
JSS Journal of Statistical Software
July 2025, Volume 113, Issue 4. doi: 10.18637/jss.v113.i04

pymle: A Python Package for Maximum Likelihood
Estimation and Simulation of Stochastic Differential

Equations

Justin L. Kirkby
Georgia Institute

of Technology

Dang H. Nguyen
University of

Alabama

Duy Nguyen
Marist College

Nhu Nguyen
University of
Rhode Island

Abstract

This paper introduces the object-oriented Python package pymle, which provides core
functionality for maximum likelihood estimation and simulation of univariate stochastic
differential equations. The package supports maximum likelihood estimation using Euler,
Elerian, Ozaki, Shoji-Ozaki, Hermite polynomial, and Kessler density approximations, as
well as a recently proposed continuous-time Markov chain approximation scheme. Exact
maximum likelihood estimation is also provided when available. The framework supports
estimation and simulation for 21 stochastic differential equations models at the time of
writing, and its object oriented design facilitates easy extensions to new models and
approximation methods.

Keywords: diffusion, stochastic differential equation, Python, maximum likelihood estimation,
continuous-time Markov chain.

1. Introduction
Continuous-time diffusion processes, defined by stochastic differential equations, are used
extensively in modern financial theory to model the dynamics of asset prices, interest rates,
and foreign exchange rates, among numerous other applications, see Karatzas and Shreve
(2014), Glasserman (2013). Notable examples include the Vasicek process (Vasicek 1977) and
Cox-Ingersoll-Ross (CIR) diffusion (Cox, Ingersoll Jr, and Ross 2005) which are widely used to
price zero coupon bound and to describe the evolution of interest rates. The celebrated Black-
Scholes framework (Black and Scholes 1973) assumes that the underlying asset dynamics
follows a geometric Brownian motion (GBM), although more complex stochastic models have
surfaced over the last few decades.

https://doi.org/10.18637/jss.v113.i04
https://orcid.org/0000-0001-7005-9081
https://orcid.org/0000-0002-9007-8690
https://orcid.org/0000-0001-5772-9730

2 pymle: Stochastic Differential Equations Inference and Simulation in Python

When pricing option values or drawing statistical inferences based on diffusions, one needs
to know the parameters in the drift and diffusion terms of the underlying process. Typically,
one assumes that the process belongs to some parametric family and uses a discretized finite
sample path of the process to estimate the unknown parameters. For a continuous-time
diffusion, its transition density function plays a crucial role in understanding the dynamics of
the process. Most importantly, it can be used to estimate the model’s unknown parameters by
means of maximum likelihood. Unfortunately, except for some special cases such as Geometric
Brownian Motion or CIR processes, the closed-form of the transition density function is not
available for most diffusions. As a result, it becomes virtually impossible to determine the
exact maximum likelihood estimates for the unknown parameters.
To overcome the unavailability of the transition density, approximation methods are usually
employed. Several econometric approaches have been proposed to estimate the unknown pa-
rameters. These econometric methods include the simulation approach (Gourieroux, Monfort,
and Renault 1993; Gallant and Tauchen 1996), (generalized) method of moments (Hansen and
Scheinkman 1993; Kessler and Sørensen 1999), (non)parametric density matching (Aït-Sahalia
1995, 1996), empirical characteristic functions (Cui, Kirkby, and Nguyen 2021a), and Bayesian
methodologies (Eraker 2001; Jones 1997). Aït-Sahalia (2002) makes a fruitful breakthrough in
using Hermite polynomials to orthogonally approximate the transition density of a univariate
time-homogeneous diffusion. This idea was later extended to time-inhomogenous diffusions
in Egorov, Li, and Xu (2003), multivariate time-homogenous (Aït-Sahalia 2008) and time-
inhomogeneous diffusions (Choi 2013), stochastic volatility (Aït-Sahalia and Kimmel 2007)
and affine multi-factor models (Aït-Sahalia and Kimmel 2010).
For many years, R (R Core Team 2025) has been the de-facto scripting language for applied
statisticians, boasting a tremendous collection of state-of-the-art as well as cutting-edge sta-
tistical packages. On the contrary, while Python (Van Rossum et al. 2011) has become the
forerunner for machine learning applications and research, its statistical stack is, to phrase
it politely, inadequate.1 Python is often described as a having “batteries included”, which
has no-doubt contributed to its rise in popularity in recent years, though it seems that its
statistical batteries were never fully charged. A notable library is statsmodels (Seabold and
Perktold 2010), which provides a broad set of functionality for classical statistics problems
such regression and time-series analysis. Frameworks such as pandas (McKinney 2011) and
scikit-learn Pedregosa et al. (2011) have provided essential ingredients for data science in
Python, but there is much more ground to cover before python can be taken seriously by
statisticians.
As scripting languages go, the object-orientation of Python positions it well as a prototyping
language for pre-production systems, and a recent trend is to even employ Python applications
directly into production. As machine learning and statistical applications forge ahead with
increasing momentum, the benefits of strengthening Python’s statistical offering are hard to
overstate.
Motivated by practical applications in fields such as finance and economics, in this paper
we introduce the pymle package which aims to humbly address a key shortcoming of the
existing Python stack, which is simulation and inference for stochastic differential equations
(SDE). Several powerful packages exist in R, see those listed in Table 1, but relatively little is
available to the Python statistician (see for example Rydin Gorjão, Witthaut, and Lind 2023)

1Disclaimer: The authors use and enjoy both languages, among others.

Journal of Statistical Software 3

for a very recent work, jumpdiff, (Rydin Gorjão et al. 2023) for jump diffusion inference using
non-parametric Nadaraya-Watson estimators). While much existing SDE functionality exists
in R, the pymle packages harnesses the strengths of a fully object-oriented design. As such, it
is quite easily extensible, providing the necessary interfaces to access simulation and inference
for any SDE, with a trivial amount of additional work required to add new models. We take
a “replaceable parts” perspective, allowing maximal customization to the users of the library,
while providing useful built-in functionality.

1.1. Existing packages

While Python packages are quite sparse in the area of simulation and inference for SDEs, there
are many well known frameworks written in R. To a large extent, the objective of pymle is to
provide similar functionality to Python users. Before introducing the pymle package in detail,
it is worth mentioning several high quality R packages including the yuima package of Brouste
et al. (2014) and sde of Iacus (2022), which can be utilized for simulation and inference for
SDEs. These two packages in particular provide the inspiration for what is offered in pymle.
The yuima package is designed for simulation and inference of stochastic differential equa-
tions encompassing both one-dimensional and multidimensional diffusions. Within the yuima
package stochastic differential equations can take on highly abstract forms, driven by a (mul-
tidimensional) Brownian motion process or even fractional Brownian motion with a general
Hurst parameter. They can also include jumps specified as Lévy noise. Under this frame-
work, the yuima package offers various functions for conducting simulations and statistical
analyses. We also note that yuima depends on some other interesting libraries, such as zoo
(Zeileis and Grothendieck 2005). For further applications of yuima, please refer to Iacus and
Yoshida (2018).
On the other hand, the sde package developed by Iacus (2022) is an R package primarily
focused on the simulation and inference of one-dimensional diffusion processes driven by the
Brownian (Wiener) process. The pymle package is inspired especially by the sde package and
the book Iacus (2009), and offers much of the same functionality to the Python user. As a
result, in essence, pymle shares many similarities with the sde package. However, it is worth
emphasizing that, while the two frameworks cover many of the same estimation procedures,
the design of the packages is different in many important ways. In particular, pymle is a fully
objected-oriented library that utilizes design principals/patterns that make it very easy to
extend by the user with minimal coding effort. It embraces a replaceable parts approach that
is well-suited for research and development (R&D) purposes, as described in what follows. We
also note that pymle supports the recently proposed continuous time Markov chain (CTMC)
scheme of Kirkby, Nguyen, Nguyen, and Nguyen (2022). One distinct feature of the CTMC
approximation is that it introduces no time-discretization error during parameter estimation,
and is thus well-suited for typical econometric situations with infrequently sampled data.

1.2. Organization of paper

The rest of this paper is organized as follows: Section 2 reviews some fundamental facts of
stochastic differential equations. Several examples are provided for the later use. Section 3
provides some numerical methods which are used to approximate the transition density of
diffusion. Section 4 gives an in-depth description and usage of the pymle package. Numerous
examples are provided demonstration. Section 5 concludes the paper.

4 pymle: Stochastic Differential Equations Inference and Simulation in Python

Package Language Reference Note
yuima R Brouste et al. (2014) Simulation & inference for SDE
sde R Iacus (2022) Simulation & inference for 1D SDE
Sim.DiffProc R Guidoum and Boukhetala (2020) Parallel Monte Carlo and estimation
ctmcd R Pfeuffer (2017) CTMC estimation
spate R Sigrist, Künsch, and Stahel (2015) SPDE and spatio-temporal simulation
jumpdiff Python Rydin Gorjão et al. (2023) Jump-diffusion inference

Table 1: Existing statistical packages for SDE simulation and inference.

2. Stochastic differential equations
Consider the stochastic diffusion process

dSt = µ(St, t; θ)dt + σ(St, t; θ)dWt, t ≥ 0, (1)

where (Wt)t≥0 is the standard Brownian motion, µ(St, t) ≡ µ(St, t; θ) : R × R+ × Rd → R
and σ(St, t) ≡ σ(St, t; θ) : R × R+ × Rd → R+ are the drift and diffusion terms, respectively.
Note that it is well-known that a stochastic differential equation of type (1) is Markovian,
see Jazwinski (2007). The unknown parameters θ = (θ1, . . . , θd) appear in both the drift
term as well as the diffusion term. In order to simulate or perform statistical inferences for
the diffusion given in (1), one must estimate the parameter θ from available information,
which normally is given in terms of a finite data sample. It is assumed that the unknown
parameter vector θ = (θ1, θ2, . . . , θd) belongs to a compact set Θ ⊂ Rd. Given ∆ > 0, let
p(s′ | s, ∆) ≡ p(s′ | s, ∆; θ) denote the transition density function of St. That is

P(St+∆ ∈ ds′ | St = s) = p(s′ | s, ∆)ds′.

Suppose that S0, S1, . . . , SN is a sequence of (N + 1) historical observations of St sampled at
non-stochastic times t0 < t1 < . . . < tN . The joint likelihood of this sample is given by

p0(S0 | θ)
N−1∏
n=1

p(Sn+1 | Sn, tn+1 − tn), (2)

where p0(S0 | θ) is the density of the initial state. In this paper, we choose ∆ = ti+1 − ti.
For notational simplicity, we will suppress the dependence on the parameter vector θ in what
follows. We assume that S0 is given. The Equation (1) can be written in the integral form

ST = S0 +
∫ ⊤

0
µ(St, t)dt +

∫ ⊤

0
σ(St, t)dWt, T ≥ 0,

in which the first integral on the right hand side is of Riemann-Stieltjes type and the second
integral is an Ito integral, see Kloeden and Platen (1992). In general, for the simulation and
inference procedures to make sense, we will assume at least that

P
{∫ ⊤

0
sup

|x|≤B
(|µ(x, t)| + σ2(x, t))dt < ∞

}
= 1, ∀ T, B ∈ [0, ∞),

while additional growth conditions on the coefficients are required to ensure the existence of
a unique (strong) solution to (1) (see Karatzas and Shreve 2014). We also note that while the

Journal of Statistical Software 5

Model Dynamics Constraint Reference
BM dSt = µdt + σdWt σ > 0 Karatzas and Shreve (2014)
GBM dSt = µStdt + σStdWt σ > 0 Karatzas and Shreve (2014)
IGBM dSt = κ(µ − St)dt + σStdWt σ > 0 Abadie and Chamorro

(2008); Zhao (2009)
Peral-Verhulst dSt = κ(µ − St)Stdt + σStdWt σ > 0 Dixit and Pindyck (1994)
Linear SDE 1 dSt = (a + bSt)dt + (c + dSt)dWt a, c, d ̸= 0 Kloeden and Platen (1992)
Linear SDE 2 dSt = (a + bSt)dt + cStdWt c ̸= 0 Kloeden and Platen (1992)
Logistic dSt = St(1 − aSt)dt + bStdWt b > 0 Kloeden and Platen (1992)
3/2 dSt = St(κ(µ − St)dt + σSt

