
JSS Journal of Statistical Software
May 2024, Volume 109, Issue 3. doi: 10.18637/jss.v109.i03

openTSNE: A Modular Python Library for t-SNE
Dimensionality Reduction and Embedding

Pavlin G. Poličar
University of Ljubljana

Martin Stražar
Broad Institute

Blaž Zupan
University of Ljubljana

Abstract

One of the most popular techniques for visualizing large, high-dimensional data sets
is t-distributed stochastic neighbor embedding (t-SNE). Recently, several extensions have
been proposed to address scalability issues and the quality of the resulting visualizations.
We introduce openTSNE, a modular Python library that implements the core t-SNE
algorithm and its many extensions. The library is faster than existing implementations
and can compute projections of data sets containing millions of data points in minutes.

Keywords: t-SNE, embedding, visualization, dimensionality reduction, Python.

1. Introduction
The ever-growing volumes of high-dimensional data sets in machine learning call for efficient
dimensionality reduction techniques and their implementations to produce informative data
visualizations. Popular approaches include principal component analysis (PCA), multidimen-
sional scaling, t-distributed stochastic neighbor embedding (t-SNE, Van Der Maaten and Hin-
ton 2008), and uniform manifold approximation and projections (UMAP, McInnes, Healy, and
Melville 2018). Among these, t-SNE has achieved widespread adoption as it can address high
volumes of data and reveal the underlying data manifold. For instance, t-SNE is widely used
in the bioinformatics community in areas such as single-cell transcriptomics (Macosko et al.
2015; Cao et al. 2019; Tasic et al. 2018), human genetics (Hirata et al. 2019), metagenomic
assembly (Beaulaurier et al. 2018), spatial organization of microbial communities (Sheth, Li,
Jiang, Sims, Leong, and Wang 2019), and metabolomics (Tkachev et al. 2019). To visually
explore the data manifold, the objects of interest, such as diseased and healthy tissues or sin-
gle cells, are profiled through thousands of features that include, for example, the expression
of genes or the concentration of metabolites. The objective of t-SNE is to embed data points
within a low-dimensional space, where the preservation of distances is rewarded in a non-

https://doi.org/10.18637/jss.v109.i03
https://orcid.org/0000-0002-6462-9372
https://orcid.org/0000-0003-3064-1055
https://orcid.org/0000-0002-5864-7056

2 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

Original t-SNE Modern t-SNE

10

11
12

13
14

15 16

1718

19

20 21

22

23

26

27
28

29

3
30

31

3233

4
5

6
7

8

9

Astrocytes

Cones

Fibroblasts

Horizontal cells

Microglia
Muller glia

Pericytes

Retinal ganglion cells

Rods

Vascular endothelium

10
1112 1314

15
16 1718

19

2021

22

23

26

27
2829

3

30
31

32
33

4

5
67

8 9

Astrocytes

Cones

Fibroblasts

Horizontal cells

Microglia

Muller glia

Pericytes

Retinal ganglion cells

Rods

Vascular endothelium

Amacrine
cells

Bipolar
cells

Amacrine
cells

Bipolar
cells

a b c Embedding new samples

Figure 1: We use openTSNE to generate three t-SNE embeddings and demonstrate recent
theoretical advances. The data in (a) and (b) include 44,808 mouse retinal cells that are
described with high-dimensional gene-expression profiles from Macosko et al. (2015). The
data in (c) additionally contains 27,499 expression profiles from mouse retinal cells from
Shekhar et al. (2016). (a) We construct t-SNE embedding following the parameter choices
from the original publication by Van Der Maaten and Hinton (2008). The visualization shows
no preservation of the global organization of clusters, resulting from random initialization and
an affinity model focused on preserving local neighborhoods. (b) A modern t-SNE embedding,
utilizing the latest theoretical advances and practical recommendations constructed using a
multi-scale affinity model, preserving both short-range and long-range interactions between
data points and initialized so that the global layout is as meaningful as possible. Unlike in
(a), the green and blue clusters representing different sub-types of amacrine and bipolar cells
are now localized to the same regions of the space, indicating a higher level of similarity than
to other cell types. The embedding in (c) shows how existing t-SNE reference atlases can
be used to place new samples into existing embeddings. The positions of new data points
correspond to cell types from the reference atlas.

linear fashion, thus resulting in a compact grouping of highly similar data points. Reports
on single-cell gene expression data, where increasingly specific cell types are distinguished
by a decreasing number of genes, often rely on t-SNE to embed high-dimensional expression
profiles into a two-dimensional space and discover constituent cell types (Figure 1a).
Despite its utility, t-SNE has often been criticized for its limited scalability, lack of global or-
ganization – t-SNE identifies well-defined clusters that may be arbitrarily scattered through-
out the embedding – and the absence of theoretically-founded methods to map new data
into existing embeddings (Ding, Condon, and Shah 2018; Becht et al. 2019). Most of these
shortcomings have recently been addressed. Linderman, Rachh, Hoskins, Steinerberger, and
Kluger (2019) developed FIt-SNE, an efficient approximation that massively improves the
scalability of t-SNE, achieving linear time complexity in the number of samples. Kobak and
Berens (2019) proposed several techniques to improve global cluster coherence (Figure 1b),
including estimating similarities with a mixture of Gaussian kernels. In our previous work,
we introduced a principled approach for embedding new samples into existing visualizations
(Figure 1c and Poličar, Stražar, and Zupan 2023).
Easy access to efficient implementations almost universally correlates with the widespread
adoption of novel computational techniques. Despite the many recent theoretical advance-

Journal of Statistical Software 3

ments, popular t-SNE libraries have been slow to incorporate them into their implementa-
tions. In Python, the most commonly used implementation of the t-SNE algorithm comes
from scikit-learn (Pedregosa et al. 2011), which is tightly integrated with the Python data
science environment but suffers from poor scalability. Other implementations from the R (R
Core Team 2024; Krijthe 2023) and Julia (Bezanson, Edelman, Karpinski, and Shah 2017;
Jonsson 2021) programming languages also scale poorly (see Section 5.2). Another Python
implementation, MulticoreTSNE (Ulyanov 2019), enjoys better scalability but is likewise lim-
ited when applied to larger data sets. Additionally, none of these implementations include
recently proposed extensions that can result in more globally consistent embeddings. FIt-
SNE (Linderman et al. 2019) alleviates these problems and provides bindings to both the
Python and R programming languages. However, none of the existing t-SNE implementations
support adding new samples into existing embeddings.
To alleviate all these problems, and to support newly proposed additions to the t-SNE al-
gorithm, we here present openTSNE, an open-source Python implementation of the t-SNE
algorithm. openTSNE is easy to install and includes precompiled binaries available through
popular Python package managers. It provides a familiar API, making it suitable as a
drop-in replacement for existing t-SNE implementations. openTSNE is distributed under
the BSD-3-Clause License and its source code is publicly available at https://github.
com/pavlin-policar/openTSNE. openTSNE can also be installed from PyPI and conda-
forge. End-to-end usage examples, documentation, and API reference are all available at
https://opentsne.readthedocs.io/.

2. Methods
We first introduce the relevant notation and briefly review the core t-SNE algorithm in Sec-
tion 2.1. We then address the criticisms of scalability (Section 2.2), the ability to add new
samples to existing embeddings (Section 2.3), and improvements that improve the global
consistency of resulting embeddings (Section 2.4).

2.1. t-distributed stochastic neighbor embedding

t-distributed stochastic neighbor embedding (t-SNE) is a non-linear dimensionality reduction
method that to aims to find a low-dimensional embedding where neighborhoods are preserved.
Given a multi-dimensional data set with N data points X = {x1, x2, . . . , xN } ∈ RD, t-SNE
aims to find a low dimensional embedding Y = {y1, y2, . . . , yN } ∈ Rd where d ≪ D, such that
if points xi and xj are close in the high-dimensional space, their corresponding embeddings
yi and yj are also close. Since t-SNE is primarily used as a visualization tool, d is typically
set to two. The similarity between two data points in the high-dimensional space is defined
using the Gaussian kernel

pj|i =
exp

(
−1

2D(xi, xj)/σ2
i

)
∑

k ̸=i exp
(
−1

2D(xi, xk)/σ2
i

) , pi|i = 0 (1)

where D is some distance measure. The values pj|i are then symmetrized to

pij =
pj|i + pi|j

2N
. (2)

https://github.com/pavlin-policar/openTSNE
https://github.com/pavlin-policar/openTSNE
https://opentsne.readthedocs.io/

4 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

The bandwidth σi of each Gaussian kernel is selected such that the perplexity of the distri-
bution matches a user-specified parameter value

Perplexity = 2H(Pi)

where H(Pi) is the Shannon entropy of Pi,

H(Pi) = −
∑

i

pj|i log2(pj|i).

