
JSS Journal of Statistical Software
May 2024, Volume 109, Issue 4. doi: 10.18637/jss.v109.i04

magi: A Package for Inference of Dynamic Systems
from Noisy and Sparse Data via

Manifold-Constrained Gaussian Processes

Samuel W. K. Wong
University of Waterloo

Shihao Yang
Georgia Institute

of Technology

S. C. Kou
Harvard University

Abstract

This article presents the magi software package for the inference of dynamic systems.
The focus of magi is on dynamics modeled by nonlinear ordinary differential equations
with unknown parameters. While such models are widely used in science and engineer-
ing, the available experimental data for parameter estimation may be noisy and sparse.
Furthermore, some system components may be entirely unobserved. magi solves this infer-
ence problem with the help of manifold-constrained Gaussian processes within a Bayesian
statistical framework, whereas unobserved components have posed a significant challenge
for existing software. We use several realistic examples to illustrate the functionality of
magi. The user may choose to use the package in any of the R, MATLAB, and Python
environments.

Keywords: ordinary differential equations, Bayesian inference, unobserved components.

1. Introduction
Ordinary differential equations (ODEs) are widely used as models for dynamic systems in
science and engineering, including gene regulation (Bolouri 2008), chemical reactions (Walas
1991; Wong, Yang, and Kou 2023), epidemiology and ecology (Busenberg and Cooke 1981),
economics (Tu 2012), etc. We focus here on the case where the ODEs are nonlinear with
unknown parameters governing their behavior. The problem of interest is to recover the
unobserved system trajectories as well as to estimate the parameters from experimental or
observational data, where the observations taken from the system may be subject to mea-
surement noise and may only be available at a sparse number of time points. Further, some
components in the system may be entirely unobserved. This paper introduces the magi soft-
ware package, named after its corresponding method (MAnifold-constrained Gaussian process

https://doi.org/10.18637/jss.v109.i04
https://orcid.org/0000-0002-7325-7267
https://orcid.org/0000-0003-3910-4969
https://orcid.org/0000-0002-1774-3316

2 magi: Manifold-Constrained Gaussian Process Inference

Inference; Yang, Wong, and Kou 2021) which provided fast and accurate inference for this
statistical problem on a variety of examples, including the case when there are unobserved
system components.
Specifically, magi handles parameter estimation for models where the system components are
governed by a set of ODEs, which we denote by

ẋ(t) = dx(t)
dt

= f(x(t), θ, t), (1)

where x(t) is the D-dimensional system trajectory over time 0 ≤ t ≤ T (i.e., x : [0, T] →
RD), and ẋ(t) is shorthand for the vector of derivatives dx(t)/dt, which are specified via
the known function f . The vector θ denotes the model parameters to be estimated, which
govern the behavior of the system. We let y(τ) denote the observed data, namely the noisy
measurements taken from the system at observation time points τ . Throughout this article,
we use τ = (τ1, τ2, . . . , τD) to denote the collection of observation time points, where τd

is the vector of time points at which component d is observed, d = 1, . . . , D. Each system
component can have its own set of observation times τd, and some components may not be
observed at all (for which τd = ∅). We assume that the noise is additive and Gaussian,
i.e., y(τ) = x(τ) + ϵ(τ), where the error term ϵ has noise level σ (which may be known or
unknown). The key feature of magi is to infer x(t) and θ from y(τ) without the need for any
numerical integration, even when there are unobserved system components.1 This is achieved
by taking a Gaussian process (GP) as a prior for x(t) and constraining it to a manifold that
satisfies the ODE system. Inference is then carried out within a principled Bayesian statistical
framework, that is, we condition on all known information and quantities and apply Bayesian
techniques to the resulting posterior distribution.
magi is available for R, MATLAB, and Python which enable practitioners to input and work
with custom ODE systems in their preferred computing environment. The packages share
a common C++ (Stroustrup 2013) code base, which ensures a consistent method implemen-
tation across all three environments. The main text of this article will provide code exam-
ples in R (R Core Team 2024). Equivalent code for the examples in MATLAB (The Math-
Works Inc. 2021) and Python (Van Rossum et al. 2011) are provided in the replication
materials, along with usage instructions in the Appendices A and B. Note that even with
the same random seed, the exact numerical results from the replication script may exhibit
slight differences depending on the versions of the LAPACK (Anderson et al. 1999) and
BLAS (Blackford et al. 2002) libraries present on the system. R package magi (Yang and
Wong 2024) is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=magi.

1.1. Illustrative example: Oscillation of Hes1 mRNA and protein levels
To begin with a concrete example, consider the three-component dynamic system, which for
short we write as X = (P, M, H), introduced in Hirata et al. (2002), governed by the ODEs

f(X, θ, t) =

 −aPH + bM − cP
−dM + e

1+P 2

−aPH + f
1+P 2 − gH

 , (2)

1In practice, magi infers x(t) for all t ∈ I, where I is any finite set of discretization points in [0, T] specified
by the user, as subsequently demonstrated.

https://CRAN.R-project.org/package=magi
https://CRAN.R-project.org/package=magi

Journal of Statistical Software 3

where P and M are the protein and messenger ribonucleic acid (mRNA) levels in cultured
cells. In experimental data, P and M levels exhibit oscillatory cycles approximately every 2
hours, and the H component is a Hes1-interacting factor that helps regulate this oscillation
via a negative feedback loop. The parameters of this system are θ = (a, b, c, d, e, f, g), where
a and b can be interpreted as synthesis rates; c, d and g as decomposition rates; and e and f
as inhibition rates.
The remainder of this subsection describes a realistic sample dataset that is simulated from
this system. The key features of the dataset are: (i) M and P are measured at different sets
of time points, (ii) the observations for M and P are noisy (i.e., have measurement error),
(iii) H is never observed. In Section 3, we will then demonstrate how to use magi to recover
the system trajectories and parameters from the dataset, without the use of any numerical
solvers.
We first define a function that computes f for this ODE system. Its inputs are a vector of
parameters θ, a matrix for X (with columns corresponding to components), and a vector of
time points tvec. The function then returns a matrix of values of f , with rows corresponding
to the time points in tvec and columns corresponding to the components of X:

R> hes1modelODE <- function(theta, x, tvec) {
+ P <- x[, 1]
+ M <- x[, 2]
+ H <- x[, 3]
+ PMHdt <- array(0, c(nrow(x), ncol(x)))
+ PMHdt[, 1] <- -theta[1] * P * H + theta[2] * M - theta[3] * P
+ PMHdt[, 2] <- -theta[4] * M + theta[5] / (1 + P^2)
+ PMHdt[, 3] <- -theta[1] * P * H + theta[6] / (1 + P^2) - theta[7] * H
+ PMHdt
+ }

Following the real experimental setup in Hirata et al. (2002), measurements of P and M
are taken every 15 minutes over a four-hour period, but asynchronously: P is observed at
t = 0, 15, 30, . . . , 240 minutes, while M is observed at t = 7.5, 22.5, . . . , 232.5 minutes, and H
is never observed.
We shall simulate from this system using the parameter values studied theoretically in Hirata
et al. (2002): a = 0.022, b = 0.3, c = 0.031, d = 0.028, e = 0.5, f = 20, g = 0.3; the initial
conditions P (0) = 1.439, M(0) = 2.037, H(0) = 17.904 are taken to mimic the authors’
setting, where the system is initialized at the point in the stable oscillation cycle where P is
at its minimum. The observation noise in the experiment is approximately 15% of both the
P and M levels, which we treat as multiplicative noise following a log-normal distribution
with known standard deviation 0.15. For convenience, we setup a list containing these input
values for the simulation:

R> param.true <- list(theta = c(0.022, 0.3, 0.031, 0.028, 0.5, 20, 0.3),
+ x0 = c(1.439, 2.037, 17.904), sigma = c(0.15, 0.15, NA))

Since H is never observed, measurement noise is not applicable to that component. Next,
to simulate the data for our analysis, we use a numerical solver to construct the system
trajectories implied by these values. In R, we can utilize the ODE solvers available in the

4 magi: Manifold-Constrained Gaussian Process Inference

0 50 100 150 200

0
5

10
15

Time (min)

Le
ve

l

P
M
H

Figure 1: True system trajectories (solid curves) and sample noisy observations (points)
from the Hes1 system. The H component is never observed. In Section 3, we demonstrate
how magi recovers the system trajectories and parameters from this sample dataset of noisy
observations.

deSolve package (Soetaert, Petzoldt, and Setzer 2023), by defining a wrapper that satisfies
the syntax of its ode function. We emphasize that the numerical ODE solver is only used here
for generating the data; throughout the MAGI method for inferring the system trajectories
and parameters, no numerical solver is ever needed.

R> modelODE <- function(tvec, state, parameters) {
+ list(as.vector(hes1modelODE(parameters, t(state), tvec)))
+ }

We may now numerically solve the ODE trajectories x over the time period of interest, from
t = 0 to 4 hours (specified as 240 minutes):

R> x <- deSolve::ode(y = param.true$x0, times = seq(0, 60 * 4, by = 0.01),
+ func = modelODE, parms = param.true$theta)

Next, we extract the true values of the trajectory at the time points according to the schedule
of observations described, and simulate noisy measurements y for P and M . The seed 12321
is set for reproducibility.

R> set.seed(12321)
R> y <- as.data.frame(x[x[, "time"] %in% seq(0, 240, by = 7.5),])
R> names(y) <- c("time", "P", "M", "H")
R> y$P <- y$P * exp(rnorm(nrow(y), sd = param.true$sigma[1]))
R> y$M <- y$M * exp(rnorm(nrow(y), sd = param.true$sigma[2]))

For system components that are unobserved at a time point, we fill in the corresponding values
with NaN, recalling that P and M are observed asynchronously and H is never observed:

R> y$H <- NaN
R> y$P[y$time %in% seq(7.5, 240, by = 15)] <- NaN
R> y$M[y$time %in% seq(0, 240, by = 15)] <- NaN

Journal of Statistical Software 5

Now the dataset y is prepared. Based on this dataset, magi will infer the underlying trajec-
tories X and estimate the seven parameters in θ. We plot the observed data in Figure 1,
with the points showing the noisy measurements available for P and M and the solid curves
showing the true system trajectories of X. The following commands create this plot:

R> compnames <- c("P", "M", "H")
R> matplot(x[, "time"], x[, -1], type = "l", lty = 1,
+ xlab = "Time (min)", ylab = "Level")
R> matplot(y$time, y[, -1], type = "p", col = 1:(ncol(y) - 1), pch = 20,
+ add = TRUE)
R> legend("topright", compnames, lty = 1, col = c("black", "red", "green"))

1.2. Overview of related software
magi handles the so-called inverse problem for ODEs, namely to recover the system trajecto-
ries and parameters from a set of observational or experimental data. Existing software for
this problem can be broadly categorized into methods that rely on using numerical solvers
for ODEs and those that do not.
In Equation 1, the system trajectory x(t) may be determined for a given set of parameter
values θ and initial conditions x(0) by integration. For nonlinear functions f , numerical
integrators (e.g., Runge-Kutta) are often needed for solving the ODEs in this way. We may
denote this numerical solution as x̂(t; x(0), θ) to indicate its deterministic relationship with
θ and x(0). A simple approach can thus repeatedly solve for x̂(t; x(0), θ) to optimize a
likelihood or least-squares criterion for the data y(τ), as a function of θ (and also x(0) if the
initial conditions are unknown). A least-squares criterion to minimize would take the form
∥y(τ) − x̂(τ ; x(0), θ)∥2 where ∥·∥ is the usual Euclidean norm, i.e., by evaluating x̂ (which
is determined for all t) at the observation time points τ . This can be viewed as a non-linear
least squares (NLS) problem, which could be handled in R using nls from stats (R Core Team
2024) together with one of the numerical integrators in deSolve. In MATLAB, the System
Identification toolbox (Ljung 1995) and the Data2Dynamics modeling environment (Raue
et al. 2015) also provide functionality for inverse problems with the help of numerical solvers.
Bayesian approaches for parameter estimation using numerical solvers are also available, such
as in the deBInfer package (Boersch-Supan, Ryan, and Johnson 2017) in R. In this case,
the numerical solution is used to construct a likelihood p(y(τ) | x̂(τ ; θ, x(0)), σ) and priors
are placed on all the unknown quantities among θ, x(0), and σ. While methods based on
numerical solvers are generally applicable for ODE inverse problems (including when system
components are unobserved), they may encounter significant computational bottlenecks: The
numerical solver must be invoked repeatedly for values of θ and x(0) used in the estimation
procedure.
As a result, the second broad category consists of methods designed to estimate θ without
the need for numerical integration; magi belongs to this category. These methods use various
techniques to curve-fit the observations while following the ODE system dynamics (e.g., by
gradient matching). We provide an overview of some representative methods with software
available in R in the following:

• A pioneering collocation approach proposed a B-spline basis to fit the system trajec-
tories, where x(t) is represented by x̂(t) = c⊤Φ(t) for basis functions Φ(t) and co-

6 magi: Manifold-Constrained Gaussian Process Inference

efficients c. Then, a penalized likelihood of the form ∥y(τ) − x̂(τ)∥2 + λ
∫

[˙̂x(t) −
f(x̂(t), θ, t)]2 dt is optimized, where the first term measures fit to the data and the
second term (with penalty parameter λ and using B-spline derivatives for ˙̂x(t)) ensures
fidelity to the ODEs (Ramsay, Hooker, Campbell, and Cao 2007). This method is avail-
able in the packages CollocInfer (Hooker, Ramsay, and Xiao 2016) and pCODE (Wang
and Cao 2022).

• Reproducing kernel Hilbert spaces (RKHS) have also been used for gradient matching
(Niu, Rogers, Filippone, and Husmeier 2016). The d-th component of x(t) is represented
by x̂d(t) = b⊤

d kd(t) with kd(t) = [k(t, t1), . . . , k(t, tn)], where k(t, ·) is a kernel function
from the Hilbert space, t1, . . . , tn are the observation times, and bd are kernel coefficients.
A criterion of the form ∥y(τ) − x̂(τ)∥2 + λ

∥∥∥ ˙̂x(τ) − f(x̂(τ), θ, τ)
∥∥∥2

is then minimized,
where the two terms have similar interpretation as in CollocInfer, and the regularization
parameter λ may be obtained by cross-validation. Different variants of RKHS methods,
including transformations on t to better accommodate potential time inhomogeneity
of the ODE solutions, are implemented in KGode (Niu, Wandy, Daly, Rogers, and
Husmeier 2021).

• Inference based on a separable integral-matching approach is implemented in simode
(Dattner and Yaari 2024). First, x(t) is approximated via fitting a spline representation
x̂(t) to the data, to bypass numerical integration of the ODEs. Noting that the true ODE
solution may be expressed as x(t) = x(0) +

∫ t
0 f(x(s), θ, s)ds, integral matching then

seeks to minimize the criterion
∫ T

0

∥∥∥x̂(t) − x(0) −
∫ t

0 f(x̂(s), θ, s) ds
∥∥∥2

dt as a function
of θ and x(0). In systems where f is linear or semi-linear in θ, the estimates can be
obtained efficiently by taking advantage of the separable parameters in the optimization
procedure (otherwise, non-linear optimization will be required).