√
StdWt σ > 0 Grasselli (2017); Kirkby

and Nguyen (2020)
CEV dSt = κ(µ − St)dt + σSγ

t dWt γ, σ > 0 Cox (1996)
CIR dSt = κ(µ − St)dt + σ

√
StdWt 2κµ ≥ σ2 Cox et al. (2005)

CKLS dSt = (θ1 + θ2St)dt + θ3Sθ4
t dWt θ3 > 0 Chan, Karolyi, Longstaff,

and Sanders (1992)
Feller’s square root dSt = St(θ1 − (θ3

3 − θ1θ2)St)dt + θ3S
3/2
t dWt θ3 > 0 Ahn and Gao (1999)

Hyperbolic dSt = − κSt√
1+S2

t

dt + σdWt κ, σ > 0 Eberlein and Keller (1995)

Hyperbolic 2 dSt = σ2

2

(
β − γ St√

δ2+(St−µ)2

)
dt + σdWt σ, |δ| > 0 Iacus (2009)

Jacobi dSt = −θ(St − 1/2)dt +
√

θSt(1 − St)dWt θ > 0 Iacus (2009)
Modified CIR dSt = −θ1Stdt + θ2

√
1 + S2

t dWt θ1 + θ2
2 > 0 Iacus (2009)

OU dSt = κ(µ − St)dt + σdWt σ > 0 Uhlenbeck and Ornstein
(1930)

Radial OU dSt = (θS−1
t − St)dt + σdWt σ > 0 Iacus (2009)

Pearson dSt = −θ(St − µ)dt +
√

2θ(aS2
t + bSt + c)dWt θ > 0 Forman and Sørensen

(2008)
Nonlinear mean reversion dSt = (α−1S−1

t + α0 + α1St + α2S2
t)dt See ref. Aït-Sahalia (1996)

+
√

β0 + β1St + β2Sβ3
t dWt

Nonlinear SDE dSt = (α−1S−1
t + α0 + α1St + α2S2

t)dt See ref. Aït-Sahalia (1996)
+(β0 + β1St + β2Sβ3

t)dWt

Table 2: Models provided by the pymle package.

majority of models typically encountered are time-homogeneous, the simulation and inference
procedures are designed to support the case of time-dependent coefficients. For more details,
please refer to Section 4.8.
Table 2 lists some of the models provided in this package, and the addition of new mod-
els requires minimal coding, while automatically inheriting all of the core functionality for
simulation and inference. We note that in Table 2, we are aware that some models nest
other models as special cases. However, due to their popularity and practical needs, we list
them there for the user’s convenience, and moreover due to specialized constraints and initial
conditions that one may place on the model during the fitting process.

2.1. Example: Geometric Brownian motion

For the purpose of illustration, let’s consider the geometric Brownian motion (GBM) whose
dynamics is given by

dSt = Stµdt + StσdWt.

This model is widely used in economics and finance to model the dynamics of a risky asset,
see Black and Scholes (1973). For any t′ > t ≥ 0, ∆ := t′ − t, and θ := (µ, σ), the log-normal

6 pymle: Stochastic Differential Equations Inference and Simulation in Python

Model Reference Dynamics
GBM Brown (1828) dSt = Stµdt + StσdWt

Vasicek Vasicek (1977) dSt = κ(µ − St)dt + σdWt

CIR Cox et al. (2005) dSt = κ(µ − St)dt + σ
√

StdWt

CEV Cox (1996) dSt = µStdt + σSγ
t dWt

Table 3: Some special cases of the CKLS model.

transition density of St is given in closed form by

p(s′ | s, ∆) = 1
s′σ∆

√
2π

exp
(

−(ln(s′) − µ∆(s))2

2σ2
∆

)
,

where µ∆(s) := ln(s) +
(
µ − 1

2σ2
)

∆, and σ∆ := σ
√

∆.

2.2. Example: Chan-Karolyi-Longstaff-Sanders (CKLS)

Another interesting example is the Chan-Karolyi-Longstaff-Sanders (CKLS) family of models
(Chan et al. 1992, see), which is a four-parameter extension of the constant elasticity of
variance model (CEV) (Cox 1996) given by

dSt = (θ1 + θ2St)dt + θ3Sθ4
t dWt.

This model does not admit an explicit transition density, except in the case where θ1 = 0
(Hsu, Lin, and Lee 2008) or θ4 = 1/2. We assume that θ3 > 0, and the process is positive as
long as θ1, θ2 > 0 and θ4 > 1/2. It is noticed that the CKLS model nests many interest rate as
well as short-rate models including GBM, Vasicek model (Vasicek 1977), Cox-Ingersoll-Ross
(CIR) (Cox et al. 2005), constant elasticity of variance model (CEV) (Cox 1996) as special
cases. We summarize this nesting in Table 3.

Special case: Cox-Ingersoll-Ross
When θ4 = 1/2, the CKLS model reduces to the Cox-Ingersoll-Ross (CIR) model. The
dynamics of St under CIR is given by

dSt = κ(µ − St)dt + σ
√

StdWt.

It can be shown that St ≥ 0 almost surely, and the CIR model is widely used to model short
term interest rates (Cox et al. 2005) or equity volatilities (Heston 1993), both of which exhibit
mean-reversion and tend to be positive2. The true transition density function is given by

p(s′ | s, ∆) = eκ∆

2c(∆)

(
s′eκ∆

s

)(d−2)/4

exp
(

−s + s′eκ∆

2c(∆)

)
Id/2−1

(√
ss′e−κ∆

c(∆)

)
,

where
c(∆) = σ2

4κ
(eκ∆ − 1), d = 4κµ

σ2 ,

2In some rare cases, interest rates have actually gone negative, requiring a model such as OU to capture
this phenomenon, shown in Table 2.

Journal of Statistical Software 7

Simulation cheme Reference
Exact Glasserman (2013)
Euler Kloeden and Platen (1992)
Milstein Milshtein (1979)
2nd order Milstein Milshtein (1979)
CTMC Kirkby et al. (2022)

Table 4: Simulation schemes provided in the pymle package for numerical simulation of
SDE. Other simulation schemes can be easily added by extending the ‘Stepper’ class; see
Section 4.10 for details on adding new simulation schemes.

and
Iγ(x) =

∞∑
i=0

(x/2)2i+γ

i!Γ(i + γ + 1) ,

is the modified Bessel function of the first kind of order γ. Numerical evaluation of p(s′ | s; θ)
is delicate, and is best implemented using the exponentially damped Bessel function. The
use of the exponentially dampened modified Bessel function is a well-established numerical
practice to avoid overflow and underflow issues associated with the modified Bessel; see for
example Carley (2013).

2.3. Simulation schemes

Here we briefly review the simulation schemes supported, which are listed in Table 4 for
reference. When available, the package supports “Exact” simulation, which requires that
the exact transition density be known for the model to simulate a draw from its dynamics
without discretization error. The other methods listed in Table 4 are all in the family of
time-discretization methods, as opposed to, for example, spatial discretization (Cui, Kirkby,
and Nguyen 2021b; Meier, Li, and Zhang 2023). Here we recall that a scheme is strongly
convergent with order γ if E

(
|ST − S̃T |

)
≤ KT ∆γ , and weakly convergent with order γ if

there exists a constant Kg
T such that for all functions g in some class,∣∣∣E[g(ST)] − E[g(S̃T)]

∣∣∣ ≤ Kg
T ∆γ ,

for ∆ → 0. Typically, the function g allowed must satisfy some smoothness and polynomial
growth conditions, see Kloeden and Platen (1992). Note that in the above expectations, we
have used the notation S̃t to distinguish the time-discretization it from the true process, St,
and that the discretization is dependent on the (uniform) step-size ∆. See Higham (2001)
for an algorithmic introduction to numerical simulation of stochastic differential equations or
Glasserman (2013) for an excellent financial treatment of SDE simulation.

Euler scheme

The simplest, and likely most widely used, is the Euler scheme (also known as Euler-Maruyama),
which discretizes (1) according to

S̃t+∆ = S̃t + µ(S̃t, t)∆ + σ(S̃t, t)(Wt+∆ − Wt),

8 pymle: Stochastic Differential Equations Inference and Simulation in Python

where Wt+∆ − Wt ∼ N (0, ∆). The Euler scheme has order γ = 1/2 of strong convergence,
and order γ = 1 of weak convergence, see Kloeden and Platen (1992).

Milstein scheme

By utilizing Ito’s Lemma, Milstein (Milshtein 1979) obtains a scheme of order γ = 1 for both
weak and strong convergence. The approximation is given by

S̃t+∆ = S̃t + µ(S̃t, t)∆ + σ(S̃t, t)(Wt+∆ − Wt)︸ ︷︷ ︸
Euler

+1
2 σ(S̃t, t)σs(S̃t, t)

(
(Wt+∆ − Wt)2 − ∆

)
︸ ︷︷ ︸

Correction

, (3)

which corresponds to Euler’s scheme plus a correction, where σs is the derivative of σ with
respect to the first (spatial) argument. Note that for models with a constant diffusion term,
σs ≡ 0, such as Brownian Motion, the Euler and Milstein schemes coincide.

Milstein second scheme

The second Milstein scheme, Milshtein (1979), improves the weak convergence order of the
first scheme to γ = 2, and is given by

S̃t+∆ = S̃t +
(

µ − 1
2σσs

)
∆ + σZ

√
∆ + 1

2σσs∆Z2

+ ∆
3
2

(1
2µσs + 1

2µsσ + 1
4σ2σss

)
Z + ∆2

(1
2µµs + 1

4µssσ2
)

,

where we have suppressed the arguments of µ(St, t), σ(St, t) for simplicity, and denoted Z ∼
N (0, 1).

3. Maximum likelihood estimation of diffusions
To estimate the unknown parameter θ, we assume that a discrete sample of St is observed:
S0, S1, S2, . . . , SN , with observations taken at a uniform frequency ∆ > 0. By the Markovian
property of St and from (2), the sample log-likelihood function is given by

LN (θ, ∆) := p0(S0 | θ) +
N−1∑
n=1

ln p(Sn+1 | Sn, ∆). (4)

Note that the log likelihood function LN (θ, ∆) depends on the first observation S0. However,
this can be ignored as it is dominated by the sum of the other terms as N → ∞. For
more discussions along this line, please see Section 3.1 in Aït-Sahalia (2002). The maximum
likelihood estimator (MLE) of θ is defined to be the maximizer of the following optimization
problem:

θ̂N := argmaxθ∈ΘLN (θ, ∆). (5)

Equivalently, θ̂N is obtained by minimizing the negative log-likelihood function, and we will
refer to this as the exact MLE. We note that in (4), the loglikelihood function LN (θ, ∆)
crucially depends on the transition density function p(Sn+1 | Sn, ∆). Unfortunately, except
for some special cases such as Geometric Brownian Motion or CIR processes, the closed-form

Journal of Statistical Software 9

Scheme Reference Based on
Exact Glasserman (2013) Exact transition density (when known)
Euler Kloeden and Platen (1992) Euler expansion of SDE
Elerian Elerian (1998) Milstein expansion of SDE
Hermite polyno-
mial expansion

Aït-Sahalia (2002) Hermite polynomials

Kessler Kessler and Sørensen (1999) Higher-order Ito-Taylor expansion
Ozaki Ozaki (1985, 1992, 1993) Normal approximation of the pdf
Shoji-Ozaki Shoji and Ozaki (1997) Normal approximation of the pdf
CTMC Kirkby et al. (2022) CTMC approximation of diffusion generator

Table 5: Maximum-Likelihood estimation procedures supported.

of the transition density function is not available for most of diffusions. As a result, it virtually
impossible to carry out the exact MLE estimate for θ. Hence, numerical approximations of
the transition density function are often employed for the purposes of simulation as well
as inference. More specifically, one will approximate the true transition density p(Sn+1 |
Sn, ∆) function by p̃(Sn+1 | Sn, ∆). Hence the sample log-likelihood function LN (θ, ∆) is
approximated by

L̃N (θ, ∆) =
N−1∑
n=1

ln p̃(Sn+1 | Sn, ∆). (6)

Finally, θ̂N is approximated using L̃N . Normally, numerical procedures such as Newton’s
method are used to optimize L̃N . A quick summary of maximum likelihood estimation
schemes supported by pymle package is given in Table 5. In the following subsections, we
briefly describe some popular approximation schemes which can be used to numerically ap-
proximate the transition density function.

