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Abstract

Two common issues arise in regression modelling of bivariate count data: (i) depen-
dence across outcomes, and (ii) excess zero counts (i.e., zero inflation). However, there
are currently few options to estimate bivariate zero-inflated count regression models in
R. Therefore, we present an R package, bizicount, that enables researchers to easily esti-
mate bivariate zero-inflated count copula regression models. By using copulas to model
the dependence across outcomes, researchers do not have to make assumptions about the
multivariate (and zero-inflated) structure relating their count variables to one another.
Instead, they are only required to make familiar assumptions about the marginal distri-
bution of each outcome variable, which should enable wider use of our approach. Below
we present our proposed estimator, detail its advantages over existing alternatives, and
demonstrate the use of the corresponding functions for bivariate modeling of terrorism
data from Nigeria.
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1. Motivation
Count data often contain a higher proportion of zeroes than expected under probability dis-
tributions, such as the Poisson or Negative binomial, commonly used in regression modeling.
These “excess” zeroes have led to the development of statistical models that account for zero
inflation in count data regression (e.g., Mullahy 1986; Lambert 1992), which are now widely
used by applied researchers. These zero-inflated models jointly consider two processes, with
the first (often a Bernoulli process) generating zeroes and the second (often a Poisson or
Negative binomial) generating counts. For example, if Y a random variable (with y ∈ Z≥0)
that follows a zero-inflated Poisson distribution, one assumes Y has a mixture distribution of
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a Bernoulli distribution (with probability of zero, ψ, 0 ≤ ψ ≤ 1) and a Poisson distribution
(with rate λ > 0):

fZI(y) =


ψ + (1 − ψ) · f(y;λ), for y = 0,

(1 − ψ) · f(y;λ), for y > 0,
(1)

where f(y;λ) = λye−λ

y! . This class of zero-inflated count data models are available in most
commonly used statistical software packages, however, these are all for single-count (i.e.,
univariate) processes.1

In theory, incorporating a zero-inflated component into bivariate (or multivariate) count pro-
cesses can also be achieved without much issue. For example, if (Y1, Y2) follows a bivariate
zero-inflated Poisson distribution, one can assume that (i) with probability ψ1, Y1 = Y2 = 0,
(ii) with probability ψ2, Y1 is a Poisson random variable with rate λ1 > 0 and Y2 = 0, (iii) with
probability ψ3, Y1 = 0 and Y2 is a Poisson random variable with rate λ2 > 0, and (iv) with
probability 1 − ψ1 − ψ2 − ψ3, Y1 and Y2 follow bivariate Poisson distribution, for 0 ≤ ψi ≤ 1,
i = 1, 2, 3 and ∑3

i=1 ψi ≤ 1. In practice, however, specifying the bivariate count mass func-
tion often require researchers to make assumptions about the joint distribution that are not
well motivated by their theory, and/or impose restrictions (e.g., positive dependence across
counts) that are not well supported by their data (see Section 2 for a review of approaches
for modeling bivariate count distributions). As a result, there are few available statistical
software routines to account for excess zeroes for bivariate (or multivariate) count processes.
Due to this lack of software, researchers analyzing bivariate (or multivariate) count data
are often forced to either: (a) ignore the “excess” zeroes in the data, or (b) ignore the
dependence across counts. The statistical consequences of erroneously neglecting zero inflation
or assuming independence are widely known. When (univariate) count data are zero-inflated
– e.g., if a separate process produces excess “structural” zeroes – one-part count models (i.e.,
Poisson regression models) that neglect zero inflation are known to be biased and result in
inefficient estimators. Similarly, when bivariate count data is assumed to be independent,
then any unmodeled dependence produces statistically inefficient estimators of the model
parameters, which can also result in inferential errors.
When researchers with bivariate zero-inflated count data neglect both issues, they inherit both
of these problems: unmodeled excess zeroes and unmodeled count dependence. Moreover,
addressing only one issue – i.e., modeling zero inflation or dependence, but not both – does
not ensure better-behaved estimators. For example, using widely-available bivariate count
estimators – e.g., Stata’s bivcnto, or R’s GJRM – in the presences of unmodeled excess zeroes
risks biased estimates of both the covariate coefficients and the dependence parameter. The
bias in the dependence parameter also produces inaccurate (and overconfident) estimates
of the standard errors for the covariate coefficients in the marginal count models. That is,
by addressing only the cross-outcome dependence, we produce an estimator of the covariate
coefficients that is biased and overconfident, thereby increasing the risk of inferential errors.
Despite recent developments in zero-inflated, bivariate count regression models (Arab, Holan,
Wikle, and Wildhaber 2012; Faroughi and Ismail 2017a,b; Gurmu and Elder 2008; Li, Lu,

1For R, see the pscl package (Zeileis, Kleiber, and Jackman 2008); for Stata, see the zip command (StataCorp
2021); for SAS, see SAS Institute Inc. (2020); for Python, see Seabold and Perktold (2010). SPSS relies on a R
plug-in that calls up the pscl package.
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Park, Kim, Brinkley, and Peterson 1999; Wang 2003; Wang, Lee, Yau, and Carrivick 2003),
most of these estimators are not yet widely available to applied researchers in commonly used
statistical software. The only software implementations we can locate that permit bivariate
zero-inflated count regression are the SAS macro, %bicount (Chou and Steenhard 2011),
which supports only a Frank copula, and the R package bivpois (Karlis and Ntzoufras 2005)
which does not permit negative dependence for zero-inflation, and also assumes a specific
joint distribution.
Quantitative research on terrorism provides a useful example of this problem. Here researchers
are often interested in modeling variation in terror attack counts or frequencies (for a given
spatial or space-time unit) as a function of known inputs (e.g., population, development, etc.).
Given the high proportion of zeroes in data on terrorism (see Desmarais and Harden 2013),
researchers often utilize (univariate) zero-inflation count models (e.g., Piazza 2017; Savun and
Tirone 2018). However, researchers are also often interested in more than one sample of ter-
ror events and, potentially, the relationship between these. In country-level analysis of terror
counts, for example, this may include domestic and transnational terrorism (e.g., Wilson and
Piazza 2013). In sub-national analyses of terrorism, this may instead involve attacks perpe-
trated by several terror groups (e.g., Boko Haram and Fulani extremists in Nigeria). Given
limitations to existing software, terrorism researchers are currently forced to choose between
neglecting zero-inflation (e.g., estimating a bivariate Poisson), neglecting cross-sample corre-
lations (e.g., estimating a zero-inflated Poisson for a single sample of attacks), or both (e.g.,
estimating a Poisson for a single sample of attacks).
Therefore, in this article we present the bizicount R package for estimating bivariate zero-
inflated count copula regression models. Our work builds on recent developments in copula
regression models for discrete outcomes (e.g., So, Lee, and Jung 2011; Yang, Frees, and Zhang
2020), which do not require assumptions about the form of the joint distribution. Instead,
one only needs to make familiar assumptions on the marginal distributions of each outcome.
Our copula-based strategy is also advantageous in that allows researchers to specify different
marginal distributions of each outcome, naturally accommodating mixed-process models. Af-
ter reviewing several approaches to modeling bivariate, zero-inflated count distributions, we
discuss existing software, detail our implementation, and provide an empirical demonstration
analyzing terror attacks in Nigeria.

2. Modeling dependence in bivariate counts
Researchers tend to model bivariate counts by either: (i) specifying the full joint distribution,
or (ii) using copulas to model the dependence between the counts. In the following, we briefly
survey existing research on both approaches, then discuss how these can be generalized to
allow for zero-inflation.

2.1. Bivariate count mass functions

In the first of these approaches, one often specifies the joint distribution for bivariate count
data in one of two ways: (i) the trivariate reduction method, or (ii) the multiplicative factors
method.
The trivariate reduction method (Kocherlakota and Kocherlakota 1992; Lai 1995, 8) can be
used to arrive at a bivariate Poisson distribution, as detailed by Holgate (1964) and Marshall
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and Olkin (1985, 334). First let

Y1 = X + U,

Y2 = V + U,

with X, V , and U independent Poisson random variables with rate λX , λV , and λU , respec-
tively. Then, it follows that the joint distribution of Y1 and Y2 is bivariate Poisson with

fY1,Y2(y1, y2) = P (Y1 = y1, Y2 = y2) = e(−λX−λV −λU )
min(y1,y2)∑

c=0

λc
Uλ

y1−c
X λy2−c

V

(y1 − c)!(y2 − c)!c! , (2)

for y1, y2 = 0, 1, . . . ,∞. The joint distribution has Poisson margins with parameters λ1 =
λX + λU and λ2 = λV + λU , and Cov(Y1, Y2) = λU . Thus, this formulation permits only
positive dependence in the two counts.
As an alternative to the trivariate reduction approach, and in order to allow the dependence
between outcomes to be unrestricted, Lakshminarayana, Pandit, and Srinivasa Rao (1999)
propose a bivariate Poisson distribution using the approach discussed by Sarmanov (1966)
and Ting Lee (1996). Specifically, a bivariate Poisson mass function is arrived at as the
product of Poisson marginals with a multiplicative factor

fY1,Y2(y1, y2) =
[
e(−λ1−λ2)λy1

1 λ
y2
2

y1!y2!