• A Bayesian approach using GPs for fitting the trajectories is available in the deGradInfer
package (Macdonald and Dondelinger 2020). This implements the gradient matching
method of Dondelinger, Husmeier, Rogers, and Filippone (2013), which places a GP
prior on x(t) (with hyper-parameters ϕ) so that y, x, ẋ have a joint GP specification.
The joint distribution over all the quantities, namely p(y, x, ẋ, θ, ϕ, σ), is then factorized
as p(y, x, ẋ, θ, ϕ, σ) = p(y | x, σ)p(ẋ | x, θ, ϕ)p(x | ϕ)p(ϕ)p(θ)p(σ), where p(y | x, σ)
denotes the likelihood of the observations, p(x | ϕ) is the GP prior on x(t), and priors
are assigned to θ, ϕ, σ. To carry out inference in this method, the term p(ẋ | x, θ, ϕ) is
expressed as a heuristic product that combines the contributions of the GP and ODEs,
namely p(ẋ | x, θ, ϕ) ∝ p(ẋ | x, ϕ)p(ẋ | x, θ), where p(ẋ | x, ϕ) comes from the GP and
p(ẋ | x, θ) comes from the specification of f in the ODE (see Equation 1).

While some of these methods can handle unobserved system components in theory, the avail-
able software implementations tend to lack this functionality in general. Only CollocInfer
and pCODE can accommodate an unobserved component in the estimation procedure; how-
ever, substantial manual input is required to carry out the analysis. This is subsequently
demonstrated in Section 5, where we carry out an illustrative comparison between methods.
Thus, one distinct contribution of the magi package is that it provides a ready-made solution
for systems with unobserved components, in addition to its principled inference framework
that is rooted in Bayesian statistics.

Journal of Statistical Software 7

2. Manifold-constrained Gaussian process inference
This section explains the key points of manifold-constrained Gaussian process inference
(MAGI) for inferring the system trajectories x(t) and parameters θ given the observed data
y(τ). The interested reader may refer to Yang et al. (2021) for additional details.
The MAGI method places a GP prior on x(t), so that ẋ(t) conditional on x(t) also has
a convenient GP form for facilitating inference without the need for numerical integration.
Previous authors adopting this basic idea, e.g., Calderhead, Girolami, and Lawrence (2009);
Dondelinger et al. (2013); Barber and Wang (2014); Wenk, Gotovos, Bauer, Gorbach, Krause,
and Buhmann (2019), have noted that this setup can cause ẋ(t) to be conceptually specified
in two incompatible ways: First via the function f in the ODE (see Equation 1), and second
via the GP, e.g., as seen above in the setup of deGradInfer. The MAGI method addressed
this conceptual difficulty by conditioning the GP on a manifold constraint that satisfies the
ODEs specified by f .
This manifold constraint can be described as follows. First, let D denote the number of
system components, with xd(t) and f(x(t), θ, t)d denoting the d-th component of x(t) and
f respectively, d = 1, . . . , D, and let C1[0, T] be the set of differentiable functions on [0, T].
Then for x : [0, T] → RD and a given parameter space Ωθ, we define a manifold X on which
the derivative ẋ satisfies the dynamics specified by the ODE:

X = {x = (x1, . . . , xD) | xd ∈ C1[0, T], for all d = 1, . . . , D,

ẋ(t) = f(x(t), θ, t) for all t ∈ [0, T] and some θ ∈ Ωθ},

i.e., x ∈ X lies on the manifold of the ODE solutions. Second, to incorporate this manifold
as a constraint in the GP, we define a variable W according to

W = sup
t∈[0,T],d∈{1,...,D}

| Ẋd(t) − f(X(t), θ, t)d |,

i.e., W quantifies the maximum discrepancy between a derivative trajectory and the dynamics
implied by the ODEs. Thus, W = 0 if and only if a realization X = x of the GP satisfies
x ∈ X . Under a Bayesian paradigm, the joint posterior distribution of θ and X(t) is then
conditioned on W = 0 and the observed data y(τ), i.e., the ideal posterior of interest is
p(θ, x(t) | W = 0, y(τ)). However to be practically computable, W = 0 needs to be approx-
imated by finite discretization. Let I = {t1, t2, . . . , tn} be a set of discretization points in
[0, T], with τ ⊂ I; then as a discretized analogue to W , we define a variable WI according to

WI = max
t∈I,d∈{1,...,D}

∣∣∣Ẋd(t) − f(X(t), θ, t)d

∣∣∣ .
This allows us to approximate W = 0 by setting WI = 0, i.e., Ẋ(t) from the GP is constrained
to equal f(X(t), θ, t) from the ODE for each component d = 1, . . . , D at each time point t ∈ I.
With WI = 0 as the manifold constraint in practice, the corresponding posterior distribution
is p(θ, x(I) | WI = 0, y(τ)). As we shall see below, this construction induces a closed-form
posterior such that standard techniques of Bayesian inference can be applied, while ensuring
that posterior samples of x(I) respect the ODE dynamics. Our construction also contrasts
with penalized likelihood or regularization-based approaches (e.g., Ramsay et al. 2007; Wang
and Cao 2022; Niu et al. 2021); applying the rules of conditional probability with WI = 0

8 magi: Manifold-Constrained Gaussian Process Inference

0 2 4 6 8 10

−
6

−
4

−
2

0
2

4
6

8

Time

x

(a) GP given observations only.

0 2 4 6 8 10

−
6

−
4

−
2

0
2

4
6

8

Time
x

(b) GP given observations and manifold constraint.

Figure 2: Example visualization of the ODE manifold constraint. In panel (a), the GP is
conditioned on four noisy observations (solid black dots). The colored curves are five random
trajectories drawn from the resulting GP posterior, and the gray shaded area represents the
95% credible interval. In panel (b), the GP is conditioned on the same four noisy observations
and also the ODE manifold constraint. The colored curves are five random trajectories drawn
from the resulting GP posterior, and the gray shaded area represents the 95% credible interval
with the manifold constraint.

ensures that the ODE dynamics are exactly followed for all time points in I, without the need
to construct any penalty or regularization term.
To illustrate this concept of manifold constraint, we guide the reader through a simple example
in Figure 2. We begin with a selected GP prior on a 1-dimensional x(t) over the interval [0, 10].
For practical computation, the GP will be evaluated at I = {0, 0.05, 0.1, . . . , 10}. Suppose
four noisy observations y(τ) are taken at τ = {1, 3, 4, 5}; these are shown as black points in the
panels of Figure 2. Then the GP posterior conditional on these four observations is visualized
in Figure 2a. Five sample trajectories drawn from this GP posterior are shown via the colored
curves, and the gray bands in Figure 2a represent 95% credible intervals of this GP posterior.
Next, as an example suppose x(t) satisfies the linear ODE ẋ(t) = f(x(t), θ, t) = θ1x(t) + θ2
with parameters θ = (θ1, θ2), which has analytic solution x(t) = c exp(θ1t) − θ2/θ1 for some
constant c. We now proceed to condition the GP on both y(τ) and the ODE manifold
constraint WI = 0. Five draws of x(I) and θ from this manifold-constrained GP posterior
are visualized via the colored curves in Figure 2b. We see that they each obey the functional
form of the known analytic solution x(t) in this case, namely x(t) = c exp(θ1t) − θ2/θ1 with
different values of c, θ1, and θ2, i.e., ẋ(t) from the GP satisfies the ODE specified by f . The
gray shaded area in Figure 2b represents 95% credible intervals of this manifold-constrained
GP posterior. Contrasting the two panels of Figure 2, this analytical example provides an
intuitive depiction for the key idea of the ODE manifold constraint. The R code to produce
Figure 2 is given in the replication script.

Journal of Statistical Software 9

We return to our discussion of the joint posterior distribution on x(I) (i.e., the system tra-
jectories at t1, . . . , tn) and θ, given y(τ) and WI = 0, which is expressed using Bayes’ rule
and factorized according to:

p(θ, x(I) | WI = 0, y(τ))
∝ p(Θ = θ, X(I) = x(I), WI = 0, Y (τ) = y(τ))
= π(θ) × p(X(I) = x(I) | Θ = θ) × p(Y (τ) = y(τ) | X(I) = x(I), Θ = θ)

× p(WI = 0 | Y (τ) = y(τ), X(I) = x(I), Θ = θ).

Next, we note that both the GP prior for X and the observations are independent of Θ,
so we have the simplifications p(X(I) = x(I) | Θ = θ) = p(X(I) = x(I)) and p(Y (τ) =
y(τ) | X(I) = x(I), Θ = θ) = p(y(τ) | x(I)). To simplify the last term, we substitute
the definition of WI = 0 and use the fact that the GP derivative Ẋ(I) given X(I) has a
multivariate normal distribution that is conditionally independent of Θ and the observations:

p(WI = 0 | Y (τ) = y(τ), X(I) = x(I), Θ = θ)
= p(Ẋ(I) = f(x(I), θ, I) | Y (τ) = y(τ), X(I) = x(I), Θ = θ)
= p(Ẋ(I) = f(x(I), θ, I) | x(I)).

Thus, we finally obtain

p(θ, x(I) | WI = 0, y(τ))
∝ π(θ) × p(x(I)) × p(y(τ) | x(I)) × p(Ẋ(I) = f(x(I), θ, tI) | x(I)), (3)

where the four terms are: π(θ) the prior density of the parameters, p(x(I)) the multivariate
normal density for the GP prior on x(t) evaluated at the points in I, p(y(τ) | x(I)) the
likelihood of the noisy observations, and p(Ẋ(I) = f(x(I), θ, tI) | x(I)) the multivariate
normal density for the conditional distribution of Ẋ(I) given X(I) evaluated at Ẋ(I) =
f(x(I), θ, tI). Equation 3 is the basis of inference for magi.
Note that the GP prior on x(t) involves hyper-parameters that govern the mean and co-
variance functions of the GP; we denote these hyper-parameters by ϕ. The likelihood
p(y(τ) | x(I)) may additionally depend on noise parameters, we denote these by σ, which
may be known or unknown depending on the application.
The MAGI method obtains Markov chain Monte Carlo (MCMC) samples for x(I) and θ from
Equation 3. The method proceeds according to the following steps:

1. For system components that have observations, obtain values of ϕ and σ by finding the
optimal hyper-parameters and noise level based on fitting a GP to the data. (If the
noise level σ is known or given, optimization is applied to ϕ only.) The σ obtained is
used to initialize MCMC sampling when the noise level is unknown. MCMC sampling
for x(I) is initialized by linearly interpolating the observations y(τ).

2. For system components that are unobserved, obtain values of ϕ and x(I) together
with θ by a joint optimization of Equation 3, treating (ϕ, σ, x(I)) for the observed
components obtained in step 1 as fixed. If there are no unobserved components, only θ
is optimized in Equation 3. This step provides values at which MCMC sampling for θ
is initialized, along with (ϕ, x(I)) for unobserved components.

10 magi: Manifold-Constrained Gaussian Process Inference

3. Hamiltonian Monte Carlo (HMC, Neal 2011) is used as the MCMC sampling algorithm
for obtaining joint draws of x(I) and θ (together with σ if the noise parameters are
unknown). During this posterior sampling, the GP hyper-parameters ϕ are fixed at the
values obtained in steps 1 and 2. Our implementation of HMC automatically tunes the
leapfrog step sizes of HMC during burn-in to achieve an acceptance rate of 60–90%.
The theoretical optimal acceptance rate for HMC is 65%, as suggested in Neal (2011).

At the conclusion of MCMC sampling (and after discarding the burn-in iterations), we may
treat the posterior means of x(I) and θ as estimates of the trajectories and parameters
respectively. The MCMC samples can also be used to characterize the uncertainty in these
estimates, by computing credible intervals (CIs).
More methodological details of the MAGI method are discussed in Yang et al. (2021); the
remainder of this paper focuses on practical usage of magi and the functionalities of the
software package.

3. Using the magi package
This section illustrates the main functionalities of the magi package by analyzing the sample
dataset for the Hes1 model discussed in the introduction.
After installing the magi package from CRAN, we load it into R:

R> library("magi")

The overall method is carried out via the core function MagiSolver, which initializes the GP
hyper-parameters ϕ and then carries out MCMC sampling for the parameters together with
the system trajectories. The basic syntax is

MagiSolver(y, odeModel, control = list())

where y is a data matrix that includes a column named time for the time points, odeModel
is a list that specifies the ODE functions and its parameters, and control is a list used
to provide any additional control settings. We describe each of these in turn, as we set up
MagiSolver for the Hes1 dataset.
Since the Hes1 observations for P and M are positive and subject to multiplicative error, we
may apply a log-transform to the data and equations for the analysis, which then satisfies
the framework for additive noise ϵ. Thus, continuing the data setup from Section 1, we
create y.tilde as the log-transformed version of the observations y (i.e., excluding the time
column):

R> y.tilde <- y
R> y.tilde[, names(y.tilde) != "time"] <-
+ log(y.tilde[, names(y.tilde) != "time"])

Recall that any unobserved values of y.tilde (in this case, the entire H component column
and every other value for P and M) are assigned NaN. The data matrix y.tilde for input to
MagiSolver is now prepared, where the discretization set is I = {0, 7.5, 15, . . . , 240} minutes
and corresponds to the time points where either P or M are observed. Note that with |I|

Journal of Statistical Software 11

denoting the cardinality of I, the dimensions of the input data matrix are |I| × (D + 1), to
include a column for time and each system component. To set up the input data matrix with
different choices of I, a helper function setDiscretization is provided; see Section 4.1 for
a discussion of its usage and general guidelines for setting up I in practice.
Next we set up the functions required for the odeModel list. First, we apply a log-transform to
each component of the ODE system by defining X̃ = (log(P), log(M), log(H)), then applying
the relation d(log u)

dt = du
dt · 1

u we see that X̃ satisfies

f(X̃, θ, t) =

 −aH + bM/P − c
−d + e

(1+P 2)M
−aP + f

(1+P 2)H − g

 , (4)

where P , M , and H are the components in Equation 2. We may code this via a function which
follows the same format as the function for the original (non-transformed) hes1modelODE:

R> hes1logmodelODE <- function (theta, x, tvec) {
+ P <- exp(x[, 1])
+ M <- exp(x[, 2])
+ H <- exp(x[, 3])
+ PMHdt <- array(0, c(nrow(x), ncol(x)))
+ PMHdt[, 1] <- -theta[1] * H + theta[2] * M / P - theta[3]
+ PMHdt[, 2] <- -theta[4] + theta[5] / (1 + P^2) / M
+ PMHdt[, 3] <- -theta[1] * P + theta[6] / (1 + P^2) / H - theta[7]
+ PMHdt
+ }

Second, to facilitate MCMC sampling via HMC we also supply functions for the gradients of
the ODEs with respect to the system components x and the parameters theta. With respect
to x, we have the matrix of gradients as follows,

∂f(X̃, θ, t)
∂X̃

=

−bM/P bM/P −aH

− 2eP 2

(1+P 2)2M
− e

(1+P 2)M 0
−aP − 2fP 2

(1+P 2)2H
0 − f

(1+P 2)H

 ,

which are specified via a function that outputs a 3-D array with dimensions |I|×D×D, where
the array slice [, i, j] is the partial derivative of the ODE for the j-th system component
with respect to the i-th system component:

R> hes1logmodelDx <- function (theta, x, tvec) {
+ logP <- x[, 1]
+ logM <- x[, 2]
+ logH <- x[, 3]
+ Dx <- array(0, c(nrow(x), ncol(x), ncol(x)))
+ dP <- -(1 + exp(2 * logP))^(-2) * exp(2 * logP) * 2
+ Dx[, 1, 1] <- -theta[2] * exp(logM - logP)
+ Dx[, 2, 1] <- theta[2] * exp(logM - logP)
+ Dx[, 3, 1] <- -theta[1] * exp(logH)

12 magi: Manifold-Constrained Gaussian Process Inference

+ Dx[, 1, 2] <- theta[5] * exp(-logM) * dP
+ Dx[, 2, 2] <- -theta[5] * exp(-logM) / (1 + exp(2 * logP))
+ Dx[, 1, 3] <- -theta[1] * exp(logP) + theta[6] * exp(-logH) * dP
+ Dx[, 3, 3] <- -theta[6] * exp(-logH) / (1 + exp(2 * logP))
+ Dx
+ }

With respect to theta, we have the matrix of gradients as follows,

∂f(X̃, θ, t)
∂θ

=

−H M/P −1 0 0 0 0
0 0 0 −1 1

(1+P 2)2M
0 0

−P 0 0 0 0 1
(1+P 2)2H

−1

 ,

which are specified via a function that outputs a 3-D array with dimensions |I|×|θ|×D, where
the array slice [, i, j] is the partial derivative of the ODE for the j-th system component
with respect to the i-th parameter in θ:

R> hes1logmodelDtheta <- function (theta, x, tvec) {
+ logP <- x[, 1]
+ logM <- x[, 2]
+ logH <- x[, 3]
+ Dtheta <- array(0, c(nrow(x), length(theta), ncol(x)))
+ Dtheta[, 1, 1] <- -exp(logH)
+ Dtheta[, 2, 1] <- exp(logM - logP)
+ Dtheta[, 3, 1] <- -1
+ Dtheta[, 4, 2] <- -1
+ Dtheta[, 5, 2] <- exp(-logM) / (1 + exp(2 * logP))
+ Dtheta[, 1, 3] <- -exp(logP)
+ Dtheta[, 6, 3] <- exp(-logH) / (1 + exp(2 * logP))
+ Dtheta[, 7, 3] <- -1
+ Dtheta
+ }

At this point, it can be worthwhile to check that the gradients have been coded correctly.
This can be done using testDynamicalModel, which tests the provided analytic gradients for
correctness using numerical differentiation (via a finite difference approximation). To illus-
trate, we generate some test values for the data and theta as input into testDynamicalModel
along with our ODE functions, which indicate the numerical and analytic gradients match
for both hes1logmodelDx and hes1logmodelDtheta:

R> yTest <- matrix(runif(nrow(y.tilde) * (ncol(y.tilde) - 1)),
+ nrow = nrow(y.tilde), ncol = ncol(y.tilde) - 1)
R> thetaTest <- runif(7)
R> testDynamicalModel(hes1logmodelODE, hes1logmodelDx, hes1logmodelDtheta,
+ "Hes1 log", yTest, thetaTest, y.tilde[, "time"])

Hes1 log model, with derivatives
Dx and Dtheta appear to be correct

Journal of Statistical Software 13

Third, odeModel must specify the upper and lower bounds on the parameters theta. In this
example, all of the seven parameters (a, b, c, d, e, f, g) are non-negative, so we may set the
corresponding bounds as 0 and Inf.
We are now ready to define the required list containing the three ODE model functions and
parameter bounds:

R> hes1logmodel <- list(
+ fOde = hes1logmodelODE,
+ fOdeDx = hes1logmodelDx,
+ fOdeDtheta = hes1logmodelDtheta,
+ thetaLowerBound = rep(0, 7),
+ thetaUpperBound = rep(Inf, 7))

Finally, additional settings can be supplied to MagiSolver via the list control, which may
include any number of the following optional inputs. Brief descriptions are provided here,
along with references to subsequent sections for further details.

• Settings related to the MCMC sampling setup and initialization of σ, θ and x(I).

– sigma: A numeric vector of length D, specifies the noise levels σ (i.e., standard
deviations of observation noise) at which to initialize MCMC sampling. By de-
fault, MagiSolver assumes that σ is unknown and initializes it via fitting a GP
to the data. If the noise levels are known, supply sigma together with the option
useFixedSigma = TRUE, which will then omit σ from MCMC sampling.

– useFixedSigma: Logical, set to TRUE if σ is known. If useFixedSigma = TRUE,
the known values of σ must be supplied via the sigma control setting. Default is
FALSE.

– xInit: A numeric matrix with dimension |I| × D, specifies values for the system
trajectories at which to initialize MCMC sampling. Default is linear interpolation
between the observed (non-missing) values of y to match the resolution of the
discretization set I. An optimization routine is applied to Equation 3 (as a function
of θ, ϕ and x(I) for unobserved system components) to initialize any unobserved
system components.

– theta: A numeric vector of the same length as θ, specifies values for the parame-
ters θ at which to initialize MCMC sampling. By default, MagiSolver optimizes
Equation 3 as a function of θ only (with xInit fixed) to initialize theta; if there
are unobserved system components, theta is initialized together with them (see
xInit).

– priorTemperature: Numeric, a tempering factor by which to scale the contri-
bution of the GP prior, to control the influence of the GP prior relative to the
likelihood of the observations. Effectively, the log of the GP prior is divided by
priorTemperature. Default is the total number of observations divided by the
total number of discretization points, aggregated over all components; a more
complete discussion is provided in Section 4.1.

• Settings related to the GP prior and its hyper-parameters. These options are discussed
in detail in Section 4.2.

14 magi: Manifold-Constrained Gaussian Process Inference

– kerneltype: String, specifies the type of GP covariance function to use. The de-
fault and recommended choice (generalMatern) is a Matern kernel with degree of
freedom 2.01; it has hyper-parameters ϕ1 and ϕ2 for each component that control
the variance level and bandwidth, respectively. See Section 4.2 for further dis-
cussion regarding this choice; other available choices for kerneltype are listed in
Appendix F.

– phi: A numeric matrix with dimension |ϕd| × D, specifies the values of the GP
hyper-parameters ϕ, where |ϕd| is the number of hyper-parameters for each com-
ponent (i.e., |ϕd| = 2 for generalMatern). By default, MagiSolver will estimate ϕ
automatically for observed components via GP fitting and for unobserved system
components via optimization of Equation 3 (see xInit).

– mu: A numeric matrix with dimension |I|×D, specifies values for the mean function
of the GP prior of each component. Default is a zero mean function. To use a
custom mean function, mu must be specified together with dotmu.

– dotmu: A numeric matrix with dimension |I|×D, specifies values for the derivatives
of the GP prior mean function for each component. Default is zero.

– bandSize: Integer, specifies the size of the diagonal band matrix approximation
used to speed up matrix operations. Default bandSize is 20, can be increased if
MagiSolver returns an error indicating numerical instability.

• Settings related to the Hamiltonian Monte Carlo (HMC) sampling algorithm that is
used to obtain MCMC draws from the posterior. A description of HMC and the role of
these options is provided in Section 4.3.

– niterHmc: Integer, specifies the number of HMC iterations to run. Default is
20000.

– nstepsHmc: Integer, specifies the number of leapfrog steps per HMC iteration.
Default is 200.

– burninRatio: Numeric, specifies the proportion of HMC iterations to be discarded
as burn-in. Default is 0.5, which discards the first half of the MCMC samples.

– stepSizeFactor: Numeric, initial leapfrog step size factor for HMC. Default is
0.01, and the leapfrog step size is automatically tuned during burn-in to achieve
an acceptance rate between 60–90%.

• Other miscellaneous settings for specialized situations.

– skipMissingComponentOptimization: Logical, set to TRUE to override automatic
optimization for unobserved components. If skipMissingComponentOptimization
= TRUE, values for xInit and phi must be supplied for all system components. De-
fault is FALSE.

– positiveSystem: Logical, set to TRUE to enforce the constraint that x(I) is non-
negative for all system components. Default is FALSE.

– verbose: Logical, set to TRUE to output diagnostic and sampling progress messages
to the console. Default is FALSE.

Journal of Statistical Software 15

For most settings, the defaults are generally recommended as a reasonable starting point for
using MagiSolver. The examples provided in this paper will illustrate some cases where it is
necessary to override the defaults.
In the Hes1 example, the noise standard deviations are known. We supply these values via
sigma and set useFixedSigma = TRUE in the control list, as otherwise σ is treated as a
parameter that is sampled within each HMC iteration. We use the defaults for the remaining
settings and run MagiSolver on the Hes1 dataset as follows, which stores the output in
hes1result:

R> hes1result <- MagiSolver(y.tilde, hes1logmodel,
+ control = list(sigma = param.true$sigma, useFixedSigma = TRUE))

In R, the output of MagiSolver is an S3 object of class ‘magioutput’ which contains the
following list elements:

• theta: Matrix of MCMC samples for θ after burn-in.

• xsampled: Array of MCMC samples for the system trajectories x(I) after burn-in.

• sigma: Matrix of MCMC samples for σ after burn-in.

• lp: Vector of log-posterior values at each HMC iteration, after burn-in.

• phi: Matrix of estimated GP hyper-parameters ϕ.

• y, tvec, odeModel: The data matrix, time vector, and odeModel specification from
the inputs to MagiSolver.

For convenience in R, ‘magioutput’ objects have the following associated methods to provide
basic inferences from the MCMC samples:

• print(): Displays a brief summary of the settings used for the MagiSolver run.

• summary(): Generates a table of parameter estimates and credible intervals.

• plot(): Visualizes the inferred trajectories and credible bands for each component, or
generates diagnostic traceplots (i.e., plots of MCMC sampled values vs. the number of
iterations) for the parameters.

We have allowed the hyper-parameters ϕ to be automatically estimated in this example
(including for the unobserved H component), which is often sufficient in our experience.
Further guidelines for setting the GP prior and hyper-parameters are discussed in Section 4.2.
Turning to the MCMC samples, Figure 3 shows the traceplots of theta and lp (sigma is
omitted since it is treated as known in this example) as an informal check for convergence,
produced using the plot() convenience function with type = "trace":

R> theta.names <- c("a", "b", "c", "d", "e", "f", "g")
R> plot(hes1result, type = "trace", par.names = theta.names, nplotcol = 4)

16 magi: Manifold-Constrained Gaussian Process Inference

0 2000 6000 10000

0.
01

0.
03

a

Index

0 2000 6000 10000
0.

2
0.

3
0.

4
0.

5

b

Index

0 2000 6000 10000

0.
01

0.
03

0.
05

c

Index

0 2000 6000 10000

0.
02

5
0.

03
5

0.
04

5

d

Index

0 2000 6000 10000

0.
4

0.
6

0.
8

1.
0

e

Index

0 2000 6000 10000

5
10

20
30

f

Index

0 2000 6000 10000
0.

00
0.

10
0.

20
0.

30

g

Index

0 2000 6000 10000

−
50

−
30

−
10

10

log−post

Index

Figure 3: MCMC traceplots for the seven parameters of the Hes1 system and the log-posterior
values. The horizontal lines in the plots indicate the posterior mean (red) and limits of the
95% credible interval (green) for each parameter.

The MCMC samples of each parameter randomly scatter around their posterior means (red
horizontal lines), which visually indicate that convergence has occurred. The 95% credible
intervals (via 2.5 to 97.5 percentiles of the MCMC samples) are shown via the green horizontal
lines. We generally suggest taking the posterior mean as the parameter estimate for θ.2 The
numerical values of these parameter estimates and credible intervals can be extracted using
the convenience summary() method:

R> summary(hes1result, par.names = theta.names)

a b c d e f g
Mean 0.0220 0.300 0.0291 0.0336 0.634 13.50 0.1380
2.5% 0.0119 0.224 0.0185 0.0277 0.459 6.82 0.0694
97.5% 0.0358 0.398 0.0414 0.0403 0.851 24.80 0.2200

The true parameter values are well contained in the 95% credible intervals, with the exception
of g, which only governs the unobserved H component as seen in Equation 4.
Next, we can extract and visualize the sampled system trajectories x(I). We treat the
posterior means as the inferred trajectories, and use the 2.5 to 97.5 percentiles of the MCMC
samples to provide 95% credible intervals at each time point in I. These are the default
settings of the convenience plot() method, which we use to generate Figure 4:

2Other commonly-used Bayesian point estimates include the median (which may be taken component-wise)
and the mode (which may approximated by the MCMC sample with the highest log-posterior value). These
can be obtained in magi by passing the est argument to the plot() or summary() methods. Since magi is
based on a GP prior (and Gaussian tails are thin), the posterior mean (for both θ and x(I)) tends to be
sufficiently robust and works well in practice.

Journal of Statistical Software 17

0 50 100 150 200

0.
5

1.
0

1.
5

2.
0

Time

lo
g(

Le
ve

l)

P

0 50 100 150 200

−
0.

5
0.

0
0.

5
1.

0

Time

lo
g(

Le
ve

l)

M

0 50 100 150 200

−
1

0
1

2
3

Time

lo
g(

Le
ve

l)

H

Figure 4: Inferred trajectories from magi for the three components of the Hes1 system on the
log-scale (green curves), generated using the plot() method. The blue shaded areas represent
95% credible intervals. The asynchronous noisy observations of P and M are plotted as black
circles.

0 50 100 150 200

2
4

6
8

10

time

P

P (17 observations)

0 50 100 150 200

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

time

M

M (16 observations)

0 50 100 150 200

0
5

10
15

20

time

H

H (unobserved)

truth inferred trajectory 95% credible interval noisy observations

Figure 5: Inferred trajectories from magi for the three components of the Hes1 system (green
curves). The blue shaded areas represent 95% credible intervals. The asynchronous noisy
observations of P and M are plotted as black circles, and the red curves represent the true
underlying trajectories.

18 magi: Manifold-Constrained Gaussian Process Inference

R> plot(hes1result, lwd = 2, col = "forestgreen", comp.names = compnames,
+ xlab = "Time", ylab = "log(Level)")

In this example it is helpful to do some further post-processing, and generate a customized
plot on the original scale with the true trajectory overlaid. We exponentiate to convert each
component to the original scale of measurement:

R> xLB <- exp(apply(hes1result$xsampled, c(2, 3),
+ function(x) quantile(x, 0.025)))
R> xMean <- exp(apply(hes1result$xsampled, c(2, 3), mean))
R> xUB <- exp(apply(hes1result$xsampled, c(2, 3),
+ function(x) quantile(x, 0.975)))

The inferred trajectories (green curves) and blue shaded areas representing the 95% credible
intervals are shown in Figure 5, with the noisy observations and true trajectories overlaid as
black points and red curves, respectively. The system trajectories are recovered well: The
green curves for P and M are consistent with the observed data points and the truth for
the entirely unobserved H component is correctly inferred. The plotting code for Figure 5 is
given in the replication script.

4. Finer control of inference: Features and examples
This section presents two additional dynamic system examples to illustrate the role of the
discretization set I, the GP prior and its hyper-parameters ϕ, and the HMC algorithm. We
discuss how to use these features to obtain finer control over the inference results. The second
example (in Section 4.2) also demonstrates a system with equations that explicitly depend
on time.

