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Abstract

Special techniques must be considered during analysis of large-scale educational as-
sessment (LSA) data. In this regard, many software packages are available to support
researchers conducting secondary analyses. However, the software packages available for
multilevel analyses are somewhat limited and usually contain only a few of the required
techniques. In this article, we review the technical details of LSA studies and describe
our comparison of software for multilevel analyses by questioning the extent to which
these packages take these technical details into account. In accordance with our findings
from this comparison, we developed a SAS macro for multilevel analyses of LSA data
that meets all technical requirements. The macro SURVEYHLM fits multilevel models
with LSA datasets. SURVEYHLM can handle up to three levels. It can fit different
correlation structures for the random components and use plausible values as response
variables, and the responses do not necessarily need to be normally distributed. Weights
can be specified on levels 1, 2 and 3. Scaling of the level-specific weights is possible,
and standard errors can be based on a sandwich estimator or calculated with either the
jackknife replication technique or through user-supplied replication weights. Examples of
applications are given.

Keywords: large-scale educational assessment, TIMSS, PIRLS, PISA, GLMM, multilevel anal-
yses.

1. Introduction

International large-scale assessment studies (LSAs) of education measure students’ educa-
tional achievement and provide researchers and policymakers with vital information on ed-
ucational performance over time and across countries. Students are tested in domains such
as reading literacy, mathematics and science literacy and, more recently, civic knowledge and
computer and information literacy (Foy 2017, 2018; Jung and Carstens 2015; Kohler, Weber,
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Brese, Schulz, and Carstens 2018; OECD 2009). Each program of studies usually follows a
three- to five-year cycle and assesses student achievement at important stages of their edu-
cation — at the end of primary and at the end of compulsory education. The International
Association for the Evaluation of Educational Achievement (IEA) has been conducting large-
scale international assessments of educational achievement for more than 50 years (Husén and
Postlethwaite 1996). Among these assessments are the Trends in International Mathematics
and Science Study (TIMSS; Mullis, Martin, Foy, and Hooper 2016a,b), which measures the
mathematics and science literacy of fourth- and eighth-grade students; the Programme in
International Reading Literacy Study (PIRLS; Mullis, Martin, Foy, and Hooper 2017), which
assesses the reading literacy of fourth-grade students; the International Computer and Infor-
mation Literacy Study (ICILS; Fraillon, Schulz, and Ainley 2013) for Grade 8 students; and
the International Civic and Citizenship Study (ICCS; Schulz, Ainley, Fraillon, Losito, Agrusti,
and Friedman 2018), which assesses the civic knowledge and attitudes of students typically
enrolled in Grade 8. Another well-known LSA study of student achievement is the Programme
for International Student Assessment (PISA; OECD 2016a,b), conducted by the Organisation
for Economic Co-operation and Development (OECD). It assesses the mathematics, science,
and reading literacy of 15-year-old students.

Since the first international educational comparative studies were conducted in the 1960s
(Husén and Postlethwaite 1996), progress in LSAs has been accompanied by methodologi-
cal advances in domains such as psychometrics, sampling theory, test development, statistics
and, more recently, the use of digital technology for collecting assessment data (Masters 2017).
However, these advances, as well as the specific characteristics of the respective datasets, pose
challenges for researchers, especially those who are used to more traditional dataset struc-
tures. During LSA studies, simple random sampling is rarely used to select the participants
(e.g., students) from the population of interest. At the same time, those conducting the as-
sessments usually endeavor to cover a broad range of content relating to the subject and the
grade level being assessed (e.g., mathematics). This aim led to the establishment of rotated
test designs, where each participating student answers only a small number of the total avail-
able number of survey/questionnaire items (Berezner and Adams 2017; Rutkowski, Gonzales,
Joncas, and Von Davier 2010).

These rotated test designs, also known as matrix-sampling designs (Von Davier, Sinharay,
Oranje, and Beaton 2007), usually combine sets of items into blocks of equal administration
time, with each set allocated to one block only. These blocks are then combined into test
booklets in a rotated manner, with blocks overlapping the booklets. While this approach
minimizes the test burden and subsequent consequences such as fatigue, it poses challenges
for data handling (Caro and Biecek 2017). Matrix-sampling designs also require researchers
to use complex statistical techniques to estimate student performance at the population level
so that they can make inferences of the kind they would make if students had responded to
the whole assessment (Caro and Biecek 2017; Von Davier, Gonzalez, and Mislevy 2009).