This enables t-SNE to adapt to the varying density of the data in the multi-dimensional
space. The perplexity can be interpreted as the continuous analogue to the number of nearest
neighbors to which the distances will be preserved.
The similarity between points yi and yj in the embedding space is defined using the
t-distribution with a single degree of freedom (Cauchy kernel)

qij =
(
1 + ∥yi − yj∥2)−1∑

k ̸=l (1 + ∥yk − yl∥2)−1 , qii = 0. (3)

We use the Kullback-Leibler (KL) divergence to measure the agreement between the two
distributions P and Q

C = KL(P || Q) =
∑
ij

pij log pij

qij
. (4)

The objective is to find embeddings Y that minimize the KL divergence. The corresponding
gradient takes the form

∂C

∂yi
= 4

∑
j ̸=i

(pij − qij) (yi − yj) wij , (5)

where wij =
(
1 + ∥yi − yj∥2)−1 and represents the unnormalized qij . We can rewrite this

gradient as
∂C

∂yi
= 4

[∑
j ̸=i

pijqijZ (yi − yj)
︸ ︷︷ ︸

attractive forces

−
∑
j ̸=i

q2
ijZ (yi − yj)

︸ ︷︷ ︸
repulsive forces

]
, (6)

where Z = ∑
k ̸=l

(
1 + ∥yk − yl∥2)−1. Under this formulation, we can cast t-SNE algorithm as

a force-directed layout algorithm, where individual data points act as particles exerting both
attractive and repulsive on each other until a state of equilibrium is reached.
Optimization is performed using batch gradient descent using the delta-bar-delta update
rule (Jacobs 1988). The t-SNE optimization procedure consists of two phases: in the first
early exaggeration phase, the attractive forces between data points are increased by some
exaggeration factor ρ, typically set to 12, so that points in the embedding can more easily
move throughout the space and settle near their respective neighbors. In the second phase of
the optimization, the attractive forces are then reverted to their original values with ρ = 1.
Belkina, Ciccolella, Anno, Halpert, Spidlen, and Snyder-Cappione (2019) later found that
convergence can be sped up by increasing the learning rate η from the standard η = 200 to
η = N/ρ, where ρ here refers to the exaggeration factor used during the early exaggeration

Journal of Statistical Software 5

phase. As a side-effect, embeddings converge faster, and the number of iterations can be
lowered from the typical 1000 to 750, decreasing the overall runtime.

2.2. Efficient approximation schemes
A direct evaluation of the t-SNE gradients requires O(N2) operations, which makes it im-
practical with large data sets and calls for efficient approximation schemes. The formulation
in Equation 6 casts the t-SNE gradient as an N-body simulation where data points act as par-
ticles exerting attractive and repulsive forces onto one another. Both terms lend themselves
to efficient approximations, enabling us to reduce the time complexity of the t-SNE algorithm
to O(N). This allows modern t-SNE implementations to be leveraged for the visualization of
data sets containing up to millions of data points.

Attractive forces
Van Der Maaten (2014) observed that evaluating the attractive forces between all pairs of
data points is excessive. In practice, it suffices to approximate the attraction forces against
a small number of k nearest neighbors. Using tree-based nearest-neighbor search methods,
Van Der Maaten (2014) reduced the time complexity to O(N log N). Linderman et al. (2019)
noted that embeddings are visually indistinguishable when using merely approximate near-
estneighbors, further reducing time complexity to O(N).

Repulsive forces
Similarly, the repulsive term can also be approximated, motivated by methods from particle
simulations. Van Der Maaten (2014) proposed an approach based on N-body simulations and
used a space-partitioning Barnes-Hut tree approach to approximate the interaction between
data points. This reduces the time complexity from O(N2) to O(N log N). More recently,
Linderman et al. (2019) proposed an alternative approach, FIt-SNE, based on non-uniform
convolutions and interpolation, which further reduces the time complexity to O(N).

2.3. Embedding new samples
The t-SNE algorithm is non-parametric and does not define an explicit mapping from the
high-dimensional space to the embedding space. Embeddings of new data points need to be
found through optimization schemes (Poličar et al. 2023). When adding new data points to
an existing, reference embedding, the reference data points are fixed in place while new data
points are allowed to find their respective positions. The optimization remains the same as
in standard t-SNE with only slight modifications to pij and qij

pj|i =
exp

(
−1

2D(xi, vj)/σ2
i

)
∑

i exp
(
−1

2D(xi, vj)/σ2
i

) , qj|i =
(
1 + ∥yi − wj∥2)−1∑
i (1 + ∥yi − wj∥2)−1 ,

where V = {v1, v2, . . . , vM } ∈ RD where M is the number of samples in the new data set and
W = {w1, w2, . . . , wM } ∈ Rd. Additionally, we omit the symmetrization step in Equation 2.
Plugging these terms into Equation 4, we obtain the following gradient

∂C

∂wj
= 2

∑
i

(
pj|i − qj|i

)
(yi − wj)

(
1 + ∥yi − wj∥2

)−1
.

6 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

Similarly to standard t-SNE, a direct calculation of gradients takes O(N · M) time, but it
is straightforward to adapt the Barnes-Hut and FIt-SNE approximation schemes, reducing
the time complexity to O(M log N) and O(M), respectively. Special care must be taken to
adjust the learning rate during optimization as the parameter values used during standard
optimization may lead to unstable behaviour. We have observed that reducing the learning
rate to η ∼ 0.1 results in more stable optimization, as discussed in Poličar et al. (2023).
Standard optimization positions data points in the embedding to achieve an equilibrium
between the attractive and repulsive forces. However, when embedding new data points, the
reference embedding remains fixed. Consequently, if a new data point needs to be positioned
among existing reference data points, it may not be possible to reach such an equilibrium, as
the reference data points cannot adjust to accomodate the new data point. To compensate
for the increased repulsive forces, it is beneficial to increase the exaggeration factor to ρ = 1.5
during optimization.

2.4. Improving the global structure of embeddings
One of t-SNE’s long-standing criticisms is that it fails to preserve long-range distances but
instead focuses on capturing the local structure of the data manifold (Becht et al. 2019).
Recently, several approaches have been proposed to improve the global organization of the
resulting embeddings.
Kobak and Linderman (2021) showed that the initialization of force-directed layout algo-
rithms, such as t-SNE, UMAP (McInnes et al. 2018), and ForceAtlas2 (Jacomy, Venturini,
Heymann, and Bastian 2014), largely dictates the global consistency of resulting embeddings.
When initialized randomly, clusters are often arbitrarily scattered in the embedding space.
However, when using initialization schemes based on PCA or Laplacian Eigenmaps (Belkin
and Niyogi 2002), the clusters identified in the resulting embedding are typically grouped in
a globally coherent manner.
In standard t-SNE, distances between data points are converted to similarities through the
use of Gaussian kernels. The perplexity of these kernels governs the sizes of the local neigh-
borhoods which are to be preserved. One easy way to improve the global consistency of
resulting embeddings is to increase the sizes of these neighborhoods. This can be achieved
by increasing the perplexity parameter. However, increasing perplexity often leads to loss in
local sturcture and tends to obscure small clusters. Kobak and Berens (2019) instead propose
to use mixtures of Gaussians to preserve better short-range and long-range distances and,
thus, achieve a better trade-off between local and global structure.
Embeddings produced by standard t-SNE often use all available space and separate clusters
by only thin boundaries. When working with large data sets, this often obscures the global
relationships between clusters as all neighboring groups appear equidistant from one another.
Other dimensionality reduction methods, such as UMAP and ForceAtlas2, produce embed-
dings where clusters appear more compact, and the white space separating the clusters may
be interpreted as a loose measure of distance. Recently, Böhm, Berens, and Kobak (2022)
showed that the exaggeration factor ρ could be used to produce layouts more similar to UMAP
and ForceAtlas2. By incorporating exaggeration into later phases of the optimization, t-SNE
introduces white space between clusters, which may better reflect the global relations between
clusters.
Standard t-SNE reveals the clustering structure at a single level of resolution. While the
perplexity parameter can be used to control the trade-off between local and global structure,

Journal of Statistical Software 7

this can be time-consuming, and small, well-defined clusters can be missed. Alternatively,
Kobak, Linderman, Steinerberger, Kluger, and Berens (2019) suggest that varying the degrees
of freedom in the t-distribution can be used to explore the clustering structure at different
levels of resolution. Modifying Equation 3 to qij ∝

(
1 + ∥yi − yj∥2/α

)−α allows us to use
heavier-tailed distributions to model distances in the embedding space, which acts to highlight
small subgroups in the resulting visualization.