3.1. Euler approximation

Recall that the Euler scheme approximates the SDE (1) by

S̃t+∆ − S̃t = µ(S̃t, t)∆ + σ(S̃t, t)(Wt+∆ − Wt). (7)

It follows that S̃t+∆ − S̃t is normally distributed, which yields the approximate density

pEuler(s′ | s, ∆) := 1√
2π∆σ2(s, t)

exp
(

−(s′ − s − µ(s, t)∆)2

2∆σ2(s, t)

)
.

Euler’s approximation only works well for small ∆, but is a reasonable first approximation
which requires minimal computational (or coding) effort to apply the update in (7). The cost
of this simplicity is slower convergence, and improved approximations are available which
account for derivatives of the SDE coefficients.

10 pymle: Stochastic Differential Equations Inference and Simulation in Python

3.2. Elerian approximation

The Elerian (Elerian 1998) approximation of the transition density is based on a Milstein
approximation of the SDE dynamics, recall (3). In particular,

pElerian(s′ | s, ∆) := z− 1
2 cosh(

√
Cz)

|A|
√

2π
e− C+z

2 , (8)

where

A(s, ∆) := σσs∆
2 , B(s, ∆) := − σ

2σs
+ s + µ∆ − A(s, ∆),

z(s′, s, ∆) := s′ − B(s, ∆)
A(s, ∆) , C(s, ∆) := 1

σ2
s∆ ,

which is valid when σs ̸= 0, and z > 0. While this approach works reasonably well in some
cases, we have noticed some severe numerical instabilities with the method in practice if not
carefully implemented, due to overflow issues with cosh(x) := (ex + e−x)/2. For this reason,
we use the equivalent form

pElerian(s′ | s, ∆) =
z− 1

2
(
e

√
Cz− C+z

2 + e−
√

Cz− C+z
2
)

2|A|
√

2π
, (9)

which is much more stable. In Section 4.6, we encounter a real data example for which the
Elerian approximation in (8) causes numerical overflow and a convergence failure during max-
imum likelihood optimization, whereas the stable version in (9) produces estimates consistent
with alternative methods.

3.3. Ozaki scheme

In case the diffusion term of St is a constant, that is σ(s, θ) = σ, Ozaki (1985, 1992, 1993),
show that the transition density of St can be approximated by a normal density. Specifically,
S̃t+∆ | S̃t = s ∼ N(E(s), V (s)), where

E(s) = s + µ(s; θ)
µs(s; θ)

(
eµs(s;θ)∆ − 1

)
, V (s) = σ2 e2K(s)∆ − 1

2K(s) ,

where we further define

K(s) = 1
∆ ln

(
1 + µ(s; θ)

sµs(s; θ)
(
eµs(s;θ) − 1

))
.

In the above equations, µs(s; θ) denotes the ∂
∂sµ(s; θ).

3.4. Shoji-Ozaki scheme

In case the dynamics of the diffusion St admits the following form

dSt = µ(St, t; θ)dt + σdWt,

Journal of Statistical Software 11

with constant σ, another scheme is proposed in Shoji (1995), Shoji (1998) and Shoji and
Ozaki (1997). Here we follow Section 2.12.2 of Iacus (2022). By defining

M(s, t, θ) = σ2

2 µss(s, t; θ) + µt(s, t; θ),

L(s, t, θ) = µs(s, t; θ),

the transition density function can be approximated by

S̃t+∆ | S̃t = s ∼ N(A(s, t, θ)s, B2(s, t, θ)),

with

A(s, t, θ) = 1 + µ(s, t, θ)
sL(s, t, θ)

(
eL(s,t,θ)∆ − 1

)
+ M(s, t, θ)

sL2(s, t, θ)
(
eL(s,t,θ)∆ − 1 − L(s, t, θ)∆

)
,

and

B(s, t, θ) = σ

√
e2L(s,t,θ)∆ − 1

2L(s, t, θ) .

Remark: We note that the original Ozaki and Shoji-Ozaki schemes are designed for diffusions
with constant diffusion coefficients. In case the diffusion coefficient is not constant, that is,

dSt = µ(St, t; θ)dt + σ(St; θ)dWt, t ≥ 0,

one can convert it to a unit-coefficient diffusion using the Lamperti transform. Specifically,
let

y =
∫ s

0

1
σ(u; θ)du,

under which the dynamics of Yt is given by

dYt = µ̃(Yt, t; θ)dt + dWt, Y0 = y0,

where the drift function of Yt has the form

µ̃(y, t; θ) = µ(s, t; θ)
σ(s; θ) − 1

2
∂σ(s; θ)

∂s
.

This can be used to extend the scope of applications of both the Ozaki and Shoji-Ozaki
schemes to a broader class of diffusions, assuming the Lamperti transform can be computed.

3.5. Kessler approximation

The Kessler approximation (Kessler 1997; Kessler and Sørensen 1999) is the conditional Gaus-
sian approximation

pKessler(s′ | s, ∆) := 1√
2πV (s, t)

exp
(

−(s′ − E(s, t))2

2
√

V (s, t)

)
,

12 pymle: Stochastic Differential Equations Inference and Simulation in Python

where the mean and variance are given respectively by

E(s, t) := s + µ∆ +
(

µµs + 1
2σ2µss

) ∆2

2 ,

V (s, t) := s2 + (2µs + σ2)∆ + (A(s, t) + B(s, t)) ∆2

2 − E2(s, t),

and where

A(s, t) := 2µ(µss + µ + σσs)
B(s, t) := σ2(µsss + 2µs + σ2

s + σσss).

This approximation is based on a higher-order Ito-Taylor expansion.

3.6. Hermite polynomials expansion

Perhaps the most widely used scheme to date is the Hermite polynomial expansion (HPE) of
Aït-Sahalia (2002). This approach is based on transforming the variable St to an equivalent,
yet more amendable variable Yt using the Lamperti transformation, see Florens (1998). The
key idea is that after applying the transformation, the new variable Yt has a transitional
density much “closer” to that of a normal distribution. More specifically, let

y =
∫ s

0

1
σ(u; θ)du,

under which the dynamics of Yt is given by

dYt = µ̃(Yt; θ)dt + dWt, Y0 = y0,

where the drift function of Yt has the form

µ̃(y; θ) = µ(s; θ)
σ(s; θ) − 1

2
∂σ(s; θ)

∂s
.

The transition density of Z = (Y − Yk)/
√

∆ is given by

p = ϕ(z)
∞∑

j=0
cj(∆, Yk)Hj(θ), (10)

in which ϕ(·) denotes the standard normal probability density function. For j = 0, 1, 2, . . . ,
the function Hj(·) is the probabilists’ Hermite polynomial of order j defined by the generating
rule

Hj(z) = (−1)jez2/2 dj

dzj

(
e−z2/2

)
.

Moreover, the coefficient cj is given by

cj(∆, Yk) = 1
j!E

[
Hj

(
Y − Yk√

∆

)
| Yk

]
,

which can be approximated, see Aït-Sahalia (2002) for more details. Aït-Sahalia (2002) notes
that for practical application only finite terms are needed to approximate the infinite sum

Journal of Statistical Software 13

in (10). For example, expansions of the coefficients c0, c1, . . . , c6 give the accuracy to o(∆3)
while the expansions of the coefficients c0, c1, . . . , c10 give the accuracy to o(∆5). Note that
once the transition density of Z can be approximated, the transition density of St can be
approximated using the reverse transformation, see Aït-Sahalia (2002). For an accessible
exposition, please see the recent paper Hurn, Lindsay, and Xu (2023).

3.7. Markov chain approximation
In this section, we review the idea of using a continuous-time Markov chain to perform
MLE for the continuous diffusion in (1), recently proposed in Kirkby et al. (2022). The
key idea is to discretize the state space of the diffusion (1) into a finite discere grid of spa-
tial points while preserving the continuous-time dimension of the diffusion process. Unlike
typical time discretization approaches, such as pseudo-likelihood approximations with Shoji-
Ozaki or Kessler’s method, the CTMC approximation introduces no time-discretization error
during parameter estimation, and is thus well-suited for typical econometric situations with
infrequently sampled data.
Given a parametric diffusion family characterized by (1), we will construct a continuous-time
Markov chain {Sm

t }t≥0, taking values in some discrete state-space Sm := {s1, s2, . . . , sm},
whose dynamics well resemble those of St. For the Markov chain Sm

t , its transitional dynamics
are described by the rate matrix Q = Q(θ) = [qij(θ)]m×m ∈ Rm×m, whose elements qij =
qij(θ) satisfy the q-property: (i) qii ≤ 0, qij ≥ 0 for i ̸= j, and (ii) ∑j qij = 0, ∀i = 1, 2, . . . , m.
In terms of qij ’s, the transitional probability of the CTMC Sm

t is given by:

P(Sm
t+∆ = sj | Sm

t = si) = δij + qij∆ + o(∆2), (11)

where in the above expression δij denotes the Kronecker delta, and we note that P(Sm
t+∆ =

sj | Sm
t = si, Sm

t′ , 0 ≤ t′ ≤ t) = P(Sm
t+∆ = sj | Sm

t = si) due to the Markov property.
The generator of the approximate process is given by Q = (qij(θ))m×m where

qij(θ) =



µ−(si; θ)
ki−1

+ σ2(si; θ) − (ki−1µ−(si; θ) + kiµ
+(si; θ))

ki−1(ki−1 + ki)
, if j = i − 1,

µ+(si; θ)
ki

+ σ2(si; θ) − (ki−1µ−(si; θ) + kiµ
+(si; θ))

ki(ki−1 + ki)
, if j = i + 1,

−qi,i−1 − qi,i+1, if j = i,
0, if j ̸= i − 1, i, i + 1.

(12)
Here µ+ (respectively, µ−) denotes the positive (respectively, negative) part of µ and k :=
{k1, k2, . . . , km−1} is assumed to be chosen such that

0 < max
1≤i≤m−1

{ki} ≤ min
θ∈Θ

min
1≤i≤m

{
σ2(si; θ)
|µ(si; θ)|

}
.

It can be shown that the generator Q is diagonalizable and has exactly m real distinct
eigenvalues, see Kirkby et al. (2022). This is a crucial property which facilitates computing
the probability transition matrix T(∆) defined below. Next, let ∆ > 0 and assume that
we observe Sm := (Sm

1 , Sm
2 , . . . , Sm

N) = (Sm
∆ , Sm

2∆, . . . , Sm
N∆). Define the m × m probability

transition matrix
T(∆) = exp(Q∆) =

∞∑
i=0

(Q∆)i

i! .

14 pymle: Stochastic Differential Equations Inference and Simulation in Python

Note that since our Q = Q(θ) is a function of θ so is T(∆), and T(∆)ij is the transition
probability from the state si to state sj . The likelihood of the sample is given by

P (Sm | Sm
1 , Q) =

N−1∏
n=1

T(∆)Sm
n∆,Sm

(n+1)∆
. (13)

Here T(∆)Sm
i∆,Sm

(i+1)∆
corresponds to T(∆)j,k, with j = I(Sm

i∆) and k = I(Sm
(i+1)∆), where we

define the index mapping
I : Sm → {1, . . . , m},

which maps I(Sm
j) → j, the corresponding state index. As in Kalbfleisch and Lawless (1985);

McGibbon and Pande (2015), let C(∆) ∈ Nm×m be the matrix such that

C(∆)i,j =
N−1∑
n=1

1{Sm
n∆=si} · 1{Sm

(n+1)∆=sj}, (14)

which counts the number of times in the sample that a transition from state si to sj occurs.
We can then see from (13) that

P (Sm | Q, Sm
1) =

∏
1≤i,j≤m

T(∆)C(∆)i,j

i,j .

The log likelihood function is

LN,m(θ, ∆) = ln P (Sm | Q(θ), Sm
1)

=
∑
i,j

C(∆)i,j ln T(∆)i,j

=
∑
i,j

(C(∆) ◦ ln exp(∆Q(θ))i,j . (15)

Here ◦ denotes the Hadamard matrix product and ln(A) is the element-wise logarithm. The
maximum likelihood estimator (MLE) is

θ̂N,m = arg max
θ∈Θ

LN,m(θ, ∆),

which can be solved numerically using Newton’s method. Additionally, it can be proved that
θ̂N,m → θ̂N as m → ∞, see Kirkby et al. (2022).

