¢—1  (0.0131)

g3t = 3.4335 —2. 135OG1(5 5215;0.3602,0.7905; t/n)
(-) (0.0628)  (0.5822)  (0.0070) (0.0046)’

Log-likelihood: — 3812.1914 n = 2466

Constant conditional correlations:

ftse1l00  spb500  nasdaq

ftse100 1 0.568 0.5284
sp500 0.568 1 0.9373
nasdaq  0.5284  0.9373 1

Table 2: Constant conditional correlations.

For comparison, stationary GARCH models could also be estimated, equation by equation,
by changing argument order.g = NULL. (For brevity, we do not report these results.)

To estimate dynamic conditional correlations, simply change the dcc argument as follows,
saving the results in an object called dcctvgarchEst:
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R> dcctvgarchEst <- mtvgarch(stocks_r, order.g = stock_k, dcc = TRUE)

By typing dcctvgarchEst, the estimation results for the dynamic conditional correlations
(omitting the estimation results for the conditional variances, which are equal to those shown
previously) are:

>k >k 3k 5k 3k >k >k >k 5k 3k 5k >k %k %k 5k 5k >k >k %k %k >k >k %k >k %k %k % Xk

* The Volatility Component *
skesk sk sk ok ok sk sk sk sk o sk sk sk sk ok o sk sk sk sk ok ok sk sk ok

[omitted to save space]

sk sk ok ok ok ok o ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok sk ok ok ok okok ok

* The Correlation Component *
sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok sk ok ok

Dynamic Conditional Correlations
Q matrix

ftsel00 sp500 nasdaq
ftsel00 1.0000 0.5680 0.5284
sp500 0.5680 1.0000 0.9373
nasdaq 0.5284 0.9373 1.0000

Coefficients

alpha  beta
Estimate: 0.0150 0.9821
Std. Error: 0.0046 0.0062

Log-likelihood: -7341.978

The estimated correlation coefficients of the Q matrix in Equation 10 is simply the constant
conditional correlation matrix, which is obtained by computing the empirical correlation ma-
trix of the volatility standardized residuals in the objective function dccObj (). The empirical
correlation matrix in an object of class "mtvgarch" corresponds to the correlation matrix
P; = P if constant conditional correlations are assumed or to Q in Equations 10-11 when
dynamic conditional correlations are assumed instead.

The estimated parameters alpha and beta correspond to the parameters #; and 65 in Equa-
tion 10. As usually found in empirical applications, the autoregressive coefficient beta is much
larger than alpha. Also, the dynamic conditional correlations appear to be very persistent.
In fact, correlation persistence is very close to unity (él + 60y = 0.9970769).

The estimated constant and dynamic conditional correlations can be obtained and stored
in an object called, respectively, CCC and DCC by using the extraction function fitted() as
follows:
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Figure 6: The estimated dynamic conditional correlations from the DCC-TV-GARCH model
of stock index returns. For comparison, the constant conditional correlations (blue) from the
CCC-TV-GARCH model are also shown.

"CC”)
"CC”)

R> CCC <- fitted(ccctvgarchEst, spec
R> DCC <- fitted(dcctvgarchEst, spec

for objects ccctvgarchEst and dcctvgarchEst. These are plotted in Figure 6 (black). For
comparison, we also plot the estimated constant conditional correlations (used as the baseline
correlations in the function dccObj (), the function called when computing the dynamic con-
ditional correlations). It is interesting to visualize how the dynamic conditional correlations
not only are persistent but also how they fluctuate around their long-term mean (as measured
by the constant (un)conditional correlations).

To compare the performance of each model, i.e., with constant and dynamic conditional

correlations, we can use the optimized log-likelihood value reported for each object of class
"mtvgarch". This value is —7462.079 when we assume constant conditional correlations
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and —7341.978 for the dynamic conditional correlation model. The higher log-likelihood
value for the DCC-TV-GARCH model compared to the CCC-TV-GARCH indicates higher
performance, which is expected given the former assumes a more flexible correlation structure.
Nonetheless, the DCC-TV-GARCH model also includes two extra parameters, namely 6; and
02, which need to be estimated. Simple comparison of the optimized log-likelihood values can
thus be misleading.

To properly compare the two models, the Bayesian information criterion (BIC) can be used.
The lowest BIC corresponds to the best fit among the models being compared. The BIC can
be computed according to the following code for the two models::

R> BIC(logLik(ccctvgarchEst)$ccc)
R> BIC(logLik(dcctvgarchEst)$dcc)

The BICs are 15095.99 and 14871.4, respectively, for the CCC-TV-GARCH and the DCC-
TV-GARCH models, respectively. This supports our observation that assuming dynamic
conditional correlations would provide a better fit to the data.