3. Implementation
We introduce openTSNE, a comprehensive Python library that implements the t-SNE algo-
rithm and its numerous recently proposed extensions. openTSNE includes a simple API that
allows users to quickly obtain informative t-SNE visualizations and a more flexible API that
allows seasoned practitioners to modify all the different aspects of the t-SNE algorithm.
The core t-SNE algorithm comprises three main steps, mirrored in the structure of the
openTSNE library:

1. The t-SNE algorithm requires the specification of an affinity model to describe the
similarities between data points pij . Standard t-SNE uses perplexity-based Gaussian
kernels with varying bandwidths as specified in Equation 1. However, other affinity
models can also be used to highlight different aspects of the data or visualize other
data modalities. For instance, Kobak and Berens (2019) showed that using mixtures of
Gaussians often better reveals global cluster organization in the resulting visualization
(albeit at some computational cost). Alternatively, a uniform affinity model can produce
quantitively similar embeddings to standard t-SNE at a third of the computational cost,
making it particularly useful for larger data sets. Unlike the standard affinity model,
which uses Gaussian kernels to determine the similarities pij , the uniform affinity model
uses a uniform kernel to assign equal similarities to a pre-specified number of nearest
neighbors. Visualizing different data modalities, such as graphs, can also be achieved
by providing precomputed distance matrices that might consist of, for instance, the
shortest paths between nodes. The openTSNE.affinity module provides a selection of
commonly used affinity models but defaults to the standard perplexity-based Gaussian
model, as proposed in the original publication. Users can also define custom affinity
models by extending the openTSNE.affinity.Affinities class. The resulting class
can then be used as a drop-in replacement for the built-in affinity models.
A key component of the affinity model construction process is finding a specified num-
ber of nearest neighbors for each data point. openTSNE provides several backends for
finding the nearest neighbors, each with its own advantages and drawbacks. We use the
implementation from scikit-learn (Pedregosa et al. 2011) for the exact nearest neighbor
search. While asymptotically slower than approximate nearest-neighbor search meth-
ods, exact approaches introduce minimal computation overhead and tend to run faster
for smaller data sets. The annoy (Bernhardsson 2023) library offers a fast and efficient
implementation of random-projection trees and supports several commonly used metrics
but lacks support for sparse matrices. The pynndescent (McInnes 2024) library supports
sparse matrices and allows users to define and use custom metrics. Finally, we include
the hnswlib (Malkov and Yashunin 2018) library as it provides a third alternative algo-
rithm for approximate nearest neighbor search, which may perform better on specific

8 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

data sets. By default, openTSNE automatically selects the most appropriate algorithm
for a given data set based on data set size, sparsity, and metric support. These can be
overridden by the user and easily extended to support custom nearest-neighbor search
solutions.

2. The optimization in t-SNE starts with initial positions for each data point in the em-
bedding space. We can set the initial positions randomly or impose an initial global
structure on the embedding. The openTSNE.initialization module provides several
possible initialization schemes including random, PCA-based, and Laplacian Eigenmap-
based intialization schemes. The user can also specify their own initialization by provid-
ing a numpy.ndarray object. By default, openTSNE opts for PCA-based initialization.

3. In optimizing the embedding, the t-SNE algorithm finds the positions of the points in
the embedding space that reflect their corresponding similarities in the affinity model.
openTSNE stores the initial positions and affinities in an openTSNE.TSNEEmbedding
object that includes the .optimize method for embedding optimization.
We adopt the learning rate η = N/ρ proposed by Belkina et al. (2019), who suggest
using a global learning rate computed from the early exaggeration factor ρ. Empirically,
we have found that adapting the learning rate to the exaggeration factor ρ used in the
second phase of the optimization also further speeds up convergence.
Optimization can be performed using either the Barnes-Hut or FIt-SNE approxima-
tion scheme. While the FIt-SNE approximation scheme scales linearly with the num-
ber of samples, it introduces additional computational overhead, often unnecessary for
smaller data sets, resulting in longer overall runtimes than the Barnes-Hut approxima-
tion scheme. By default, openTSNE uses an empirically-determined heuristic to choose
the fastest algorithm for a given data set based on its number of samples. If the data set
contains fewer than 10,000 samples, the Barnes-Hut approximation scheme is selected,
otherwise, the FIt-SNE is used.

Once the embedding is constructed and optimized, it is ready to use for any downstream
tasks. openTSNE.TSNEEmbedding objects inherit from numpy.ndarray, which enables easy
manipulation and provides interoperability with the broader Python ecosystem.
Embedding new data points to an existing openTSNE.TSNEEmbedding follows the same three
general steps as constructing a standard embedding:

1. Firstly, we must provide an affinity model describing the similarities between each new
data point and the data points in the reference embedding. As for the construction
of the initial embedding, openTSNE provides several possible affinity models in the
openTSNE.affinity module. Most often, however, we want to utilize the affinity model
from the construction of the reference embedding, as this leads to more spatially consis-
tent embeddings. Using an affinity model from reference embedding for the embedding
of the new data is the default behavior of openTSNE. The same rationale applies to the
nearest neighbor search algorithm.

2. Secondly, we must specify the initial positions of the new data points in the embedding
space. We can, again, initialize these positions randomly or according to their similarity
to the data points in the reference embedding. As before, openTSNE provides several

Journal of Statistical Software 9

openTSNE.TSNE().fit(data, initialization*, affinities*)

initialization*
openTSNE.initialization

affinities*
openTSNE.affinity

TSNEEmbedding(..., ...)

TSNEEmbedding

.optimize(...)

TSNEEmbedding

.optimize(...)

.transform(...)

embedding.transform(new_data, initialization*, affinities*)

initialization*
openTSNE.initialization

affinities*
openTSNE.affinity

PartialTSNEEmbedding(..., ...)

PartialTSNEEmbedding

PartialTSNEEmbedding

.fit(...)

Figure 2: The high-level structure and information flow of the openTSNE library. Solid
black lines show the standard parameter flow, while red dashed lines indicate the utility of
optional parameters, allowing more refined control over the t-SNE algorithm.

initialization options in the openTSNE.initialization module, but the user is free to
provide their specific initialization.

3. Finally, what remains is a construction of an embedding object, subject to optimization.
Because this new embedding relies on an existing reference embedding, we construct
a openTSNE.PartialTSNEEmbedding embedding object, which indicates its dependence
on a reference openTSNE.TSNEEmbedding object. openTSNE.PartialTSNEEmbedding
again inherits from numpy.ndarray and can therefore be easily manipulated. Opti-
mization is, again, performed via the .optimize method.

10 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

Figure 2 shows the high-level structure and information flow of the openTSNE library.
Through different parameters, the user is given complete control over every aspect of the
t-SNE algorithm, from different ways to define affinities to the delicate tuning of optimization
parameters. The parametrization of every part of t-SNE allows for rapid experimentation.
It enables users to quickly and efficiently inspect their data from numerous angles and at
varying levels of resolution.
Most end-users often only need a quick and easy way to create informative visualizations
of their data sets. openTSNE provides a high-level API that closely follows the style of
scikit-learn (Buitinck et al. 2013), a popular and widely used machine learning toolkit.

3.1. Example

Installation

openTSNE is designed to be easy to use and can be installed through either Python Package
Index PyPI using the pip package manager,

pip install opentsne

or using the conda package manager from the conda-forge repository,

conda install -c conda-forge opentsne

openTSNE provides precompiled binaries for all major platforms (Windows, macOS, Linux)
for all currently supported Python versions (3.7—3.11). Precompiled binaries are especially
convenient for Windows users, as they obviate the need for a C/C++ compiler, which is
typically not bundled with Windows operating system.
To verify that that openTSNE was installed correctly, users can run Python and try to import
the module by:

>>> import openTSNE
>>> openTSNE.__version__

1.0.0

A simple workflow

We here outline the most straightforward usage of openTSNE on the Iris data set from
Anderson (1936). This small data set profiles 150 iris flowers with four variables (sepal
length, sepal width, petal length, petal width) and provides information about their species
(Iris Setosa, Iris Versicolor, Iris Virginica). The Iris data set comes bundled with scikit-learn:

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris.data[:3]

Journal of Statistical Software 11

t-SNE 1

t-S
NE

 2 Iris Setosa
Iris Versicolor
Iris Virginica

Figure 3: A visualization of the constructed t-SNE embedding on the Iris data set. The
colors correspond to different species of Iris.

array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2]])

scikit-learn loads the data set into a numpy array which can directly be used by openTSNE:

>>> import openTSNE
>>>
>>> embedding = openTSNE.TSNE().fit(iris.data)
>>> embedding[:3]

TSNEEmbedding([[-0.55581917, 17.56162344],
[-1.76742536, 20.07763453],
[-0.58444608, 20.00052495]])

Figure 3 displays the resulting t-SNE visualization. As expected, t-SNE can correctly group
samples from the same species. The t-SNE embedding reveals that flowers from Iris Setosa are
markedly different from the other two species. At the same time, flowers from Iris Versicolor
and Virginica are more similar to one another.
We can now use the resulting embedding as a reference for new data points. In this simple
example, we will duplicate some of the original samples and add them to the embedding.

>>> new_data = iris.data[::3]
>>> new_embedding = embedding.transform(new_data)
>>> new_embedding[:3]

PartialTSNEEmbedding([[-0.02637324, 15.69956674],
[-2.84200792, 16.15478451],
[-2.4594136 , 15.37910876]])

12 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

t-SNE 1

t-S
NE

 2 Iris Setosa
Iris Versicolor
Iris Virginica

Figure 4: A visualization of the original, reference data set (transparent points) overlaid
with the new data points (opaque points).

Figure 4 shows the resulting positions of the new data points, overlaid the original, reference
embedding. As expected, t-SNE is correctly able to place the new data points to their
corresponding groups.