4. Package description
We now describe the pymle package, which is available under the MIT licence, and can be
downloaded (and cloned) from https://github.com/jkirkby3/pymle. To install pymle into
your Python environment, please use the following command in your terminal to install the
stable version:
pip install pymle-diffusion --upgrade

The latest version of the code may be downloaded from Github:
pip install git+https://github.com/jkirkby3/pymle.git

https://github.com/jkirkby3/pymle

Journal of Statistical Software 15

Folder Content
core Core classes used by fit and simulation components
models Models included by the pacakage
fit Classes/functions for fitting the models
sim Classes/functions for simulating the models

Table 6: An overview of pymle package organization.

Class Parent Folder Notes
‘Model1D’ ‘ABC’ core Base class inherited by all models
‘TransitionDensity’ ‘ABC’ core Base class inherited by all transition

densities
‘Minimizer’ ‘ABC’ fit Base class for minimization
‘ScipyMinimizer’ ‘Minimizer’ fit Minization wrapper around scipy

minimization
‘Estimator’ ‘ABC’ fit Base class inherited by all estimators
‘LikelihoodEstimator’ ‘Estimator’ fit Base class for liklihood-based estima-

tors
‘AnalyticalMLE’ ‘LikelihoodEstimator’ fit Concrete MLE estimator
‘Stepper’ ‘ABC’ sim Interface for time stepping scheme
‘Simulator1D’ – sim Simulate sample path from some

‘Stepper’

Table 7: List of key classes from the pymle package.

Table 6 provides an overview of the core components of the pymle package. At the highest
level, the code is organized into four main components as described in Table 6: core, models,
fit, and sim(ulation).

4.1. Design overview

The pymle package relies heavily on an object-oriented design, with the core classes listed
in Table 7. The column “Parent” displays the parent from which this class inherits, where
‘ABC’ is used to denote an abstract base class, intended to provide a basic interface. We take
a “replaceable parts” approach to the design, providing built-in functionality with the ability
to swap out components for maximal customization. Each of the components in Table 7 is
completely replaceable/customizable to the user’s preference, but has built-in functionality
allowing the code to be useful out-of-the-box.

The most basic building blocks of pymle are the ‘Model’ class and the ‘TransitionDensity’
class, both located in the core directory. In the following subsections, we will briefly summa-
rize the two classes to highlight the object-oriented and customizable nature of the library.
We then provide several examples to demonstrate the usage of the package, and how the
components interact.

16 pymle: Stochastic Differential Equations Inference and Simulation in Python

4.2. Model class

We first describe the main class in the pymle package, which is the abstract ‘Model1D’ class,
for which we display the main methods.

class Model1D(ABC):
def __init__(self,

has_exact_density: bool = False,
default_sim_method: str = "Milstein"):

self._has_exact_density = has_exact_density
self._params: Optional[np.ndarray] = None
self._positive = False
self._default_sim_method = default_sim_method

@abstractmethod
def drift(self,

x: Union[float, np.ndarray],
t: Union[float, np.ndarray]) -> Union[float, np.ndarray]:

raise NotImplementedError

@abstractmethod
def diffusion(self,

x: Union[float, np.ndarray],
t: Union[float, np.ndarray]) -> Union[float, np.ndarray]:

raise NotImplementedError

@property
def params(self) -> np.ndarray:

return self._params

@params.setter
def params(self, vals: np.ndarray):

self._positive = self._set_is_positive(params=vals)
self._params = vals

The class is quite simple, requiring the user to override just two methods which define the
dynamics of the model (the drift and diffusion components). Each of these components takes
two arguments:

• x: float or array, the value of the process at which to evaluate the drift/diffusion term.

• t: float or array, the time at which to evaluate the drift/diffusion term. This parameter
only matters for time-inhomogeneous diffusions.

The model also provides a “setter” and “getter” method for accessing the model parameters,
which are required by the fitting framework of pymle. The pythonic way of doing this is
through the use of the property decorator, @property. Also note that all methods that must

Journal of Statistical Software 17

be implemented by any child of ‘Model1D’ are decorated with @abstractmethod, and similarly
for all other abstract classes in pymle.
We node that two parameters are provided in the constructor of each ‘Model1D’. The first
is has_exact_density, which the child class should set to true if an exact density is imple-
mented for that class (for example, Brownian motion has an exact density). In particular,
when an exact transition density is known for the model, the user has the ability to over-
ride the exact_density method with the known functional form. The second parameter is
default_sim_method, which is the default method for simulating the process, and is set to
’Milstein’ by default. This can be overriden by simulator, but it allows each child class to set
a good default (or perhaps an exact simulation method if available). There are several addi-
tional methods in the ‘Model1D’ class which expose the derivatives of the drift and diffusion
terms. Each method has a default implementation using finite difference schemes, which can
be overriden by the user as discussed in Section 4.9.
The pymle package provides dozens of pre-defined models out-of-the-box, see Table 2. How-
ever, adding your own models is quite simple by extending ‘Model1D’, and is discussed briefly
in Section 4.7.

4.3. Transition density class

Another core component is the ‘TransitionDensity’ base class, which defines the interface
of a transition density (approximation). This is used by the primary estimation producedure
of pymle, which is Maximum Likelihood Estimation.

class TransitionDensity(ABC):
def __init__(self, model: Model1D):

self._model = model

@property
def model(self) -> Model1D:

return self._model

@abstractmethod
def __call__(self,

x0: Union[float, np.ndarray],
xt: Union[float, np.ndarray],
t0: Union[float, np.ndarray],
dt: Union[float, np.ndarray]) -> Union[float, np.ndarray]:

raise NotImplementedError

Each child of ‘TransitionDensity’ must implement the __call__ method, which returns the
transition density evaluated at these arguments:

• x0: Float or array, the current value of the process.

• xt: Float or array, the value to transition to (must be same dimension as x0).

• t0: Float, the time at which to evaluate the coefficients. This parameter is irrelevant
(and not used) for time-homogenous models.

18 pymle: Stochastic Differential Equations Inference and Simulation in Python

• dt: Float or array, the time step between x0 and xt. If the time step is constant, then
a float may be supplied.

Note that the constructor of ‘TransitionDensity’ takes an instance of a ‘Model1D’, which
binds the transition density to that model, allowing it to access parameters and methods
of the model (such as its drift and diffusion terms). This is a common pattern in pymle,
where classes are given access to a generic instance of ‘Model1D’, allowing them to access the
methods as needed without knowing the particular type of model.

Example: Euler approximation
A simple example of a ‘TransitionDensity’ implementation is the ‘EulerDensity’, which
implements an Euler approximation to the transition density from the diffusion and drift
terms of a model:

class EulerDensity(TransitionDensity):
def __init__(self, model: Model1D):

super().__init__(model=model)

def __call__(self,
x0: Union[float, np.ndarray],
xt: Union[float, np.ndarray],
t0: Union[float, np.ndarray],
dt: float) -> Union[float, np.ndarray]:

sig2t = (self._model.diffusion(x0, t0) ** 2) * 2 * dt
mut = x0 + self._model.drift(x0, t0) * dt
return np.exp(-(xt - mut) ** 2 / sig2t) / np.sqrt(np.pi * sig2t)

Recall how the ‘EulerDensity’, like each ‘TransitionDensity’, is defined in terms of a
generic ‘Model1D’. This means that any newly added model automatically has an implemen-
tation of an Euler transition density, and similarly for the other simulated density approx-
imations. The user simply defines a new model, and inherits the simulation and inference
functionality for free. Also, Aït-Sahalia transition density is supplied to all models listed in
Table 2, with the exception of the Hyperbolic and Hyperbolic 2 models. When users introduce
a new model not listed in Table 2, they must provide the Aït-Sahalia transition density for
their new model if they wish to use this functionality.
Table 8 lists seven classes that extend the ‘TransitionDensity’ base class, and are provided
out-of-the-box with the package. Each of these implements a particular method that is
useful for MLE, with references provided previously in Table 5. Implementing your own
MLE procedure, based on some alternative transition density approximation, is as simple as
creating a new ‘TransitionDensity’ child class. Each of the classes listed in Table 5 provides
a template for doing so.

4.4. Maximum likelihood estimation
We now discuss the main classes used for maximum likelihood estimation in pymle. The
base estimator class, ‘Estimator’, is a very simple and generic class with just one method to
override:

Journal of Statistical Software 19

Class Folder Purpose
‘ExactDensity’ core Exact transition density (when available)
‘EulerDensity’ core Euler transition density approximation
‘OzakiDensity’ core Ozaki transition density approximation
‘ShojiOzakiDensity’ core Shoji-Ozaki transition density approximation
‘ElerianDensity’ core Elerian transition density approximation
‘KesslerDensity’ core Kessler transition density approximation
‘AitSahaliaDensity’ core Aït-Sahalia transition density approximation

Table 8: Supported transition density classes.

def estimate_params(self, params0: np.ndarray) -> EstimatedResult:
raise NotImplementedError

This method takes as input an initial parameter guess, and returns an ‘EstimatedResult’
object containing the estimated parameters, and some measures of fit such as Akaike in-
formation criterion (AIC), Bayesian information criterion (BIC) (Hastie, Tibshirani, Fried-
man, and Friedman 2009) and the final estimated likelihood. This is further extended by
‘LikelihoodEstimator’, shown below, which is a type of ‘Estimator’ that optimizes a (neg-
ative) log likelihood function.

class LikelihoodEstimator(Estimator):
def __init__(self,

sample: np.ndarray,
param_bounds: List[Tuple],
dt: Union[float, np.ndarray],
model: Model1D,
minimizer: Minimizer = ScipyMinimizer(),
t0: Union[float, np.ndarray] = 0):

super().__init__(sample=sample, param_bounds=param_bounds,
dt=dt, model=model, t0=t0)

self._min_prob = 1e-30
self._minimizer = minimizer

def estimate_params(self, params0: np.ndarray) -> EstimatedResult:
res = self._minimizer.minimize(function=self.log_likelihood_negative,

bounds=self._param_bounds,
guess=params0)

params = res.params
final_like = -res.value
return EstimatedResult(params=params,

log_like=final_like,
sample_size=len(self._sample) - 1)

@abstractmethod
def log_likelihood_negative(self, params: np.ndarray) -> float:

raise NotImplementedError

20 pymle: Stochastic Differential Equations Inference and Simulation in Python

A ‘LikelihoodEstimator’ is constructed from a sample, some parameter bounds that will
be enforced during optimization, a time step between observation points (or an array of time
steps in the time non-homogeneous case), a generic model of type ‘Model1D’, a minimizer
of some form (defaulting to a ‘ScipyMinimizer’, discussed below), and an initial time (or
array of times in the time non-homogeneous case). The method log_likelihood_negative
must be implemented by every ‘LikelihoodEstimator’, and upon doing so the estimator is
complete.
For example, the main estimation class we will use is the ‘AnalyticalMLE’ which extends
‘LikelihoodEstimator’ in a very simple way by overriding the likelihood function as follows:

class AnalyticalMLE(LikelihoodEstimator):
def __init__(self,

sample: np.ndarray,
param_bounds: List[Tuple],
dt: Union[float, np.ndarray],
density: TransitionDensity,
minimizer: Minimizer = ScipyMinimizer(),
t0: Union[float, np.ndarray] = 0):

super().__init__(sample=sample, param_bounds=param_bounds,
dt=dt, model=density.model,
minimizer=minimizer, t0=t0)

self._density = density

def log_likelihood_negative(self, params: np.ndarray) -> float:
self._model.params = params
return -np.sum(np.log(np.maximum(self._min_prob,

self._density(x0=self._sample[:-1],
xt=self._sample[1:],
t0=self._t0,
dt=self._dt))))

In particular, ‘AnalyticalMLE’ is given a ‘TransitionDensity’ of some form (such as one of
the classes listed in Table 8), which it uses to compute the negative log likelihood. We use
this class when performing maximum likelihood estimation with each of the density approxi-
mation methods.
Remark: We note that by default, the ‘AnalyticalMLE’ is constructed with a ‘Minimizer’ of
type ‘ScipyMinimizer’, which simply wraps the numerical minimization routines provided by
scipy.optimize.minimize to enable out-of-the-box maximum likelihood estimation. However,
this form of “dependency injection” also allows the user to supply their own custom or pre-
ferred optimizer, which is a key way that we achieve the “replaceable parts” design. The only
requirement is that it implements the ‘Minimizer’ interface, which is easy to accomplish by
writing a wrapper on top of the user’s desired minimizer. In this way, the ‘AnalyticalMLE’
class is just a marriage between a ‘TransitionDensity’ and a ‘Minimizer’, either or both of
which can be customized by the user as desired.
Another example of the ‘LikelihoodEstimator’ class is given by the child ‘CTMCEstimator’,
which implements the CTMC approximation approach discussed in Section 3.7. The next
section will illustrate both estimation procedures.