4.1. Choice of discretization set

MAGI constrains the GP to satisfy the ODE system derivatives at the points in the discretiza-
tion set I. Therefore, increasing the denseness of I may lead to more accurate inference in
some cases, with the trade-off being longer computation time. In practice, it can be a useful
strategy to consider running MagiSolver with an increasing sequence of discretization sets
I0 ⊂ I1 ⊂ · · · to ensure that the estimates obtained are stable.
For the initial run, we recommend taking I0 as the smallest evenly-spaced set (or approxi-
mately so) that includes the observation time points τ . This can help ensure that the system
dynamics are adequately captured throughout the modeled time interval — note that this
is not a requirement for running MagiSolver itself, which can handle any kind of spacing
between time points. Then, we can construct subsequent sets Ij , j ≥ 1 by inserting one
equally-spaced point between each pair of adjacent time points in Ij−1.
The function setDiscretization can be used to prepare data matrices y according to this
strategy. The command setDiscretization(y, level = j) returns a data matrix with
2j − 1 equally-spaced points inserted between each observation of y (i.e., j = 0 returns
the original matrix y); this works well when y are evenly spaced. The alternative syntax
setDiscretization(y, by = incr) can be useful when the observations in y are unevenly

Journal of Statistical Software 19

spaced: It returns a data matrix with time points inserted (as needed) to form an equally-
spaced discretization set from the first to last observations of y, with interval incr between
successive discretization points.
Mathematically, as the discretization set becomes more dense, the contributions of the terms
in Equation 3 associated with I, i.e., the GP prior p(x(I)) and p(Ẋ(I) = f(x(I), θ, tI) |
x(I)), would become larger relative to the likelihood of the observations. This is because the
likelihood term in Equation 3 simplifies as p(y(τ) | x(I)) = p(y(τ) | x(τ)) for any τ ⊂ I
and does not change as I becomes more dense, i.e., only the points in I corresponding to
observations have an associated likelihood contribution. Therefore, magi automatically uses a
tempering hyper-parameter β to maintain the balance between the GP prior and the likelihood
across different discretization sets. This helps ensure that parameter inference reaches a
stable result over an increasing sequence of discretization sets. Specifically, p(x(I))p(Ẋ(I) =
f(x(I), θ, tI) | x(I)) is tempered as

[
p(x(I))p(Ẋ(I) = f(x(I), θ, tI) | x(I))

]1/β
, where our

recommended value β = D|I|/
∑D

d=1|τd| is the total number of discretization points divided
by the total number of observations (aggregated over all components). For example if |I|
is doubled, then tempering effectively reduces the GP contribution on the log-scale by half
to compensate. A custom value for β can be set by the user via priorTemperature in the
optional control list to MagiSolver, but this is not generally recommended.
We illustrate this idea of increasing discretization sets, on a dataset of noisy observations
simulated from the classic FitzHugh-Nagumo (FN) equations for X = (V, R) that model
spike potentials of neurons (FitzHugh 1961):

f(X, θ, t) =

 c(V − V 3

3 + R)

−1
c

(V − a + bR)

 ,

where V and R are the voltage and recovery variables, and θ = (a, b, c) are the parameters
to be estimated.
We begin by loading the dataset and setting a random seed for reproducibility:

R> data("FNdat", package = "magi")
R> set.seed(12321)

The observation time points of FNdat are t = 0, 0.5, 1, . . . , 10 at intervals of 0.5, along with
t = 11, 12, 13, 14, 15, 17, 20. Following the suggested strategy above, we create a data matrix
corresponding to the first discretization set I0, taken to be the 41 equally-spaced points
{0, 0.5, 1, . . . , 20}:

R> y_I0 <- setDiscretization(FNdat, by = 0.5)

We also create data matrices corresponding to the denser sets I1, I2, I3 by successively insert-
ing one equally-spaced time point between existing ones:

R> y_I1 <- setDiscretization(y_I0, level = 1)
R> y_I2 <- setDiscretization(y_I0, level = 2)
R> y_I3 <- setDiscretization(y_I0, level = 3)

20 magi: Manifold-Constrained Gaussian Process Inference

The gradients of the ODEs with respect to X and θ are as follows:

∂f(X, θ, t)
∂X

=
(

c(1 − V 2) c
−1/c −b/c

)

∂f(X, θ, t)
∂θ

=
(

0 0 V − V 3/3 + R
1/c −R/c (V − a + bR)/c2

)

Functions that code the FN equations (fnmodelODE) and their gradients (fnmodelDx and
fnmodelDtheta) are set up analogously to the Hes1 model, and are shown in Appendix C.
Using these, we create the odeModel list input:

R> fnmodel <- list(fOde = fnmodelODE, fOdeDx = fnmodelDx,
+ fOdeDtheta = fnmodelDtheta, thetaLowerBound = c(0, 0, 0),
+ thetaUpperBound = c(Inf, Inf, Inf))

We can now run MagiSolver with the discretization sets we constructed and 10000 HMC
iterations. Since the noise level is unknown in this dataset, σ will also be inferred via MCMC
sampling. Note that the dimensionality of the variables being sampled effectively doubles
with each successive discretization set. Thus, the outputs of the HMC iterations can become
increasingly “sticky” (i.e., having higher autocorrelation) with denser discretization sets. For
more detail on this point, see Section 4.3 for a discussion of HMC and its settings. One way
to circumvent this is to increase the number of leapfrog steps per HMC iteration. We have
illustrated that below, by setting nstepsHmc = 1000 for our densest set I3 (otherwise the
default is 200 leapfrog steps).

R> FNres0 <- MagiSolver(y_I0, fnmodel, control = list(niterHmc = 10000))
R> FNres1 <- MagiSolver(y_I1, fnmodel, control = list(niterHmc = 10000))
R> FNres2 <- MagiSolver(y_I2, fnmodel, control = list(niterHmc = 10000))
R> FNres3 <- MagiSolver(y_I3, fnmodel, control = list(niterHmc = 10000,
+ nstepsHmc = 1000))

To compare the estimates, we make use of summary() to extract the posterior means and 95%
credible intervals for both θ and σ from each model fit:

R> FNpar.names <- c("a", "b", "c", "sigmaV", "sigmaR")
R> FNsummary <- lapply(list(FNres0, FNres1, FNres2, FNres3),
+ function(x) summary(x, sigma = TRUE, par.names = FNpar.names))

We then plot these posterior summaries for each parameter and discretization set:

R> layout(rbind(c(1:5), rep(6, 5)), heights = c(5, 0.25))
R> for (i in 1:length(FNpar.names)) {
+ par(mar = c(2, 4, 1.5, 1))
+ estCI <- sapply(FNsummary, function(x) x[,i])
+ plot(1:4, xlim = c(0, 5), ylim = c(min(estCI[2,]), max(estCI[3,])),
+ xaxt = "n", xlab = "", ylab = "", type = "n")
+ segments(1:4, y0 = estCI[2,], y1 = estCI[3,], col = 1:4, lwd = 2)

Journal of Statistical Software 21
0.

05
0.

10
0.

15
0.

20
0.

25

a

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

b

2.
5

2.
6

2.
7

2.
8

2.
9

3.
0

3.
1

3.
2 c

0.
05

0.
10

0.
15

0.
20

0.
25

sigmaV

0.
20

0.
25

0.
30

0.
35

sigmaR

I0 I1 I2 I3

Figure 6: Posterior means (points) and 95% credible intervals (vertical bars) for each pa-
rameter, from using MagiSolver on the simulated FN dataset with the discretization sets
I0 ⊂ I1 ⊂ I2 ⊂ I3.

+ mtext(FNpar.names[i])
+ points(1:4, estCI[1,], col = 1:4, cex = 2)
+ }
R> par(mar = rep(0, 4))
R> plot(1, type = "n", xaxt = "n", yaxt = "n",
+ xlab = NA, ylab = NA, frame.plot = FALSE)
R> legend("center", c("I0", "I1", "I2", "I3"),
+ col = 1:4, lwd = 4, horiz = TRUE, bty = "n")

The panels of Figure 6 show that the posterior means (points) and credible intervals (vertical
bars) visibly shift for b and σV , as we use the successive discretization sets from I0 to I1 to I2.
Meanwhile comparing I2 and I3 for all the parameters, the posterior means are fairly similar
and the credible intervals largely overlap, indicating that the inference results are stable.
To provide a further check, we can use the ODE solver to reconstruct the trajectories implied
by the estimates of the parameters and the initial conditions. Again, we define a wrapper to
facilitate calling ode from deSolve:

R> fnmodelODEsolve <- function(tvec, state, parameters) {
+ list(as.vector(fnmodelODE(parameters, t(state), tvec)))
+ }

We define a helper function that invokes the ODE solver using the posterior means of θ
and V (0), R(0) from the MagiSolver output. Note that the MCMC samples for the initial
conditions can be extracted from the xsampled array, as shown below to obtain x0.est:

R> tvec <- seq(0, 20, by = 0.01)
R> FNcalcTraj <- function(res) {
+ x0.est <- apply(res$xsampled[, 1,], 2, mean)
+ theta.est <- apply(res$theta, 2, mean)
+ deSolve::ode(y = x0.est, times = tvec,
+ func = fnmodelODEsolve, parms = theta.est)
+ }

22 magi: Manifold-Constrained Gaussian Process Inference

0 5 10 15 20

−
2

−
1

0
1

2

Time

V

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Time
R

I0 I1 I2 I3

Figure 7: Reconstructed system trajectories (solid curves) based on the estimated parameters
and initial conditions from the simulated FN dataset using MagiSolver with the discretization
sets I0 ⊂ I1 ⊂ I2 ⊂ I3. The noisy observations (points) are also plotted.

We then compute these reconstructed trajectories for the estimates based on the four dis-
cretization sets and plot them in Figure 7. Visually, all four reconstructed trajectories fit the
observed data well. There are some minor shifts in the trajectories as the discretization sets
get denser from I0 to I1 to I2, while those for I2 and I3 (green and blue) become nearly
indistinguishable (except for 0 ≤ t ≤ 2 of the R component). The code to produce the figure
is below:

R> FNtr <- lapply(list(FNres0, FNres1, FNres2, FNres3), FNcalcTraj)
R> layout(rbind(c(1, 2), c(3, 3)), heights = c(5, 0.25))
R> plot(FNdat$time, FNdat$V, xlab = "Time", ylab = "V")
R> matplot(tvec, sapply(FNtr, function(x) x[, 2]),
+ type = "l", lty = 1, add = TRUE)
R> plot(FNdat$time, FNdat$R, xlab = "Time", ylab = "R")
R> matplot(tvec, sapply(FNtr, function(x) x[, 3]),
+ type = "l", lty = 1, add = TRUE)

The following code adds the legend at the bottom:

R> par(mar = rep(0, 4))
R> plot(1, type = "n", xaxt = "n", yaxt = "n",
+ xlab = NA, ylab = NA, frame.plot = FALSE)
R> legend("center", c("I0", "I1", "I2", "I3"),
+ col = 1:4, lwd = 4, horiz = TRUE, bty = "n")

For a numerical comparison, we can calculate the root-mean-squared deviations (RMSDs)
between the noisy observations and the reconstructed trajectories at those time points. We
can obtain these as follows:

Journal of Statistical Software 23

R> FN.rmsd <- sapply(FNtr, function(x)
+ sqrt(colMeans((subset(x, time %in% FNdat$time) - FNdat[, 2:3])^2)))
R> colnames(FN.rmsd) <- c("I0", "I1", "I2", "I3")
R> round(FN.rmsd, 3)

I0 I1 I2 I3
V 0.234 0.212 0.176 0.167
R 0.281 0.277 0.260 0.255

These results indicate that the estimated parameters fit the observed data better (lower
RMSDs) as the denseness of the discretization set is increased. The improvement going from
I2 and I3 is fairly minimal, which confirms that a stable inference result has been achieved
and there is no need to further increase the discretization set to I4.

4.2. Setting of hyper-parameters

The GP prior on x(t) has two ingredients: The mean function µ(t) and covariance ker-
nel/function K. In applications of GPs, it is customary to set µ(t) = 0 in the absence of
specific prior information (see, e.g., Chapter 2 of Williams and Rasmussen 2006). The reason
this can work well in practice is that the GP, once conditioned on observations, will have a
mean function that tends to follow the observations. In magi, the GP is additionally con-
ditioned on the ODE manifold constraint, which further aligns the GP mean function with
the dynamics specified by the ODEs. Thus, our general recommendation is to assume a
zero-mean GP prior for simplicity; all of the examples in the paper take this approach and
have good inference results. The user may input a custom prior mean function to magi by
evaluating µ(I) and µ̇(I), i.e., µ(t) and its derivative evaluated at the discretization set I,
and providing them to MagiSolver via the optional arguments mu and dotmu. One potential
scenario where this might be helpful is to provide prior guidance for unobserved components,
though as demonstrated by the recovery of the unobserved H component in the Hes1 example
(Section 3), this kind of input is not generally needed.
For a given covariance function K, the GP hyper-parameters ϕ control the overall prior
variance level and prior smoothness/bumpiness of each component’s trajectory. Specifically,
the default choice and our recommendation for general usage in magi is a Matern covariance
function K of the form

K(s, t) = ϕ1
21−ν

Γ(ν)

(√
2ν

r

ϕ2

)ν

Bν

(√
2ν

r

ϕ2

)
, (5)

where r = |s − t| is the absolute difference between two time points s and t, ν = 2.01 is the
smoothness parameter (which ensures twice-differentiable curves), Γ is the gamma function,
and Bν is the modified Bessel function of the second kind. Larger values of ϕ1 therefore favor
curves with higher variance, and larger values of ϕ2 favor curves with more time-dependence
between nearby time points. Each system component has its own set of (ϕ1, ϕ2) values to
ensure that the GP has sufficient flexibility to model its dynamics.
Other covariance functions are available in magi and may be selected using the kerneltype
optional argument to MagiSolver. See Appendix F for their specification and details. Note
that for a covariance function to be compatible with magi, the corresponding GP prior on

24 magi: Manifold-Constrained Gaussian Process Inference

x(t) must satisfy two conditions: (i) the GP derivative ẋ(t) exists, as implied by the definition
of the ODE structure; (ii) ẋ(t) is also a GP. Together, this requires the covariance function
K to be twice-differentiable (i.e., ∂2

∂s∂tK(s, t) exists). The number of times that K is differen-
tiable (with respect to r) relates to the smoothness of the GP; higher-order differentiability
corresponds to smoother curves. Taking the Matern covariance in Equation 5 specifically, K
is k-times differentiable if and only if ν > k; thus, smaller values of ν are more capable of
modeling rough or bumpy trajectories (see, e.g., pp. 84–85 of Williams and Rasmussen 2006).
This motivates our default choice of generalMatern (i.e., Equation 5 with ν = 2.01, so that
the kernel meets the twice-differentiable requirement and is capable to model relatively rough
curves), which in our experience gives the best inference results over the widest range of sys-
tem behavior (whether rough or smooth). Other covariance functions commonly used in GP
applications (such as the Matern covariance with ν = 5/2 or the radial basis function kernel)
encode stronger smoothness assumptions that hinder the GP from capturing sharp changes
in x(t), which may in turn lead to bias in the parameter estimates.3

By default, MagiSolver automatically estimates ϕ for each system component, depending on
the availability of observed data. Briefly, for components with observations, a GP with the
selected covariance function is fitted to the data via maximum a posteriori (MAP) estimation
with a weakly informative Normal prior for ϕ2 (and flat priors otherwise), which provides ϕ
and a value of σ to initialize MCMC sampling (if σ is unknown). Then to handle unobserved
components, optimization is applied to the full posterior in Equation 3 as a function of θ and
ϕ, x(I) for unobserved components, with the previously initialized values of σ, ϕ, and x(I)
for observed components held fixed.