All LSA datasets, publicly available through download via the IEA and OECD websites, are
accompanied by information necessary to correctly handle their technically complex struc-
tures. However, the complexity of these approaches poses challenges for researchers because
they need knowledge of statistical concepts and computational methodologies that are usu-
ally beyond the scope of the typical secondary analyst (Mislevy 1991; Rutkowski et al. 2010).
Consequently, statistical programs that handle these special features of LSA data and allow
for complex models such as multilevel ones while simultaneously being easy to handle are
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essential for the continuation of methodologically sound research within the context of inter-
national large-scale educational assessments. This article presents a SAS macro that fulfills
these necessities of methodological accuracy and usability while enabling researchers to con-
currently estimate complex models such as those developed during multilevel analyses. The
code for this macro as well as the code for the calculated examples and the data sets are
available on the pages of the Journal of Statistical Software.

2. Multilevel analysis with large-scale data

Sampling designs for all surveys used in this article, such as IEA’s TIMSS (Mullis and Martin
2013), PIRLS (Mullis and Martin 2015), and ICILS (Fraillon et al. 2013), or the OECD’s
PISA (OECD 2017a), include stratification, clustering, and unequal selection probabilities
(the technical details of these studies can be found in Fraillon, Schulz, Friedman, Ainley, and
Gebhardt 2015; Martin and Mullis 2012; Martin, Mullis, and Hooper 2016; OECD 2017b).
A sample that is drawn in accordance with this type of design is called a complex sample
(Mislevy 1991). Statistical analysis of complex survey sample data has to take the attributes
of these data into account.

Multilevel models, such as the linear mixed model (LMM),! are often used to analyze LSA
datasets (Atar and Atar 2012; Boulifa and Kaaouachi 2015; Caponera and Losito 2016; Cos-
grove and Cunningham 2011; Demir, Kilic, and Unal 2010; Ghagar, Othman, and Moham-
madpour 2011; Grilli, Pennoni, Rampichini, and Romeo 2015; Ismail, Samsudin, and Zain
2014; Leino and Malin 2006; Liou and Hung 2015; Liidtke, Marsh, Robitzsch, Trautwein, As-
parouhov, and Muthén 2008; Martin, Foy, Mullis, and O’Dwyer 2013; Meroni, Vera-Toscano,
and Costa 2015; Mohammadpour 2013; Mohammadpour, Kalantarrashidi, and Shekarchizadeh
2015; OECD 2016a,b; Smith, Wendt, and Kasper 2016; Sun, Bradley, and Akers 2012; Tavsan-
cil and Yalcin 2015; Webster and Fisher 2000; Wendt, Kasper, and Trendtel 2017; Wiberg
and Rolfsman 2013). However, software that integrates all the essential statistical techniques
usually applied during analyses of these datasets (e.g., plausible values, sampling weights, and
replication weights; see below) is either rare, integrates only some of these features (which
can result in biased estimates), or can be used only for datasets from certain LSA studies (see
Section 3). These reasons explain why we developed the SAS SURVEYHLM macro. Based on
the generalized linear mixed model (GLMM; McCulloch et al. 2008), the macro fits multilevel
models that take the aforementioned features of LSA datasets into account in order to obtain
appropriate estimates for the population of interest.

In the following sections of this article, we briefly overview the GLMM and the essential
techniques that researchers usually apply when analyzing LSA datasets. Because multilevel
modeling is well documented in the literature (Bickel 2007; De Leeuw and Meijer 2008; Hox
2010; Kreft and De Leeuw 1998; Raudenbush and Bryk 2002; Skrondal and Rabe-Hesketh
2004; Snijders and Bosker 2012), we do not provide background information on this process.