Journal of Statistical Software 21

4.5. Example usage

In this section, we provide an extended example to demonstrate the usage of the pymle
package, and to tie together the various components from simulation to inference. The model
of interest is the OU model (see Uhlenbeck and Ornstein 1930) whose dynamics is given by

dSt = κ(µ − St)dt + σdWt.

Among its numerous applications, OU is commonly used to model the instantaneous short
interest rate (Vasicek 1977) in economics, as well as commodity prices (Schwartz 1997). Like
the CIR model, its applications are ubiquitous, see for example Zhang, Grzelak, and Oosterlee
(2012); Brignone, Kyriakou, and Fusai (2021); Kirkby (2023). Its true transition density
p(s′ | s; θ) is Gaussian,

p(s′ | s, ∆) = 1
σ∆

√
2π

exp
(

−(s′ − µ∆(s))2

2σ2
∆

)
,

with mean µ∆(s) := µ+(s−µ)e−κ∆, and variance σ2
∆ := σ2

2κ (1−e−2κ∆). For this model, there
are three parameters 0 < κ, µ ∈ (−∞, +∞), 0 < σ that are needed to estimate from a given
sample. We choose this model as it demonstrates the use of all maximum likelihood schemes
currently supported in the package: Euler, Elerian, Ozaki, Shoji-Ozaki, Hermite polynomial
expansion, Kessler approximation, and continuous-time Markov chain approximation.

Path simulation

To illustrate, we will simulate a data set, where we control the parameters of the true popu-
lation: S0 = 0.4 (the initial value of process), κ = 3 (the rate of mean reversion), µ = 0.3 (the
long term level of process), σ = 0.2 (volatility). We start by importing the basic dependencies,
and initializing the model with the desired parameters:

>>> from pymle.models import OrnsteinUhlenbeck
>>> import numpy as np
>>> S0 = 0.4
>>> kappa = 3
>>> mu = 0.3
>>> sigma = 0.2
>>> model = OrnsteinUhlenbeck()
>>> model.params = np.array([kappa, mu, sigma])

Next we simulate a sample path of St on 0 ≤ t ≤ T = 5 with the time step size ∆ = 1/250:

>>> from pymle.sim.Simulator1D import Simulator1D
>>> T = 5
>>> freq = 250
>>> dt = 1. / freq
>>> seed = 123

For now, we simply create a default instance of the simulator class, and return to the topic
in more detail Section 4.10:

22 pymle: Stochastic Differential Equations Inference and Simulation in Python

0 200 400 600 800 1000 1200
t

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 S
t

Figure 1: OU sample path.

>>> simulator = Simulator1D(S0, T * freq, dt, model).set_seed(seed)
>>> sample = simulator.sim_path()

We can plot the sample path, as follows, which is displayed in Figure 1:

>>> import matplotlib.pyplot as plt
>>> plt.plot(sample)
>>> plt.xlabel('t')
>>> plt.ylabel(r' S_t')
>>> plt.show()

Maximum likelihood estimation

To fit using any of the estimation procedures, we must specify the parameter bounds we wish
the optimizer to enforce during the fit, along with an initial guess for the parameters κ, µ, σ,
respectively:

>>> param_bounds = [(0.01, 10), (0, 4), (0.01, 1)]
>>> guess = np.array([1, 0.1, 0.4])

Each tuple in param_bounds corresponds to a parameter, in order. We can then fit using
Euler’s approximation,

>>> from pymle.fit.AnalyticalMLE import AnalyticalMLE
>>> from pymle.core.TransitionDensity import EulerDensity
>>> euler_est = AnalyticalMLE(sample, param_bounds, dt,
... density=EulerDensity(model)).estimate_params(guess)
>>> print(euler_est)

The previous lines construct an ‘AnalyticalMLE’ estimator, using an ‘EulerDensity’ approx-
imation for the model, where ‘EulerDensity’ is constructed with an instance of the model.

Journal of Statistical Software 23

The result of the maximum likelihood estimation is an object of type ‘EstimatedResult’,
and it contains the estimated parameters, as well as information about the goodness of fit,
such as AIC and BIC. The output of print(euler_est) is:

params | [2.91552452 0.32770741 0.19994576]
sample size | 1250
likelihood | 3689.37631736423
AIC | -7372.75263472846
BIC | -7357.359938237571

Note that we have supplied the argument dt when constructing the estimator, indicating a
uniform sample. Alternatively, in the case of a non-uniform sample, or when the model itself
has time-dependent coefficients, we can supply a full array of time steps dt, as well as the
initial starting time t0 of the sample.
Fitting alternative approximations is equally simple, for example:

>>> from pymle.core.TransitionDensity import *
>>> ozaki_est = AnalyticalMLE(sample, param_bounds, dt,
... density=OzakiDensity(model)).estimate_params(guess)
>>> shoji_ozaki_est = AnalyticalMLE(sample, param_bounds, dt,
... density=ShojiOzakiDensity(model)).estimate_params(guess)
>>> kessler_est = AnalyticalMLE(sample, param_bounds, dt,
... density=KesslerDensity(model)).estimate_params(guess)
>>> AitSahalia_est = AnalyticalMLE(sample, param_bounds, dt,
... density=AitSahaliaDensity(model)).estimate_params(guess)

Printing the final result for example, print(AitSahalia_est), yields:

params | [2.93266185 0.32770741 0.20111964]
sample size | 1250
likelihood | 3689.376317299021
AIC | -7372.752634598042
BIC | -7357.3599381071535

Note that the only difference for each estimation is that we supply a different density estimator
class which fully captures the differences in MLE estimation procedures.
Remark: It is important to note that the exact numerical results presented in this work are
dependent on the computer architecture of the machine used to run the experiments. All
experiments in this work are conducted in Python 3.8 using a Windows machine with an
Intel(R) Core(TM) i709750H CPU @2.60GHz. Due to the nature of the problem we are
studying (the numerical optimization of functions that depend on numerical derivatives and
potentially special functions), the reader should expect some small differences in results when
reproducing the examples in this work.

CTMC-based estimation

The package also supports the recent CTMC approximation method of Kirkby et al. (2022),
described in Section 3.7. The main classes for CTMC estimation are summarized in Table 9.

24 pymle: Stochastic Differential Equations Inference and Simulation in Python

Class Folder Purpose
‘StateSpace’ ctmc Represents state space of CTMC
‘Generator1D’ ctmc Represents the transition generator matrix
‘CTMCEstimator’ ctmc Manages the estimation of CTMC parameters

Table 9: List of key CTMC estimation classes in the pymle package.

� ��� ��� ��� 	�� ���� ����
����������

���

���

���

���

���

���

���

��
��
��
�

������
���
��

�������
��

Figure 2: Simulated path of OU process with S0 = 0.2, κ = 4.0, θ = 0.2, σ = 0.4, with T = 5,
∆ = 1/250, along with the Binned Path (with 30 CTMC states).

In this case, we construct a state space for the CTMC (e.g., with 350 states) based on the
supplied sample (collected data, or simulated as in previous examples). We then bin the
sample path so that the continuous points in the sample are assigned to the nearest bins:

>>> from pymle.ctmc.StateSpace import StateSpace
>>> state_space = StateSpace.from_sample(sample, is_positive=True,
... N_states=350)
>>> binned_path, state_index = state_space.bin_path(sample)

Figure 2 displays the path of a simulated OU process, along with the binned sampled using
30 states for illustration. The CTMC generator is then constructed as in (12) using

>>> generator = Generator1D(model)
>>> generator.states = state_space.states

Finally, we construct a ‘CTMCEstimator’ based on the binned sample, and estimate in the
usual fashion:

>>> ctmc_est = CTMCEstimator(binned_path, state_index, dt, generator,
... param_bounds).estimate_params(guess)
>>> print(ctmc_est)

Journal of Statistical Software 25

� � �� �� �� ��
�����

�

��

��

��

	�

Figure 3: Transition counts matrix from simulated process with S0 = 0.2, κ = 4.0, θ = 0.2, σ =
0.4, with T = 5, ∆ = 1/250, and 30 CTMC states.

The print statement shows the CTMC estimation result:

params | [4.3003113 0.24962709 0.40240265]
sample size | 1250
likelihood | 2825.764354953858
AIC | -5645.528709907716
BIC | -5630.136013416827

Figure 3 shows the transition counts matrix C(∆)i,j corresponding to (14), where we use 30
CTMC states for illustration. The code to generate the plot is as follows:

>>> def plot_CTMC_Counts_C_Matrix(estimator: CTMCEstimator):
... import seaborn as sns
... C = pd.DataFrame(estimator.transition_counts)
... ax = sns.heatmap(C, cmap=sns.color_palette("Blues", as_cmap=True),
... linewidths=.5, yticklabels=False, xticklabels=5)
... plt.xlabel('state')
... plt.show()

Comparison

A comparison of results for each of the estimators is given in Table 10. In this table, the
true parameters κ = 3, µ = 0.3, σ = 0.2 are estimated by κ̂, µ̂, σ̂. The sample size, the value
of the likelihood function, AIC, and BIC corresponding to (κ̂, µ̂, σ̂) are also reported. For
this example, the alternative methods produce very similar parameter estimates. In general,
the Hermite polynomial method of Aït-Sahalia (2002) is considered to be state-of-the-art,

26 pymle: Stochastic Differential Equations Inference and Simulation in Python

Method κ̂ µ̂ σ̂ Likelihood AIC BIC RMSE
Exact MLE 2.93268 0.32771 0.20112 3689.37632 −7372.75263 −7357.35994 0.04204
Euler 2.91552 0.32771 0.19995 3689.37632 −7372.75263 −7357.35994 0.05133
Ozaki 2.85870 0.32690 0.19994 3689.21485 −7372.42970 −7357.03701 0.08305
Shoji−Ozaki 2.93295 0.32771 0.20112 3689.37632 −7372.75263 −7357.35994 0.04189
Kessler 2.93136 0.32764 0.19994 3689.37556 −7372.75111 −7357.35842 0.04272
Aït−Sahalia 2.93266 0.32771 0.20112 3689.37632 −7372.75263 −7357.35994 0.04205
CTMC 2.94352 0.32772 0.20144 3687.46903 −7368.93807 −7353.54537 0.03633

Table 10: OU estimation results, sample size of 1250. Exact values κ = 3, µ = 0.3, σ = 0.2.
Values in table are rounded to the nearest fifth decimal.

���
���

�
���

���
�

���

��

�
���

���
�

���
	��

�
���

���
�

����

��

���

���

���

���

���

���

���

��	

�
��

��
��

��
��
�

Figure 4: FX rates: EUR/USD from 1999 to 2021.

and is often used when available. Given that we know the true parameters in this controlled
experiment, we also include a column “RMSE” which provides the root mean squared error
of the estimated parameters compared with the true model parameters. This example shows
the promise of the CTMC method, which is often quite accurate, albeit slow computationally.

4.6. Real data example

In this section, we provide an example to demonstrate how to fit an SDE based on historical
interest rate data. The data consists of daily observations US/Euro Foreign Exchange Rate
(DEXUSEU), retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.
stlouisfed.org/series/DEXUSEU, May 24, 2021. A plot of the data is given in Figure 4,
which shows the cost (in USD) at which one Euro may be purchased.
The model we choose to fit is CIR, which captures the non-negativity and mean-reverting

https://fred.stlouisfed.org/series/DEXUSEU
https://fred.stlouisfed.org/series/DEXUSEU

Journal of Statistical Software 27

tendency of FX rates:
dSt = κ(µ − St)dt + σ

√
StdWt.