The values of ϕ are held fixed during MCMC sampling for θ, σ, and x(I). This may be
contrasted with a full Bayesian approach for handling ϕ, where ϕ would also be sampled.
MCMC sampling for ϕ is however expensive as each update requires recomputing the co-
variance matrices associated with x(I) (e.g., see Titsias, Rattray, and Lawrence 2011) and
ẋ(I) as needed in magi. Thus, we follow the approach of estimating ϕ based on its marginal
likelihood and holding it fixed (e.g., see Chapter 5 of Williams and Rasmussen 2006); one
potential disadvantage is that this approach does not account for uncertainty in ϕ. In prac-
tice, credible intervals for θ tend to be fairly stable so long as ϕ lies within a range that is
appropriate for the data; an empirical assessment for this point is provided at the end of this
section.

Fixing ϕ also allows us to leverage techniques to speed up calculations on the covariance
matrices associated with the GPs. Specifically, let Kd(s, t) be the fitted GP covariance function
for component d, then the following |I| × |I| matrices are involved in its GP multivariate

3In general, given that the underlying ODE system can be rough or smooth, it is our experience that using
the Matern covariance function with a small value of ν, such as ν = 2.01, provides the GP approximation the
capability to model a wide range of dynamic systems (rough or smooth). Our experience suggests that another
potential source of bias in magi is the fact that the ODE manifold constraint in practical computation can
only be applied at a finite set of time points (i.e., WI = 0) rather than on the entire interval (i.e., W = 0).
For systems where f has very sharp changes, magi may still be applicable by choosing a smaller value of the
hyper-parameter ϕ2 so that those sharp changes can be better approximated by the GP. In this case, visual
assessments of the GP fit to the data can provide a good indication of whether subsequent inference with magi
will be successful. The example in this section demonstrates how to apply this strategy.

Journal of Statistical Software 25

normal distribution at the discretization points in I:
Cd = Kd(I, I)
md = ′Kd(I, I)Kd(I, I)−1

Ψd = K′′
d(I, I) − ′Kd(I, I)Kd(I, I)−1K′

d(I, I)

where ′Kd = ∂
∂sKd(s, t), K′

d = ∂
∂tKd(s, t), and K′′

d = ∂2

∂s∂tKd(s, t). Here, Cd is the covariance
matrix of xd(I), Ψd is the covariance matrix of ẋd(I), and md is the projection matrix that
maps xd(I) to the mean function of ẋd(I). With the GP structure, the covariance between
two time points tends to be non-negligible only when they are nearby; thus the off-diagonal
entries of Cd, Ψd, and their inverses quickly decay to zero. Likewise, the relation between
xd(I) is its derivative ẋd(I) is local, so off-diagonal entries of md also decay to zero quickly.
Since ϕ is fixed, the matrices C−1

d , Ψ−1
d , and md needed in the multivariate normal densities

(Equation 3) can be pre-computed. Furthermore, we may approximate each of them with
sparse band matrices (i.e., non-zero only within bandSize diagonals on either side of the main
diagonal), which reduces the matrix multiplication complexity in Equation 3 from O(|I|2) to
O(|I|). This band matrix approximation works best when I is evenly-spaced, as recommended
in Section 4.1. In our experience, a band size of 20 works for most problems and is the default
in magi. If the approximation fails (i.e., the quadratic form diverges), a warning message that
suggests a larger band size will be automatically shown. A different band size can be chosen
by setting bandSize in the control list to MagiSolver.
Often, the automatic estimates of ϕ will be within a reasonable range that permits accurate
inference of θ; however, this is not guaranteed for all datasets, in which case we may manually
override their values for better control over the inference results. This is done by supplying
phi in the control list to MagiSolver. magi includes the gpsmoothing function for fitting
a GP to data, along with the gpmean and gpcov functions to compute the resulting mean
vector and covariance matrix conditioned on the data. This allows the user to examine and
assess the estimated values of ϕ prior to running MagiSolver.
The example in this section demonstrates how these functions can be used, and how the
appropriateness of hyper-parameter choices can be assessed, in the context of a system with
equations that explicitly depend on time. We consider the three-component system X =
(TU , TI , V) for HIV infection described in the simulation study of Liang, Miao, and Wu
(2010), where TU , TI are the concentrations of uninfected and infected cells, and V is the
viral load:

f(X, θ, t) =

λ − ρTU − η(t)TU V
η(t)TU V − δTI

NδTI − cV

 .

In this system, η(t) = 9 × 10−5 × (1 − 0.9 cos(πt/1000)) is an oscillating infection rate over
time (in days), and the parameters to be estimated are θ = (λ, ρ, δ, N, c). Functions for
these ODEs (hivtdmodelODE) and their gradients (hivtdmodelDx and hivtdmodelDtheta)
are shown in Appendix D. Then the odeModel list for input to MagiSolver is as follows:

R> hivtdmodel <- list(
+ fOde = hivtdmodelODE,
+ fOdeDx = hivtdmodelDx,

26 magi: Manifold-Constrained Gaussian Process Inference

+ fOdeDtheta = hivtdmodelDtheta,
+ thetaLowerBound = rep(0, 5),
+ thetaUpperBound = rep(Inf, 5))

We define the component names and labels for later use:

R> compnames <- c("TU", "TI", "V")
R> complabels <- c("Concentration", "Concentration", "Load")

We also create a list with the simulation inputs (parameter values theta, initial conditions
x0, noise levels sigma, and observation times) that mimic those in the referenced paper:

R> param.true <- list(theta = c(36, 0.108, 0.5, 1000, 3),
+ x0 = c(600, 30, 1e5), sigma = c(sqrt(10), sqrt(10), 10),
+ times = seq(0, 20, 0.2))

Next we invoke the numerical solver and simulate noisy observations from this system over
the specified time interval (t = 0 to 20) with measurements at intervals of 0.2 and noise SD
param.true$sigma, again with a random seed set for reproducibility:

R> set.seed(12321)
R> modelODE <- function(tvec, state, parameters) {
+ list(as.vector(hivtdmodelODE(parameters, t(state), tvec)))
+ }
R> xtrue <- deSolve::ode(y = param.true$x0, times = param.true$times,
+ func = modelODE, parms = param.true$theta)
R> y <- data.frame(xtrue)
R> for (j in 1:(ncol(y) - 1)) {
+ y[, 1+j] <- y[, 1+j] + rnorm(nrow(y), sd = param.true$sigma[j])
+ }

These noisy observations are plotted as the black points in Figure 8a for each component.
The system dynamics are characterized by rapid changes from t = 0 to t = 5, with the V
component exhibiting a particularly steep decline during the first day.
We can use gpsmoothing to perform a preliminary GP fit and obtain estimates of ϕ and
σ for each component. The inputs to gpsmoothing are the noisy observations and vector
of time points (ODE information is not used at this stage), and the function returns a list
with phi and sigma elements. Its usage is demonstrated as follows, where we create phiEst
and sigmaInit to store the results, then perform GP fitting for each system component and
extract the estimates:

R> phiEst <- matrix(0, nrow = 2, ncol = ncol(y) - 1)
R> sigmaInit <- rep(0, ncol(y) - 1)
R> for (j in 1:(ncol(y) - 1)) {
+ hyperparam <- gpsmoothing(y[, j+1], y[, "time"])
+ phiEst[, j] <- hyperparam$phi
+ sigmaInit[j] <- hyperparam$sigma
+ }

Journal of Statistical Software 27

0 5 10 15 20

20
0

30
0

40
0

50
0

60
0

Time

C
on

ce
nt

ra
tio

n

TU

0 5 10 15 20

0
50

10
0

15
0

Time

C
on

ce
nt

ra
tio

n

TI

0 5 10 15 20

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Time

Lo
ad

V

(a) Initial GP fitting to a sample dataset simulated from the HIV model. The black points are
the noisy observations. The blue curves represent magi’s automatic fit of the GP mean conditional
on the data (without ODE information), and the gray bands represent 95% intervals based on the
corresponding GP covariance. The automatically estimated GP hyper-parameters ϕ1 and ϕ2 allow the
curves to follow the observations reasonably well for components TU and TI ; however, the sharp trend
in component V is not captured. By using a custom specification of ϕ1 and ϕ2 for component V , the
resulting mean curve (orange) can follow the observations well.

0 5 10 15 20

20
0

30
0

40
0

50
0

60
0

Time

C
on

ce
nt

ra
tio

n

TU

0 5 10 15 20

50
10

0
15

0

Time

C
on

ce
nt

ra
tio

n

TI

0 5 10 15 20

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Time

Lo
ad

V

(b) Final inferred trajectories (green curves) for the HIV model with 95% credible bands (light blue).
The true trajectories are superimposed in red. Note that the credible bands are very narrow, and are
only visible for the TI component.

Figure 8: Hyperparameter setup and inference for a sample dataset simulated from the HIV
model. Panel (a) provides a visual assessment of the GP hyper-parameters and their initial
fit to the data. Panel (b) shows the final inferred trajectories from magi, which closely follow
the true trajectories.

28 magi: Manifold-Constrained Gaussian Process Inference

Next, we can visualize the GP fit implied by these values of ϕ and σ, with the help of the
gpmean and gpcov functions. These compute the GP mean vector and covariance matrix
conditioned on the observations, ϕ, and σ. To plot a smooth curve of the GP fit, we carry
out this computation on a fairly dense set of time points (tOut), and the diagonal of the
covariance matrix can be used to produce credible bands (e.g., ±1.96 SDs):

R> tOut <- seq(0, 20, by = 0.025)
R> for (j in 1:3) {
+ plot(y[, "time"], y[, j + 1], type = "n", xlab = "Time",
+ ylab = complabels[j])
+ mtext(compnames[j])
+ fitMean <- gpmean(y[, j + 1], y[, "time"], tOut, phiEst[, j],
+ sigmaInit[j])
+ fitCov <- gpcov(y[, j + 1], y[, "time"], tOut, phiEst[, j],
+ sigmaInit[j])
+ gp_UB <- fitMean + 1.96 * sqrt(diag(fitCov))
+ gp_LB <- fitMean - 1.96 * sqrt(diag(fitCov))
+ polygon(c(tOut, rev(tOut)), c(gp_UB, rev(gp_LB)),
+ col = "gray80", border = NA)
+ points(y[, "time"], y[, j + 1], cex = 0.5)
+ lines(tOut, fitMean, type = "l", col = "steelblue")
+ }

The resulting blue curves in Figure 8a show the GP means of each component, and the
gray bands are 95% intervals (i.e., mean ± 1.96 SD, where the SDs are extracted from the
corresponding GP covariance matrix). We see that the automatically estimated GP hyper-
parameters ϕ1 and ϕ2 allow the mean curves to follow the observations reasonably well for
components TU and TI ; however, the sharp trend in component V is not captured. The fit-
ted mean curve for V is close to zero, or equivalently, the observations for V are incorrectly
attributed as noise. Recall that at this stage, the mean curves are conditional on the obser-
vations only (i.e., the ODE manifold constraint is not yet included), so some wiggliness is
not unusual, as seen for components TU and TI . The key visual indicator for a reasonable ϕ
estimate is a mean curve that roughly captures the trajectory implied by the observations.
The phenomenon seen in the V component might be explained by the fact that GP fitting
tends to prefer smoother curves (due to the twice-differentiable requirement, see Section 4.2),
which has the effect here of “oversmoothing” the trajectory to a near-constant mean function
(see also Footnote 3). Using these default hyper-parameters could in turn lead to incorrect
inference of θ. To address this issue, we could (i) choose a smaller value of ϕ2 so that the GP
can model sharper changes, and (ii) adjust ϕ1 according to the overall scale of the component.
We examine the automatic estimates of ϕ and σ so that we can make adjustments:

R> colnames(phiEst) <- compnames
R> phiEst

TU TI V
[1,] 37538.16828 11083.870501 14299.089897
[2,] 3.91358 2.755717 1.731937

Journal of Statistical Software 29

R> sigmaInit

[1] 3.378930 3.757803 14158.670863

These estimates appear reasonable for the TU and TI components, with a fairly small sigmaInit
that corroborates Figure 8a, i.e., the GP fit follows the observed data closely. This is further
evidenced by the ϕ1 values for TU and TI , where we see that

√
ϕ1 resembles the scale of those

components: ∼600 for TU and ∼100 for TI . However, the very large value σ ≈ 14000 for V
confirms that the sharp decline in its trajectory is being incorrectly fitted as noise. This is
also reflected in its ϕ estimates: ϕ1 ≈ 14300 is too small to adequately capture the variation
in V , while the bandwidth ϕ2 ≈ 1.7 is too large to model the sharp initial decline.
Following the strategy described above, we use the control list to manually specify more
suitable values of ϕ for the V component. In practice, inference is relatively insensitive to ϕ
over a reasonable range of values, so a high level of precision is not required for this step. We
increase ϕ1 to 107 and decrease ϕ2 to 0.5:

R> phiEst[, 3] <- c(1e7, 0.5)

Since the noise levels σ are treated as unknown, the values obtained by GP fitting are only
used to initialize the MCMC sampler. We may initialize σ at a more reasonable (smaller)
value for V that corresponds with the update to ϕ, which can also help obtain faster MCMC
convergence:

R> sigmaInit[3] <- 100

To assess whether these manual adjustments to ϕ and σ for V are reasonable, we can recal-
culate the GP mean and covariance with these new values:

R> j <- 3
R> fitMean <- gpmean(y[, j + 1], y[, "time"], tOut, phiEst[, j],
+ sigmaInit[j])
R> fitCov <- gpcov(y[, j + 1], y[, "time"], tOut, phiEst[, j], sigmaInit[j])

We add the updated mean curve (plotted in orange) and 95% intervals to Figure 8a:

R> gp_UB <- fitMean + 1.96 * sqrt(diag(fitCov))
R> gp_LB <- fitMean - 1.96 * sqrt(diag(fitCov))
R> polygon(c(tOut, rev(tOut)), c(gp_UB, rev(gp_LB)),
+ col = "gray80", border = NA)
R> lines(tOut, fitMean, col = "darkorange")

We see that the mean curve now follows the overall trajectory of the V observations. The
95% bands are very narrow and not visible in the plot. This visually confirms that the new
values of ϕ for component V are reasonable as input to MagiSolver for carrying out further
inference.
We proceed to create a discretization set I that adds one equally-spaced time point between
observations:

30 magi: Manifold-Constrained Gaussian Process Inference

R> y_I <- setDiscretization(y, level = 1)

Then we run MagiSolver, supplying phi and sigma using the values we specified (recall that
phi is fixed at its supplied value, while sigma will be sampled via MCMC starting from its
supplied value):

R> HIVresult <- MagiSolver(y_I, hivtdmodel, control = list(
+ phi = phiEst, sigma = sigmaInit))

We compute posterior means and 95% credible intervals for θ and σ:

R> summary(HIVresult, sigma = TRUE, par.names = c(
+ "lambda", "rho", "delta", "N", "c", "sigma_TU", "sigma_TI", "sigma_V"))

lambda rho delta N c sigma_TU sigma_TI sigma_V
Mean 35.9 0.1070 0.499 958 2.88 3.21 3.41 13.60
2.5% 34.1 0.0982 0.494 943 2.84 2.79 2.95 2.23
97.5% 37.7 0.1150 0.504 973 2.92 3.71 3.96 37.80

The estimates for λ, ρ, δ are very close to the true values, while N and c have some slight
bias. The estimates of σ likewise reflect their true simulation values, including σV which we
had initialized at 100. We also extract and plot the inferred trajectories (green) in Figure 8b
together with 95% credible bands (light blue) and the truth (red) superimposed:

R> xMean <- apply(HIVresult$xsampled, c(2, 3), mean)
R> xLB <- apply(HIVresult$xsampled, c(2, 3), function(x) quantile(x, 0.025))
R> xUB <- apply(HIVresult$xsampled, c(2, 3), function(x) quantile(x, 0.975))
R> par(mfrow = c(1, 3), mar = c(4, 4, 1.5, 1))
R> for (i in 1:3) {
+ plot(y_I$time, xMean[, i], type = "n", xlab = "Time",
+ ylab = complabels[i])
+ mtext(compnames[i])
+ polygon(c(y_I$time, rev(y_I$time)), c(xUB[, i], rev(xLB[, i])),
+ col = "skyblue", border = NA)
+ lines(y_I$time, xMean[, i], col = "forestgreen", lwd = 2)
+ lines(param.true$times, xtrue[, i+1], col = "red", lwd = 1)
+ }

In Figure 8b, the inferred trajectories are indistinguishable from the truth, and the 95%
credible bands are very narrow. The bands are only visible for portions of the TI trajectory.
Thus, good inference results can be obtained in this example by ensuring that the choice of
the hyper-parameters ϕ is reasonable.
Lastly, we provide an empirical assessment for the sensitivity of the parameter inference to
the GP hyper-parameters ϕ. Since ϕ is held fixed during MCMC sampling, estimates and
credible intervals for θ can have some dependence on the specific value of ϕ used. In this HIV
example, we used ϕ values that were automatically fit for TU and TI , and manually specified
for the V component. To assess the effect of ϕ, we considered randomly sampling new values

Journal of Statistical Software 31
30

32
34

36
38

40

lambda

0.
08

0.
09

0.
10

0.
11

0.
12

rho

0.
48

0.
49

0.
50

0.
51

0.
52

delta

88
0

90
0

92
0

94
0

96
0

98
0

10
00

N

2.
7

2.
8

2.
9

3.
0

c

Figure 9: Effect of hyper-parameter values ϕ on the posterior means (points) and 95% credible
intervals (vertical bars) for each parameter on the HIV simulated dataset. Each bar represents
one random set of ϕ values. The upper and lower limits of the 95% credible intervals inferred
using the original values of ϕ are shown via the dashed horizontal lines.

for each ϕ1 and ϕ2, and re-running MagiSolver with those values. Each entry of ϕ was drawn
uniformly as [2/3, 3/2] times its original value, which could be considered a reasonable range
of variation:

R> for (j in 1:3) {
+ phiEst[, j] <- runif(2, 2/3 * phiEst[, j], 3/2 * phiEst[, j])
+ }

We repeated this for 100 different random seeds. Figure 9 plots the posterior means (points)
and 95% credible intervals (vertical bars) for the five parameters over all these random ϕ. The
upper and lower limits of the 95% credible intervals inferred using the original values of ϕ are
shown via the dashed horizontal lines. For all five parameters and 99 of 100 repetitions, the
95% credible intervals overlap with the original ones. The intervals for λ, ρ, δ are especially
robust to the choice of ϕ. Overall, this experiment empirically demonstrates fairly stable
inference for θ, provided that ϕ lies within a range that is appropriate for the data.

4.3. Hamiltonian Monte Carlo

HMC is an MCMC sampling algorithm that leverages Hamiltonian dynamics (see, e.g.,
Leimkuhler and Reich 2004) to obtain draws from a target probability distribution. Via its
joint consideration of “position” and “momentum” variables, samples generated by HMC can
explore the target distribution more effectively than those of random walks (Neal 2011). In
this subsection, we review the key concepts of HMC and its implementation options available
in magi.
The ingredients of HMC are setup as follows. Let q be a set of “position” variables with
negative log-density U(q) (up to an additive constant), so that the target probability density
can be written as π(q) = 1

Z exp(−U(q)) with Z being the normalizing constant. Under
Hamiltonian dynamics, U(q) is interpreted as the potential energy at position q. Further, let
∇U(q) denote the gradient vector of U(q), with respect to q. In magi, q consists of all the
variables to be sampled: The trajectories x(I) and the parameters θ (which also includes the

32 magi: Manifold-Constrained Gaussian Process Inference

noise levels σ if they are unknown); the function U(·) is the negative log of their joint posterior
density, as shown in Equation 3. Next, HMC introduces “momentum” variables p with the
same dimension as q, and we define their kinetic energy as K(p) = p⊤p/2. The Hamiltonian
then combines the kinetic and potential energies, defined as H(q, p) = U(q) + K(p).
With this setup, exp[−H(q, p)] specifies a joint density (up to a multiplicative constant) of
q and p, which can be interpreted as follows: (i) q and p are independent random variables;
(ii) the marginal distribution of q is the target posterior of interest in Equation 3; (iii) the
marginal distribution of p is multivariate standard normal. Intuitively, HMC works on this
joint density so that we obtain the samples of interest for q, and the role of p is to facilitate
the sampling efficiency.
From a current state for q, one iteration of the HMC algorithm generates the next state for
q as follows, where L is a positive integer and ϵ > 0 is a vector of step sizes:

1. Draw p from a standard multivariate normal distribution, then set (q0, p0) = (q, p).

2. For l = 1, . . . , L, the leapfrog method is used to approximate the Hamiltonian dynamics:

(a) Take a half-step for the momentum by setting p̃ = pl−1 − (ϵ/2) · ∇U(ql−1).
(b) Take a full-step for the position by setting ql = ql−1 + ϵ · p̃.4

(c) Take a half-step for the momentum (using the updated position) by setting pl =
pl−1 − (ϵ/2) · ∇U(ql).

3. The proposed state is (q∗, p∗) ≡ (qL, pL). Accept q∗ as the next state of q with the
usual Metropolis acceptance probability, i.e., min[1, exp(−H(q∗, p∗) + H(q, p))]. If the
proposed state is rejected, the next state of q is set to be the same as its current state.

Two main aspects of the HMC algorithm can thus be tuned: The step size vector ϵ, and
the number of leapfrog steps L. In magi, these can be supplied by the user in the list of
optional inputs to MagiSolver: L is specified via nstepsHmc and a starting factor for ϵ is
specified via stepSizeFactor. Two other options in MagiSolver related to MCMC sampling
are also worth mentioning: The number of HMC iterations to run is specified via niterHmc,
and the proportion of MCMC samples to discard as an initial burn-in period is specified via
burninRatio. We discuss each of these and our practical recommendations below.
The step-size vector ϵ controls the accuracy of the Hamiltonian approximation: If ϵ is too
large, the HMC proposals will have a high rejection rate; while if ϵ is too small, the HMC
proposals will move slowly around the target posterior distribution. Thus ϵ needs to be
carefully tuned to achieve good HMC performance. As suggested in Neal (2011), the optimal
acceptance rate of HMC is 65%; moreover, the tuning of ϵ can be done independently of L.
magi handles these aspects of ϵ via automatic tuning during the burn-in period (i.e., the first
burninRatio * niterHmc iterations). Briefly, magi uses a moving window of 100 iterations
to monitor: (i) the acceptance rate, so that ϵ is increased (or decreased) if the acceptance rate
is above 90% (or below 60%); (ii) the SD of each variable in q, so that the individual step sizes
in ϵ are adapted to follow the scale of each variable.5 The optional stepSizeFactor input

4When q has upper or lower bounds (e.g., parameters that are strictly positive), this step is modified slightly
to handle the bounds. For details see p. 149 of Neal (2011).

5Neal (2011) recommends randomizing the step size for each HMC iteration to further improve the stability
of HMC; so in practice, at each iteration magi draws a random step size vector uniformly from the range [ϵ, 2ϵ].

Journal of Statistical Software 33

0 1000 2000 3000 4000 5000

0.
10

0.
15

0.
20

0.
25 a

Index

0 1000 2000 3000 4000 5000

0.
1

0.
3

0.
5

0.
7

b

Index

0 1000 2000 3000 4000 5000

2.
5

2.
7

2.
9

3.
1

c

Index

0 1000 2000 3000 4000 5000

0.
15

0.
25

sigmaV

Index

0 1000 2000 3000 4000 5000

0.
15

0.
25

0.
35

0.
45

sigmaR

Index

0 1000 2000 3000 4000 5000

−
34

0
−

28
0

−
22

0

log−post

Index

Figure 10: MCMC traceplots that indicate relatively high autocorrelation, based on an ex-
ample run for the FN system with a dense discretization set and 200 leapfrog steps per HMC
iteration. The horizontal lines in the plots indicate the posterior mean (red) and limits of the
95% credible interval (green) for each parameter.

can be a scalar (applied to all the variables in q) or a vector (with the same length as q),
that specifies the starting value of ϵ. In our experience, magi’s automatic tuning can quickly
identify the range of ϵ needed for efficient HMC sampling, so that there is usually no need to
manually specify stepSizeFactor. If the acceptance rate of the first many (e.g., thousands)
HMC iterations is 0% or 100%, overriding the default stepSizeFactor = 0.01 with a value
that is several orders of magnitude smaller (if the acceptance rate is 0%) or larger (if the
acceptance rate is 100%) could help speed up convergence.
Since automatic tuning of ϵ is limited to the burn-in period, the default burninRatio = 0.5
usually provides a good balance between samples used for convergence/tuning and samples
for final inference. The number of HMC iterations (default niterHmc = 20000) can be set
to balance computational time constraints with the Monte Carlo variance of the resulting
estimates. To monitor sampling progress when running MagiSolver, setting verbose = TRUE
will print a message to the console every 100 HMC iterations.
In magi, the number of leapfrog steps L is fixed for all HMC iterations. The default value
of nstepsHmc is 200 and should work well in many cases.6 We recommend using traceplots
(which can be generated via the convenience plot() function on the output of MagiSolver)
to visually diagnose whether a larger L might be needed. The overall cost per HMC iteration
is roughly proportional to L, so L should only be increased if necessary. As the discretization
set I is taken to be increasingly dense (see Section 4.1), the increased dimensionality of q may
lead to “sticky” HMC samples with high autocorrelation. To illustrate, let us revisit the FN
dataset and run MagiSolver on y_I3 (which has 321 discretization points per component)
with the default L = 200:

6Since the dimensionality of q in magi includes all the discretization points x(I), which is often fairly large,
we use a more conservative default of L = 200 compared to the L = 100 rule-of-thumb suggested by Neal
(2011).

34 magi: Manifold-Constrained Gaussian Process Inference

R> data("FNdat", package = "magi")
R> set.seed(12321)
R> y_I0 <- setDiscretization(FNdat, by = 0.5)
R> y_I3 <- setDiscretization(y_I0, level = 3)
R> FNres3b <- MagiSolver(y_I3, fnmodel, control = list(niterHmc = 10000))

Then, we examine the traceplots of the parameters, shown in Figure 10:

R> plot(FNres3b, type = "trace", par.names = FNpar.names, sigma = TRUE)

We see that the MCMC samples exhibit some non-stationary patterns, rather than appearing
as random scatters for each parameter. This is most evident for parameters b and c, where the
Markov chain can remain in one region of their distribution for several hundred iterations at
a time (hence “sticky”). This issue can usually be alleviated by increasing L, for example by
running MagiSolver with nstepsHmc = 1000 as in Section 4.1, then the re-drawn traceplots
can be seen to indicate good convergence (not shown for brevity).

5. Benchmark comparisons with other methods
As noted in the introduction, unobserved system components pose a challenge to most other
methods of ODE inference and their software implementations. In this section, we take
the Hes1 example where component H is unobserved (as presented in the introduction and
Section 3), and compare the inference accuracy and run time of different software packages
that can handle this problem in R.
Alongside magi, we consider the deBInfer and CollocInfer packages (see Section 1.2). The
deBInfer package represents a Bayesian approach to parameter estimation with the help
of numerical ODE solvers, and hence is generally applicable to systems with unobserved
components. The CollocInfer package is a collocation-based penalized likelihood method that
uses a B-spline basis. While CollocInfer (along with pCODE, which is based on the same
underlying methodology) can be used to perform inference with an unobserved component,
an estimate of the B-spline basis must be supplied by the user, as we detail below. The other
R packages described in Section 1.2 do not have the capacity for unobserved components.
To generate simulated datasets for this comparison, we follow the same procedure described in
Section 1.1, with 100 different random seeds. Since deBInfer and CollocInfer do not directly
provide estimates of the inferred trajectories, for fair comparison we use each method to ob-
tain estimates of the parameters θ = (a, b, c, d, e, f, g) and initial conditions P (0), M(0), H(0).
Using these estimated parameters and initial conditions, we run the numerical solver to re-
construct the trajectory implied by the estimates. For a given method, we then compute the
RMSE between this reconstructed trajectory and the true trajectory (i.e., the solid curves in
Figure 1) for each system component, at the 33 observation time points. We call this the
trajectory RMSE metric, as in Yang et al. (2021).
Thus, on each simulated dataset, the three methods are run as follows to obtain estimates of
θ and P (0), M(0), H(0):

• magi is run as described in Section 3, which infers the parameters and system trajecto-
ries. The posterior means of θ and P (0), M(0), H(0) from the MagiSolver output are
taken as the estimates.

Journal of Statistical Software 35

magi deBInfer CollocInfer
Trajectory RMSE of P 0.95 1.36 1.49
Trajectory RMSE of M 0.20 0.33 0.45
Trajectory RMSE of H 2.48 8.39 226.00
Run time (minutes) 6.20 46.70 7.40

Table 1: Performance of the three compared methods over 100 simulated datasets from the
Hes1 model. For each method, the mean run time and trajectory RMSE of each component
is reported. The H component is never observed.

• For deBInfer, we set up a normal likelihood for the observations of P and M on the
log-scale, with known SD from the simulation setup. The priors for θ were set to be
uniform over restricted ranges: a, b, c, d, e are taken to be uniform on [0, 2], f is uniform
on [0, 100], and g is uniform on [0, 10]. Without imposing these informative priors
on θ (i.e., which contrast with the uniform priors over all positive real numbers, as
used in magi), the method would often fail to converge at a reasonable result. The
priors for the initial conditions were uniform on the log-scale. We ran 20000 MCMC
iterations, to match the number of iterations run in magi. The posterior means of θ and
P (0), M(0), H(0) from the de_mcmc output are taken as the estimates, after discarding
the first 10000 iterations as burn-in.

• For CollocInfer, the method begins by computing initial estimates of the B-spline basis.
However, the package does not have the ability to compute such estimates when there
are unobserved system components. Therefore, manual input is needed in this case to
supply these estimates, which we do as follows. First, we use the package functions
to fit the B-spline basis given the true values of all the system components at the 33
observation time points. In real data analyses, such true values would not be available,
so CollocInfer is given an additional advantage by taking this approach. Second, we
take the B-spline fit for the unobserved component obtained from the first step, together
with the actual noisy observations of P and M , and run the main CollocInfer method
with its default settings to obtain the final estimates of θ and P (0), M(0), H(0).