] [
1 + α

(
e−y1 − eλ1c

) (
e−y2 − e−λ2c

)]
, (3)

which has Poisson margins with parameters λ1 and λ2, and Cov(Y1, Y2) = αλ1λ2c
2e−c(λ1+λ2),

where c = 1 − e−1. In this case, the sign on the covariance depends on the estimated sign of
α, which can be positive, negative, or zero.
These two approaches are readily extended to permit over- and under-dispersion in the form of
bivariate negative binomial (Famoye 2010b; Marshall and Olkin 1990) or bivariate generalized
Poisson distributions (Famoye 2010a). Each of these bivariate probability mass functions
(PMF) can also be further extended to permit zero-inflation in the counts. Recall that
the PMF for a univariate zero-inflated count distribution is given in Equation 1, and the
corresponding cumulative distribution function (CDF) is then

FZI(y) = ψ + (1 − ψ)
y∑

i=0
fC(i), (4)

where fC(·) denotes the PMF of some arbitrary count distribution (e.g., Poisson, negative
binomial, etc.). Then, combining the intuition of the univariate zero-inflated distribution
from Equation 1 with the bivariate Poisson PMF from Equation 3, we have a PMF for the
BZIP based on multiplicative factors (Faroughi and Ismail 2017b):

fY1,Y2(y1, y2) =


ψ + (1 − ψ) · e−λ1−λ2

1 + α
2∏

j=1
(1 − e−cλj )

 , if y1, y2 = 0,

(1 − ψ)fBPm(y1, y2), otherwise.
(5)

Here, ψ is again the probability of zero inflation, and fBPm is the bivariate Poisson PMF based
on multiplicative factors as defined in Equation 3.2 This can be generalized to a bivariate

2For a bivariate, zero-inflated distribution based on the trivariate reduction method, see Li et al. (1999).
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regression modelling context in the usual way: for observations i and margins j we specify
ψij = Λ(Zijγj) and λij = exp(Xijβj), where Λ(·) is the CDF of the logistic or standard
normal distribution, λij is the conditional mean of the j-th marginal count distribution (fC

in Equation 4), and both Xij and Zij are covariate vectors for the j-th margin with parameter
vectors βj and γj to be estimated, respectively.

2.2. Copula regression

In contrast, copula regression provides an alternative approach for modeling dependence and
mixed-zero generation in count data that does not require assumptions regarding the joint
distribution. In short, copulas are functions that specify an arbitrary joint CDF as a function
of uniform marginals and a dependence parameter. As such, no assumptions regarding the
form of the joint distribution are required. Instead, scholars assume the form of the depen-
dence between the two margins in choosing a copula function, and input uniform marginals
into this copula function. These uniform marginals are derived from the probability integral
transform, and therefore require assumptions about the marginal distributions rather than
the joint distribution. Because information about the marginals is typically better known
than for the joint distribution, researchers often find that the assumptions required for cop-
ula regression are more tenable than assuming knowledge on the complete form of a bivariate
mass function (as in Section 2.1). Importantly, the marginal distributions can also differ
from each other. For example, in the bivariate case, researchers can specify one margin as
zero-inflated negative binomial, and the other as Poisson, thus permitting greater flexibility
than restricting both margins to be the same.
To see this, note that copulas leverage the probability integral transform in order to express
an arbitrary (and often unknown) multivariate CDF as a copula function of uniform marginal
distributions (Sklar 1959, 1973). Specifically, the probability integral transform states that
given a strictly increasing, continuous CDF, FX , and the random variable, Y = FX(X), then
Y ∼ U(0, 1):

FY (y) = Pr(Y ≤ y) = Pr{FX(X) ≤ y} = Pr{X ≤ F−1
X (y)} = FX{F−1

X (y)} = y,

which implies FY is the CDF of the standard uniform distribution. Then, given a ran-
dom vector X = (X1, X2, . . . , Xn) with continuous, monotone increasing marginal CDFs
(F1, F2, . . . , Fn), we can use the above result to deduce that

{F1(X1), F2(X2), . . . , Fn(Xn)} = (U1, U2, . . . , Un) = U

which is to say that the random vector {F1(X1), F2(X2), . . . , Fn(Xn)} has uniform margins.
The copula function is then defined as the continuous joint CDF of the variables in the vector
U above (Cameron, Li, Trivedi, and Zimmer 2004; Trivedi and Zimmer 2007, p. 10):

F (X1, X2, . . . , Xn) = F{F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)}

= Pr(U1 ≤ u1, U2 ≤ u2, . . . , Un ≤ un)

= C(u1, u2, . . . , un)

where C(·) is the copula function. Thus, working backwards we can see that if U ∼ C, then
{F−1

1 (u1), F−1
2 (u2), . . . , F−1

n (un)} ∼ F , and we can write a multivariate CDF in terms of a
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copula function and uniform marginals, although we still assume the marginal distributions
in order to then apply the inverse transform (Trivedi and Zimmer 2007, p. 10).
While the preceding illustration of copula functions assumes continuous marginal distribu-
tions, we are interested in discrete (zero-inflated) count marginals. In the discrete case, the
lack of continuity gives rise to copulas that are unique only over the Cartesian product of
the ranges of the marginals; that is, over ran(F1) × ran(F2) × · · · × ran(Fn), where “×”
denotes the Cartesian product, and ran is the range of a random variable (Genest and Nešle-
hová 2007; Karlis 2016; Nikoloulopoulos 2013). These models therefore have the potential for
identification problems. Additionally, the dependence between outcomes is now affected by
the choice of margins (Genest and Nešlehová 2007). Fortunately, we are interested in copula
regression where the issue of identification is less salient because we model the conditional
expected mean as a function of (often continuous) covariates, with this mean itself being con-
tinuous (Trivedi and Zimmer 2017). Moreover, even if non-uniqueness persists, the “. . . lack
of uniqueness is not a problem in practical applications as it implies that there may exist two
copulas with identical properties” (Karlis 2016, p.410).
Keeping the above review of copulas in mind, a bivariate copula CDF with count margins
can be written as (Cameron et al. 2004; Joe 1997; Marshall and Olkin 1990)

F (y1, y2) = C{F1(y1), F2(y2); ρ} = C(u1, u2; ρ), (6)

where ρ is the dependence parameter to be estimated. In order to obtain the joint PDF
from the joint CDF in Equation 6, we would typically take derivatives in the usual way,
i.e., ∂2F/∂u1∂u2; however, the data are assumed to be drawn from a zero-inflated count
distribution, which is discrete, and therefore non-differentiable. Instead, we arrive at the
joint PMF by taking backwards finite differences as an analog to the derivative of the CDF
(So et al. 2011; Trivedi and Zimmer 2007):

f(y1, y2) = F (y1, y2) − F (y1 − 1, y2) − F (y1, y2 − 1) + F (y1 − 1, y2 − 1)

= C{F1(y1), F2(y2); ρ} − C{F1(y1 − 1), F2(y2); ρ}−
C{F1(y1), F2(y2 − 1); ρ} + C{F1(y1 − 1), F2(y2 − 1); ρ}

= c{F1(y1), F2(y2); ρ},

(7)

where f(·) is the joint PMF of the original data, c(·) is the copula PMF, Fj(·) are the marginal
CDFs, F is the joint CDF, and C is the copula CDF. Using the joint PMF as derived above in
Equation 7, we can proceed with estimating the parameters of the distribution by maximum
likelihood in the usual way.3

The only remaining question is on the form of the copula CDF, C. Although a large literature
exists on the various copulas and their properties, we focus on two widely-used bivariate
copulas in our discussion (and subsequent software): the Gaussian and Frank copulas.4 Both
of these are symmetric but with different shapes, particularly in the tails. The Gaussian

3Note that taking finite differences and then using maximum likelihood is one of a few approaches to solving
the problem of discrete marginal distributions. For discussion of additional approaches not utilized here, see
Inouye, Yang, Allen, and Ravikumar (2017).

4For detailed expositions on copulas, see Joe (1997); Nelsen (2007); Trivedi and Zimmer (2007). Regarding
count copulas, see Genest and Nešlehová (2007).
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copula takes the form

CG(u1, u2; ρ) = Φρ

[
Φ−1{F1(y1)},Φ−1{F2(y2)}; ρ

]
= Φρ

{
Φ−1(u1),Φ−1(u2); ρ

} (8)

where Fj are the marginal, zero-inflated count CDFs as defined in Equation 4, Φ−1 is the
quantile function of the standard normal distribution, and Φρ is the CDF of the standard
bivariate normal distribution with correlation |ρ| < 1. Thus, the copula CDF is the standard
bivariate normal, and the dependence parameter is the correlation for this CDF.
Alternatively, the Frank copula comes from the Archimedean class of copulas and permits
unbounded dependence, with the bivariate form

CF (u1, u2; ρ) = −ρ−1 ln
[
1 + {e−ρF1(y1) − 1}{e−ρF2(y2) − 1}

e−ρ − 1

]

= −ρ−1 ln
{

1 + (e−ρu1 − 1)(e−ρu2 − 1)
e−ρ − 1

}
,

(9)

where the Fj are the same as in Equation 8, and ρ ̸= 0 is the dependence parameter. Visual
depictions of each copula can be found in Equation 1.
For both the Gaussian and Frank copulas, we can arrive at a bivariate, zero-inflated count
copula regression model if we assume that the Fj are the CDFs of a univariate zero-inflated
count distribution as defined in Equation 4. From here we can link in covariates by specifying
ψij = Λ(Zijγj) and λij = exp(Xijβ), where Λ(·) is the CDF of the logistic or standard
normal distribution, λij is the conditional mean of the j-th marginal count distribution (fC

in Equation 4), and both Xij and Zij are covariate observation vectors for the j-th margin
with parameter vectors βj and γj , respectively. After adding covariates, we can plug-in the
resulting equation from (8) or (9) to the PMF from finite-differencing as shown in Equation 7,
and then estimate the parameter vectors γj and βj by maximimum likelihood.
In sum, to model bivariate zero-inflated count data analysts can use copula regression, which
requires only assumptions about the marginal distributions and a copula function. The spe-
cific steps for arriving at a particular model are:

1. Specify the appropriate probability distribution for each marginal model.

2. Use prior theory to choose a set of relevant covariates for each marginal model (can be
common to both or unique).

3. Select a copula distribution relating the two marginals.

4. Take finite differences over the copula CDF to arrive at the PMF as in Equation 7.

5. Take logarithms and use maximum likelihood to estimate parameters.

6. Carry out post-estimation diagnostics to test assumptions, model fit, etc.

7. Evaluate input relevance using typical methods (e.g., likelihood ratio, Wald, score tests)
and calculate desired quantities of interest (e.g., log expected counts, marginal effects,
etc.).
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Frank, ρ = 4 Frank, ρ = −2 Gaussian, ρ = −0.8 Guassian, ρ = 0.5
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Figure 1: Bivariate Frank and Gaussian copula PDFs and CDFs.