We illustrate the use of five Maximum Likelihood estimators as shown in Table 11 to estimate
the unknown parameters: κ, µ, σ. The Python code is given below:

>>> import pandas as pd
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from pymle.models.CIR import CIR
>>> from pymle.core.TransitionDensity import *
>>> from pymle.fit.AnalyticalMLE import AnalyticalMLE
>>> import seaborn as sns
>>> import matplotlib.dates as mdates
>>> import datetime
>>> sns.set_style('whitegrid')

As a first step, we read the data into a pandas ‘DataFrame’ using the built-in data loader for
this example:

>>> from pymle.data.loader import load_FX_USD_EUR
>>> df = load_FX_USD_EUR()
>>> print(df.head())

which generates the output (from the first 5 rows):

Date Rate
0 1/4/1999 1.1812
1 1/5/1999 1.1760
2 1/6/1999 1.1636
3 1/7/1999 1.1672
4 1/8/1999 1.1554

To generate Figure 4 with properly formatted dates we set ‘skip=20’ to change to sample
time series at a different frequency, we then run the following:

>>> skip = 20
>>> dt = skip / 252.
>>> sample = df['Rate'].values[:-1:skip]
>>> df['Date'] = [datetime.datetime.strptime(d, "%m/%d/%Y").date()
... for d in df['Date']]
>>> fig, ax = plt.subplots()
>>> ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
>>> ax.plot(df['Date'].values, df['Rate'].values)
>>> plt.xlabel('Date')
>>> plt.ylabel('Exchange Rate')
>>> fig.autofmt_xdate()
>>> plt.show()

28 pymle: Stochastic Differential Equations Inference and Simulation in Python

Method κ̂ µ̂ σ̂ Likelihood AIC BIC
Exact MLE 0.25206 1.20534 0.10720 561.23301 -1116.46602 -1105.56165
Euler 0.24456 1.20544 0.10616 561.16121 -1116.32242 -1105.41805
Kessler 0.24663 1.20489 0.10592 561.13577 -1116.27154 -1105.36717
Elerian 0.25167 1.2053 0.10613 561.26081 -1116.52162 -1105.61725
Aït-Sahalia 0.25159 1.2053 0.10720 561.22655 -1116.45310 -1105.54873

Table 11: CIR parameter estimation results for EUR/USD example, sample size of 280.

Step 1: Define new model

Step 2: (Optional)
Add new model

in the _init_.py file
in the models directory

Step 3: Call pymle
functions to estimate

model’s paramters

Figure 5: Adding a new model.

We then initialize the CIR model as follows, and supply an initial guess for κ, µ, σ and
parameter bounds for the fit:

>>> model = CIR()
>>> guess = np.asarray([.24, 1.0, 0.1])
>>> param_bounds = [(0.01, 5), (0.01, 2), (0.01, 0.9)]

Fitting the estimators proceeds in the same manner as the previous example. The estimated
results from running the above code is given in Table 11 for three of the supported estimators
for illustration.
Remark: As discussed in Section 3.2, a more numerically stable version of the Elerian ap-
proximation is implemented in pymle. For this CIR example, the original form of the Elerian
density approximation in (8) produces a numerical overflow and convergence failure dur-
ing the maximum likelihood optimization, whereas the version in (9) converges in line with
the alternative estimators. For experimentation purposes, we have exposed a parameter
use_stable_form (defaulting to True) in the ‘ElerianDensity’ class that the user can set
to False in order to experiment with this observed instability.

4.7. Adding your own model

The pymle package provides its users great flexibility in adding new models with minimal
coding. Figure 5 gives an overview of all steps the user needs to do in order to add a new
model into the pymle package.
In the following, we will provide an example with all necessary details. More specifically, we
consider the problem of estimating the parameters of Inhomogeneous Geometric Brownian
Motion (IGBM), see Abadie and Chamorro (2008); Zhao (2009). The dynamics of IGBM
process is given by

dSt = κ(µ − St)dt + σStdWt

It is noted that the exact transition density of St is not available in an easy-to-use form.
Hence, numerical approximations are employed in order to estimate the unknown parameters

Journal of Statistical Software 29

κ, µ, σ. In the below, we details all the steps the user needs to do in order to add his/her new
model into the package.

Step 1

The model must be defined to extend the ‘Model1D’ class. That is, the dynamics of the model
must be specified by overriding the ‘Model1D’ methods. If desired to extend the package
directly, you can add this model to the models directory (otherwise, skip step 2). Name and
save your new model in its own module, for example, IGBM.py.

from typing import Union
import numpy as np
from pymle.core.Model import Model1D

class IGBM(Model1D):
"""
Model for inhomogeneous geometric Brownian motion
Parameters: [kappa, mu, sigma]

dX(t) = mu(X,t)*dt + sigma(X,t)*dW_t

where:
mu(X,t) = kappa(mu-X(t))
sigma(X,t) = sigma X(t)

"""
def drift(self,

x: Union[float, np.ndarray],
t: Union[float, np.ndarray]) -> Union[float, np.ndarray]:

return self._params[0] * (self._params[1] - x)

def diffusion(self,
x: Union[float, np.ndarray],
t: Union[float, np.ndarray]) -> Union[float, np.ndarray]:

return self._params[2] * x

We note that the two primary functions to override for full compatability are drift() and
diffusion(). Other methods can be overridden as desired, for example, to provide analyt-
ical expressions for the derivatives of the drift() and diffusion() terms. These are not
necessary, as numerical derivatives are implemented by default, but it can help to speed up
the fitting process.

Step 2

If you desire to extend the pymle package directly: import your newly defined model in the
init.py file in the models directory:

from pymle.models.IGBM import IGBM.

30 pymle: Stochastic Differential Equations Inference and Simulation in Python

� �
 � � ��
����

	���

	��

���

��

���

��
��

��
�

Figure 6: Simulated path of time-dependent process in (16) with S0 = 0.0, κ = 2, γ = 2, σ =
0.5, and T = 10, ∆ = 1/365.

Step 3

After following steps 1-2, you are done! The model is now fully compatible with the fitting
and simulation framework, and the final step is simply to use your model in a same manner
as the previous examples.

4.8. Time-dependent example

We next illustrate the application of pymle for estimating the parameters of a diffusion process
with time-dependent (non-homogenous) coefficients. For illustration, we posit the following
three-parameter process with a periodic level to which the process mean-reverts:

dSt = κ · (γ · sin(t · 2π) − St)dt + σdWt, (16)

where κ controls the strength of mean-reversion, γ the peak and trough level, and σ the
volatility.
The code for defining this process is quite simple, requiring only that we implement the
definition of the drift and diffusion terms of the process. We therefore define a new class
‘BrownianMotion_SinLevel’ which extends ‘Model1D’ as follows:

>>> from pymle.core.Model import Model1D
>>> from typing import Union
>>> import numpy as np
>>> class BrownianMotion_SinLevel(Model1D):
... def drift(self, x: Union[float, np.ndarray], t: float):
... return self._params[0] * (self._params[1] * np.sin(t * 2 * np.pi) - x)
... def diffusion(self, x: Union[float, np.ndarray], t: float):
... return self._params[2] * (x > -np.inf)

Journal of Statistical Software 31

Note how little code is required here to define a new model that is fully compatible with the
inference and simulation framework in pymle. For example, we can simulate a sample from
this process over a 10 year period, sampled daily:

>>> from pymle.sim.Simulator1D import Simulator1D
>>> S0 = 0.0
>>> kappa = 2
>>> gamma = 2
>>> sigma = 0.5
>>> model = BrownianMotion_SinLevel()
>>> model.params = np.array([kappa, gamma, sigma])
>>> T = 10
>>> freq = 365
>>> dt = 1. / freq
>>> seed = 123
>>> simulator = Simulator1D(S0=S0, M=T * freq, dt=dt,
... model=model).set_seed(seed=seed)
>>> sample = simulator.sim_path()

To plot the simulated path, which results in Figure 6, we use:

>>> import seaborn as sns
>>> sns.set_style('whitegrid')
>>> ts = np.linspace(start=0, stop=T - dt, num=T * freq)
>>> plt.plot(ts, sample[:-1])
>>> plt.xlabel('time', fontsize=12)
>>> plt.ylabel('process', fontsize=12)
>>> plt.show()

From Figure 6, the periodicity of the time-varying level is clearly observed, and we can
estimate the parameters of the process as follows:

>>> param_bounds = [(0.5, 7), (0.01, 5), (0.001, 2)]
>>> guess = np.array([3, 1.5, 0.7])
>>> euler_est = AnalyticalMLE(sample=sample, param_bounds=param_bounds, dt=dt,
... t0=ts, density=EulerDensity(model)).estimate_params(guess)
>>> print(f'\nEuler MLE: {euler_est} \n')

The only real difference in the previous step from the case of time-homogeneous coefficients
is that we now pass the time vector to the ‘AnalyticalMLE’ constructor. Otherwise, the
procedure is identical. The final line above prints the following Euler estimate:

params | [1.85962458 2.0123528 0.50838796]
sample size | 3650
likelihood | 8057.450002072974
AIC | -16108.900004145948
BIC | -16090.292556806218

32 pymle: Stochastic Differential Equations Inference and Simulation in Python

The estimated coefficients are quite close to the true parameters, [2, 2, 0.5]. The Kessler density
estimate, for example, is produced analogously, and provides:

params | [1.86482026 2.01202043 0.50829539]
sample size | 3650
likelihood | 8057.455150822385
AIC | -16108.91030164477
BIC | -16090.30285430504

4.9. Numerical derivatives

We note that each extension of the ‘Model1D’ class automatically inherits methods for com-
puting the numerical derivatives of the diffusion and drift coefficients. For example, drift_x
provides the first derivative of µ(S, t) with respect to S. This is implemented by default as
a central difference with step size controlled by h_x, which defaults to 1e − 05. The user can
override this value easily, for example model.h_x = 0.001. The other numerical derivatives
are also defined with default step sizes, each of which can be controlled by the user in a similar
fashion. In cases where the derivatives are known analytically, which is true for many com-
mon models (such as Brownian motion), greater accuracy and efficiency can be achieved by
overriding the derivative methods with the closed-form expressions. However, by providing a
default implementation for each, the user can quickly add a model with few lines of additional
code.

4.10. Simulation schemes

The pymle package supports each of the simulation schemes listed in Table 4. These are
implemented as children of the ‘Stepper’ class, which requires the user to simply override the
next() method of this base class:

class Stepper(ABC):
def __init__(self, model: Model1D):

self._model = model

@property
def model(self) -> Model1D:

return self._model

@abstractmethod
def next(self,

t: float,
dt: float,
x: Union[float, np.ndarray],
dZ: Union[float, np.ndarray]) -> Union[float, np.ndarray]:

raise NotImplementedError

The next() method, whose purpose is to evolve the current state forward one step over a
time increment dt, requires four parameters as follows:

Journal of Statistical Software 33

• t: Float, the current time of the process during the simulation.

• dt: Float, the increment between now and the next state transition.

• x: Float or array, the current state.

• dZ: Float or array, independent normal random variates, N(0, 1), used to evolve the
current state forward.

As a simple example, the ‘EulerStepper’ implements the Euler simulation scheme as follows:

class EulerStepper(Stepper):
def __init__(self, model: Model1D):

super().__init__(model=model)

def next(self,
t: float,
dt: float,
x: Union[float, np.ndarray],
dZ: Union[float, np.ndarray]) -> Union[float, np.ndarray]:

xp = x + self._model.drift(x, t) * dt \
+ self._model.diffusion(x, t) * np.sqrt(dt) * dZ

return np.maximum(0., xp) if self._model.is_positive else xp

Paths are then simulated using the ‘Simulator1D’ class, to which one provides either a
‘Stepper’ or the name of one of the built in ‘Stepper’ classes (e.g., “Euler”). This provides
several common simulation schemes, but allows the user to customize their own simulation
approach as desired. An example usage was previously provided in Section 4.5.