'Tn educational research, the statistical method is often called hierarchical linear modeling (HLM; Rauden-
bush and Bryk 2002). However, as Woltman, Feldstain, MacKay, and Rocchi (2012) have pointed out, the
development of this method occurred simultaneously across many fields, and it is known by several names,
among others, multilevel-, mixed linear-, mixed effects-, and covariance components-modeling (Hofmann 1997;
Raudenbush and Bryk 2002; Woltman et al. 2012). We used the linear mixed model framework in this paper,
not only because it can be seen as a special case of the generalized linear mixed model (GLMM; McCulloch,
Searle, and Neuhaus 2008), but also because we needed it to introduce (later in this article) multilevel modeling
for non-normally distributed response variables.
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We do, however, show how the GLMM can be used to fit multilevel models. Also, because
most of the techniques that are usually applied to LSA datasets have been well documented
and discussed (see Beaton and Johnson 1992; Johnson and Rust 1992; Martin et al. 2016;
Martin and Mullis 2012; Mislevy 1991; Mislevy, Beaton, Kaplan, and Sheehan 1992a; Mislevy,
Johnson, and Muraki 1992b; OECD 2017b; Wolter 2007), our overview of these techniques
is short and mainly oriented on the techniques implemented in the TIMSS, PIRLS, and
PISA surveys (Martin et al. 2016; Martin and Mullis 2012; OECD 2017b). Furthermore,
because the statistical techniques used in other LSA studies are very similar, we consider that
restricting our focus to these studies is acceptable.? We begin our overview by introducing the
proficiency estimation that uses plausible values. We then discuss the use of sample weights
and the procedure for estimating the standard errors of all proficiency statistics. We end our
overview with an introduction to the GLMM followed by a short description of the technical
details of the SURVEYHLM macro.

2.1. Proficiency estimation using plausible values

As described above, LSA studies of educational achievement usually use a matrix-sampling
design to assign assessment blocks to student booklets. The immediate result of the matrix-
sampling design is that the raw scores for different students (i.e., the scores from the different
test booklets) are not directly comparable. Instead, a linking device needs to be implemented.
Large-scale educational assessment studies rely on item response theory (IRT) scaling to
combine and link student responses (Martin et al. 2016; Martin, Mullis, and Hooper 2017;
OECD 2017b; Von Davier, Carstensen, and Von Davier 2008; Von Davier et al. 2007). In this
regard, it is assumed that the conditional probability of item response x; to item ¢ can be
expressed as p(z; | 8, B;), with the d x 1 latent parameter vector 87 = (61 --- 63) and the
t; x 1 item parameter vector B, = (81 -+ Bi,)->

The function assumed for p(z; | €, 8;) depends on the LSA study, its cycle of assessments,
and the scoring of the items. For example, TIMSS and PIRLS use a three-parameter logistic
model (3PL; Birnbaum 1968) for dichotomously scored multiple-choice items, a two-parameter
logistic model (2PL; Birnbaum 1968) for dichotomously scored constructed-response items,
and the partial credit model (PCM; Masters 1982; Wright and Masters 1982) for polytomous
constructed-response items (Martin et al. 2016, 2017). In contrast, PISA 2000 to 2012 cycles
fitted the Rasch model (RM; Rasch 1960) to dichotomously scored items and used the PCM
for items with multiple score categories (OECD 2014). Since PISA 2015, the 2PL model
has been used for dichotomously scored responses and the generalized partial credit model
(GPCM; Muraki 1992) for items with more than two ordered response categories (OECD
2017b).

A student’s response to any subset of items induces a likelihood function for 8. However, as
mentioned above, the matrix-sampling design used in LSA studies means that each student
answers only a portion of all items. Although the actual number of items per scale in a
booklet differs somewhat from study to study, the LSA test booklets usually have no fewer
than 12 items or no more than 20 items per scale. Hence, point estimates for 8, such as the

2We will, however, briefly mention the differences between the studies when outlining important steps in
the implemented techniques.

3d is the dimension of the latent proficiency. For example, PIRLS assumes that reading purpose consists
of the two dimensions literary experience and acquire and use information. Consequently, in this case, d = 2
(Martin et al. 2017).
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MLE 6 or the Bayes mean estimate 6 = E(O | =), may not be very precise. Therefore, instead
of estimating individual values for 8, LSA researchers typically estimate parameters a of a
population distribution p(@ | ) of 8, and use missing value theory (Rubin 1987) to do this.

According to Mislevy (1991), we can consider @ as a variable whose responses are missing
for all respondents. Also, because missingness does not depend on the value of @, missing
at random (MAR) is assumed, which means the response mechanism can be ignored (Rubin
1987). Under these conditions the expectation of a statistic ¢ = ¢(8, W), that is, a statistic

given 0" = (91 HN) and background variables W, where w' = (wl 'wN) and
'w]T = (wjl e wju), can be written as
E(q | X, W) = [ (0. W)p(6| X, W)db. 1)

LSA studies typically collect hundreds of variables g; for each student. These variables are
used to perform a principal component analysis. A number u of principal components (the
w;) that explain, say, 90% of the variation in the g; is then used for further analysis. In simple
terms, and in accordance with the results of Rubin (1987), Equation 1 can be approximated
by taking m = 1,--- , M random samples from p(0 | X, W), calculating ¢(8, W) for each of
these sampled values, and then taking the average of these M statistics as an estimate for
E(q| X,W).