3. Available software

Current software is available to model bivariate count data using the strategies discussed
above. Many of these implementations require researchers to assume a joint distribution of
the outcomes, which can be limiting for the reasons given above. Fewer implementations are
available using copula-based approaches, and only one that we are aware of – a SAS macro –
also accounts for zero-inflation. In the following we discuss existing software and detail the
benefits of our package over available alternatives.

3.1. Non-copula-based software

When zero-inflation is not a concern, researchers with bivariate count data have several non-
copula based options available to them. First, the R package bpglm (Chowdhury and Islam
2019) fits bivariate Poisson and zero-truncated bivariate Poisson models. This package is not
actively maintained on the Comprehensive R Archive Network (CRAN) at the time of this
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writing, however, source code is available on GitHub. For similar functionality in Stata, the
package bivcnto (Xu and Hardin 2016) uses maximum likelihood to estimate bivariate Poisson
and Negative Binomial regression models with the joint PMFs defined in Famoye (2010b) and
Marshall and Olkin (1985). Lastly, the SAS macro %bicount (Chou and Steenhard 2011) fits
bivariate count models to a variety of assumed joint PMFs.
When zero-inflation is a concern, users can again use the SAS macro %bicount, or can rely
on the bivpois R package (Karlis and Ntzoufras 2005). The latter of these two estimates
both bivariate Poisson, and bivariate zero-inflated Poisson models to an assumed joint PMF
derived from the trivariate reduction method.5 Despite offering a widely-available means to
estimate bivariate zero-inflated count models, the package suffers some drawbacks. Namely,
it permits only positive dependence, assumes the form of the joint distribution of the data,
and requires both margins to be of the same functional form (i.e., both margins are Poisson
or zero-inflated Poisson).

3.2. Copula-based software

Beyond packages that assume a joint distribution, there are also implementations of copula
regression models available in most widely-used statistical software platforms. As copula
modeling is a broad literature, we limit ourselves to discussion of copula regression software.
In SAS, discrete- and mixed-margins copula regression have been done using the nlmixed
procedure (Chen and Hanson 2017). Alternatively, both the SAS %bicount macro and Stata
bivcnto package can again be used, this time for copula-based count regression. In SAS, all
common count margins are supported, including Poisson, negative binomial, and generalized
Poisson, as well as their zero-inflated, truncated, and censored counterparts; however, only
the Frank copula is supported. Stata’s bivcnto supports Poisson, negative binomial, and gen-
eralized Poisson margins, and has options for the Frank, Gaussian, and Kimeldorf-Sampson
copulas. Notably, bivcnto does not support zero-inflated count margins.
In R, users have several options for copula regression. First, the copulaRegression pack-
age (Krämer and Silvestrini 2014) fits gamma and zero-truncated Poisson generalized linear
models (GLMs) via copula, although the package is not being maintained on CRAN as of
this writing. Second, the CopulaCenR package (Sun and Ding 2020) fits bivariate copula
regressions to both parametric and nonparametric censored margins, such as Weibull or Cox
distributions, to name only a few. Third, the GJRM package fits a wide variety of copula
distributions for dependent, sample-selected, censored, and truncated marginals, all using
a trust region algorithm for the likelihood search. Available on CRAN, this package also
permits Poisson and negative binomial margins, however, it does not have allow for zero-
inflation.6 Additionally, the copCAR package (Goren and Hughes 2021; Hughes 2015) fits
bivariate copula models to areal data with spatial dependence, permitting binomial, Poisson,
and negative binomial margins, as well as offering three estimation approaches.7 Lastly, the
gcmr package (Masarotto and Varin 2017) fits Gaussian copula regression models to a single
outcome, instead modelling the dependence across observations either serially or spatially.
Despite this seeming abundance of options, for copula-based bivariate zero-inflated count

5In fact, it permits arbitrary diagonal inflation, not just zero-inflation.
6For further details, see Marra and Radice (2017) and Van der Wurp, Groll, Kneib, Marra, and Radice

(2019).
7Some of these estimation approaches are further discussed in Inouye et al. (2017).



10 bizicount: Bivariate Zero-Inflated Count Copula Regression in R

regression models, the only software implementation is the SAS macro %bicount, which, in
addition to fitting models to assumed joint distributions, also permits zero-inflated count
copula regression models. However, as of this writing it only supports the Frank copula.
Moreover, although several open-source R packages exist for copula regression, we are unable
to find any such implementation that permits zero-inflated count marginal distributions.
Because of the already-mentioned benefits to using copulas for dependence modeling and
to make such tools more widely available for researchers with zero-inflated count margins,
we provide the R package, bizicount, to estimate copula-based zero-inflated bivariate count
models, test for zero-modification, determine an appropriate copula function, and then carry
out post-estimation diagnostics and produce professional tables.

4. Package contents and implementation
The methods detailed in Section 2 are implemented with a package called bizicount, which
is available from CRAN at https://CRAN.R-project.org/package=bizicount. The main
function in the bizicount package is bizicount() which can be used to estimate a variety of
bivariate count data models, including those with zero-inflation in either or both marginal
models.8

4.1. Main function arguments

A minimal call of the bizicount() function requires three user-supplied arguments: fmla1,
fmla2, and data. The formulas for the two marginal count processes, fmla1 and fmla2, each
require a non-negative integer y on the left-hand side. The right-hand side of the formula must
include a set of covariates x for the count process, and can optionally include covariates z for
the zero-inflation process. As in the zeroinfl() function from the pscl package (Zeileis et al.
2008), a vertical bar glyph (|) is used separate the two sets of covariates using the Formula
package (Zeileis and Croissant 2010), e.g., y_j ~ x_j | z_j. Keeping the assignment of
fmla1 and fmla2 separate means that users can include common or unique covariates in
each, as well as additional supported model options (e.g., offsets).
Additional arguments in the bizicount() function specify the marginal probability distribu-
tions (margins), link functions (link.zi and link.ct), and copula (cop) to be used. Details
on the supported options are provided in Table 1 and demonstrated in the next section. In
short, if fmla1 and fmla2 do not include a zero-inflation component, then users use margins
to select the Poisson (the default) or negative binomial as the assumed marginal probability
distributions, and cop to select a Frank ("frank") or Gaussian ("gaus") copula. If instead
fmla1 or fmla2 do include a zero-inflation component, then the available marginals are in-
stead the zero-inflated Poisson (default) and zero-inflated negative binomial. Here users are
further able to specify the link function (options given in Table 1) for both the zero-inflation
and count process respectively using the link.zi and link.ct arguments. Use of these
arguments is illustrated in detail using a real-data example in the next section.
The data argument should indicate the dataframe used in the model. If left unspecified,
bizicount() will search the global environment for objects with names found in the variable

8The package also has implementations for univariate zero-inflated count regression, via zic.reg(), as well
as functions for evaluating zero-inflated count distributions and simulating from them. These are detailed in
Appendx C.

https://CRAN.R-project.org/package=bizicount
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Argument Description
fmla1, fmla2 formulas specifying the marginal model formulas.

For non-inflated margins, these appear as y_i ˜ x_i1 + x_i2 + ... +
x_ik, for margins i and covariates x = 1, 2, ..., k.
For inflated margins, this appears as y_i ˜ x_i1 + ... + x_ik | z_i1
+ ... + z_ip, where z are covariates affecting zero-inflation.

data An optional data.frame containing all variables appearing the model. If
not specified, the global environment is searched for variables with the
names found in fmla1 and fmla2.

cop A length-one character string specifying the copula to be used. One of
"gaus" or "frank". Default is "gaus".

margins A length-two character string specifying each marginal distribution, with
each element being one of "pois", "nbinom", "zip", "zinb". Default is
c("pois", "pois")

link.ct A length-two character string specifying the link function used for the
count portion of each marginal distribution, with each element being one
of "log", "identity", "sqrt". Default is c("log", "log").

link.zi A length-two character string specifying the link function used for the zero-
inflation portion of each marginal distribution, with each element being one
of "logit", "probit", "cauchit", "log", "cloglog".

starts An optional vector of starting values for the parameters to be used in
numerical optimization. See the help files (?bizicount), for details on
ordering these starting values correctly. If not provided, a marginal fit is
used to obtain starting values.

keep Whether to store the source model matrices, offsets, and weights in the
model output. Used to conserve memory if necessary. Default is TRUE.

subset An optional logical vector indicating the subset of observations to be used
in fitting.

weights An optional vector of weights assigned to each observation in fitting.
frech.min lower boundary for Frechet-Hoeffding bounds on copula CDF. Used for

computational purposes to prevent over/underflow in likelihood search. See
help files (?bizicount) for greater detail, as well as Section A. Default is
1e-7.

pmf.min Lower boundary on copula PMF evaluations. Used for computational
purposes to prevent over/underflow in likelihood search. See help files
(?bizicount) for greater detail, as well as Section A. Default is 1e-7.

... Additional arguments that are passed on to the numerical fitting algorithm,
nlm(). See ?nlm for parameters that may be useful to alter.

Table 1: bizicount() argument descriptions.

with for fmla1 and fmla2. Within the bizicount() function, users can further refine the
data introduced to the model by using the subset and weights arguments, where the former
is a logical vector indicating the subset of observations to be used and the latter is a vector
of weights assigned to each observation.
Lastly, with bizicount() users have the option to specify features of the estimation process.
First, researchers may input input a custom set of starting values for the likelihood optimiza-
tion via the starts argument. If no starting values are supplied by the user, the function
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Function Description
print Prints the simplified vector of coefficient estimates
summary Returns same model, gives greater details in print
coef Returns a vector of model coefficients
fitted Returns n× 2 matrix of fitted values for each margin
logLik Returns log-likelihood at convergence point
nobs Returns number of observations used in estimation
AIC Returns Akaike Information Criterion (Akaike 1973)
BIC Returns Schwartz-Bayesian Information Criterion (Schwarz 1978)
vcov Returns the covariance matrix of model parameters
extract Returns a texreg (Leifeld 2013) object
simulate Returns simulated matrices for use in DHARMa (Hartig 2022)
make_DHARMa Returns a list of DHARMa-class objects for the model
zi_test Carries out He, Zhang, Ye, and Tang (2019)’s test for zero modification.