The full code to benchmark each method is provided in the replication materials.
The results of the three methods over the 100 simulated datasets are summarized in Table 1.
For each method, the average run time and trajectory RMSE of each system component is
shown. For the unobserved H component, magi can reliably recover its trajectory, while
deBInfer and CollocInfer cannot, as indicated by the large RMSEs. For the protein (P) and
mRNA (M) components, where observations are available, the results are relatively close,
though magi still outperforms the other two methods. In terms of run time, magi is the
fastest of the three methods, averaging 6.2 minutes per dataset. CollocInfer, as a frequentist-
based optimization method, is also relatively fast; deBInfer, which relies on the numerical
solver at each iteration to compute the likelihood, was significantly slower than the other two
methods. All of the computations were carried out using a single CPU core of an Intel Xeon
3.7 GHz processor. Overall, these results illustrate the favorable performance of magi on this
inference problem.

36 magi: Manifold-Constrained Gaussian Process Inference

6. Conclusion and discussion

The inference problem for dynamic systems is a vital task in science and engineering, which
widely use ODE models. In practice, the experimental data collected from these systems
may often be noisy and sparse. Furthermore, some components of the system may be en-
tirely unobserved. These features pose challenges for estimating the unknown parameters and
reconstructing the system trajectories without numerical integration. Existing software pack-
ages for this task, to the best of our knowledge, cannot readily handle unobserved components
without substantial manual input. This paper presented our package for the MAGI method
(Yang et al. 2021), which capably handles these inference problems in a principled Bayesian
framework using manifold-constrained Gaussian processes. The user may choose any of R,
MATLAB, and Python to carry out the analyses. Scripts that demonstrate the equivalent
functionality in all three environments are included in the replication materials.
We believe the methodological approach of magi is quite extensible. We discuss some inter-
esting directions for future developments to the software package in the following.

• Extending the inference framework to allow for time-varying parameters. The current
implementation of magi assumes time-constant parameters θ, which covers a broad
range of dynamic systems. In some cases, a more flexible time-varying specification
θ(t) is needed, e.g., for pharmacokinetic parameters (Li, Brown, Lee, and Gupta 2002)
and disease transmission rates (Keller, Zhou, Kaplan, Anderson, and Zhou 2022). GP
priors for θ(t) could potentially be incorporated into the magi framework as well to
handle this situation.

• Incorporating more flexible choices for the measurement error model and priors for the
parameters. The magi package currently assumes the noise term can be adequately
modeled as additive and Gaussian. Multiplicative noise can be handled by taking a
log-transformation, as demonstrated in the Hes1 example. If the measurement noise is
significantly non-Gaussian, allowing a custom specification for the likelihood p(y(τ) |
x(I)) could be a useful feature. Further, the priors for θ are assumed to be flat (uniform)
between the user-provided bounds thetaLowerBound and thetaUpperBound. While
this assumption may often be adequate (as transformations may also be applied to
parameters as needed), custom priors π(θ) could allow more specific prior knowledge of
the parameters to be incorporated into the inference.

• Functions to help set up the ODE gradients with respect to θ and X. Supplying the ana-
lytic gradients ∂f(X, θ, t)/∂X and ∂f(X, θ, t)/∂θ enables magi to draw MCMC samples
efficiently via its HMC implementation for the target posterior density. The ability to
easily generate code for these gradients from the ODEs (e.g., with the help of symbolic
differentiation) or have them automatically computed (i.e., automatic differentiation or
autograd) could potentially reduce the time needed to set up a dynamic system in magi.
In R, support for autograd is currently experimental and computationally inefficient
compared with supplying the analytic gradients; a proof-of-concept that uses autograd
with magi is provided in Appendix E for the interested reader.

Journal of Statistical Software 37

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum
A, Hammarling S, McKenney A, Sorensen D (1999). LAPACK Users’ Guide. 3rd edition.
Society for Industrial and Applied Mathematics, Philadelphia.

Barber D, Wang Y (2014). “Gaussian Processes for Bayesian Estimation in Ordinary Differ-
ential Equations.” In International Conference on Machine Learning, pp. 1485–1493.

Blackford LS, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G, Heroux M, Kaufman
L, Lumsdaine A, Petitet A, Pozo R, Remington K, Whaley RC (2002). “An Updated
Set of Basic Linear Algebra Subprograms (BLAS).” ACM Transactions on Mathematical
Software, 28(2), 135–151. doi:10.1145/567806.567807.

Boersch-Supan PH, Ryan SJ, Johnson LR (2017). “deBInfer: Bayesian Inference for Dynam-
ical Models of Biological Systems in R.” Methods in Ecology and Evolution, 8(4), 511–518.
doi:10.1111/2041-210x.12679.

Bolouri H (2008). Computational Modeling of Gene Regulatory Networks – A Primer. World
Scientific Publishing Company.

Busenberg SN, Cooke KL (eds.) (1981). Differential Equations and Applications in Ecol-
ogy, Epidemics, and Population Problems. Elsevier. doi:10.1016/b978-0-12-148360-9.
x5001-x.

Calderhead B, Girolami M, Lawrence ND (2009). “Accelerating Bayesian Inference over Non-
linear Differential Equations with Gaussian Processes.” In Advances in Neural Information
Processing Systems, pp. 217–224.

Dattner I, Yaari R (2024). simode: Statistical Inference for Systems of Ordinary Differential
Equations Using Separable Integral-Matching. R package version 1.2.2, URL https://CRAN.
R-project.org/package=simode.

Dondelinger F, Husmeier D, Rogers S, Filippone M (2013). “ODE Parameter Inference Using
Adaptive Gradient Matching with Gaussian Processes.” In International Conference on
Artificial Intelligence and Statistics, pp. 216–228.

Falbel D, Luraschi J (2023). torch: Tensors and Neural Networks with GPU Acceleration. R
package version 0.12.0, URL https://CRAN.R-project.org/package=torch.

FitzHugh R (1961). “Impulses and Physiological States in Theoretical Models of Nerve Mem-
brane.” Biophysical Journal, 1(6), 445–466. doi:10.1016/s0006-3495(61)86902-6.

Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002).
“Oscillatory Expression of the bHLH Factor Hes1 Regulated by a Negative Feedback Loop.”
Science, 298(5594), 840–843. doi:10.1126/science.1074560.

Hooker G, Ramsay JO, Xiao L (2016). “CollocInfer: Collocation Inference in Differential
Equation Models.” Journal of Statistical Software, 75(2), 1–52. doi:10.18637/jss.v075.
i02.

https://doi.org/10.1145/567806.567807
https://doi.org/10.1111/2041-210x.12679
https://doi.org/10.1016/b978-0-12-148360-9.x5001-x
https://doi.org/10.1016/b978-0-12-148360-9.x5001-x
https://CRAN.R-project.org/package=simode
https://CRAN.R-project.org/package=simode
https://CRAN.R-project.org/package=torch
https://doi.org/10.1016/s0006-3495(61)86902-6
https://doi.org/10.1126/science.1074560
https://doi.org/10.18637/jss.v075.i02
https://doi.org/10.18637/jss.v075.i02

38 magi: Manifold-Constrained Gaussian Process Inference

Keller JP, Zhou T, Kaplan A, Anderson GB, Zhou W (2022). “Tracking the Transmission
Dynamics of COVID-19 with a Time-Varying Coefficient State-Space Model.” Statistics in
Medicine, 41(15), 2745–2767. doi:10.1002/sim.9382.

Leimkuhler B, Reich S (2004). Simulating Hamiltonian Dynamics. Cambridge University
Press.

Li L, Brown MB, Lee KH, Gupta S (2002). “Estimation and Inference for a Spline-
Enhanced Population Pharmacokinetic Model.” Biometrics, 58(3), 601–611. doi:
10.1111/j.0006-341x.2002.00601.x.

Liang H, Miao H, Wu H (2010). “Estimation of Constant and Time-Varying Dynamic Param-
eters of HIV Infection in a Nonlinear Differential Equation Model.” The Annals of Applied
Statistics, 4(1), 460–483. doi:10.1214/09-aoas290.

Ljung L (1995). System Identification Toolbox: User’s Guide. The MathWorks Inc., Natick.

Macdonald B, Dondelinger F (2020). deGradInfer: Parameter Inference for Systems of Dif-
ferential Equation. R package version 1.0.1 (archived), URL https://CRAN.R-project.
org/package=deGradInfer.

Neal RM (2011). “MCMC Using Hamiltonian Dynamics.” In S Brooks, A Gelman, G Jones,
XL Meng (eds.), Handbook of Markov Chain Monte Carlo, Handbooks of Modern Statistical
Methods, chapter 5, pp. 113–162. Chapman & Hall/CRC.

Niu M, Rogers S, Filippone M, Husmeier D (2016). “Fast Parameter Inference in Nonlinear
Dynamical Systems Using Iterative Gradient Matching.” In International Conference on
Machine Learning, pp. 1699–1707.

Niu M, Wandy J, Daly R, Rogers S, Husmeier D (2021). “R Package for Statistical Inference
in Dynamical Systems Using Kernel Based Gradient Matching: KGode.” Computational
Statistics, 36(1), 715–747. doi:10.1007/s00180-020-01014-x.

Ramsay JO, Hooker G, Campbell D, Cao J (2007). “Parameter Estimation for Differential
Equations: A Generalized Smoothing Approach.” Journal of the Royal Statistical Society
B, 69(5), 741–796. doi:10.1111/j.1467-9868.2007.00610.x.

Raue A, Steiert B, Schelker M, Kreutz C, Maiwald T, Hass H, Vanlier J, Tönsing C, Adlung
L, Engesser R, Mader W, Heinemann T, Hasenauer J, Schilling M, Höfer T, Klipp E,
Theis F, Klingmüller U, Schöberl B, Timmer J (2015). “Data2Dynamics: A Modeling
Environment Tailored to Parameter Estimation in Dynamical Systems.” Bioinformatics,
31(21), 3558–3560. doi:10.1093/bioinformatics/btv405.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Soetaert K, Petzoldt T, Setzer RW (2023). deSolve: Solvers for Initial Value Problems
of Differential Equations. R package version 1.40, URL https://CRAN.R-project.org/
package=deSolve.

Stroustrup B (2013). The C++ Programming Language. 4th edition. Addison-Wesley.

https://doi.org/10.1002/sim.9382
https://doi.org/10.1111/j.0006-341x.2002.00601.x
https://doi.org/10.1111/j.0006-341x.2002.00601.x
https://doi.org/10.1214/09-aoas290
https://CRAN.R-project.org/package=deGradInfer
https://CRAN.R-project.org/package=deGradInfer
https://doi.org/10.1007/s00180-020-01014-x
https://doi.org/10.1111/j.1467-9868.2007.00610.x
https://doi.org/10.1093/bioinformatics/btv405
https://www.R-project.org/
https://CRAN.R-project.org/package=deSolve
https://CRAN.R-project.org/package=deSolve

Journal of Statistical Software 39

The MathWorks Inc (2021). MATLAB – The Language of Technical Computing, Version
R2021a. Natick. URL https://www.mathworks.com/products/matlab/.

Titsias MK, Rattray M, Lawrence ND (2011). “Markov Chain Monte Carlo Algorithms for
Gaussian Processes.” In D Barber, AT Cemgil, S Chiappa (eds.), Bayesian Time Series
Models, chapter 14, pp. 295–315. Cambridge University Press.

Tu PNV (2012). Dynamical Systems: An Introduction with Applications in Economics and
Biology. Springer-Verlag.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Walas SM (1991). Modeling with Differential Equations in Chemical Engineering. Boston:
Butterworth-Heinemann.

Wang H, Cao J (2022). pCODE: Estimation of an Ordinary Differential Equation Model
by Parameter Cascade Method. R package version 0.9.4, URL https://CRAN.R-project.
org/package=pCODE.

Wenk P, Gotovos A, Bauer S, Gorbach NS, Krause A, Buhmann JM (2019). “Fast Gaussian
Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear
ODEs.” In International Conference on Artificial Intelligence and Statistics, pp. 1351–
1360.

Williams CKI, Rasmussen CE (2006). Gaussian Processes for Machine Learning. MIT Press,
Cambridge. doi:10.7551/mitpress/3206.001.0001.

Wong SWK, Yang S, Kou SC (2023). “Estimating and Assessing Differential Equation Models
with Time-Course Data.” The Journal of Physical Chemistry B, 127(11), 2362–2374. doi:
10.1021/acs.jpcb.2c08932.

Yang S, Wong SWK (2024). magi: MAnifold-Constrained Gaussian Process Inference. R
package version 1.2.3, URL https://CRAN.R-project.org/package=magi.

Yang S, Wong SWK, Kou SC (2021). “Inference of Dynamic Systems From Noisy and Sparse
Data via Manifold-Constrained Gaussian Processes.” Proceedings of the National Academy
of Sciences of the United States of America, 118(15), e2020397118. doi:10.1073/pnas.
2020397118.

https://www.mathworks.com/products/matlab/
https://www.python.org/
https://www.python.org/
https://CRAN.R-project.org/package=pCODE
https://CRAN.R-project.org/package=pCODE
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1021/acs.jpcb.2c08932
https://doi.org/10.1021/acs.jpcb.2c08932
https://CRAN.R-project.org/package=magi
https://doi.org/10.1073/pnas.2020397118
https://doi.org/10.1073/pnas.2020397118

40 magi: Manifold-Constrained Gaussian Process Inference

A. magi usage in MATLAB
To use magi in MATLAB, first clone the repository at https://github.com/wongswk/magi,
e.g., by executing on the command-line git clone https://github.com/wongswk/magi. On
Linux-compatible systems, build the core C++ magi library by running the build.sh shell
script, then run the MATLAB_build.sh shell script in the MATLABmagi directory to generate
the compiled MEX files. For Windows systems, pre-compiled versions of the magi library and
MEX files are provided in the MATLABmagi/windows directory. Ensure that libcmagi.so (or
libcmagi.dll in Windows), along with the accompanying .m routines and compiled MEX
files of the package, are located in either the working directory or the path of MATLAB.
The replication package (supplementary .zip file provided with this article) includes the MAT-
LAB directory which contains the materials for running the three examples discussed in this
paper in MATLAB. Specifically:

• The models/ subdirectory contains the functions for the ODE systems, since the MAT-
LAB convention is one function per file. For example, for the FitzHugh-Nagumo (FN)
equations,

– fnmodelODE.m codes the ODEs,
– fnmodelDx.m codes their gradients with respect to X

– fnmodelDtheta.m codes their gradients with respect to θ

– fnmodelODEsolve.m codes the system in a form suitable for invoking ODE solvers
such as ode45.

• replication.m is the MATLAB replication script that carries out the same analyses de-
scribed in the main paper. Please note that the random seeds between R and MATLAB
are not interchangeable so their corresponding numerical results are expected to have
slight differences attributable to random-number generation. Otherwise, the function-
alities of the R and MATLAB replication scripts are identical, so that users can easily
follow the equivalent syntax in MATLAB for the examples given in this paper.