LSA studies typically factor the distribution p(@ | X, W) into two components (Martin et al.
2016, 2017; OECD 2014, 2017b) and use these to build the posterior distribution for 6;

p(e |$C‘,’U7',’)’,O’2): : (2)
R I p(z; | 05,B)p(6; | wj,v,0?)

The first factor p(x; | 6;, 8), the latent variable model, corresponds to the IRT model. The

second factor p(f; | w;,~,0?), the population model, is the prior distribution of 6;. If

d = 1, a normal distribution with a latent regression model is assumed for the population

model, that is, 6; | w; ~ N (w]—-r'y, 0?), and a multivariate normal distribution is assumed for

multidimensional 6;. Thus, 8; | w; ~ N(T'"w;, %), with 9; = (Gj e b ) Note that

the mean parameter vector 4 (or matrix T') and the variance ¢ (or variance matrix X) are
assumed to be the same for all respondents. LSA studies use a three-stage estimation process
for the sample from Equation 2 (Von Davier et al. 2007), and they repeat this three-step
procedure M times, a process that results in M sets of imputations (plausible values) for
each student in the sample. The values for M may differ from study to study. For example,
M =10 in PISA 2015 (OECD 2017b), while M =5 in TIMSS 2015 (Martin et al. 2016).

LSA studies use the plausible values to evaluate Equation 1 for an arbitrary function ¢q. If we
assume ¢, Is such a statistic based on the m plausible value 7", and 52 is the corresponding
sample variance, then the best estimate of ¢ obtainable from the plausible values is

A qu
E X W)r§j==""
(@ X, W)~q="",
with standard error
2 N2
9 D Sm 1y 2 (Gm — 4)
=U+(1+M)B, (3)
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where U reflects the uncertainty due to sampling of students from the population, and B
reflects the uncertainty because of 8 having been imputed M times.

We need to note, though, that LSA studies generally also use ordinal variables zj" as the
dependent variables (e.g., benchmark values in TIMSS and PIRLS or proficiency levels in
PISA; Martin et al. 2016, 2017; OECD 2017b). In simple terms, these ordinal variables
are transformations of the continuous plausible values 0;”, in the sense that 2" = ¢ when
ki <07 < kj, (TIMSS and PIRLS) or ki < 07" < kj; (PISA), where the k’s are ordered cut-off
values on the continuous scale of 07" (i.e., kf < k‘fH and kj, < k‘ffl), and wherec=1,2,...,C
is, for example, the code for the benchmark value in TIMSS and PIRLS or the number of
proficiency levels in PISA (Foy 2017; OECD 2017b). The 2™ variables describe what students
typically know and can do at a given level of . A typical research question might be that
of asking how many students within a sample of students performed at a given level ¢, and
whether that proportion was associated with gender.

2.2. Sampling weights

Although LSA studies use systematic random sampling to select students for the survey,
weights must be incorporated into the analysis to compensate for these different selection
probabilities. Several reasons lead to the need to vary weights across students, for example,
school, class, or student nonresponse. LSA studies use different methods to determine the
survey weights, with the choice of method depending on each study’s sample design (see Sec-
tion 1). However, the overall student sampling weight is usually a composite of level-specific
weights, possibly adjusted for unequal selection probabilities and/or a trimming factor.

For example, in TIMSS 2015 the overall student sampling weight W;;; for student ¢ in class-
room [ of school s was

Wis = vvi|ls X I/Vl\s X Ws.

Here, W, is the final student weight for students in classroom [ of school s, W, is the
final class weight of class [ in school s, and Wj is the final school weight of school s (Martin
et al. 2016). The final weights are basically the (nonresponse) adjusted inverse (conditional)
selection probabilities of the respective unit. In PISA 2015, however, the sampling of students
within schools did not take the class level into account, and the overall student sampling weight
was therefore a composite of just two components (OECD 2017b). Given a student ¢ in school
s, we can write the overall student weight as

Wis = t2VVi|s X t1WS,

where W, is the adjusted final student weight, Wy is the adjusted final school weight, and
to and t; are trimming factors used to reduce exceptionally large weights.