4.11. Next steps
While pymle offers a wide range of support for common SDE applications, there are several
areas of interest for extending its functionality. Adding support for sticky diffusions (Meier,
Li, and Zhang 2021; Meier et al. 2023), diffusions with non-smooth/discontinuous coefficients
(Lejay and Martinez 2006; Zhang and Li 2022; Ding and Cui 2022), multivariate diffusions
(Brouste et al. 2014), subordinated diffusions (Guo and Li 2019), and diffusion bridges (Bladt,
Finch, and Sørensen 2016; Chau, Kirkby, Nguyen, Nguyen, Nguyen, and Nguyen 2024) are
all promising directions for further development as the library continues to evolve, and we
welcome contributions and collaborations in the development to come. The additional support
of jumps as well as fractional Brownian motion, as currently offered in the R package yuima,
are also of interest for growth of the library.

5. Summary
We presented the pymle package for SDE simulation and inference in Python. The pymle
package relies on an object-oriented design, to facilitate its extensibility. We take a “re-
placeable parts” approach to the design, providing built-in functionality with the ability to

34 pymle: Stochastic Differential Equations Inference and Simulation in Python

swap out components for maximal customization. The addition of new models, estimation
methods, minimization routines, and simulation schemes is very simple with minimal addi-
tional code required. For example, simulation and parameter estimation interact with generic
‘Model1D’ objects, so once the minimal interface is added for a new model, it automatically in-
herits fitting and simulation functionality out-of-the-box. This makes pymle ideal as a testing
ground for new approaches in statistical inference of SDE, as well as a ready-to-use package
to support typical estimation requirements.

References

Abadie LM, Chamorro JM (2008). “Valuing Flexibility: The Case of an Integrated Gasi-
fication Combined Cycle Power Plant.” Energy Economics, 30(4), 1850–1881. doi:
10.1016/j.eneco.2006.10.004.

Ahn DH, Gao B (1999). “A Parametric Nonlinear Model of Term Structure Dynamics.” The
Review of Financial Studies, 12(4), 721–762. doi:10.1093/rfs/12.4.721.

Aït-Sahalia Y (1995). “Nonparametric Pricing of Interest Rate Derivative Securities.” Tech-
nical report, National Bureau of Economic Research.

Aït-Sahalia Y (1996). “Testing Continuous-Time Models of the Spot Interest Rate.” The
Review of Financial Studies, 9(2), 385–426. doi:10.1093/rfs/9.2.385.

Aït-Sahalia Y (2002). “Maximum Likelihood Estimation of Discretely Sampled Diffusions:
A Closed-Form Approximation Approach.” Econometrica, 70(1), 223–262. doi:10.1111/
1468-0262.00274.

Aït-Sahalia Y (2008). “Closed-Form Likelihood Expansions for Multivariate Diffusions.” The
Annals of Statistics, 36(2), 906–937. doi:10.1214/009053607000000622.

Aït-Sahalia Y, Kimmel R (2007). “Maximum Likelihood Estimation of Stochastic Volatility
Models.” Journal of Financial Economics, 83(2), 413–452. doi:10.1016/j.jfineco.2005.
10.006.

Aït-Sahalia Y, Kimmel RL (2010). “Estimating Affine Multifactor Term Structure Models
Using Closed-Form Likelihood Expansions.” Journal of Financial Economics, 98(1), 113–
144. doi:10.1016/j.jfineco.2010.05.004.

Black F, Scholes M (1973). “The Pricing of Options and Corporate Liabilities.” Journal of
Political Economy, 81(3), 637–654. doi:10.1086/260062.

Bladt M, Finch S, Sørensen M (2016). “Simulation of Multivariate Diffusion Bridges.” Journal
of the Royal Statistical Society B, 78(2), 343–369. doi:10.1111/rssb.12118.

Brignone R, Kyriakou I, Fusai G (2021). “Moment-Matching Approximations for Stochastic
Sums in Non-Gaussian Ornstein-Uhlenbeck Models.” Insurance: Mathematics and Eco-
nomics, 96, 232–247. doi:10.1016/j.insmatheco.2020.12.002.

https://doi.org/10.1016/j.eneco.2006.10.004
https://doi.org/10.1016/j.eneco.2006.10.004
https://doi.org/10.1093/rfs/12.4.721
https://doi.org/10.1093/rfs/9.2.385
https://doi.org/10.1111/1468-0262.00274
https://doi.org/10.1111/1468-0262.00274
https://doi.org/10.1214/009053607000000622
https://doi.org/10.1016/j.jfineco.2005.10.006
https://doi.org/10.1016/j.jfineco.2005.10.006
https://doi.org/10.1016/j.jfineco.2010.05.004
https://doi.org/10.1086/260062
https://doi.org/10.1111/rssb.12118
https://doi.org/10.1016/j.insmatheco.2020.12.002

Journal of Statistical Software 35

Brouste A, Fukasawa M, Hino H, Iacus SM, Kamatani K, Koike Y, Masuda H, Nomura R,
Ogihara T, Shimuzu Y, Uchida M, Yoshida N (2014). “The YUIMA Project: A Com-
putational Framework for Simulation and Inference of Stochastic Differential Equations.”
Journal of Statistical Software, 57(4), 1–51. doi:10.18637/jss.v057.i04.

Brown R (1828). “XXVII. A Brief Account of Microscopical Observations Made in the Months
of June, July and August 1827, on the Particles Contained in the Pollen of Plants; and
on the General Existence of Active Molecules in Organic and Inorganic Bodies.” The
Philosophical Magazine, 4(21), 161–173. doi:10.1080/14786442808674769.

Carley M (2013). “Numerical Solution of the Modified Bessel Equation.” IMA Journal of
Numerical Analysis, 33(3), 1048–1062. doi:10.1093/imanum/drs031.

Chan KC, Karolyi GA, Longstaff FA, Sanders AB (1992). “An Empirical Comparison of
Alternative Models of the Short-Term Interest Rate.” The Journal of Finance, 47(3),
1209–1227. doi:10.2307/2328983.

Chau H, Kirkby JL, Nguyen DH, Nguyen D, Nguyen N, Nguyen T (2024). “An Efficient
Method to Simulate Diffusion Bridges.” Statistics and Computing, 34(131), 1–22. doi:
10.1007/s11222-024-10439-z.

Choi S (2013). “Closed-Form Likelihood Expansions for Multivariate Time-Inhomogeneous
Diffusions.” Journal of Econometrics, 174(2), 45–65. doi:10.1016/j.jeconom.2011.12.
007.

Cox JC (1996). “The Constant Elasticity of Variance Option Pricing Model.” Journal of
Portfolio Management, p. 15. doi:10.3905/jpm.1996.015.

Cox JC, Ingersoll Jr JE, Ross SA (2005). “A Theory of the Term Structure of Interest Rates.”
In Theory of Valuation, pp. 129–164. World Scientific.

Cui Z, Kirkby JL, Nguyen D (2021a). “A Data-Driven Framework for Consistent Financial
Valuation and Risk Measurement.” European Journal of Operational Research, 289(1),
381–398. doi:10.1016/j.ejor.2020.07.011.

Cui Z, Kirkby JL, Nguyen D (2021b). “Efficient Simulation of Generalized SABR and Stochas-
tic Local Volatility Models Based on Markov Chain Approximations.” European Journal of
Operational Research, 290(3), 1046–1062. doi:10.1016/j.ejor.2020.09.008.

Ding K, Cui Z (2022). “A General Framework to Simulate Diffusions with Discontinuous
Coefficients and Local Times.” ACM Transactions on Modeling and Computer Simulation,
32(4), 1–29. doi:10.1145/3559541.

Dixit AK, Pindyck RS (1994). Investment under Uncertainty. Princeton University Press,
New Jersey. doi:10.1515/9781400830176.

Eberlein E, Keller U (1995). “Hyperbolic Distributions in Finance.” Bernoulli, 1(3), 281–299.
doi:10.3150/bj/1193667819.

Egorov AV, Li H, Xu Y (2003). “Maximum Likelihood Estimation of Time-Inhomogeneous
Diffusions.” Journal of Econometrics, 114(1), 107–139. doi:10.1016/s0304-4076(02)
00221-x.

https://doi.org/10.18637/jss.v057.i04
https://doi.org/10.1080/14786442808674769
https://doi.org/10.1093/imanum/drs031
https://doi.org/10.2307/2328983
https://doi.org/10.1007/s11222-024-10439-z
https://doi.org/10.1007/s11222-024-10439-z
https://doi.org/10.1016/j.jeconom.2011.12.007
https://doi.org/10.1016/j.jeconom.2011.12.007
https://doi.org/10.3905/jpm.1996.015
https://doi.org/10.1016/j.ejor.2020.07.011
https://doi.org/10.1016/j.ejor.2020.09.008
https://doi.org/10.1145/3559541
https://doi.org/10.1515/9781400830176
https://doi.org/10.3150/bj/1193667819
https://doi.org/10.1016/s0304-4076(02)00221-x
https://doi.org/10.1016/s0304-4076(02)00221-x

36 pymle: Stochastic Differential Equations Inference and Simulation in Python

Elerian O (1998). “A Note on the Existence of a Closed Form Conditional Transition Density
for the Milstein Scheme.” Economics Discussion Paper W18, University of Oxford. URL
https://www.nuff.ox.ac.uk/Economics/papers/1998/milpaper.pdf.

Eraker B (2001). “MCMC Analysis of Diffusion Models with Application to Finance.” Journal
of Business & Economic Statistics, 19(2), 177–191. doi:10.1198/073500101316970403.

Florens D (1998). “Estimation of the Diffusion Coefficient from Crossings.” Statistical Infer-
ence for Stochastic Processes, 1(2), 175–195. doi:10.1023/a:1009927813898.

Forman JL, Sørensen M (2008). “The Pearson Diffusions: A Class of Statistically Tractable
Diffusion Processes.” Scandinavian Journal of Statistics, 35(3), 438–465. doi:10.1111/j.
1467-9469.2007.00592.x.

Gallant AR, Tauchen G (1996). “Which Moments to Match?” Econometric Theory, 12(2),
657–681. doi:10.1017/s0266466600006976.

Glasserman P (2013). Monte Carlo Methods in Financial Engineering, volume 53. Springer-
Verlag.

Gourieroux C, Monfort A, Renault E (1993). “Indirect Inference.” Journal of Applied Econo-
metrics, 8(S1), S85–S118. doi:10.1002/jae.3950080507.

Grasselli M (2017). “The 4/2 Stochastic Volatility Model: A Unified Approach for the Heston
and the 3/2 Model.” Mathematical Finance, 27(4), 1013–1034. doi:10.1111/mafi.12124.

Guidoum AC, Boukhetala K (2020). “Performing Parallel Monte Carlo and Moment
Equations Methods for Itô and Stratonovich Stochastic Differential Systems: R Package
Sim.DiffProc.” Journal of Statistical Software, 96(2), 1–82. doi:10.18637/jss.v096.i02.

Guo W, Li L (2019). “Parametric Inference for Discretely Observed Subordinate Dif-
fusions.” Statistical Inference for Stochastic Processes, 22, 77–110. doi:10.1007/
s11203-017-9165-5.

Hansen LP, Scheinkman JA (1993). “Back to the Future: Generating Moment Implications for
Continuous-Time Markov Processes.” National Bureau of Economic Research, Cambridge.

Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. 2nd edition. Springer-Verlag.

Heston SL (1993). “A Closed-Form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options.” The Review of Financial Studies, 6(2),
327–343. doi:10.1093/rfs/6.2.327.

Higham DJ (2001). “An Algorithmic Introduction to Numerical Simulation of Stochastic
Differential Equations.” SIAM Review, 43(3), 525–546. doi:10.1137/s0036144500378302.