Table 2: Methods for bizicount objects. Note that the extract() function requires an S4 ob-
ject, so we define an S4 bizicount object for use with texreg(), while all other generics expect
and S3 object. The results of the simulate() function can be input to the make_DHARMa()
function.

automatically uses the estimates of coefficients from a univariate fit for each margin, with the
dependence parameter set to the Spearman correlation between the two outcomes. Second,
since bizicount() optimizes the likelihood using R’s nlm() function, users can pass most any
option to nlm() via the ... argument. Among these options, we have found that stepmax,
which controls the maximum allowable step-size used in optimization, can often be useful to
overcome convergence or singularity issues. Details on this can be found in the help files for
nlm().

4.2. Main function output and post estimation

The bizicount() function returns an S3 object of class bizicount that has a host of generic
methods, including print, summary, coef, etc. Table 2 below includes short descriptions of
each. In addition, bizicount() can also output a list containing, among other things, the
numerical Hessian matrix, the numerical gradient at convergence, the covariance matrix, and
several matrices containing the coefficient estimates and their asymptotic standard errors,
corresponding p values, and z-scores.
With a desired set of models in hand, bizicount objects are fully compatible with the suite
of functions from the texreg package. Namely, tables of coefficients can be produced in
text, Word, or LATEX formats, and coefficient plots drawn. Compatibility with texreg is
achieved by defining an extract() method for bizicount objects. Briefly, the extract()
function (extract.bizicount(model, CI = NULL, id=T)) has three arguments when used
on a bizicount object: model is the bizicount model object, CI is a number on the unit
interval specifying the desired two-tailed confidence level, and id which indicates whether
model identifiers (i.e., ct_ for count, and zi_ for zero-inflation) should be prepended to the
results.
Finally, users may wish to do various forms of diagnostic tests to assess model fit. In typical
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GLM settings, this would involve inspecting residuals of some form, however, it is well known
that the discrete nature of most outcomes in GLMs makes residual analysis difficult and
often misleading (Dunn and Smyth 1996). Instead, R’s DHARMa package (Hartig 2022)
offers non-parametric, simulation-based techniques to assess model fit, outliers, dispersion,
zero-inflation, etc. For bizicount-class objects, we provide two useful functions in relation to
DHARMa’s diagnostic tools. First, the generic simulate() function is given a corresponding
method in our package to simulate the datasets required by DHARMa. A list containing two
matrices of simulated outcome data for each margin is returned, each of which can be used
with DHARMa. Second, because there are two sets of simulations – one for each margin –
we we provide a make_DHARMa() wrapper around createDHARMa() to first create this list of
simulated datasets, and then create a list of DHARMa objects from them. That is, users can
simply call make_DHARMa() on a bizicount object to then obtain a list of DHARMa objects
that interface with all of that package’s methods, as shown below in Section 5.2. As this
is simply a wrapper around DHARMa’s createDHARMa() function, users are referred to the
corresponding documentation for details.

5. Data analysis example: Terrorism in Nigeria
To demonstrate the use of the main bizicount() regression function and its most essential
methods, we now provide an applied example using terrorism in Nigeria. In the following, we
model counts of terror attacks in Nigeria by two terrorist groups (Boko Haram and Fulani
extremists) using data from the Global Terrorism Database (GTD, LaFree and Dugan 2007;
START 2018). The GTD is an event-level data set cataloging individual terror attacks, which
we aggregate to the PRIO-GRID square (each square is 0.5 × 0.5 decimal degrees) level.9 As
such, the outcomes in our analysis, att.ful and att.bok, are the number of terror attacks
Boko Haram and Fulani extremists, respectively, in 2014 for a given PRIO-GRID square. We
model these as a function of covariates using data from the PRIO-GRID 2.0 dataset (Tollefsen,
Bahgat, Nordkvelle, and Buhaug 2015; Tollefsen et al. 2012), including population (Center
for International Earth Science Information Network (CIESIN) & Centro Internacional 2005),
percent mountainous terrain (Blyth, Groombridge, Lysenko, Miles, and Newton 2002), and
the latitude and longitude of grid centroids. These inputs are mean centered and scaled by
one standard deviation in order to avoid ill-conditioning and convergence issues due to the
vastly different scales of the covariates. We encourage users to similarly standardize their
variables as desired using the standardize package in R (Eager 2021), or the base::scale()
function.

5.1. bizicount() regression models and testing for zero-inflation

First, we load the required packages and data:

R> library("bizicount")
R> library("texreg")
R> library("DHARMa")
R> data("terror", package = "bizicount")

9For details on coding methodology and criteria, see the GTD codebook at https://www.start.umd.edu/
gtd/downloads/Codebook.pdf. For details on PRIO-GRID squares see Tollefsen, Strand, and Buhaug (2012).

https://www.start.umd.edu/gtd/downloads/Codebook.pdf
https://www.start.umd.edu/gtd/downloads/Codebook.pdf
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R> dat <- terror
R> dat[, c("xcoord", "ycoord", "pop", "mtns")] <- scale(
+ dat[, c("xcoord", "ycoord", "pop", "mtns")])
R> fmla.ful <- att.ful ~ pop + mtns + xcoord * ycoord
R> fmla.bok <- att.bok ~ pop + mtns + xcoord * ycoord

With the specifications of the marginal models, we can now estimate various bivariate spec-
ifications using bizicount(). To begin, we consider a bivariate Poisson model without zero
inflation as:

R> bivpois <- bizicount(fmla.ful, fmla.bok, data = dat,
+ cop = "frank", margins = c("pois", "pois"), keep = TRUE)

Here we see that margins indicates both marginals should be Poisson, and cop indicates that
a Frank copula should be used. Using the summary() method we obtain details on coefficient
estimates, estimated standard errors, test statistics, and corresponding p values:

R> summary(bivpois)

Call:
bizicount(fmla1 = fmla.ful, fmla2 = fmla.bok, data = dat, cop = "frank",

margins = c("pois", "pois"), keep = TRUE)

=================================================
Count Model: att.ful |
----------------------

Estimate Std. Err. Z value Pr(>|z|)
(Intercept) -1.26185 0.12291 -10.2661 < 2.2e-16 ***
pop -0.44110 0.20166 -2.1873 0.02872 *
mtns -0.44051 0.10896 -4.0429 5.278e-05 ***
xcoord 0.72976 0.14268 5.1147 3.143e-07 ***
ycoord -0.69300 0.12264 -5.6505 1.600e-08 ***
xcoord:ycoord -1.03695 0.17133 -6.0523 1.428e-09 ***

-------------------------------------------------
Estimate Std. Err. Z value Pr(>|z|)

dependence 1.64169 0.75955 2.1614 0.03066 *
-------------------------------------------------

Count Model: att.bok |
----------------------

Estimate Std. Err. Z value Pr(>|z|)
(Intercept) -2.378585 0.197090 -12.0685 < 2.2e-16 ***
pop 0.944876 0.062597 15.0945 < 2.2e-16 ***
mtns -0.050484 0.056749 -0.8896 0.3737
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xcoord 2.634690 0.161948 16.2688 < 2.2e-16 ***
ycoord 0.952284 0.153673 6.1968 5.762e-10 ***
xcoord:ycoord -0.585055 0.119683 -4.8884 1.017e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
=================================================

We save a full discussion of the results until later when we can compare across models. Briefly,
however, we see that population is negatively related with attacks by Fulani extremists, and
positively related with attacks by Boko Haram. This is consistent with observed locations of
attacks by the two groups; as Fulani extremists tend to operate mainly in rural areas, and
Boko Haram tend to target high-population areas to elicit more causalities. The dependence
parameter is positive and statistically significant, which indicates that the two groups should
be more likely to attack in similar areas. In reality, however, the observed distribution of
attacks is more consistent with a repulsive pattern, as these groups tend to operate in different
parts of the country.
This latter finding may be a consequence of neglecting zero-inflation in one or both of these
marginal processes. As such, we now test for the presence of excess zeroes using zi_test()
which is an implementation of the test proposed in He et al. (2019). Briefly, the test compares
the observed conditional proportion of zeros to that expected under the null hypothesis of
a Poisson distribution. In a regression context, the test is preferred over alternatives such
as Vuong (1989)’s test, Wald, score or likelihood ratio tests, as the parameters of the zero-
inflated Poisson do not meet the assumptions of these tests. Readers are referred to Wilson
(2015), as well as He et al. (2019) and Tang and Tang (2019) for greater detail.

R> zi_test(bivpois)

====================================================
He et al. (2019)'s Test for Zero Modification
--------------------------------------

H_0: Pr(y = 0 | x) = dpois(0 | x)

H_a Z_score p_value n
att.ful inflated 10.809096 1.558638e-27 312
att.bok inflated 8.404112 2.155557e-17 312
====================================================

For both marginal models, we reject the null of no-zero inflation at very high levels of signif-
icance (p values of 1.56e-27 and 2.16e-17). This indicates that a model which accounts for
excess zeros may provide a better fit to these data, as such we now modify the specification
of our bizicount() to allow for that. We can estimate the zero-inflated model in exactly
the same way as the earlier non-inflated model, with some minor adjustments to the fmla1,
fmla2 and margins parameters.
First, defining zero-inflated formulas can be done as follows:
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R> fmla.zi.ful <- att.ful ~ pop + mtns + xcoord * ycoord |
+ pop + mtns + xcoord * ycoord
R> fmla.zi.bok <- att.bok ~ pop + mtns + xcoord * ycoord |
+ pop + mtns + xcoord * ycoord

As seen above, zero-inflated formulas take the form of y ~ x | z, where y is a response, x are
covariates in the count portion of the model, and z are covariates in the zero-inflated portion,
separated from the count portion by the | bar symbol.
Next, we alter the margins argument to indicate that each margin is zero-inflated Poisson,
e.g., margins = c("zip", "zip").