Various authors favor the use of level-specific weights during multilevel analyses (Asparouhov
2006; Pfeffermann, Skinner, Holmes, Goldstein, and Rasbash 1998; Rabe-Hesketh and Skro-
ndal 2006; Rutkowski et al. 2010). These level-specific weights can be calculated by, for
example, combining the final weights appropriately. Consider a three-level analysis of TIMSS
2015 data, where students are on level 1, classes are on level 2, and schools are on level 3.
Here, the weight for level 1 could be Wy, the weight for level 2 could be W, and the weight
for level 3 could be W,. When researchers use level-specific weights, they usually scale them
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to further reduce small sample biases (Asparouhov 2006; Carle 2009; Pfeffermann et al. 1998;
Rabe-Hesketh and Skrondal 2006).

2.3. Procedure for estimating standard errors

As can be seen in Equation 3, the standard error for estimates based on plausible values has
two components. The first reflects the uncertainty due to the sampling process (i.e., sampling
variance), while the second reflects the uncertainty due to the estimation of the plausible
values (i.e., imputation error or measurement error). LSA studies rely on resampling schemes
to estimate the sampling variance s2. Although the different LSA studies use different re-
sampling schemes, for example, the balanced repeated replication (BRR) technique in PISA
(OECD 2017b) and the jackknife repeated replication (JRR) technique in TIMSS and PIRLS
(Martin et al. 2016, 2017), the procedure for estimating the sampling variance can generally
be described as follows:

1. Countries with a two-stage sampling design (i.e., where schools are sampled during the
first stage and students in these sampled schools are sampled during the second stage)
paired schools on the basis of the explicit and implicit stratification and frame ordering
(e.g., measure of size) used in the sampling. Countries with a single-stage sampling
design (e.g., sampled only students) or a three-stage sampling design (e.g., first sampled
regions, then schools, then students) did the pairings at this level and then adjusted
the remaining steps (if applicable) accordingly. The literature refers to these pairs as
variance strata or zones or pseudo-strata (Adams and Wu 2002; Judkins 1990; Rust
1985; Rust and Rao 1996; Wolter 2007).

2. The zones are numbered sequentially from h=1,..., H.?

3. Within each zone, one school is randomly numbered j = 1; in the other j = 2.6

4. The information H on school zone and the information on school number j =1,...,J
are attached to the data for the sampled students.

5. A set of n.y, = 1,..., Ny replication weights based on the zone number and the school
number are constructed, with the value for NV,, depending on the study and the cycle.
For example, N, = 80 in PISA 2015 (OECD 2017b), Ny, = 75 in TIMSS 2011 (Martin
and Mullis 2012), and Ny, = 150 in TIMSS 2015 (Martin et al. 2016). The replication
weight for zone h, school j, and student ¢ is constructed as

Whji = cnj x W,

where c¢y; is the replication factor and Wy; is the overall sampling weight of student 4
(possibly adjusted for nonresponse, given replicate 7,.,).

4The procedure differs if the number of schools in an explicit stratum is an odd number. For example,
PISA formed a triple of schools (OECD 2017b) while TIMSS and PIRLS randomly divided the students in
the remaining school into two guasi schools (Martin et al. 2016, 2017).

5The value for H may differ across studies. For example, H = 75 in TIMSS 2015.

STn triplets, the third school is indexed by j = 3.
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6. The procedures used to construct the replication factors cp; also differ in accordance
with the study and cycle. For example, in TIMSS 2015 (Martin et al. 2016) and PIRLS
2016 (Martin et al. 2017), the replicate factors were

2 for students in school j of sampling zone h,
¢jn = 4 0 for students in the other school of sampling zone h,

1 for students in any other sampling zone,
while in TIMSS 2011 and PIRLS 2011 (Martin and Mullis 2012) they were

2 for students in school j = 1 of sampling zone h,
cjn = ¢ 0 for students in school j = 2 of sampling zone h,

1 for students in any other sampling zone.

A comparison of the last two approaches shows that the difference between TIMSS
2015/PIRLS 2016 and TIMSS 2011/PIRLS 2011 is the following: Each of the studies
had only two schools per sampling zone. However, two replication weights per sampling
zone were constructed in later cycles of these studies, and only one replication weight
per sampling zone was constructed for TIMSS 2011/PIRLS 2011. Hence, this approach
has similarities to the JK2 procedure, as explained in, for example, Rust and Rao
(1996). However, unlike the JK2, the designation of schools (i.e., j = 1 and j = 2)
is not random but is given as a fixed indicator, as evident in the datasets of TIMSS
2011/PIRLS 2011 and the earlier cycles of these studies. In both the IEA IDB Analyzer
software distributed with the TIMSS and PIRLS datasets (Foy, Arora, and Stanco 2013)
and the macro SURVEYHLM, this procedure can be invoked with jktyp = half. In
PISA 2015 (OECD 2017b), one of the two schools in each zone received a replicated
factor of cp; = 1.5 and the remaining schools ¢;; = 0.5.”7 During this step, entries in
a Hadamard matrix of order 80 are used to determine which schools receive inflated
weights and which receive deflated weights.