Hsu YL, Lin TI, Lee CF (2008). “Constant Elasticity of Variance (CEV) Option Pricing
Model: Integration and Detailed Derivation.” Mathematics and Computers in Simulation,
79(1), 60–71. doi:10.1016/j.matcom.2007.09.012.

https://www.nuff.ox.ac.uk/Economics/papers/1998/milpaper.pdf
https://doi.org/10.1198/073500101316970403
https://doi.org/10.1023/a:1009927813898
https://doi.org/10.1111/j.1467-9469.2007.00592.x
https://doi.org/10.1111/j.1467-9469.2007.00592.x
https://doi.org/10.1017/s0266466600006976
https://doi.org/10.1002/jae.3950080507
https://doi.org/10.1111/mafi.12124
https://doi.org/10.18637/jss.v096.i02
https://doi.org/10.1007/s11203-017-9165-5
https://doi.org/10.1007/s11203-017-9165-5
https://doi.org/10.1093/rfs/6.2.327
https://doi.org/10.1137/s0036144500378302
https://doi.org/10.1016/j.matcom.2007.09.012

Journal of Statistical Software 37

Hurn S, Lindsay K, Xu L (2023). “A Comparative Study of Likelihood Approximations for
Univariate Diffusions.” Journal of Financial Econometrics, 21(3), 852–879. doi:10.1093/
jjfinec/nbab021.

Iacus SM (2009). Simulation and Inference for Stochastic Differential Equations: With R
Examples. Springer-Verlag.

Iacus SM (2022). sde: Simulation and Inference for Stochastic Differential Equations. doi:
10.32614/CRAN.package.sde. R package version 2.0.18.

Iacus SM, Yoshida N (2018). Simulation and Inference for Stochastic Processes with YUIMA –
A Comprehensive R Framework for SDEs and Other Stochastic Processes. Springer-Verlag.
doi:10.1007/978-3-319-55569-0.

Jazwinski AH (2007). Stochastic Processes and Filtering Theory. Courier Corporation.

Jones CS (1997). “Bayesian Analysis of the Short-Term Interest Rate.” Working paper, The
Wharton School, University of Pennsylvania.

Kalbfleisch J, Lawless JF (1985). “The Analysis of Panel Data under a Markov As-
sumption.” Journal of the American Statistical Association, 80(392), 863–871. doi:
10.1080/01621459.1985.10478195.

Karatzas I, Shreve S (2014). Brownian Motion and Stochastic Calculus, volume 113. Springer-
Verlag.

Kessler M (1997). “Estimation of an Ergodic Diffusion from Discrete Observations.” Scandi-
navian Journal of Statistics, 24(2), 211–229. doi:10.1111/1467-9469.00059.

Kessler M, Sørensen M (1999). “Estimating Equations Based on Eigenfunctions for a Dis-
cretely Observed Diffusion Process.” Bernoulli, 5(2), 299–314. doi:10.2307/3318437.

Kirkby JL (2023). “Hybrid Equity Swap, Cap, and Floor Pricing under Stochastic Interest
by Markov Chain Approximation.” European Journal of Operational Research, 305(2),
961–978. doi:10.1016/j.ejor.2022.05.044.

Kirkby JL, Nguyen D (2020). “Efficient Asian Option Pricing under Regime Switching Jump
Diffusions and Stochastic Volatility Models.” Annals of Finance, 16(3), 307–351. doi:
10.1007/s10436-020-00366-0.

Kirkby JL, Nguyen DH, Nguyen D, Nguyen N (2022). “Maximum Likelihood Estimation of
Diffusions by Continuous Time Markov Chain.” Computational Statistics & Data Analysis,
168, 107408. doi:10.1016/j.csda.2021.107408.

Kloeden PE, Platen E (1992). “Stochastic Differential Equations.” In Numerical Solution of
Stochastic Differential Equations, pp. 103–160. Springer-Verlag.

Lejay A, Martinez M (2006). “A Scheme for Simulating One-Dimensional Diffusion Processes
with Discontinuous Coefficients.” Annals of Applied Probabilty, 16(1), 107–139. doi:10.
1214/105051605000000656.

https://doi.org/10.1093/jjfinec/nbab021
https://doi.org/10.1093/jjfinec/nbab021
https://doi.org/10.32614/CRAN.package.sde
https://doi.org/10.32614/CRAN.package.sde
https://doi.org/10.1007/978-3-319-55569-0
https://doi.org/10.1080/01621459.1985.10478195
https://doi.org/10.1080/01621459.1985.10478195
https://doi.org/10.1111/1467-9469.00059
https://doi.org/10.2307/3318437
https://doi.org/10.1016/j.ejor.2022.05.044
https://doi.org/10.1007/s10436-020-00366-0
https://doi.org/10.1007/s10436-020-00366-0
https://doi.org/10.1016/j.csda.2021.107408
https://doi.org/10.1214/105051605000000656
https://doi.org/10.1214/105051605000000656

38 pymle: Stochastic Differential Equations Inference and Simulation in Python

McGibbon RT, Pande VS (2015). “Efficient Maximum Likelihood Parameterization of
Continuous-Time Markov Processes.” The Journal of Chemical Physics, 143(3), 034109.
doi:10.1063/1.4926516.

McKinney W (2011). “pandas: A Foundational Python Library for Data Analysis and Statis-
tics.” In Python for High Performance and Scientific Computing, volume 14, pp. 1–9.
Seattle.

Meier C, Li L, Zhang G (2021). “Markov Chain Approximation of One-Dimensional Sticky
Diffusions.” Advances in Applied Probability, 53(2), 335–369. doi:10.1017/apr.2020.65.

Meier C, Li L, Zhang G (2023). “Simulation of Multidimensional Diffusions with Sticky
Boundaries via Markov Chain Approximation.” European Journal of Operational Research,
305(3), 1292–1308. doi:10.1016/j.ejor.2022.07.038.

Milshtein GN (1979). “A Method of Second-Order Accuracy Integration of Stochastic Dif-
ferential Equations.” Theory of Probability & Its Applications, 23(2), 396–401. doi:
10.1137/1123045.

Ozaki T (1985). “Non-Linear Time Series Models and Dynamical Systems.” In EJ Hannan,
PR Krishnaiah, MM Rao (eds.), Handbook of Statistics, volume 5, pp. 25–83. Elsevier.
doi:10.1016/s0169-7161(85)05004-0.

Ozaki T (1992). “A Bridge between Nonlinear Time Series Models and Nonlinear Stochastic
Dynamical Systems: A Local Linearization Approach.” Statistica Sinica, 2(1), 113–135.

Ozaki T (1993). “A Local Linearization Approach to Nonlinear Filtering.” International
Journal of Control, 57(1), 75–96. doi:10.1080/00207179308934379.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pret-
tenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay E (2011). “scikit-learn: Machine Learning in Python.” Journal of
Machine Learning Research, 12, 2825–2830. URL https://www.jmlr.org/papers/v12/
pedregosa11a.html.

Pfeuffer M (2017). “ctmcd: An R Package for Estimating the Parameters of a Continuous-
Time Markov Chain from Discrete-Time Data.” The R Journal, 9(2). doi:10.32614/
rj-2017-038.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rydin Gorjão L, Witthaut D, Lind PG (2023). “jumpdiff: A Python Library for Statistical
Inference of Jump-Diffusion Processes in Observational or Experimental Data Sets.” Journal
of Statistical Software, 105(4), 1–22. doi:10.18637/jss.v105.i04.

Schwartz ES (1997). “The Stochastic Behavior of Commodity Prices: Implications for Valu-
ation and Hedging.” The Journal of Finance, 52(3), 923–973. doi:10.2307/2329512.

Seabold S, Perktold J (2010). “statsmodels: Econometric and Statistical Modeling with
Python.” In Proceedings of the 9th Python in Science Conference, volume 57, p. 61. Austin.

https://doi.org/10.1063/1.4926516
https://doi.org/10.1017/apr.2020.65
https://doi.org/10.1016/j.ejor.2022.07.038
https://doi.org/10.1137/1123045
https://doi.org/10.1137/1123045
https://doi.org/10.1016/s0169-7161(85)05004-0
https://doi.org/10.1080/00207179308934379
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.32614/rj-2017-038
https://doi.org/10.32614/rj-2017-038
https://www.R-project.org/
https://doi.org/10.18637/jss.v105.i04
https://doi.org/10.2307/2329512

Journal of Statistical Software 39

Shoji I (1998). “A Comparative Study of Maximum Likelihood Estimators for Nonlinear
Dynamical System Models.” International Journal of Control, 71(3), 391–404. doi:10.
1080/002071798221731.

Shoji I, Ozaki T (1997). “Comparative Study of Estimation Methods for Continuous Time
Stochastic Processes.” Journal of Time Series Analysis, 18(5), 485–506. doi:10.1111/
1467-9892.00064.

Shoji L (1995). Estimation and Inference for Continuous Time Stochastic Models. Ph.D.
thesis, Institute of Statistical Mathematics, Tokyo.

Sigrist F, Künsch HR, Stahel WA (2015). “spate: An R Package for Spatio-Temporal Modeling
with a Stochastic Advection-Diffusion Process.” Journal of Statistical Software, 63(14), 1–
23. doi:10.18637/jss.v063.i14.

Uhlenbeck GE, Ornstein LS (1930). “On the Theory of the Brownian Motion.” Physical
Review, 36(5), 823. doi:10.1103/physrev.36.823.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Vasicek O (1977). “An Equilibrium Characterization of the Term Structure.” Journal of
Financial Economics, 5(2), 177–188. doi:10.1016/0304-405x(77)90016-2.

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. doi:10.18637/jss.v014.i06.

Zhang B, Grzelak LA, Oosterlee CW (2012). “Efficient Pricing of Commodity Options with
Early-Exercise under the Ornstein-Uhlenbeck Process.” Applied Numerical Mathematics,
62(2), 91–111. doi:10.1016/j.apnum.2011.10.005.

Zhang G, Li L (2022). “Analysis of Markov Chain Approximation for Diffusion Models with
Nonsmooth Coefficients.” SIAM Journal on Financial Mathematics, 13(3), 1144–1190.
doi:10.1137/21m1440098.

Zhao B (2009). “Inhomogeneous Geometric Brownian Motion.” SSRN 1429449, Social Science
Research Network. doi:10.2139/ssrn.1429449.

Affiliation:
Justin L. Kirkby
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30318, United States of America
Email: jkirkby3@gatech.edu

https://doi.org/10.1080/002071798221731
https://doi.org/10.1080/002071798221731
https://doi.org/10.1111/1467-9892.00064
https://doi.org/10.1111/1467-9892.00064
https://doi.org/10.18637/jss.v063.i14
https://doi.org/10.1103/physrev.36.823
https://www.python.org/
https://www.python.org/
https://doi.org/10.1016/0304-405x(77)90016-2
https://doi.org/10.18637/jss.v014.i06
https://doi.org/10.1016/j.apnum.2011.10.005
https://doi.org/10.1137/21m1440098
https://doi.org/10.2139/ssrn.1429449
mailto:jkirkby3@gatech.edu

40 pymle: Stochastic Differential Equations Inference and Simulation in Python

Dang H. Nguyen
Department of Mathematics
University of Alabama
Tuscaloosa, AL 35487, United States of America
Email: dangnh.maths@gmail.com

Duy Nguyen
Department of Mathematics
Marist College
Poughkeepsie, NY 12601, United States of America
Email: nducduy@gmail.com

Nhu Nguyen
Department of Mathematics and Applied Mathematical Sciences
University of Rhode Island
45 Upper College Rd, Kingston, RI 02881, United States of America
Email: nhu.nguyen@uri.edu

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

July 2025, Volume 113, Issue 4 Submitted: 2023-03-11
doi:10.18637/jss.v113.i04 Accepted: 2024-05-27

mailto:dangnh.maths@gmail.com
mailto:nducduy@gmail.com
mailto:nhu.nguyen@uri.edu
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v113.i04

	Introduction
	Existing packages
	Organization of paper

	Stochastic differential equations
	Example: Geometric Brownian motion
	Example: Chan-Karolyi-Longstaff-Sanders (CKLS)
	Special case: Cox-Ingersoll-Ross

	Simulation schemes
	Euler scheme
	Milstein scheme
	Milstein second scheme

	Maximum likelihood estimation of diffusions
	Euler approximation
	Elerian approximation
	Ozaki scheme
	Shoji-Ozaki scheme
	Kessler approximation
	Hermite polynomials expansion
	Markov chain approximation

	Package description
	Design overview
	Model class
	Transition density class
	Example: Euler approximation

	Maximum likelihood estimation
	Example usage
	Path simulation
	Maximum likelihood estimation
	CTMC-based estimation
	Comparison

	Real data example
	Adding your own model
	Step 1
	Step 2
	Step 3

	Time-dependent example
	Numerical derivatives
	Simulation schemes
	Next steps

	Summary