R> zi_bivpois = bizicount(fmla.zi.ful, fmla.zi.bok, data = dat,
+ cop = "frank", margins = c("zip", "zip"), keep = TRUE)

After running this function, the results can be output using the model summary as before.

R> summary(zi_bivpois)

Call:
bizicount(fmla1 = fmla.zi.ful, fmla2 = fmla.zi.bok, data = dat,

cop = "frank", margins = c("zip", "zip"), keep = TRUE)

=================================================
Count Model: att.ful |
----------------------

Estimate Std. Err. Z value Pr(>|z|)
(Intercept) 0.28469 0.12039 2.3647 0.01805 *
pop -0.76644 0.36025 -2.1275 0.03338 *
mtns 0.25733 0.10566 2.4354 0.01487 *
xcoord -2.04704 0.26001 -7.8729 3.465e-15 ***
ycoord -1.00707 0.14800 -6.8044 1.015e-11 ***
xcoord:ycoord -1.57148 0.30833 -5.0967 3.456e-07 ***

++++++++++++++++++++++++
Zero Inflation: att.ful |
-------------------------

Estimate Std. Err. Z value Pr(>|z|)
(Intercept) -3.46119 1.07864 -3.2089 0.0013326 **
pop -0.43413 0.62324 -0.6966 0.4860746
mtns 1.73496 0.48970 3.5429 0.0003957 ***
xcoord -10.54553 2.38677 -4.4183 9.947e-06 ***
ycoord -4.74161 1.22946 -3.8567 0.0001150 ***
xcoord:ycoord -6.89191 1.97450 -3.4905 0.0004822 ***

-------------------------------------------------
Estimate Std. Err. Z value Pr(>|z|)
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dependence -0.76749 1.31529 -0.5835 0.5595
-------------------------------------------------

Count Model: att.bok |
----------------------

Estimate Std. Err. Z value Pr(>|z|)
(Intercept) 0.567623 0.193178 2.9383 0.003300 **
pop 0.232673 0.076434 3.0441 0.002334 **
mtns -0.019449 0.052042 -0.3737 0.708611
xcoord 1.217380 0.148355 8.2059 2.29e-16 ***
ycoord 0.162435 0.210258 0.7725 0.439790
xcoord:ycoord -0.402957 0.127004 -3.1728 0.001510 **

++++++++++++++++++++++++
Zero Inflation: att.bok |
-------------------------

Estimate Std. Err. Z value Pr(>|z|)
(Intercept) 1.88502 0.27614 6.8264 8.71e-12 ***
pop -0.75792 0.27215 -2.7849 0.005354 **
mtns -0.15286 0.20591 -0.7424 0.457857
xcoord -0.77939 0.34073 -2.2874 0.022173 *
ycoord -0.52526 0.27307 -1.9236 0.054407 .
xcoord:ycoord -0.90781 0.31491 -2.8827 0.003942 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
=================================================

Looking at the results, we observe several differences as compared to the non-inflated, bivariate
Poisson model from before. Perhaps most importantly, after accounting for zero-inflation, we
fail to reject the null of no dependence between the two groups’ attacks. Despite this null
result, the dependence parameter is in the negative direction, which is consistent with the
spatial patterns of attacks by the two groups.
In each of the sample-specific results, we see different relationships from what we found
previously in the non-inflated models. For attacks by Fulani extremists, we see that population
affects the odds of an inflated zero (i.e., of units not being at risk of an attack), but not
expected count of attacks. Mountainous terrain, on the other hand, both decreases the odds
of an inflated zero, and increases the expected number of attacks. This is in contrast to the
first set of results in Section 5.1, which indicated that mountainous terrain was negatively
related to attacks by Fulani extremists. Finally, the latitude and longitude coefficients are
consistent with theoretical expectations for Fulani extremism, as they suggest that as we
move further north and east, the chances of an inflated zero are increased, and the expected
number of attacks are reduced.
For the Boko Haram sample of attacks, population is associated with an increase in the
expected number of attacks, as was the case in the the first set of results from Section 5.1.
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However, the magnitude of the coefficient is nearly 75% lower than before, with a one-standard
deviation increase in population corresponding to a 0.945 increase in the expected log count
in the non-zero inflated models as compared to only 0.233 in the zero-inflated adjusted results
here.10 As before, mountains are not associated with attacks by Boko Haram. Finally, as we
move further north and east, Boko Haram is more likely to experience a structural zero, and
is more likely to attack up to a certain degree of northward movement.
In summary then, by testing and accounting for zero inflation, substantive conclusions are
changed regarding the effects of covariates for both of the terror groups attacks. Moreover,
after accounting for zero-inflated counts, we now fail to reject the null of independence across
the two groups’ attack patterns. This is in contrast to our earlier finding that their attacks
are positively related, which contradicts subject matter knowledge on the two groups’ areas
of operation. This highlights the importance of jointly account for zero-inflation and cross-
sample dependence, as the former would have caused us to erroneously conclude in support
of the latter.

5.2. bizicount post-estimation diagnostics with DHARMa
In Section 5.1, we demonstrate bizicount’s implementation of He et al. (2019)’s test for zero
modification. However, this test can only indicate how well a Poisson model fits zero counts.
Outliers, dispersion, and the suitability of a marginal zero-inflated count model are often
also of interest. As such, we now detail additional tools for post-estimation diagnostics on
bizicount objects.
In typical GLM settings, post-estimation diagnostics might involve inspecting residuals of
some form, such as deviance, Pearson, or Anscombe (Cameron and Trivedi 2013). However,
it is well known that the discrete nature of some outcomes in GLMs makes residual anal-
ysis difficult if not misleading (Dunn and Smyth 1996). In an attempt to rectify this gap,
R’s DHARMa package (Hartig 2022) offers non-parametric, simulation-based techniques to
assess model fit, outliers, dispersion, zero-inflation, and independence across a range of mod-
els. Users are referred to the detailed vignette on DHARMa for additional information and
examples.
For bizicount-class objects, we provide two useful functions in relation to DHARMa’s di-
agnostic tools. First, the make_DHARMa() function, which, when called on a bizicount-class
object, returns a list of DHARMa-class objects that will interface with all of that package’s
methods. Second, because most of DHARMa’s methods rely on simulated datasets, we pro-
vide a simulate() method that can be called on bizicount-class objects, in the event that
users need access to the raw simulation output used in DHARMa’s methods.
Using the make_DHARMa() method, we can diagnose the bivariate, zero-inflated Poisson regres-
sion model from the previous section. As demonstrated below, we create the list of DHARMa
object, and then call the associated testResiduals method for residual diagnostics. This
allows users to see a set of potentially useful results with a single line of code.

R> zip_dharmas = make_DHARMa(zi_bivpois, nsim = 5000, seed = 789443)
R> class(zip_dharmas)

10As in any GLM, the coefficients may not directly reflect the quantities of interest desired by a researcher.
Here since we have used a logit to model the zero inflation and a Poisson for the count process, some direct
interpretation of results – as log odds and expected log count – is easily done. Calculation of other quantities
of interest (e.g., marginal effects) are not produced directly by the bizicount() function.
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[1] "list"

R> lapply(zip_dharmas, class)

[[1]]
[1] "DHARMa"

[[2]]
[1] "DHARMa"

R> lapply(zip_dharmas, testResiduals, plot = FALSE)

$uniformity

Asymptotic one-sample Kolmogorov-Smirnov test

data: simulationOutput$scaledResiduals
D = 0.041527, p-value = 0.6549
alternative hypothesis: two-sided

$dispersion

DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated

data: simulationOutput
dispersion = 4.0577, p-value = 4e-04
alternative hypothesis: two.sided

$outliers

DHARMa bootstrapped outlier test

data: simulationOutput
outliers at both margin(s) = 2, observations = 312, p-value < 2.2e-16
alternative hypothesis: two.sided
percent confidence interval:
0.000000000 0.003205128

sample estimates:
outlier frequency (expected: 0.00016025641025641 )

0.006410256

$uniformity

Asymptotic one-sample Kolmogorov-Smirnov test
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data: simulationOutput$scaledResiduals
D = 0.067001, p-value = 0.1214
alternative hypothesis: two-sided

$dispersion

DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated

data: simulationOutput
dispersion = 4.0115, p-value < 2.2e-16
alternative hypothesis: two.sided

$outliers

DHARMa bootstrapped outlier test

data: simulationOutput
outliers at both margin(s) = 4, observations = 312, p-value < 2.2e-16
alternative hypothesis: two.sided
percent confidence interval:
0 0

sample estimates:
outlier frequency (expected: 0 )

0.01282051

Although the output may appear daunting, the interpretation of these residual tests is
straightforward.11 First, note that each item is labeled with either [[1]] or [[2]], indicat-
ing the appropriate margin. Starting with margin 1, we notice that the Kolmogorov-Smirnov
(KS) test for the residuals is insignificant, suggesting that the zero-inflated Poisson distribu-
tion may be an appropriate assumption for the Fulani extremists’ counts (as we fail to reject
in favor of the alternative). The overdispersion test for margin 1, however, is consistent with
over-dispersion when fitting a zero-inflated Poisson distribution for Fulani extremists.12 The
size of the estimated overdispersion paramater is 4, which roughly 4 times than what is ex-
pected under the null hypothesis. Finally, the test for marginal outliers for Fulani extremists
is significant. However, with only with 312 observations, the actual frequency of these outliers
is still quite small. The same set of diagnostic test results are then repeated for margin 2
(here Boko Haram). Briefly, these results are similar to above: the KS test is insignificant,
while the overdispersion and outlier tests are significant.

5.3. Accounting for overdispersion
Based on this review of the post-estimation diagnostics, further model revision is suggested to

11The DHARMa package also has numerous methods for residual plots. To conserve space, we print only the
console output here. Example code for residual plots is available in Appendix B; however, readers are referred
to the DHARMa documentation for greater details on residual plotting.