Peeking under the hood

While the above example offers users a quick and easy way to generate informative visualiza-
tions, openTSNE allows us to control every step of the t-SNE embedding. To demonstrate
this flexibility, we will repeat the same analysis of the Iris data set as before, this time leverag-
ing the library’s more advanced features. We list other practical examples with more complex
data sets in Section 4.
We, again, begin by loading the Iris data set using scikit-learn:

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> iris.data[:3]

array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2]])

Next, we import the openTSNE library:

>>> import openTSNE

We now mirror the three t-SNE steps from the previous section. First, we select an affinity
model which describes the similarities between data points:

>>> affinities = openTSNE.affinity.PerplexityBasedNN(iris.data,
... perplexity = 30)

Next, we determine the initial point positions in the embedding:

Journal of Statistical Software 13

>>> initialization = openTSNE.initialization.pca(iris.data)
>>> initialization[:3]

array([[-1.30971087e-04, 1.55848907e-05],
[-1.32435711e-04, -8.63672049e-06],
[-1.40967409e-04, -7.07276279e-06]])

Finally, using the affinity model and initialization, we can create an embedding object:

>>> embedding = openTSNE.TSNEEmbedding(initialization, affinities)
>>> embedding[:3]

TSNEEmbedding([[-1.30971087e-04, 1.55848907e-05],
[-1.32435711e-04, -8.63672049e-06],
[-1.40967409e-04, -7.07276279e-06]])

Notice that the embedding object contains the same point coordinates as the initialization:
although we have created an openTSNE.TSNEEmbedding object, we have not yet run any
optimization. To optimize the embedding, we call the embedding.optimize method using
our desired parameter settings. We use the default parameter settings here, including a
shorter early-exaggeration phase, followed by a longer phase with no exaggeration.

>>> embedding.optimize(250, exaggeration = 12, inplace=True)
>>> embedding.optimize(500, inplace = True)
>>> embedding[:3]

TSNEEmbedding([[-0.55581917, 17.56162344],
[-1.76742536, 20.07763453],
[-0.58444608, 20.00052495]])

We can validate that method produces the exact same embedding as before:

>>> np.linalg.norm(openTSNE.TSNE().fit(iris.data) - embedding)

0.0

Next, we can add new samples into the embedding,

>>> new_embedding = embedding.prepare_partial(iris.data[::3], perplexity=5)
>>> new_embedding.optimize(exaggeration = 1.5, n_iter = 250,
... learning_rate = 0.1, max_grad_norm = 0.25, inplace = True)
>>> new_embedding[:3]

PartialTSNEEmbedding([[-0.02637324, 15.69956674],
[-2.84200792, 16.15478451],
[-2.4594136 , 15.37910876]])

14 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

We here use the embedding.prepare_partial method to determine initial positions for the
new data points, then call the new_embedding.optimize method to run the optimization
process. Again, we can validate that this also produces the exact same embedding as before:

>>> np.linalg.norm(new_embedding - embedding.transform(iris.data[::3]))

0.0

4. Case studies
We provide three case studies demonstrating the usage of openTSNE in different settings
using different combinations of hyperparameters to highlight different aspects of the given
data sets.The first case study highlights how varying the perplexity and resolution parameters
can reveal different aspects of the underlying topology of the studied data set.The second case
study demonstrates how openTSNE may be used to create embeddings of massive data sets
containing millions of data points and how its flexible API allows the quick and efficient
construction of embeddings. The final case study illustrates how we can use existing t-SNE
embeddings to add new samples into the embedding space. This enables us to reuse carefully
annotated visualizations for the rapid characterization of new, unseen data points.

4.1. Uncovering structure in high-dimensional data

Dimensionality reduction techniques implicitly assume that high-dimensional data lies on a
lower-dimensional manifold, which can accurately be captured by a small number of dimen-
sions. However, there is no evidence that every data set can accurately be described using
only two dimensions, and any such embedding will inevitably lead to a loss of information.
Thus, it is beneficial to examine multiple embeddings, each providing a different perspective
on the topology and other data characteristics.
We illustrate the benefits of creating different t-SNE plots of the same data set by generating
four different embeddings of the data on single-cell gene expression in mouse brain (Tasic
et al. 2018). We generate the embeddings using the following code snippet (shortened for
clarity):

>>> embedding_a = openTSNE.TSNE(perplexity = 30).fit(x)
>>> embedding_b = openTSNE.TSNE(perplexity = 500).fit(x)
>>> embedding_c = openTSNE.TSNE(perplexity = [30, 500]).fit(x)
>>> embedding_d = openTSNE.TSNE(perplexity = 30, dof = 0.6).fit(x)

Figure 5a shows an embedding using default t-SNE parameters. While different clusters of
excitatory and inhibitory neurons appear close to one another, all clusters appear equidis-
tant from their neighbors, and the overall relations between groups are not obvious. The
embedding in Figure 5b focuses on preserving larger neighborhoods of points, resulting in
a more globally consistent layout where relations between clusters become more apparent.
Here, it is evident from the increased white space between groups that there is one large class
of excitatory neurons and two related classes of inhibitory neurons. Unfortunately, focus-
ing on preserving large neighborhoods leads to the absorption of smaller clusters into larger
ones. Alternatively, Figure 5c uses multi-scale similarity kernels that aim to preserve both

Journal of Statistical Software 15

a b

c d

perplexity=30 perplexity=500

perplexity=30,500 dof=0.6

Figure 5: We use openTSNE to create four different visualizations of the Tasic et al. (2018)
data set, each providing a different perspective into the topology of the data. The data
set contains 21,874 single-cells originating from the mouse neocortex. Cluster annotations
and colors are taken from the original publication. Warm colors correspond to excitatory
neurons, cool colors correspond to inhibitory neurons, and gray/brown colors correspond to
non-neuronal cells. Standard t-SNE (a) emphasizes local structure while increasing perplex-
ity (b) results in a more meaningful layout of the clusters. We can also combine the two
perplexities by using a multi-scale kernel affinity model (c) and obtain a trade-off between
global and local structures. Alternatively, we can inspect more fine-grained structures and
reveal smaller clusters by using a more heavy-tailed kernel (d).

the global organization of clusters and prevent smaller cluster absorption. We constructed
the embedding from Figure 5d with the settings used for Figure 5a, but at a finer level of
resolution. The figure demonstrates that some clusters are composed of numerous, smaller
subgroups representing different cell subpopulations that are not visible under standard pa-
rameter settings.

4.2. Embedding massive data sets

When dealing with data sets containing millions of data points, standard t-SNE embeddings
often become unwieldy – cluster boundaries are blurred, large clusters absorb smaller ones,

16 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

exaggeration=1 exaggeration=2a b c exaggeration=4

13.511.510.5 12.59.5
Day

Figure 6: Increasing the exaggeration factor leads to compact clusters, highlighting the
data’s global organization and emphasizing the continuous nature of cell state transitions.
The data set from Cao et al. (2019) contains expression profiles from 2,058,652 single cells.
The data were collected from mice embryos at different developmental stages daily after 9.5
to 13.5 days. (c) reveals that the data is comprised of two main components – the neural
tube and mesenchymal cells – as well as several other smaller clusters. The colors indicate
developmental progression, where red indicates the least-developed cells and blue indicates
the most developed cells. The overall developmental trajectory is most apparent with higher
exaggeration levels, showing red cells slowly transitioning into blue cells. Progressively easing
the exaggeration factor uncovers finer clusters within the larger groups, as shown in (b) with
exaggeration of two and subsequently in (a), where we show the standard t-SNE with no
exaggeration. 32,011 putative doublets are excluded from the visualizations.

and relationships between groups become increasingly difficult to interpret. We constructed
Figure 6a from the data containing expression profiles of over two million single cells captured
at different time points in mouse development. The embedding reveals numerous clusters with
transitions between time points marked by the color coding, which are difficult to interpret.
Kobak and Berens (2019) suggest that increasing attractive forces between similar data points
controlled via the exaggeration parameter leads to more compact clusters and, subsequently,
more informative visualizations. For instance, Figure 6b doubles the default exaggeration,
which uncovers some of the data’s overall structure. Further doubling the exaggeration in
Figure 6c allows us to observe that the data is comprised of two main groups of cells and
eight somewhat smaller clusters. The visualization also reveals several tiny clusters, possibly
corresponding to rare cell types.
Exaggeration can highlight transitions between cell stages in developmental studies. Standard
t-SNE often produces embeddings with clearly defined, discrete clusters. We can adjust
the level of granularity and resolution of the clusters with several parameters, as shown in
Figure 5. However, discrete clusters are often undesired in developmental studies where cells’
stage is assumed to follow a continuous transition path. To this end, researchers have used
other embedding techniques such as UMAP and ForceAtlas2 to better capture the continuity
between cell stages. Recently, Böhm et al. (2022) showed that embeddings produced by t-SNE
with exaggeration values of 4 and ∼ 30 construct embeddings that are markedly similar to

Journal of Statistical Software 17

UMAP and ForceAtlas2, respectively. For example, in Figure 6a, the developmental trajectory
between different time points is difficult to observe due to many sprawled out clusters. On
the other hand, it is easier to trace the development when we increase the exaggeration factor
from 1 to 2 to 4 in Figures 6b–c.
We have used the following code to create Figures 6a–c and to demonstrate how we can take
advantage of the more advanced features of openTSNE to more quickly create meaningful
visualizations of massive data sets.
First, we take small subset of data points and create a t-SNE embedding using a high per-
plexity value to emphasize the high level structure:

>>> indices = np.random.permutation(list(range(x.shape[0])))
>>> x_sample, x_rest = x[indices[:25000]], x[indices[25000:]]
>>> init_sample = openTSNE.TSNE(perplexity = 500).fit(x_sample)

Next, we will use this embedding to determine the starting positions for the remaining data
points:

>>> init_rest = init_sample.prepare_partial(x_rest)