6. Conclusions

Stationary volatility models can be inappropriate and volatility predictions can fail in the
presence of structural changes in the unconditional variance. To overcome this situation, in
the TV-GARCH model, the standard GARCH parameters are allowed to vary smoothly over
time according to a linear combination of logistic transition functions.

Simulating TV-GARCH processes can be very useful. With the the R package tvgarch, a
nonstationary GARCH process is simulated with the tvgarchSim() function for univariate
and the mtvgarchSim() function for an m-dimensional series, respectively. We also show
how useful tvgarch is for modeling nonstationary volatility in financial empirical applications.
Using daily stock returns, the results from the tests of constant unconditional variance using
the tvgarchTest () function provide strong evidence for nonstationary volatility. To estimate
the multivariate TV-GARCH model, we use the mtvgarch() function. In the first step,
the conditional variances are modeled equation by equation with the univariate tvgarch()
function and then, in the second step, the conditional correlations are estimated conditionally
on the estimates obtained in the first step. In practice, the univariate tvgarch() function
estimates a TV-GARCH model with a single transition function in the TV component and
invokes the garchx () function from package garchx to estimate the parameters in the GARCH
component. By assuming a single transition function, financial volatility appears to increase
during the 2008 global financial crisis, making its structure to change either temporarily
(two transitions) or permanently (one transition) for the sample period analyzed. Several
extraction functions allow us to analyze the results after estimating a TV-GARCH model,
including to obtain the necessary data to compare different model specifications.
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A. Estimating the nonstationary conditional variance

Before describing the estimation strategy, it is convenient to introduce some notation. The
full set of variance parameters is denoted by ¥ = (9",99), where ©" denotes the set of
parameters in the GARCH-X component, h;, and 99 denotes the set of parameters in TV
component, g;.

The tvgarch() function can be used to estimate the parameters in 9 by quasi maximum
likelihood. Assume the conditional variance

03(79) = ht(’ﬂha 99)ge(97).

Then, 9, the estimator of ¥, can be obtained as the solution of
n
arg max L, (9) = Zﬁt(ﬁ),
t=1

where
2
Uy

hy (9",97) g1 (99)

() = 5 — 5 {1 [ (9%, 99)] + g, (99)] +

is the log-likelihood function for w; assuming normality. Notice, however, that the estimation
is robust to a misspecified density.

To estimate the parameters in the nonstationary conditional variance, whose components
are defined in Equations 6-7 and Equation 8, maximization by parts is applied with the

tvgarch() function. In practice, 1§h and 97 are obtained iteratively until convergence. Max-
imization by parts for the estimation of TV-GARCH models is described in Appendix B. The
parameters in the GARCH-X component of either a stationary or nonstationary GARCH
model are estimated by the garchx() function of the R package garchx (Sucarrat 2021), on
which the package tvgarch depends; see also Sucarrat (2021). For inference, we rely on the
asymptotic distribution of the estimator 9 being normal. As an illustration, in Section 5.2, the
tvgarch() function is applied to real data, namely a time series of returns on the NASDAQ
index.

B. Maximization by parts

To estimate the nonstationary conditional variance of a financial time series, it is convenient
to estimate the parameters in each component separately; see Amado and Terdsvirta (2013)
for further details on the estimation. The vectors ¥" and 99 include the parameters in the
GARCH-X and TV components, respectively. For the most general variance model, these
correspond to Equation 8 and Equations 6-7, respectively. We will use the notation (.) to
enumerate the iteration. The maximization by parts is then done iteratively until convergence
as follows:

1. By setting h§0> =1, 3?0) is obtained as the solution of

arg max Ln(ﬂ?o)) = Zét(ﬁ?o)),
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where
099 ) =k — = g, (99 o
((Bfy) = =5y 1n [or (9%)| + ()]
gt (0)
gt(o) = G (19?0)) and g£§°) - are both computed. The parameter &y is fixed to

5(()0) from this iteration onwards. This parameter is fixed for identifiability purposes, see
Amado and Terésvirta (2013), and Amado and Terédsvirta (2017, p. 423).

ah
. ¥y) Is obtained as the solution of

n

arg max L, (19?1),@(90)) = th (19?1)’ 19?0)) )

where

are both computed.

L
R

. 99 is re-estimated to obtain 3?1) as the solution of

~h " ah
arg max Ln (’19(1), 19‘((]1)) = th (’19(1), 19‘?1)) y
t=1

where

4 <’l§?1),’l9g ) =K — 1 In [gt (rﬂg )] + Ll)r
(1) 9 (1) 7 (19?1))

@t(l) =g (@?1)) and <Z>,§1) = —2_ are both updated.

h

. Steps 2 and 3 are iterated until convergence. In each iteration j > 1, ﬁ(j) and 19%) are

obtained, and ﬁgj ) = hy (196),3?]-_1)) and gt(j ) = gt (ﬁ?j)) are updated.