12This is despite the fact that the zero-inflated Poisson accommodates some forms of overdispersion inher-
ently, as Var(Yi;λi, ψi) = (1 − ψi)(λi + ψiλ

2
i ) > E(Yi;λi, ψi) = (1 − ψi)λi, ∀ψi ∈ (0, 1).
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account for excess variance. One possible approach is to fit a zero-inflated negative binomial
model, which will better account for overdispersion. We therefore fit a bizicount model
to the terrorism data below using zero-inflated negative binomial margins. We then carry
out a likelihood ratio test to determine if adding the inverse dispersion parameters to the
distribution improves our fit, and again undertake DHARMa’s residual tests. To conserve
space, we do not print bizicount’s raw regression output for the zero-inflated negative binomial
model here, as we intend only to show how readers might proceed with subsequent model
diagnosis.

R> zi_bivnb = bizicount(fmla.zi.ful, fmla.zi.bok, data = dat, cop = "frank",
+ margins = c("zinb", "zinb"), keep = TRUE)
R> chi_stat_nb = -2 * (logLik(zi_bivpois) - logLik(zi_bivnb))
R> pchisq(chi_stat_nb, df = 2, lower.tail = FALSE)

[1] 1.202813e-53

R> zinb_dharmas = make_DHARMa(zi_bivnb, nsim = 5000, seed = 12473)
R> lapply(zinb_dharmas, testResiduals, plot = FALSE)

$uniformity

Asymptotic one-sample Kolmogorov-Smirnov test

data: simulationOutput$scaledResiduals
D = 0.021347, p-value = 0.9989
alternative hypothesis: two-sided

$dispersion

DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated

data: simulationOutput
dispersion = 1.4655, p-value = 0.2976
alternative hypothesis: two.sided

$outliers

DHARMa bootstrapped outlier test

data: simulationOutput
outliers at both margin(s) = 1, observations = 312, p-value = 0.14
alternative hypothesis: two.sided
percent confidence interval:
0.000000000 0.003205128

sample estimates:
outlier frequency (expected: 0.000224358974358974 )

0.003205128
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$uniformity

Asymptotic one-sample Kolmogorov-Smirnov test

data: simulationOutput$scaledResiduals
D = 0.039582, p-value = 0.7126
alternative hypothesis: two-sided

$dispersion

DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated

data: simulationOutput
dispersion = 0.53827, p-value = 0.5048
alternative hypothesis: two.sided

$outliers

DHARMa bootstrapped outlier test

data: simulationOutput
outliers at both margin(s) = 0, observations = 312, p-value = 1
alternative hypothesis: two.sided
percent confidence interval:
0.000000000 0.003205128

sample estimates:
outlier frequency (expected: 0.000192307692307692 )

0

Both from the likelihood ratio test and from DHARMa’s output, we can see clearly that
accounting for overdispersion vastly improves the model’s fit, with overdispersion, outliers,
and quantile deviations no longer detectable.
In summary, using diagnostics contained within the bizicount package we arrive at a bivariate
zero-inflated negative binomial model. He et al. (2019)’s test demonstrate the need to account
for zero inflation in the marginals, and subsequent residual diagnostics indicate alack of fit
(namely excess variance) in the zero-inflated Poisson margins, leading us to better account
for overdispersion using the zero-inflated negative binomial model.
Keeping this example in mind, it is important to mention that poor fit is often a result of a
poorly specified model mean structure. For space considerations here, we do not further inves-
tigate adding additional covariates, transforming them, or adding interactions/polynomials,
as the main goal here is an exposition of the tools offered by the package. However, in general
this type of exploration would offer a much richer analysis of any data, and is often the cor-
rect approach (rather than accounting for variation in a dispersion parameter). The copula
nature of these models does not alter typical approaches to model exploration, including like-
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Bivariate Poisson Bivariate ZIP Bivariate ZINB
Fulani Boko Haram Fulani Boko Haram Fulani Boko Haram

Count model

(Intercept) −1.26∗∗∗ −2.38∗∗∗ 0.28∗ 0.57∗∗ 0.20 −0.17
(0.12) (0.20) (0.12) (0.19) (0.24) (0.31)

Population −0.44∗ 0.94∗∗∗ −0.77∗ 0.23∗∗ −0.72 0.51∗∗

(0.20) (0.06) (0.36) (0.08) (0.77) (0.16)
% Mountains −0.44∗∗∗ −0.05 0.26∗ −0.02 0.17 −0.17

(0.11) (0.06) (0.11) (0.05) (0.17) (0.19)
Longitude 0.73∗∗∗ 2.63∗∗∗ −2.05∗∗∗ 1.22∗∗∗ −2.13∗∗∗ 2.24∗∗∗

(0.14) (0.16) (0.26) (0.15) (0.48) (0.29)
Latitude −0.69∗∗∗ 0.95∗∗∗ −1.01∗∗∗ 0.16 −1.08∗∗ −1.26∗∗∗

(0.12) (0.15) (0.15) (0.21) (0.33) (0.37)
Lat. × Long. −1.04∗∗∗ −0.59∗∗∗ −1.57∗∗∗ −0.40∗∗ −1.12 −0.22

(0.17) (0.12) (0.31) (0.13) (0.60) (0.26)
Zero inflation

(Intercept) −3.46∗∗ 1.89∗∗∗ −6.04∗∗ −0.67
(1.08) (0.28) (2.19) (1.02)

Population −0.43 −0.76∗∗ −0.52 −1.81∗

(0.62) (0.27) (0.91) (0.72)
% Mountains 1.73∗∗∗ −0.15 2.20∗∗ 0.25

(0.49) (0.21) (0.82) (0.51)
Longitude −10.55∗∗∗ −0.78∗ −14.38∗∗∗ 0.47

(2.39) (0.34) (4.05) (0.71)
Latitude −4.74∗∗∗ −0.53 −6.58∗∗ −5.33∗∗

(1.23) (0.27) (2.12) (1.72)
Lat. × Long. −6.89∗∗∗ −0.91∗∗ −8.79∗∗ −1.85

(1.97) (0.31) (2.96) (1.17)

Dispersion−1 0.64∗∗ 0.68∗∗∗

(0.21) (0.16)
ρ 1.64∗ −0.77 0.04

(0.76) (1.32) (1.35)
N 312 312 312
BIC 1442.68 1097.95 855.63
AIC 1459.67 1130.62 890.91
LogLik −716.84 −540.31 −418.46

Table 3: Bivariate Poisson, zero-inflated Poisson, and zero-inflated negative binomial models
of terrorist attacks, Frank copula. Standard errors are in parentheses, with ∗∗∗p < 0.001;
∗∗p < 0.01; and ∗p < 0.05.

lihood ratio, Wald, and score testing for nested models.13 As such, variable selection can (and
13However, as noted earlier, it is incorrect to test the Poisson as being nested in the zero-inflated Poisson in

a regression context (Wilson 2015; Tang and Tang 2019).
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should) proceed in the same way as it would for any generalized linear model. We recommend
readers consult basic econometrics texts (Greene 2003) or specific treatments of count data
analysis (Cameron and Trivedi 2013) for further guidance on these points.

5.4. Tabularizing bizicount models using texreg

Although inspecting the raw console output is useful for model building, after arriving at a set
of models to be presented to a wider audience, users will likely want to export the results in
a more compact and neat form. For this reason, we provide methods for the texreg package’s
generic functions (Leifeld 2013), which allows users to output bizicount models as LATEX code,
plain-text, or a Microsoft Word document. For example, we can more succinctly present the
results of the preceding regression models in a LATEX table using the following code, which
results in the LATEX code to produce Table 3.

R> mods <- list(bivpois, zi_bivpois, zi_bivnb)
R> texreg(mods, groups = list("Count Model" = 1:6, "Zero Inflation" = 7:12),
+ reorder.coef = c(1:6, 8:13, 14, 7), digits = 2,
+ custom.model.names = c("Poisson: Fulani", "Poisson: BH", "ZIP: Fulani",
+ "ZIP: BH", "ZINB: Fulani", "ZINB: BH"))

The texreg package comes with a host of additional options for customizing output, only a
few of which we utilize in this example. Users are referred to its documentation for greater
detail on modifying output to suit their specific needs.

6. Handling convergence problems
Although it did not happen in our terrorism data example here, since bizicount uses likelihood-
based methods users may encounter convergence issues in their models. First, bizicount
utilizes numerical methods for optimization, implying several layers of finite difference ap-
proximations, first to obtain the copula PMF from its CDF, and then to obtain approximate
gradients and Hessians for the quasi-Newton fitting procedure. Second, covariates may often
be on different scales, which can drastically affect the gradient vector if these scales are very
different and result in an ill-conditioned (and therefore non-invertible) Hessian. Third, users
may also face convergence issues if their marginal distributions are misspecified, although this
is rare in application. For example, the negative binomial distribution collapses to a Poisson
when the inverse dispersion parameter goes to infinity.14 Similarly, if there is no zero-inflation
in the data-generating process and users specify zero-inflated marginal distributions, then the
theoretical zero-inflation coefficients tend to negative infinity. This fact underscores the ne-
cessity of adequate prior testing for zero-inflation – namely using He et al. (2019)’s test – as it
requires only a Poisson regression fit, thereby foregoing the issue of fitting a non-convergent
zero-inflated model prior to testing for zero-inflation.
Although none of these presented a problem in the above analysis, several warnings and errors
may indicate non-convergence. They include statements like:

14We take some steps to mitigate this by warning users when the inverse dispersion parameter is suspiciously
large.
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• Convergence code other than 1... which indicates general convergence problems,
with different codes having different meanings. A code of 2 – which is defined by the
nlm() documentation as “successive iterates within tolerance, current iterate is probably
solution” – might be acceptable, but others are not. The documentation for the nlm()
function includes descriptions of each convergence code, although in general convergence
codes 3 through 5 are problematic, and model results are not to be trusted.