Lastly, we merge init_sample and init_rest and restore the original ordering to obtain the
full initialization:

>>> init_full = np.vstack((init_sample, init_rest))[np.argsort(indices)]

Next, we precompute the affinity model. This can take quite a long time and, this way, we
can reuse the same affinity model in various different embeddings, without having to repeat
the same, costly computation every time:

>>> affinities = openTSNE.affinity.PerplexityBasedNN(x, perplexity = 30)

Using our precomputed initialization and affinity model, we are now ready to create our
TSNEEmbedding object and optimize the embedding to our liking:

>>> embedding = openTSNE.TSNEEmbedding(init_full, affinities)
>>> embedding_ee = embedding.optimize(n_iter = 500, exaggeration = 12)
>>> embedding_c = embedding_ee.optimize(n_iter = 500, exaggeration = 4)
>>> embedding_b = embedding_c.optimize(n_iter = 500, exaggeration = 2)
>>> embedding_a = embedding_b.optimize(n_iter = 500, exaggeration = 1)

4.3. Embedding new samples

Unlike other popular dimensionality reduction techniques such as PCA or autoencoders,
t-SNE is a non-parametric method and does not define an explicit mapping to the embed-
ding space. Therefore, embeddings of new data points need to be found through optimiza-
tion (Poličar et al. 2023). openTSNE is currently the only publicly available library allowing
users to add new samples to existing embeddings in a principled manner.
Figures 1b and 1c demonstrate how we can use a previously labeled single-cell data set and
embed cells from a separate experiment into the reference landscape. The reference data

18 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

from Macosko et al. (2015) contains gene expression profiles from mouse retinal cells. By
embedding the samples from a similar experiment on bipolar retinal cells by Shekhar et al.
(2016), we can correctly map the bipolar cell clusters onto the reference embedding.
The following snippet shows the code necessary to generate Figure 1.
We first construct Figure 1a with the most commonly used parameter values which aims to
show that these can lead to poor cluster separation and an overall lack of global consistency:

>>> tsne_old = openTSNE.TSNE(initialization = "random", learning_rate = 200,
... n_iter = 750).fit(x)

We generate the embedding from Figure 1b using parameter values emphasizing the global
coherence of the resulting visualization. By default, openTSNE uses PCA-based initialization
and automatically determines the optimal learning rate. This allows openTSNE to lower the
default number of iterations to 500. To emphasize the global consistency of the resulting
embedding, we can also specify multiple perplexity values, resulting in a multiscale affinity
model:

>>> tsne_multiscale = openTSNE.TSNE(perplexity = [50, 500]).fit(x)

Finally, we can embed new samples into our obtained embedding space:

>>> new_embedding = tsne_standard.transform(x_new)

Embedding single cells into existing reference atlases can also be useful for cell-type classifi-
cation in cases of unknown cell identities. For instance, in Figure 7, we construct a reference
embedding (using the same code snippet as above) using labeled data from Hochgerner et al.
(2018) containing gene-expression profiles of cells from the mouse brain. The authors assign
a type to each cell. We can verify their classification accuracy by visualizing the expression
of well-established gene markers for the major cell types. We then embed cells from Harris
et al. (2018) into the constructed cell atlas. In Harris et al. (2018), labels are provided only
for neuronal cells. We can quickly identify other non-neuronal cell types in the resulting map-
ping, including oligodendrocytes and astrocytes. We can further use marker genes to validate
that the mapping in the reference landscape is correct.
The examples presented above demonstrate how to use openTSNE to quickly gain insight
into newly-sequenced, single-cell data sets by utilizing existing cell atlases. The approach is
general and not limited to single-cell gene expression. One can, in principle, apply it to any
tabular data set regardless of the research field or origin of the data.

5. Discussion

5.1. Versatility

The ability to use and combine different optimization approaches to construct different em-
bedding spaces is another of openTSNE’s core design principles. Kobak and Berens (2019)
recently provided several recommendations and tricks to obtain better and more meaning-
ful t-SNE visualizations. These include multi-scale similarity kernels, perplexity annealing,

Journal of Statistical Software 19
Re

fe
re

nc
e

em
be

dd
in

g

Inhibitory Neurons
Gad1, Gad2

Oligodendrocytes
Olig1, Olig2

Astrocytes
Gfap

Em
be

dd
ed

 s
am

pl
es

Figure 7: openTSNE supports embedding new samples into an existing reference t-SNE
landscape. For the series of visualizations shown in this figure, we first construct a t-SNE
embedding for the data from Hochgerner et al. (2018) containing 24,185 developing, single
cells from the mouse hippocampus. The data contains gene expression in different neurons,
supporting glia, and other vascular cells (upper left). Each data point corresponds to a
single cell colored according to its inferred cell type as determined in the original publication.
We use the same color scheme as in Figure 5 where warm colors correspond to excitatory
neurons, cool colors correspond to inhibitory neurons, and gray/brown colors correspond to
non-neuronal cells. We then embed new hippocampal cells collected in a study by Harris et al.
(2018) using the embedding of Hochgerner et al. (2018) data as a reference. In their research,
Harris et al. (2018) collected 6,971 single-cells and focused on identifying different types of
inhibitory neurons. However, almost half of the collected cells are not neurons and were left
uncharacterized. Inspecting the embeddings of these cells in the reference embedding (bottom
left) reveals that in addition to inhibitory neurons, the data contains several supporting glial
cells and a small population of endothelial cells. We can verify our approach’s accuracy by
inspecting marker genes for the major cell types in the reference (top row) and embedded
samples (bottom row).

and increasing exaggeration when working with massive data sets. openTSNE provides a
flexible API to incorporate these improvements in just a few lines of code. Furthermore,
openTSNE supports custom affinity models, enabling users to construct t-SNE embeddings
on non-tabular relational data: the only requirement imposed by the affinity model is a notion
of similarity between data points. Finally, openTSNE’s comprehensive callback system can
be utilized to monitor and adapt different stages of the optimization phase and has been used
to construct visually appealing animations of the t-SNE optimization process.

20 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

5.2. Speed

One of the t-SNE’s common criticisms is limited scalability to large data sets containing,
for instance, millions of data points (Becht et al. 2019). Slow response times stem from the
optimization procedures and their specific implementations in popular open-source libraries.
Most implementations of t-SNE have been based on either a direct implementation of the t-
SNE algorithm with asymptotic time complexity O(N2) (Van Der Maaten and Hinton 2008),
or the Barnes-Hut approximation with asymptotic time complexity O(N log N) (Van Der
Maaten 2014). Recently, however, Linderman et al. (2019) developed a novel approximation
– FIt-SNE – which reduces the asymptotic time complexity to O(N), enabling scaling to large
data sets.
Figure 8 benchmarks four popular Python (Van Rossum 1995) t-SNE implementations, includ-
ing scikit-learn (v1.1.2)1, MulticoreTSNE (v0.1), FIt-SNE (v1.1.0), and openTSNE (v1.0.0).
Benchmarks were performed on an Intel Xeon CPU E5-1650 equipped with 128 GB of mem-
ory. Benchmarks were run for 1, 000 iterations with the original t-SNE parameters, as some
implementations do not allow for their modification. To ensure a realistic benchmarking
scenario, we utilize the 10X Genomics 1.3 million mouse brain data set (Cao et al. 2019),
containing 1.3 million single-cell gene-expression profiles. We preprocess the data using the
standard single-cell analysis pipeline (Kiselev, Andrews, and Hemberg 2019) and extract the
top 50 principal components. To generate benchmark data sets of different sample sizes, we
subsample the data set five times at each sample size. In total, we test each implementation
on 30 different data sets.
In Python, the most widely-used implementation of t-SNE comes from scikit-learn, which
exhibits long runtimes when compared to other Python implementations. scikit-learn, like
its C++ counterpart – MulticoreTSNE (Ulyanov 2019) , is based on the Barnes-Hut ap-
proximation scheme. However, as shown in Figure 8, scikit-learn exhibits somewhat longer
runtimes than MulticoreTSNE. Newer implementations, such as FIt-SNE and openTSNE,
implement the FIt-SNE approximation scheme, making them suitable for the visualization
of millions of data points. While both libraries implement the same algorithm, openTSNE
emphasizes ease of use and extensibility and is primarily written in Python. Despite this,
both libraries exhibit similar runtimes, with openTSNE even being marginally faster when
utilizing multi-threading, as shown in Figure 8.
Additionally, openTSNE provides a flexible API, allowing the user to split the embedding-
construction process into several parts. This modularity enables us to cache and reuse inter-
mediate results, allowing users to experiment with different parameter settings and iterate on
their final visualizations. Such functionality is not supported in other t-SNE implementations,
which require the user to start from scratch for every embedding, resulting in large amounts
of redundant computation.
In other programming languages, the selection of fast, open-source implementations of t-SNE
is more limited. In R (R Core Team 2024), the most widely used implementation of t-SNE
– Rtsne (Krijthe 2023) – is based on the Barnes-Hut approximation, and is closely compara-
ble to MulticoreTSNE. In Julia (Bezanson et al. 2017), the most popular implementation –
TSne.jl (Jonsson 2021) – is based on a naive O(N2) implementation of the algorithm, which
allows it to be used only on smaller data sets containing up to thousands of data points. We

1We also compared the differences in performance between scikit-learn v1.1.2 and more the more recent
releases v1.2.2 and v1.3.0, but found no discernible differences in the overall runtime.