C. Estimating the conditional correlations

In order to estimate the conditional correlation in multivariate financial time series, the
estimation of the conditional variance is repeated for each time series of residuals, u;,7 =
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...,m, and the vector of volatility standardized residuals 9, = (f1¢,...,Mme)’ is constructed,
where

A Uit

Nit = .

0 AP
\/ hit <19z' 7’191') Git (191)

The set of all parameters is denoted by 8 = (9, ...,9,,, p')’, where p contains the correlation

parameters. The composition of the parameter vector p depends on the structure of the
conditional correlation matrix P;. When the conditional correlations are time-invariant, i.e.,
P, = P, p includes all the unique pairwise correlations of the m-dimensional time series.
When conditional correlations follow the dynamic structure of Equations 10-11, p includes
all the unique pairwise correlations of the unconditional correlation matrix Q; and the two
additional parameters governing their dynamics, namely 6 and 0,. In practice, only 6; and
Ao are estimated and Q; is simply replaced by the sample correlation matrix.

The mtvgarch () function estimates, equation by equation, the vector of conditional variances
o2 by calling the univariate tvgarch() function for each constituent time series. Then, p
can be obtained by quasi maximum likelihood as the solution of

A

A 1 1
arg max L, (p|d1,...,9,) = —3 > (ln Py| + 7P, lm) .
t=1

D. Testing the constancy of GARCH parameters

Before estimating a TV-GARCH model, it is important to check the hypothesis of constant
GARCH parameters, i.e., that the unconditional variance is time-invariant. Rejecting this
hypothesis thus provides evidence for nonstationarity meaning that a standard GARCH model
with constant parameters is misspecified and so not appropriate to fit the data. The structure
of g4, i.e., the number of transitions, has to be determined and the resulting TV-GARCH
model can then be estimated. A brief description of the statistical test is provided below. For
further details, including finite sample simulation, we refer to Amado and Terasvirta (2014,
2017).

Consider a slightly different TV(1)-GARCH(1, 1), whose GARCH component is defined by
Equation 4 and the TV component has the form

gt =1+ 61G1(y1, €15 8),

where the intercept, dp, is replaced by 1. The subsets of variance parameters are defined as
follows: ’195’ = (wi, a1, ﬁil)/ and ’192 = ((52'1,")/1‘1, C;l),.
When g; = 1, ¢ = u; and the model collapses into the standard GARCH(1, 1) model in which
case the unconditional variance is time invariant and the conditional variance stationary. To
check the constancy of the TV component, we can test either Hy : g = 1 or Hg : 74 = 0
against Hj : g = 1 + 61G1(71,c1;8). A fairly flexible form is assumed for G1(v1,¢1;8¢) by
setting k1 = 3, i.e., ¢1 = (c11,¢12,¢13)". Due to the inability for identifying d; and ¢; under
Hy, the transition function is replaced by its first-order Taylor approximation; see Luukkonen,
Saikkonen, and Terésvirta (1988). The resulting linearized and re-parametrized deterministic
component is given by

i = 05 + 8107 + 5705 + 5703 (12)
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where 43,07, 05 and 43 are functions of the original parameters.

When Hy holds, 67 = 65 = 65 = 0 and the parameters in 9" remain constant. Hy is thus
replaced by the auxiliary null hypothesis H§"" : 67 = 65 = 65 = 0. If HI§"" is rejected, proceed
to testing the following sequence of nested hypotheses in order to specify the correct number
of locations in the transition function:

H0315§:O (13)
Hep:65=0 | 6=0
Ho :61=0 | & =d5=0.

These tests are easy to implement as they can be based on auxiliary regressions. In practice,
the test statistics are computed as nR?, where n is the number of observations (the usual
notation is TR?, where T is the number of observations) and R? is the coefficient of deter-
mination of an auxiliary regression; see Wooldridge (1990, 1991). Under the null hypothesis,
the test statistics have an asymptotic x2 distribution, where v is the number of degrees of
freedom, i.e., the number of restrictions under the null hypothesis. In the general misspeci-
fication test, v = 3 and in each of the sequential tests in Equation 13, v = 1. The test has
good size and power in finite samples as shown in Amado and Terésvirta (2017).

Testing for the necessity of an additional transition function is also possible. In particular,
we could test the null hypothesis ]HI% : gt = 0o + 01G1(71,c1;5¢) against the alternative
H? : g; = 6o + X7y 61uGi(7i, c155¢). We refer to Amado and Teriisvirta (2017) for further
details on this type of misspecification of the TV-GARCH model. This test is not yet available
in tvgarch. In the absence of a statistical test, information criteria from models with different
TV component specifications combined with visual inspection of the time series are useful
tools to select the best model.
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