• Probable coding error in analytical gradient... which indicates issues in ob-
taining starting values using a univariate fit. This is often solved by scaling covariates
due to the reasons mentioned above.

• nlm was unable to obtain a Hessian; NumDeriv was used... which indicates that
the built in second-order finite difference method for the fitting procedure was unable
to obtain an approximate Hessian, so the numDeriv package was used (successfully)
to obtain a Hessian (Gilbert and Varadhan 2019). Despite this success, the warning
indicates potential issues to be resolved.

• Hessian of LogLik is not negative-definite... which indicates that the Hessian
was either unobtainable, or it exists but is not negative-definite. If the Hessian was not
obtainable, this includes the additional attempts by numDeriv in place of nlm().

To mitigate non-convergence that is not due to a theoretically infinite coefficient, users have
two primary options:

1. Iteratively tuning the stepmax parameter in bizicount(), which is passed on to the
nlm() fitter. What number this should be is context dependent, but we have had
success anywhere in the range of 0.05 to 25. This can be done by specifying stepmax in
a call to bizicount(), e.g. bizicount(fmla1, fmla2, stepmax = 0.1), along with
any other desired parameter settings. The parameter controls the maximum allowable
step length along the gradient in the likelihood search, which will slow down the fitting
procedure but will avoid taking large steps that may simply jump over the minimum
(or maximum). When adjusting this parameter, users will need to be especially wary of
reaching the maximum number of iterations (code 4) and exceeding the maximum step
length 5 consecutive times (code 5). For code 4, the iteration limit should be increased,
e.g., bizicount(fmla1, fmla2, iterlim = 50000), and for code 5, the user has set
stepmax too small, and should therefore increase it slightly and try fitting again, ideally
until no warnings occur.

2. Putting covariates on a similar scale, e.g., by mean-centering and dividing by one stan-
dard deviation.15 This is simple to do in R using its built-in scale() function, which
can be called directly on a data.frame object to scale all of its columns, e.g., df_scaled
= scale(df_unscaled). In fact, we use this exact approach in the applied example,
with our code found in Section 5.1. Alternatively, individual covariates can be scaled
as needed, either by subsetting the user’s data.frame appropriately, or by specifying
the scale() function in the model formula, e.g., y ~ scale(x) + scale(z). Scaling
comes with the obvious tradeoff of model interpretability as practitioners are probably
not interested in the effects of a change of one standard deviation, but it will often
improve numerical stability.

15Or dividing by two standard deviations, if binary variables are present (Gelman 2008).
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Beyond these approaches, users can also consider altering additional parameters that are
passed on to nlm(), which can all be passed simply by specifying them in the call to
bizicount(), identically to the stepmax parameter discussed in (1) above. Although we
have had the most success by adjusting stepmax, details on these additional parameters can
be found in the nlm() function’s documentation.

7. Simulation evidence
The preceding analysis of terrorism data demonstrates the general methods of the bizicount
package, as well as some of the potential changes to our conclusions that occur when account-
ing for various features of the data-generating process, e.g., zero-inflation and overdispersion.
In that demonstration, for example, we observed that the signs and significance on the de-
pendence parameter and some covariates changed after allowing for zero-inflation, and even
more so after accounting for overdispersion. However, this is only a single example and, more
importantly, we do not know the true data-generating process to benchmark against. There-
fore, to provide a more comprehensive analysis of the consequences of omitting dependence
and/or zero-inflation, we provide evidence from a series of Monte Carlo experiments below.
Anticipating our results, we see that neglecting dependence results in over-confident and in-
efficient estimators, omitting zero-inflation results in biased estimators, and omitting both of
these processes results in both biased and overconfident estimators. This is consistent with
our theoretical expectations mentioned in the introduction, and again demonstrates the im-
portance of having a model which can simultaneously accommodate both zero-inflation and
dependence across the marginals.

7.1. Data-generating process

The data-generating process for the simulations is as follows:

Yij ∼ ZIP {λij = exp(Xijβj), ψj = ψj}

cor
[
Φ−1{F1(Y.1)},Φ−1{F2(Y.2)}

]
= cor(U1, U2) = ρ

Where

• i = 1, 2, ..., N are observations.

• N = 500 is the sample size, which is constant across our simulations.

• j ∈ {1, 2} are the margin indices.

• β1 = [1, 3.25,−2.3]⊤ is a vector of parameters for the count portion of margin 1, includ-
ing an intercept. This vector is held constant across simulations.

• β2 = [2,−1.75, 3.5]⊤ is a vector of parameters for the count portion of margin 2, includ-
ing an intercept. This vector is held constant across simulations.

• Fj is the CDF of the respective marginal ZIP distribution.

• Φ−1 is the univariate standard-normal quantile function.
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• ρ ∈ {0.15, 0.85} is the dependence parameter to be varied in the Gaussian copula.

• ψ1, ψ2 ∈ {0.1, 0.6} are the zero-inflation parameters to be varied in the Gaussian copula
for each margin.

• X1×2
i1 ∼ Bernoulli(p = 0.5) is an observation vector for margin 1, so both covariates

have the same parameter p. A 1 is inserted as the first element for the intercept.

• X1×2
i2 ∼ Exponential(rate = 3) is an observation vector for margin 2, so both covariates

have the same rate. A 1 is inserted as the first element for the intercept.

Using these data, we then estimate three models:

1. Our preferred bivariate model with zero-inflated Poisson margins using a Gaussian cop-
ula. This is labeled as the correct model below as it reflects the true DGP.

2. A bivariate model with Poisson margins and a Gaussian copula – i.e., a bivariate model
omitting zero-inflation in the margins.

3. A univariate zero-inflated Poisson model for each outcome, Yj – i.e., a univariate
model for each outcome vector that omits dependence, but which correctly specifies
the marginal distribution.

7.2. Bias and inefficiency of count parameter estimators

The densities in Figure 2 are for the second element of β1 in margin 1, β1,2 = 3.25, while hold-
ing margin 2’s zero-inflation parameter constant at ψ2 = 0.1. The densities of the estimates
are centered on the true value, i.e., they are β̂21 − β21. A few conclusions are immediately
apparent:

• The correct bivariate model is unbiased in each set of reported conditions.

• The incorrect bivariate model is biased upward, with the magnitude of this bias increas-
ing in the extent of zero-inflation. This is consistent with our expectations, as Poisson
margins have a mean of λ, while ZIP margins have a mean of (1 − ψ)λ ≤ λ.

• The univariate ZIP model that omits dependence has greater variance than the correct
bivariate model. This difference in variance increases with the degree of dependence in
the data-generating process, which is to be expected as there is less information upon
which to base the univariate inferences when compared to their bivariate counterpart.

7.3. Overconfidence of count parameter estimators

The plot in Figure 3 demonstrates the level of overconfidence in the estimated parameter β1,2
compared to its empirical sampling distribution, again holding margin 2’s zero-inflation fixed
at ψ2 = 0.1. We measure overconfidence as

MAD(β̂)
med[ŜE(β̂)]

where MAD(·) denotes the median absolute deviation from the median.
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Figure 2: Density of centered count slope parameter estimates (β1,2 = 3.25) in margin 1, with
ψ2 = 0.1.

That is, we compare an estimate of the dispersion of β̂ (using its sampling distribution) to
a measure of the center of its estimated standard errors. If the standard errors are under-
estimated on average relative to the dispersion of the empirical sampling distribution of the
estimator, then this measure exceeds 1. If the opposite holds (i.e., a measure less than 1),
then our estimator is underconfident. Thus, an ideal estimator will have a value close to
1. A widely-used alternative is to replace the numerator with the standard deviation rather
than the median absolute deviation, and the denominator with the mean of the estimated
standard errors.16 However, due to some outliers from simulation leading to long tails – par-
ticularly for the incorrectly specified bivariate model – this results in an unreasonable level
of overconfidence. Thus, we use robust measures of the center and spread, which only affects
the incorrect bivariate model specifically by reducing its overconfidence. In other words, we
make it easier for the misspecified model to compete with the correct model by using robust
estimates of the center.
The primary conclusion from this plot is that the incorrect bivariate model tends to under-
estimate its standard errors, and that the severity of this underestimation increases with the

16For an unbiased estimator β̂, this quantity would be the inverse of a Monte Carlo estimate of the efficiency,
I−1(β)/Var(β̂), with I denoting the Fisher information. Thus, our measure of overconfidence can loosely be
seen as a robust estimator of the inverse efficiency provided an estimator is unbiased.
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Figure 3: Overconfidence of centered count slope parameter estimate (β1,2 = 3.25) in margin 1,
holding ψ2 = 0.1 constant.

degree of zero-inflation. At low levels of zero-inflation (ex. ψ = 0.1), however, the bivari-
ate non-inflated model’s overconfidence does not differ considerably from the zero-inflated
bivariate model. Further investigation would be required to determine at what exact levels of
zero-inflation these differences become appreciable. The results here suffice to indicate that
with observational data the conservative strategy would be to account for zero inflation when
suspected. Somewhat surprisingly, the univariate ZIP model – which does not account for
model dependence – does not underestimate its standard errors. However, the univariate ZIP
model estimator is less efficient (e.g., greater standard errors) relative to the true zero-inflated
bivariate model under high levels of dependence (see the bottom-left panel of Figure 2 above).

7.4. Bias of dependence parameter estimators

Finally, users may also be interested in the performance of the dependence parameter esti-
mators. The density plots in Figure 4 are the truth-centered estimates of the dependence
parameter, again holding the zero-inflation parameter for margin 2 fixed at ψ2 = 0.1.17 In
short, there are two main conclusions:

17We do not report the results from the univariate models since these constrain ρ to zero by assumption.
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Figure 4: Density of centered dependence parameter estimate with ψ2 = 0.1.