Journal of Statistical Software 21

0 200.000 400.000 600.000 800.000 1.000.000
Dataset size [samples]

0

15

30

45

60

75

90

105

120

Ti
m

e
[m

in
]

Better

Worse

Comparison with other Python implementations

1 core
8 cores

scikit-learn

MulticoreTSNE

openTSNE
FIt-SNE

Figure 8: We benchmark openTSNE (v1.0.0) against three popular open-source implementa-
tions from scikit-learn (v1.1.2, Pedregosa et al. 2011), MulticoreTSNE (v0.1, Ulyanov 2019),
and FIt-SNE (v1.1.0, Linderman et al. 2019). Experiments were run on an Intel Xeon CPU
E5-1650 equipped with 128 GB of memory. Notice that openTSNE scales similarly to FIt-
SNE, as they both use the same interpolation-based approximation scheme, while scikit-learn
and MulticoreTSNE utilize the Barnes-Hut approximation.

benchmark Rtsne (v0.15) and TSne.jl (v1.3.0) and compare it to openTSNE (v1.0.0). Fig-
ure 9 illustrates the scaling of each approximation scheme. Of these implementations, only
openTSNE can scale to data sets containing millions of data points in a reasonable amount
of time.
We note here that the benchmarks in Figures 8 and 9 were run for 1,000 iterations to ensure
a fair comparison between different implementations. However, it has recently been shown
that, using an appropriate learning rate, we can safely reduce the number of iterations to
750 (Belkina et al. 2019). This means that the actual runtime will be faster than reported in
these benchmarks in everyday usage of openTSNE.

Comparison to UMAP

We compare the performance of the openTSNE (v1.0.0) and umap-learn (0.5.3) libraries.
umap-learn is the official Python implementation of the UMAP algorithm (McInnes et al.
2018), an alternative dimensionality reduction technique used for the visualization of high-
dimensional data. A throughout comparison of the two algorithms is outside the scope of
this manuscript, and we here instead highlight only their similarities and differences as they
relate to the runtime of the implementations.
Both t-SNE and UMAP are force-directed layout algorithms in which each data point acts as

22 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

0 200.000 400.000 600.000 800.000 1.000.000
Dataset size [samples]

0

15

30

45

60

75

90

105

120

Ti
m

e
[m

in
]

Better

Worse

Comparison with other programming languages

1 core
8 cores

TSne.jl
(Julia)

Rtsne (R)

openTSNE
(Python)

Out of stack
memory

Figure 9: We select the fastest available, open-source implementations of the t-SNE algorithm
from the Python, R, and Julia programming languages. We choose openTSNE (v1.0.0) for
Python, Rtsne (v0.15, Krijthe 2023) for R, and TSne.jl (v1.3.0, Jonsson 2021) for Julia. The
benchmarks reflect the time complexity of the implemented approximation schemes. For
instance, TSne.jl implements a naive O(N2) algorithm, making it prohibitively expensive for
all but the smallest of data sets. Rtsne scales similarly to MulticoreTSNE in Python, as
it implements the O(N log N) Barnes-Hut approximation scheme. Interestingly, the multi-
threaded implementation version of Rtsne crashes on benchmark data sets containing over
500,000 data points due to a lack of stack memory. We found these crashes to be inconsistent
and somewhat random. openTSNE is the only library implementing the more recent FIt-SNE
approximation scheme, which makes it suitable for larger data sets.

a particle, attracting and repelling other particles. In the first step, both algorithms use the
high-dimensional data set to construct a k-nearest neighbors graph (KNNG). Then, the low-
dimensional embedding is optimized such that data points connected in the KNNG attract
one another, and all data points exert some small, repulsive force. The two methods differ in
the KNNG construction process, the attractive and repulsive forces specification, and their
optimization approaches.
The primary factor dictating the runtime of both methods is the number of nearest neigh-
bors used when constructing the KNNG. Apart from the runtime required to find the k-
nearest neighbors, the number of neighbors directly influences the runtime of each optimiza-
tion step. In each step, every data point exerts an attractive force on each neighbor in the
low-dimensional embedding. Therefore, the larger the number of neighbors considered, the
longer the runtime. Modern implementations of the t-SNE algorithm construct a KNNG with
3 · u nearest neighbors where u is the desired perplexity. By default, openTSNE (v1.0.0) uses
a perplexity value of 30, meaning that 90 nearest neighbors must be found and considered for

Journal of Statistical Software 23

0 200.000 400.000 600.000 800.000 1.000.000
Dataset size [samples]

0

15

30

45

Ti
m

e
[m

in
]

Better

Worse

Comparison with UMAP

1 core
8 cores

openTSNE (uniform)

openTSNE (standard)

UMAP

Figure 10: We benchmark openTSNE (v1.0.0) against umap-learn (v0.5.3), the official
Python implementation of the UMAP algorithm. Notice that the standard single-threaded
perplexity-based variant of t-SNE runs slower than UMAP but outperforms UMAP in the
multi-threaded case. We also benchmark the uniform affinity model variant of t-SNE, which
outperforms both standard t-SNE and UMAP.

each data point. In contrast, the umap-learn package (v0.5.3) constructs a KNNG using only
15 neighbors by default, substantially reducing the time spent on nearest neighbor search and
point interactions compared to t-SNE.
Alternatively, empirical evidence indicates that replacing the standard perplexity-based Gaus-
sian affinity model in t-SNE with a uniform affinity model produces markedly similar embed-
dings to that of standard t-SNE (Böhm et al. 2022). For instance, running standard t-SNE
with a perplexity of u = 30 constructs a KNNG with 3 · u = 90 neighbors. However, when
using the equivalent uniform affinity model, only u neighbors are needed, making the uniform
affinity model attractive for visualizing large data sets.
In Figure 10, we include benchmarks of the standard perplexity-based t-SNE algorithm, its
uniform affinity model variant, and UMAP. Differently from the previous benchmarks, which
were run using older parameter settings to accommodate different t-SNE implementations,
we now run both libraries using their default parameter settings to measure the runtime of
typical, real-world use cases.
Given that, by default, UMAP considers six times fewer neighbors than standard t-SNE, it
is unsurprising that the single-threaded variant of UMAP outperforms the single-threaded
implementation of standard t-SNE. Surprisingly, however, the single-threaded uniform affin-
ity variant of t-SNE outperforms both the single-threaded variant of UMAP and its multi-
threaded variant, despite dealing with twice as many neighbors. This result likely stems from

24 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

the fact that UMAP is written in pure Python and uses numba (Lam, Pitrou, and Seibert
2015) to accelerate computation. On the other hand, we implemented critical elements of
the openTSNE library in Cython (Behnel, Bradshaw, Citro, Dalcin, Seljebotn, and Smith
2011), which is subsequently transpiled into C++, which may be able to be more aggressively
optimized by the C++ compiler. Another contributing factor may be the efficiency of the
approximation schemes. While the UMAP and FIt-SNE algorithms are asymptotically linear
in the number of samples, their real-world runtimes may differ significantly.
The multi-threaded benchmarks show that openTSNE outperforms umap-learn in standard
and uniform variants. We can attribute this to different optimization procedures used by
the two algorithms. At each optimization step, openTSNE computes all pairwise interactions
between data points in the embedding. While directly calculating these interactions would
result in quadratic time complexity, openTSNE implements efficient approximation schemes
that reduce this to linear time complexity (see Section 2.2). Importantly, these approximation
schemes are very amenable to parallelization. The runtime differences between the single-
core and multi-core performance of openTSNE clearly demonstrate this. On the other hand,
UMAP bypasses the need to compute all pairwise interactions between data points using
negative sampling, allowing it to scale linearly in the number of samples without additional
approximation schemes. However, negative sampling is less amenable to parallelization and
does not benefit from the availability of additional cores as much as t-SNE.
Lastly, we focus on an often overlooked runtime metric – the runtime per optimization step.
Both t-SNE and UMAP comprise two steps. First, both methods construct a KNNG, which
runtime is dominated by k-nearest neighbor search. In the second step, a low-dimensional
embedding is found via optimization. By default, openTSNE runs optimization for 750 itera-
tions. UMAP, on the other hand, uses a heuristic based on the data set size to determine the
number of iterations. For data sets containing fewer than 10,000 data points, UMAP opts for
500 iterations. For larger data sets, however, this is reduced to 200 iterations. Figure 10 in-
dicates that even in the single-threaded scenario, the perplexity-based variant of openTSNE
requires significantly less time per iteration compared to umap-learn, as each openTSNE
benchmark runs 3.75 times more iterations than umap-learn despite considering six times
more neighbors at each optimization step.