We briefly point out two main differences of note between the syntax in R and MATLAB:

• In MATLAB, struct arrays are used in place of ‘list’ objects in R. Taking the FN
equations as an example, to set up odeModel for input to MagiSolver we create a struct
with the five required elements, where fOde, fOdeDx, and fOdeDtheta are assigned their
corresponding function handles:

fnmodel.fOde = @fnmodelODE;
fnmodel.fOdeDx = @fnmodelDx;
fnmodel.fOdeDtheta = @fnmodelDtheta;
fnmodel.thetaLowerBound = [0 0 0];
fnmodel.thetaUpperBound = [Inf Inf Inf];

Similarly, the control list is set up by creating a struct in MATLAB, e.g.,

config.niterHmc = 10000;

https://github.com/wongswk/magi

Journal of Statistical Software 41

to run 10000 HMC iterations, and then config can be passed as the control argument
to MagiSolver.
The output of MagiSolver is also a struct; e.g., if FNres0 contains the output of a
MagiSolver run, the matrix of MCMC samples for θ would be accessed as FNres0.theta.
The convenience functions summaryMagiOutput() and plotMagiOutput() are provided
(analogous to summary() and plot() in R) to generate a table of parameter esti-
mates (with credible intervals) and visualize the inferred trajectories from the output
of MagiSolver.

• In MATLAB, optional function arguments need to be explicitly skipped by passing [].
For example, MagiSolver allows the time vector to be passed as a separate argument
from the data matrix y. When the time vector is included as the first column in y, we
would skip the third argument as follows:

FNres0 = MagiSolver(y, fnmodel, [], config);

B. magi usage in Python
To use magi in Python, first clone the repository at https://github.com/wongswk/magi,
e.g., by executing on the command-line git clone https://github.com/wongswk/magi.
Build the core C++ magi library by running the build.sh shell script, then run the
py_build.sh shell script in the pymagi directory to build the pymagi.so Python library.
Ensure that this pymagi directory is contained in Python’s path.
The replication package (supplementary .zip file provided with this article) includes the
python directory which contains the Python script replication.py that carries out the same
analyses for the three examples discussed in the main paper. Please note that the random
seeds between R and Python are not interchangeable so their corresponding numerical results
are expected to have slight differences attributable to random-number generation. Otherwise,
the functionalities of the R and Python replication scripts are identical, so that users can easily
follow the equivalent syntax in Python.
We briefly point out two main differences of note between the syntax in R and Python:

• In Python, we construct the odeModel input to MagiSolver by using the helper function
ode_system, rather than setting up an R ‘list’. Taking the FN equations as an example,
suppose fnmodelOde, fnmodelDx, and fnmodelDtheta respectively are the functions for
the ODEs, gradients with respect to X, and gradients with respect to θ. Then we can
call ode_system as follows:

fn_system = ode_system("FN-python",
fnmodelOde, fnmodelDx, fnmodelDtheta,
thetaLowerBound = np.array([0, 0, 0]),
thetaUpperBound = np.array([np.inf, np.inf, np.inf]))

where the first argument can be any string that provides a name for the system.

• In Python, the dictionary data type (dict) is used in place of the R ‘list’ for the
control argument to MagiSolver. For example, with fn_system as defined above, we
can provide the control argument in the call to MagiSolver as follows:

https://github.com/wongswk/magi

42 magi: Manifold-Constrained Gaussian Process Inference

FNres3 = MagiSolver(y = y_I3, odeModel = fn_system,
control = dict(niterHmc = 10000, nstepsHmc = 1000))

The output of MagiSolver is also a dict; e.g., if FNres0 contains the output of a
MagiSolver run, the matrix of MCMC samples for θ would be accessed as

FNres0['theta']

The convenience functions summaryMagiOutput() and plotMagiOutput() are provided
(analogous to summary() and plot() in R) to generate a table of parameter esti-
mates (with credible intervals) and visualize the inferred trajectories from the output
of MagiSolver.

C. Functions for Fitzhugh-Nagumo ODEs and their gradients
The following R functions encode the ODEs and gradients for the FN equations discussed in
Section 4.1.

R> fnmodelODE <- function(theta, x, tvec) {
+ V <- x[, 1]
+ R <- x[, 2]
+ result <- array(0, c(nrow(x), ncol(x)))
+ result[, 1] <- theta[3] * (V - V^3 / 3.0 + R)
+ result[, 2] <- -1.0/theta[3] * (V - theta[1] + theta[2] * R)
+ result
+ }

R> fnmodelDx <- function(theta, x, tvec) {
+ resultDx <- array(0, c(nrow(x), ncol(x), ncol(x)))
+ V <- x[, 1]
+ resultDx[, 1, 1] <- theta[3] * (1 - V^2)
+ resultDx[, 2, 1] <- theta[3]
+ resultDx[, 1, 2] <- -1.0 / theta[3]
+ resultDx[, 2, 2] <- -theta[2] / theta[3]
+ resultDx
+ }

R> fnmodelDtheta <- function(theta, x, tvec) {
+ resultDtheta <- array(0, c(nrow(x), length(theta), ncol(x)))
+ V <- x[, 1]
+ R <- x[, 2]
+ resultDtheta[, 3, 1] <- V - V^3 / 3.0 + R
+ resultDtheta[, 1, 2] <- 1.0 / theta[3]
+ resultDtheta[, 2, 2] <- -R / theta[3]
+ resultDtheta[, 3, 2] <- 1.0 / (theta[3]^2) * (V - theta[1] + theta[2] * R)
+ resultDtheta
+ }

Journal of Statistical Software 43

D. Functions for HIV model ODEs and their gradients
The following R functions encode the ODEs and gradients for the HIV model discussed in
Section 4.2.

R> hivtdmodelODE <- function(theta, x, tvec) {
+ TU <- x[, 1]
+ TI <- x[, 2]
+ V <- x[, 3]
+ lambda <- theta[1]
+ rho <- theta[2]
+ delta <- theta[3]
+ N <- theta[4]
+ c <- theta[5]
+ eta <- 9e-5 * (1 - 0.9 * cos(pi * tvec / 1000))
+ result <- array(0, c(nrow(x), ncol(x)))
+ result[, 1] <- lambda - rho * TU - eta * TU * V
+ result[, 2] <- eta * TU * V - delta * TI
+ result[, 3] <- N * delta * TI - c * V
+ result
+ }

R> hivtdmodelDx <- function(theta, x, tvec) {
+ resultDx <- array(0, c(nrow(x), ncol(x), ncol(x)))
+ TU <- x[, 1]
+ TI <- x[, 2]
+ V <- x[, 3]
+ lambda <- theta[1]
+ rho <- theta[2]
+ delta <- theta[3]
+ N <- theta[4]
+ c <- theta[5]
+ eta <- 9e-5 * (1 - 0.9 * cos(pi * tvec / 1000))
+ resultDx[, , 1] <- cbind(-rho - eta * V, 0, -eta * TU)
+ resultDx[, , 2] <- cbind(eta * V, -delta, eta * TU)
+ resultDx[, , 3] <- cbind(rep(0, nrow(x)), N * delta, -c)
+ resultDx
+ }

R> hivtdmodelDtheta <- function(theta, x, tvec) {
+ resultDtheta <- array(0, c(nrow(x), length(theta), ncol(x)))
+ TU <- x[, 1]
+ TI <- x[, 2]
+ V <- x[, 3]
+ delta <- theta[3]
+ N <- theta[4]
+ resultDtheta[, , 1] <- cbind(1, -TU, 0, 0, 0)

44 magi: Manifold-Constrained Gaussian Process Inference

+ resultDtheta[, , 2] <- cbind(0, 0, -TI, 0, 0)
+ resultDtheta[, , 3] <- cbind(0, 0, N * TI, delta * TI, -V)
+ resultDtheta
+ }

E. Combining automatic differentiation with magi
We can utilize automatic differentiation (autograd) with magi by leveraging the autograd
functionality provided by the torch package (Falbel and Luraschi 2023). First, we install the
torch package in R by executing the command install.packages("torch").
To integrate autograd with magi, it is necessary to rewrite the ODE function using torch
tensors instead of R arrays. For the Hes1 example presented in Section 3, a single line
of code needs to be modified: The R array PMHdt = array(0, c(nrow(x), ncol(x))) is
replaced with the torch tensor PMHdt = torch_empty(dim(x)). An adapted version of
hes1logmodelODE suitable for autograd is as follows:

R> hes1logmodelODE_torch <- function (theta, x, tvec) {
+ P <- exp(x[, 1])
+ M <- exp(x[, 2])
+ H <- exp(x[, 3])
+ PMHdt <- torch_empty(dim(x))
+ PMHdt[, 1] <- -theta[1] * H + theta[2] * M / P - theta[3]
+ PMHdt[, 2] <- -theta[4] + theta[5] / (1 + P^2) / M
+ PMHdt[, 3] <- -theta[1] * P + theta[6] / (1 + P^2) / H - theta[7]
+ PMHdt
+ }

With this new implementation of the hes1logmodelODE_torch function, the following func-
tion can be used to calculate the derivatives with respect to both X and θ:

R> ode_autograd <- function(ode_func_torch, theta, x, tvec) {
+ theta <- torch_tensor(theta, requires_grad = TRUE)
+ x <- torch_tensor(x, requires_grad = TRUE)
+ tvec <- torch_tensor(tvec)
+ output <- ode_func_torch(theta, x)
+ ode_dtheta <- array(dim = c(nrow(output), length(theta), ncol(output)))
+ ode_dx <- array(dim = c(nrow(output), ncol(output), ncol(output)))
+ for (i in 1:nrow(output)) {
+ for (j in 1:ncol(output)) {
+ if (length(theta$grad) > 0) {
+ theta$grad$zero_()
+ }
+ if (length(x$grad) > 0) {
+ x$grad$zero_()
+ }
+ output[i, j]$backward(retain_graph = TRUE)

Journal of Statistical Software 45

+ ode_dtheta[i, , j] <- as_array(theta$grad)
+ ode_dx[i, , j] <- as_array(x$grad[i,])
+ }
+ }
+ list(ode_dtheta = ode_dtheta, ode_dx = ode_dx)
+ }

The correctness of the derivative calculations can be confirmed by comparing the output
of hes1logmodelDtheta(theta, x, tvec) or hes1logmodelDx(theta, x, tvec) with the
output of ode_autograd(hes1logmodelODE_torch, theta, x, tvec) for any given theta,
x, and tvec. It is important to note, however, that the computation speed of the au-
tograd version ode_autograd(hes1logmodelODE_torch, theta, x, tvec) is significantly
slower than that of the hand-coded derivatives hes1logmodelDtheta(theta, x, tvec) or
hes1logmodelDx(theta, x, tvec).
To utilize magi with autograd, we can now proceed to define the odeModel list containing the
three ODE model functions and the parameter bounds:

R> hes1logmodel <- list(
+ fOde = hes1logmodelODE,
+ fOdeDx = function(theta, x, tvec)
+ ode_autograd(hes1logmodelODE_torch, theta, x, tvec)$ode_dx,
+ fOdeDtheta = function(theta, x, tvec)
+ ode_autograd(hes1logmodelODE_torch, theta, x, tvec)$ode_dtheta,
+ thetaLowerBound = rep(0, 7),
+ thetaUpperBound = rep(Inf, 7)
+)

Note that the original R array implementation hes1logmodelODE must still be passed to the
MagiSolver function, as magi does not currently support direct use of torch tensors. A
complete R script that demonstrates this approach of using magi with autograd is provided
in the replication package.
Although autograd offers a convenient method for calculating derivative information, its com-
putational speed is slower than hand-coded analytical gradients. For optimal performance,
we recommend using hand-coded analytical gradients, as discussed in the main text of this
paper.

F. Other covariance functions available in magi
As discussed in Section 4.2, the default and recommended GP covariance function for use in
magi is the Matern (Equation 5) with ν = 2.01. Several other covariance kernels are also
available in the package, which include some of the common choices discussed in Chapter 4
of Williams and Rasmussen (2006). Their specification and features are presented below. In
each case, r is the absolute difference between two time points and ϕ are the hyper-parameters
for the kernel; larger values of ϕ1 favor curves with higher variance, and larger values of ϕ2
favor curves with more time-dependence between nearby time points. They may be selected
for use in gpsmoothing and MagiSolver by specifying their corresponding kerneltype string.

46 magi: Manifold-Constrained Gaussian Process Inference

• Radial basis function or squared exponential (kerneltype = "rbf"):

K(r) = ϕ1 exp
(

− r2

2ϕ2
2

)
This is an infinitely differentiable kernel, and hence is associated with very smooth GPs.
It may be too smooth to adequately model many physical processes (p. 83, Williams
and Rasmussen 2006).

• Matern with ν = 5/2 (kerneltype = "matern"):

K(r) = ϕ1

(
1 +

√
5r

ϕ2
+ 5r2

3ϕ2
2

)
exp

(
−

√
5r

ϕ2

)
(6)

Equation 6 is a simplification of Equation 5 in the special case ν = 5/2. It is faster
to compute than ν = 2.01 but has a stronger smoothness assumption, which limits its
applicability to systems that are known to have smooth curves.

• Compact kernel (kerneltype = "compact1"):

K(r) = ϕ1

[
max

(
1 − r

ϕ2
, 0
)]4 (4r

ϕ2
+ 1

)
This is a kernel with compact support, i.e., the covariance decays to zero for r ≥ ϕ2, so
that points more than ϕ2 apart are a priori independent. Its polynomial construction
also tends to favor smooth curves.

• Periodic Matern (kerneltype = "periodicMatern"):
This follows a “time warping” idea to create a non-stationary kernel that could be ap-
propriate for systems that are known to be exactly periodic. Define the “time warping”
transformation r′ = |2 sin(rπ/ϕ3)|, where ϕ3 is the periodicity parameter. Then the
covariance is given by K(r′) using Equation 6.

Affiliation:
Samuel W. K. Wong
Department of Statistics and Actuarial Science
University of Waterloo
200 University Ave W
Waterloo, ON N2L 3G1, Canada
E-mail: samuel.wong@uwaterloo.ca

Shihao Yang
H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology
755 Ferst Drive NW
Atlanta, GA 30332, United States of America
E-mail: shihao.yang@isye.gatech.edu

mailto:samuel.wong@uwaterloo.ca
mailto:shihao.yang@isye.gatech.edu

Journal of Statistical Software 47

S. C. Kou
Department of Statistics
Harvard University
1 Oxford St, 7th floor
Cambridge, MA 02138, United States of America
E-mail: kou@stat.harvard.edu

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

May 2024, Volume 109, Issue 4 Submitted: 2022-03-10
doi:10.18637/jss.v109.i04 Accepted: 2023-10-16

mailto:kou@stat.harvard.edu
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v109.i04

	Introduction
	Illustrative example: Oscillation of Hes1 mRNA and protein levels
	Overview of related software

	Manifold-constrained Gaussian process inference
	Using the MAGI package
	Finer control of inference: Features and examples
	Choice of discretization set
	Setting of hyper-parameters
	Hamiltonian Monte Carlo

	Benchmark comparisons with other methods
	Conclusion and discussion
	magi usage in MATLAB
	magi usage in Python
	Functions for Fitzhugh-Nagumo ODEs and their gradients
	Functions for HIV model ODEs and their gradients
	Combining automatic differentiation with MAGI
	Other covariance functions available in MAGI