1. The incorrect bivariate model underestimates the dependence by about a factor of 1/2.

2. The incorrect bivariate model’s variance on the dependence parameter increases with
the degree of zero-inflation.

8. Conclusion and future directions
As we demonstrate above, with multivariate count data researchers should often consider
both dependence across outcomes and zero inflation (i.e., an increased probability mass on
zero). While many solutions exist for each of these problems separately, when faced with
both challenges simultaneously researchers have far fewer options.
Currently, researchers often address only one of these problems at a time, risking either
inefficiency or bias. Even where implementations of zero-inflated bivariate count models are
found, these require users to specify a particular multivariate zero-inflated count distribution,
regardless of whether the assumptions for such a specification are not well supported. Here we
have discussed how copulas can be used as an alternative that only requires assumptions about
the marginal distributions and the form of the dependence, which are often better supported
theoretically. Using this strategy it is also straightforward to allow for zero inflation: one
simply specifies zero-inflated count margins for the joint distribution.
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To make copula-based bivariate zero-inflated count regression models more accessible, we
present the bizicount package using R. Our package supports both Frank and Gaussian cop-
ula regression for either Poisson or negative binomial marginal distributions, and importantly,
their zero-inflated counterparts. Moreover, to make the transition from modeling to profes-
sional writing less costly for users, we extend functions from the texreg package to output
bizicount models alongside other models as one table. To facilitate additional post-estimation
diagnostic tests, we include functions compatible with the well-known DHARMa package,
thus permitting marginal residual analysis, dispersion testing, as well as a host of other tools.
In this way, we offer authors an alternative means of accounting for dependence between
their zero-inflated counts, as well as additional tools to aid in the analysis and presentation
of model results.
In future work we plan to consider adding functionality to the bizicount package includ-
ing: the “distributional transform” (Inouye et al. 2017; Kazianka 2013; Kazianka and Pilz
2010; Rüschendorf 2013), the addition of non-copula based approaches, and an extension of
the package to higher dimensional settings (e.g., trivariate models). For the extension to
multivariate settings – i.e., with dimension d > 2 – we would likely use vine pair copula
constructions (vine PCCs), due both to their computational superiority and accuracy relative
to other approaches (Panagiotelis, Czado, and Joe 2012). As needed, we will also consider
adding support for additional marginal count distributions, including censored and truncated
Poisson, negative binomial distributions, generalized Poisson distribution, etc. For now, how-
ever, we feel that our base bizicount package is sufficiently general to assist in estimating the
models most often encountered by applied researchers.
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A. Further computational details

As Fréchet (1951) and Hoeffding (1940, 1941) show, any two-dimensional copula distribution
function has the following bounds:

max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v}

where u and v are realizations from the two uniform marginal distributions of the copula, and
C(·) is the copula CDF. Alternatively, this can be written as:

max{F1(y1) + F2(y2) − 1, 0} ≤ F (y1, y2) ≤ min{F1(y1), F2(y2)}

using the notation from the main text. Accordingly, we impose these bounds on each of the
four CDF evaluations used in the finite difference approximation to the PMF. However, to
avoid numerical issues with floating-point representations (over/underflow), in practice we
use

max{u+ v − 1, frechmin} ≤ C(u, v) ≤ min{u, v, 1 − frech.min}

where we require that frech.min ∈ (0, 0.00001], with a default value of 1e-7. Effectively, this
constrains all copula CDF evaluations to the unit interval.
Second, extremely small values for the PMF – and therefore the likelihood of a each observa-
tion individually – can be rounded off to zero due to numerical underflow. These zeros will
then result in infinite-valued logarithms in the log-likelihood, which when summed with other,
finite log-likelihood values, still returns an infinite log-likelihood for all observations. Thus,
to avoid this issue, we threshold PMF values at pmf.min to ensure stability in evaluating the
log-likelihood during numerical optimization. By default this is also 1e-7.

B. Residual plots using DHARMa

For clarity, we did not print DHARMa’s diagnostic plots in the main text, so they are included
here. However, readers should also read the documentation for that package, as there are
several other functions that may be of interest.

R> name <- c("fulani", "bh")
R> for(i in seq_along(name)) {
+ pdf(paste0("Figures/appendix_figure_B", i, ".pdf"),
+ width = 8, height = 4.5)
+ plot(zip_dharmas[[i]])
+ dev.off()
+ }
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Figure 5: Zero-inflated Poisson, Boko Haram.
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C. Univariate functions

C.1. Random number generation: rzip(), rzinb()

To generate samples from the ZIP and ZINB distributions, we define two functions:

rzip(n, lambda, psi, recycle = FALSE)
rzinb(n, size, psi, prob = NULL, mu = NULL, recycle = FALSE)

Where:

• n is the sample size.

• lambda or mu are the conditional mean of the count distribution. In other words,
they are not the conditional mean of the ZIP/ZINB distributions, but the mean of the
constituent count distribution. Mathematically, they are the λ and µ found in (1 −ψ)λ
for the mean of the ZIP, and (1 − ψ)µ for the ZINB.

• psi is the conditional probability of zero-inflation.

• prob is an alternative way to specify the mean to the negative binomial distribution;
see ?nbinom for details. For regression purposes, it is often desireable to use mu rather
than prob. One of mu or prob must be specified.

• size is the inverse dispersion parameter of the negative binomial distribution. This
is often denoted θ in the literature, and is inverted to obtain a dispersion parameter
estimate. See ?nbinom for more details.

• recycle allows recycling of unequal length vectors that are input as arguments for the
other parameters in the function. Eg, if mu and psi are of different lengths, recycle
allows these vectors to be recycled to ensure comformity. Note that recycling will occur
by default even if recycle is set to FALSE when one argument is length-one. Eg, if psi
is length-one, and lambda is length-n, psi will be recycled.

C.2. CDF evaluation: pzip(), pzinb()

To evaluate the univariate ZIP and ZINB CDFs, we define the following:

pzip(q, lambda, psi, lower.tail = TRUE, log.p = FALSE, recycle = FALSE)
pzinb(q, size, psi, prob = NULL, mu = NULL, lower.tail = TRUE,

log.p = FALSE, recycle = FALSE)

Where parameters with the same name as previous functions are the same, and:

• q is the vector of quantiles for evaluation.

• lower.tail indicates whether the lower-tail, or alternatively its complement should be
returned.
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• log.p indicates whether the preobabilities ought to be returned on the (natural) log
scale.

C.3. PMF evaluation: dzip(), dzinb()

To evaluate the univariate ZIP and ZINB PMFs, we define the following:

dzip(x, lambda, psi, log = FALSE, recycle = FALSE)
dzinb(x, size, psi, prob = NULL, mu = NULL, log = FALSE, recycle = FALSE)

Where parameters with the same name as previous functions are the same, and:

• x is the non-negative integer-valued location at which the mass function is to be evalu-
ated

C.4. Quantile function evaluation: qzip(), qzinb()

To evaluate the univariate ZIP and ZINB quantile functions, we define the following:

qzip(p, lambda, psi, log = FALSE, recycle = FALSE)
qzinb(p, size, psi, prob = NULL, mu = NULL, log = FALSE, recycle = FALSE)

Where parameters with the same name as previous functions are the same, and:

• p is a vector of probabilities ∈ [0, 1] at which to evaluate the quantile function.

C.5. Univariate regression function: zic.reg()

We also include a univariate, zero-inflated count regression function, zic.reg(), which is
not only used to obtain marginal starting values, but also is compatible with DHARMa and
texreg, similarly to bizicount(). The parameters to the function are:

zic.reg(fmla = NULL, data, subset, na.action, weights = rep(1, length(y)),
X = NULL, z = NULL, y = NULL, offset.ct = NULL, offset.zi = NULL,
dist = "pois", link.ct = "log", link.zi = "logit", starts = NULL,
optimizer = "nlm", warn.parent = TRUE, keep = FALSE, ...)

Where:

• fmla is a two-part formula, eg y ~ x | z. If using the data function below, then offsets
should be put directly into this formula.

• data is a dataframe containing the needed variables for the regression.

• subset, na.action, codeweights determine the subset of the data to use, how to handle
missingness, and what weights to attach to the observations.
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• X, z, y, offset.ct, offset.zi are, respectively, the design matrix for the count portion,
the design matrix for the zero-inflation portion, the outcome vector, the offset vector
for the count portion, and the offset vector of the zero-inflation portion. Note: these
should only be used when data = NULL, and are primarily advantageous when using
large datasets as they bypass some preliminary data manipulation prior to optimization.
Also, no missingness can be present in any of these quantities.

• dist is one of either "pois" or "nbinom", determining the count distribution.

• link.ct determines the link function for the count portion, and is one of "sqrt",
"identity", "log".

• link.zi determines the link function for the zero-inflation portion, and is one of
"logit", "probit", "cauchit", "log", "cloglog".

• starts is a vector of starting values. If NULL, these are automatically obtained.

• optimizer is the optimization package used for the likelihood search, one of either
"nlm" or "optim". Default: "nlm".

• warn.parent logical indicating whether to warn about using data from the parent en-
vironment when parameter data is not supplied.

• keep logical indicating whether to keep the model frame used for estimation, or discard
it prior to returning. Note: This must be TRUE to obtain fitted values, and for diagnostics
in DHARMa.

• ... further arguments passed to the chosen optimizer. See ?nlm or ?optim for more
details.

Finally, we provide a quick example of how to use the above function’s output for diagnostics
in DHARMa and with texreg. Note that output is suppressed here for clarity, as this is only
intended to show how users can do this with their own models. Additionally, this code is
assumes that the code from the main text has already been run, as it relies on the formula
and data from there. The simulatedResponse parameter to createDHARMa() is obtained by
using the simulate function that we have defined for zicreg-class objects, as seen below.

R> library("DHARMa")
R> library("texreg")
R> unizi.bok <- zic.reg(fmla = fmla.zi.bok, data = dat, keep = TRUE)
R> uni.dharma <- createDHARMa(simulatedResponse = simulate(unizi.bok),
+ observedResponse = dat$att.bok,
+ fittedPredictedResponse = fitted(unizi.bok),
+ integerResponse = TRUE, seed = 123, method = "PIT")
R> plot(uni.dharma)
R> texreg(unizi.bok)
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