5.3. Ease of use

Intuitive access and simple installation procedures typically correlate with the widespread
adoption of novel computational techniques. While the t-SNE implementation from scikit-
learn fits this requirement, its implementation is prohibitively slow for even moderately-sized
data sets that span tens of thousands of data records. Other C++ implementations such as
MulticoreTSNE and FIt-SNE exhibit better scaling in more massive data sets, but the pack-
ages do not provide precompiled binaries and require users to compile the software themselves.
This problem is critical, for instance, for users of the Windows operating system, where the
C++ compiler does not come bundled with the system, making the correct configuration of
current t-SNE implementations cumbersome.
We designed openTSNE to be accessible to a broader audience. We provide precompiled
binaries for all major Python versions on all major platforms, making the installation pro-
cess as seamless as possible. One can install openTSNE through the Python Package Index
(PyPI) or conda from the conda-forge channel, the two most widely adopted Python package

Journal of Statistical Software 25

sci
kit

-le
arn

Mult
ico

reT
SN

E

FIt-
SN

E

op
en

TSN
E

Rtsn
e

Tsne
.jl

Ease of installation
PyPI package ✓ ✓ ✓ ✓

conda package ✓ ✓ ✓

Approximation schemes
None (O(N2)) ✓

Barnes-Hut (O(N log N)) ✓ ✓ ✓ ✓

FIt-SNE (O(N)) ✓ ✓

Advanced features and extensions
Extensible affinity models ✓

Variable degrees of freedom ✓ ✓

Variable exaggeration ✓ ✓

Globally-consistent initialization ✓ ✓

Automatic learning rate ✓ ✓

Adding samples to embeddings ✓

Callback system ✓

Interactive optimization ✓

Project quality
Actively maintained ✓ ✓ ✓ ✓

Continuous integration ✓ ✓ ✓ ✓ ✓

User documentation ✓ ✓ ✓

End-to-end usage examples ✓ ✓ ✓ ✓ ✓

API reference ✓ ✓ ✓

Table 1: Comparison of the features of openTSNE (v1.0.0) to scikit-learn (v1.1.2), BHT-
SNE (master), MulticoreTSNE (v0.1), and FIt-SNE (v1.1.0), as well as the major implemen-
tations in R and Julia, Rtsne (v0.15), Tsne.jl (v1.3.0). Active maintenance indicates whether
the project has had any meaningful development in the past year from the time of writing.

managers. openTSNE’s high-level interface is inspired by scikit-learn, which is well estab-
lished in the Python data science ecosystem. openTSNE implements multi-threaded versions
of the Barnes-Hut and FIt-SNE approximation schemes, enabling it to be applied to data
sets containing millions of data points. Finally, openTSNE is extensible. Its modular design
enables researchers to experiment quickly with different parameter settings and easily incor-
porate custom components into the software. We provide an extended list of features and
comparison to other popular t-SNE implementations in Table 1.

6. Conclusion
We introduce openTSNE, the most feature-complete, open-source, Python implementation of
the widely popular t-SNE visualization algorithm. The library incorporates the latest devel-

26 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

opments to the t-SNE algorithm and makes them easily accessible through a familiar API.
openTSNE implements efficient approximation schemes, making it suitable for visualizing
large data sets containing up to millions of data points. Finally, openTSNE is easy to install
and comes with precompiled binaries available for all major platforms.

Reproducibility
The results in this paper were obtained using Python 3.10.2 with the openTSNE v1.0.0
package. All results and figures can be reproduced using the scripts in the supplemen-
tary materials, which are also provided in the GitHub repository https://github.com/
pavlin-policar/opentsne-paper. Detailed instructions are provided showing how to re-
produce all materials and results shown in this manuscript.
All case studies can easily be reproduced on a consumer-grade laptop computer in minutes
using the accompanying scripts. Note, however, that the second case study features a large
data set and may require up to several hours to complete.
Scripts are included to reproduce the benchmarks of the different implementations of the t-
SNE algorithm. However, please be aware that the full benchmark suite can take several days
to complete due to the poor performance of other libraries. A smaller, illustratory benchmark
suite is provided, more suitable for consumer-grade laptop computers, demonstrating the
runtimes of the different t-SNE implementations. Please note, however, that the scaling
advantages of openTSNE are diminished when running on smaller data sets and will not
appear as significant as they would otherwise.

Acknowledgments
We want to thank Dmitry Kobak for helpful discussions regarding t-SNE and his contributions
to the source code. We would also like to thank George Linderman for his help with the FIt-
SNE algorithm. This work was supported by Slovenian Research Agency (P2-0209, L2-3170).

References

Anderson E (1936). “The Species Problem in Iris.” Annals of the Missouri Botanical Garden,
23(3), 457–509. doi:10.2307/2394164.

Beaulaurier J, Zhu S, Deikus G, Mogno I, Zhang XS, Davis-Richardson A, Canepa R, Triplett
EW, Faith JJ, Sebra R, Schadt EE, Fang G (2018). “Metagenomic Binning and Association
of Plasmids with Bacterial Host Genomes Using DNA Methylation.” Nature Biotechnology,
36(1), 61. doi:10.1038/nbt.4037.

Becht E, McInnes L, Healy J, Dutertre CA, Kwok IW, Ng LG, Ginhoux F, Newell EW
(2019). “Dimensionality Reduction for Visualizing Single-Cell Data Using UMAP.” Nature
Biotechnology, 37(1), 38. doi:10.1038/nbt.4314.

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K (2011). “Cython: The Best
of Both Worlds.” Computing in Science & Engineering, 13(2), 31–39. doi:10.1109/mcse.
2010.118.

https://github.com/pavlin-policar/opentsne-paper
https://github.com/pavlin-policar/opentsne-paper
https://doi.org/10.2307/2394164
https://doi.org/10.1038/nbt.4037
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1109/mcse.2010.118
https://doi.org/10.1109/mcse.2010.118

Journal of Statistical Software 27

Belkin M, Niyogi P (2002). “Laplacian Eigenmaps and Spectral Techniques for Embedding
and Clustering.” In TG Dietterich, S Becker, Z Ghahramani (eds.), Advances in Neural
Information Processing Systems 14: Proceedings of the 2001 Conference. doi:10.7551/
mitpress/1120.003.0080.

Belkina AC, Ciccolella CO, Anno R, Halpert R, Spidlen J, Snyder-Cappione JE (2019). “Au-
tomated Optimized Parameters for t-Distributed Stochastic Neighbor Embedding Improve
Visualization and Analysis of Large Datasets.” Nature Communications, 10(1), 1–12. doi:
10.1101/451690.

Bernhardsson E (2023). Annoy: Approximate Nearest Neighbors in C++/Python. Python
package version 1.17.3, URL https://pypi.org/project/annoy/.

Bezanson J, Edelman A, Karpinski S, Shah VB (2017). “Julia: A Fresh Approach to Numerical
Computing.” SIAM Review, 59(1), 65–98. doi:10.1137/141000671.

Böhm JN, Berens P, Kobak D (2022). “Attraction-Repulsion Spectrum in Neighbor Embed-
dings.” Journal of Machine Learning Research, 23(95), 1–32. doi:10.1101/2024.03.26.
586728.

Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer
P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013).
“API Design for Machine Learning Software: Experiences From the scikit-Learn Project.”
In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–
122.

Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Chris-
tiansen L, Steemers FJ, Trapnell C, Shendure J (2019). “The Single-Cell Transcrip-
tional Landscape of Mammalian Organogenesis.” Nature, 566(7745), 496–502. doi:
10.1038/s41586-019-0969-x.

Ding J, Condon A, Shah SP (2018). “Interpretable Dimensionality Reduction of Single-Cell
Transcriptome Data with Deep Generative Models.” Nature Communications, 9(1), 2002.
doi:10.1101/178624.

Harris KD, Hochgerner H, Skene NG, Magno L, Katona L, Gonzales CB, Somogyi P, Kessaris
N, Linnarsson S, Hjerling-Leffler J (2018). “Classes and Continua of Hippocampal CA1 In-
hibitory Neurons Revealed by Single-Cell Transcriptomics.” PLoS Biology, 16(6), e2006387.
doi:10.1371/journal.pbio.2006387.

Hirata J, Hosomichi K, Sakaue S, Kanai M, Nakaoka H, Ishigaki K, Suzuki K, Akiyama M,
Kishikawa T, Ogawa K, Masuda T, Yamamoto K, Hirata M, Matsuda K, Momozawa Y,
Inoue I, Kubo M, Kamatani Y, Okada Y (2019). “Genetic and Phenotypic Landscape of the
Major Histocompatibilty Complex Region in the Japanese Population.” Nature Genetics,
51(3), 470–480. doi:10.1038/s41588-018-0336-0.

Hochgerner H, Zeisel A, Lönnerberg P, Linnarsson S (2018). “Conserved Properties of Dentate
Gyrus Neurogenesis Across Postnatal Development Revealed by Single-Cell RNA Sequenc-
ing.” Nature Neuroscience, 21(2), 290–299. doi:10.1038/s41593-017-0056-2.

https://doi.org/10.7551/mitpress/1120.003.0080
https://doi.org/10.7551/mitpress/1120.003.0080
https://doi.org/10.1101/451690
https://doi.org/10.1101/451690
https://pypi.org/project/annoy/
https://doi.org/10.1137/141000671
https://doi.org/10.1101/2024.03.26.586728
https://doi.org/10.1101/2024.03.26.586728
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1101/178624
https://doi.org/10.1371/journal.pbio.2006387
https://doi.org/10.1038/s41588-018-0336-0
https://doi.org/10.1038/s41593-017-0056-2

28 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

Jacobs RA (1988). “Increased Rates of Convergence Through Learning Rate Adaptation.”
Neural Networks, 1(4), 295–307. doi:10.1016/0893-6080(88)90003-2.

Jacomy M, Venturini T, Heymann S, Bastian M (2014). “ForceAtlas2, A Continuous Graph
Layout Algorithm for Handy Network Visualization Designed for the Gephi Software.”
PLOS One, 9(6), e98679. doi:10.1371/journal.pone.0098679.

Jonsson L (2021). TSne.jl. Julia package version 1.3.0, URL https://github.com/lejon/
TSne.jl.

Kiselev VY, Andrews TS, Hemberg M (2019). “Challenges in Unsupervised Clustering of
Single-Cell RNA-Seq Data.” Nature Reviews Genetics, 20(5), 273–282. doi:10.1038/
s41576-018-0088-9.

Kobak D, Berens P (2019). “The Art of Using t-SNE for Single-Cell Transcriptomics.” Nature
Communications, 10(1), 1–14. doi:10.1038/s41467-019-13056-x.

Kobak D, Linderman G (2021). “Initialization Is Critical for Preserving Global Data
Structure in Both t-SNE and UMAP.” Nature Biotechnology, 39(2), 156–157. doi:
10.1038/s41587-020-00809-z.

Kobak D, Linderman G, Steinerberger S, Kluger Y, Berens P (2019). “Heavy-Tailed Kernels
Reveal a Finer Cluster Structure in t-SNE Visualisations.” In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pp. 124–139. Springer-Verlag.

Krijthe JH (2023). Rtsne: t-Distributed Stochastic Neighbor Embedding Using a Barnes-Hut
Implementation. R package version 0.17, URL https://CRAN.R-project.org/package=
Rtsne.

Lam SK, Pitrou A, Seibert S (2015). “Numba: A LLVM-Based Python JIT Compiler.” In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp.
1–6.

Linderman G, Rachh M, Hoskins JG, Steinerberger S, Kluger Y (2019). “Fast Interpolation-
Based t-SNE for Improved Visualization of Single-Cell RNA-Seq Data.” Nature Methods,
16(3), 243–245. doi:10.1038/s41592-018-0308-4.

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR,
Kamitaki N, Martersteck EM, Trombetta JJ (2015). “Highly Parallel Genome-Wide Ex-
pression Profiling of Individual Cells Using Nanoliter Droplets.” Cell, 161(5), 1202–1214.
doi:10.1016/j.cell.2015.05.002.

Malkov YA, Yashunin DA (2018). “Efficient and Robust Approximate Nearest Neighbor
Search Using Hierarchical Navigable Small World Graphs.” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(4), 824–836. doi:10.1109/tpami.2018.2889473.

McInnes L (2024). PyNNDescent: A Python Nearest Neighbor Descent for Approximate
Nearest Neighbors. Python package version 0.5.12, URL https://pypi.org/project/
pynndescent/.

https://doi.org/10.1016/0893-6080(88)90003-2
https://doi.org/10.1371/journal.pone.0098679
https://github.com/lejon/TSne.jl
https://github.com/lejon/TSne.jl
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.1038/s41587-020-00809-z
https://doi.org/10.1038/s41587-020-00809-z
https://CRAN.R-project.org/package=Rtsne
https://CRAN.R-project.org/package=Rtsne
https://doi.org/10.1038/s41592-018-0308-4
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1109/tpami.2018.2889473
https://pypi.org/project/pynndescent/
https://pypi.org/project/pynndescent/

Journal of Statistical Software 29

McInnes L, Healy J, Melville J (2018). “UMAP: Uniform Manifold Approximation and Pro-
jection for Dimension Reduction.” arXiv 1802.03426, arXiv.org E-Print Archive. doi:
10.48550/arXiv.1802.03426.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M, Duchesnay É (2011). “scikit-learn: Machine Learning in Python.” Journal of Machine
Learning Research, 12, 2825–2830.

Poličar PG, Stražar M, Zupan B (2023). “Embedding to Reference t-SNE Space Addresses
Batch Effects in Single-Cell Classification.” Machine Learning, 112, 721–740. doi:10.
1007/s10994-021-06043-1.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin
JZ, Nemesh J, Goldman M, McCarroll SA, Cepko CL (2016). “Comprehensive Classification
of Retinal Bipolar Neurons by Single-Cell Transcriptomics.” Cell, 166(5), 1308–1323. doi:
10.1016/j.cell.2016.07.054.

Sheth RU, Li M, Jiang W, Sims PA, Leong KW, Wang HH (2019). “Spatial Metagenomic
Characterization of Microbial Biogeography in the Gut.” Nature Biotechnology, 37(8),
877–883. doi:10.1038/s41587-019-0183-2.

Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, Goldy J, Garren E,
Economo MN, Viswanathan S, Penn O, Bakken T, Menon V, Miller J, Fong O, Hirokawa
KE, Lathia K, Rimorin C, Tieu M, Larsen R, Casper T, Barkan E, Kroll M, Parry S,
Shapovalova NV, Hirschstein D, Pendergraft J, Sullivan HA, Kim TK, Szafer A, Dee N,
Groblewski P, Wickersham I, Cetin A, Harris JA, Levi BP, Sunkin SM, Madisen L, Daigle
TL, Looger L, Bernard A, Phillips J, Lein E, Hawrylycz M, Svoboda K, Jones AR, Koch C,
Zeng H (2018). “Shared and Distinct Transcriptomic Cell Types Across Neocortical Areas.”
Nature, 563(7729), 72–78. doi:10.1038/s41586-018-0654-5.

Tkachev A, Stepanova V, Zhang L, Khrameeva E, Zubkov D, Giavalisco P, Khaitovich
P (2019). “Differences in Lipidome and Metabolome Organization of Prefrontal Cor-
tex Among Human Populations.” Scientific Reports, 9(1), 1–10. doi:10.1038/
s41598-019-53762-6.

Ulyanov D (2019). MulticoreTSNE. Python package version 0.1, URL https://pypi.org/
project/MulticoreTSNE/.

Van Der Maaten L (2014). “Accelerating t-SNE Using Tree-Based Algorithms.” Journal of
Machine Learning Research, 15(1), 3221–3245.

Van Der Maaten L, Hinton G (2008). “Visualizing Data Using t-SNE.” Journal of Machine
Learning Research, 9, 2579–2605.

Van Rossum G (1995). “Python Reference Manual.” R 9525, Department of Computer Science.

https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.1007/s10994-021-06043-1
https://doi.org/10.1007/s10994-021-06043-1
https://www.R-project.org/
https://doi.org/10.1016/j.cell.2016.07.054
https://doi.org/10.1016/j.cell.2016.07.054
https://doi.org/10.1038/s41587-019-0183-2
https://doi.org/10.1038/s41586-018-0654-5
https://doi.org/10.1038/s41598-019-53762-6
https://doi.org/10.1038/s41598-019-53762-6
https://pypi.org/project/MulticoreTSNE/
https://pypi.org/project/MulticoreTSNE/

30 openTSNE: t-SNE Dimensionality Reduction and Embedding in Python

A. Single-cell RNA-seq data preprocessing
We here describe the preprocessing steps applied to the single-cell RNA-seq data sets used
in Figure 1 (Macosko et al. 2015), Figure 5 (Tasic et al. 2018), Figure 6 (Cao et al. 2019),
and Figure 7 (Hochgerner et al. 2018). The standard single-cell preprocessing pipeline that
have used consists of gene filtering, gene selection, data normalization, and dimensionality
reduction.
First, we discard genes detected fewer than ten times, then select the 3,000 most highly-
variable genes following the gene-selection procedure from Kobak and Berens (2019). We
then perform counts-per-median library-size normalization followed by log normalization and
standardization without zero-centering. Finally, we extract the top 50 principal components,
which are then used to construct subsequent t-SNE embeddings. This pipeline is applied to
all the aforementioned data sets with the following exceptions, which serve to better illustrate
our points:

• In Macosko et al. (2015), we perform library-size normalization by computing counts-
per-million and apply centering during standardization.

• In Hochgerner et al. (2018), we select the 1,000 most variable genes.

When embedding additional data points into the existing embedding in Figures 1c and 7, we
follow the procedure from Poličar et al. (2023). Therefore, no preprocessing is applied to the
data sets from Shekhar et al. (2016) and Harris et al. (2018), and the similarities between the
reference data set and the new data set are computed on the raw counts.

Affiliation:
Pavlin G. Poličar
Faculty of Computer and Information Science
University of Ljubljana
Večna pot 113, Ljubljana, Slovenia
E-mail: pavlin.policar@fri.uni-lj.si

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

May 2024, Volume 109, Issue 3 Submitted: 2022-11-02
doi:10.18637/jss.v109.i03 Accepted: 2023-08-25

mailto:pavlin.policar@fri.uni-lj.si
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v109.i03

	Introduction
	Methods
	t-distributed stochastic neighbor embedding
	Efficient approximation schemes
	Embedding new samples
	Improving the global structure of embeddings

	Implementation
	Example
	Installation
	A simple workflow
	Peeking under the hood

	Case studies
	Uncovering structure in high-dimensional data
	Embedding massive data sets
	Embedding new samples

	Discussion
	Versatility
	Speed
	Comparison to UMAP

	Ease of use

	Conclusion
	Single-cell RNA-seq data preprocessing