7. A set of N, replicate estimates, ¢,,, is created through use of the corresponding
replication weight W, ;.

8. If ¢ is the estimate of a given statistic from the full sample of students, then the estimate
of the sampling variance s® for that statistic is given by

NT’UJ

VAR(q) = > =k > {(an,. —a)*}. (4)

Npw=1

where the value of k£ depends on the study. For example, in TIMSS 2015, £ = 0.5 while
in TIMSS 2011 k£ =1 (Martin and Mullis 2012; Martin et al. 2016).

9. The square root of s is used as the appropriate estimate for the standard error of any
statistic derived from the variables other than plausible values.

"For triplets, one of the schools (designated as random) received a factor of cx; = 1.7071 for a given
replicate and the other two schools received a factor of cn; = 0.6464. Alternatively, one school received a
factor of cp; = 0.2929, and the other two schools received a factor of cx; = 1.3536.
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10. For plausible values, either step 7 and 8 are repeated M-times (one cycle for each
plausible value), yielding estimates s2,, or only one time via use of the first plausible
value (thus yielding s7). These estimates are then used as the basis for computing U
(adjusting M to 1 for s?), and U is used in Equation 3 to calculate 32. The square root

of 3(22 yields the standard error for the statistic.

2.4. Generalized linear mixed model for multilevel analysis

In the following, we assume that we have i = 1,...,n observations on response variable y; with
y=(y1 --- wyn)'. The typical assumptions about y; that are associated with generalized
linear mixed models (GLMMs) are:

Ly | v ~indep. f(yi|7),

2. f(yi | v) = W) exp[{nT (yi) — A(mi) }/¢],
3. Ely|~]=¢ (XB+ Zv),and

4. v~ w(v),

with (OA(n;)/0n;) = wi = E[yi | 7], and (92A(n;)/0n?)¢ = Uzi'l“/ (Breslow and Clayton 1993;
Karim and Zeger 1992; McCullagh and Nelder 1989; McCulloch et al. 2008; Pfeffermann
et al. 1998; Pinheiro and Bates 1995; Rabe-Hesketh and Skrondal 2006; Tuerlinckx, Rijmen,
Verbeke, and De Boeck 2006; Wolfinger and O’Connell 1993).%2 Thus, a typical assumption
when the random vector = is given is that the elements y; are independent and that each
element has a distribution f(y; | 7). A second assumption is that a differentiable monotonic
link function g(-) (with its inverse g~!(-)) exists that maps the conditional expectation E[y | ]
linearly on the n x (p+ 1) predictor matrix X with its corresponding (p + 1) x 1 fixed effect
vector B and on the n X tG block-predictor matrix Z = (Z; --- Zg) with its corresponding
tG x 1 random-effect vector «y. (Here, t are the number of assumed random-effect predictors,
and G is the number of units that the random effects should vary across; see below.) A third
and final assumption is that the random effects follow some form of distribution and not
necessarily a normal one.

The dependent variables in LSA studies are usually the plausible values, which are typically
treated as continuous and, in multilevel analyses, as normally distributed (Atar and Atar
2012; Boulifa and Kaaouachi 2015; Caponera and Losito 2016; Cosgrove and Cunningham
2011; Leino and Malin 2006; Liidtke et al. 2008; Martin et al. 2013; Mohammadpour 2013;
Mohammadpour et al. 2015; OECD 2016a,b; Smith et al. 2016; Sun et al. 2012; Wendt et al.
2017). In terms of the GLMM, this treatment implies the need to use the identity link function
with the normal distribution as the conditional density. Hence,

Ely | 7] = XB + Z~,

8For the sake of simplicity here and in the following text, we suppress the additional conditional elements
B and o, in the expression of E[y; | 7] and f(y: | ).

9Usually, and hereafter, the assumption is that f(y; | 7) belongs to the exponential family or is similar to
the exponential family. In the expression for this distribution, h(y;) is the base, n; is the natural parameter
of the respective exponential distribution, T'(y;) is the sufficient statistic of f(y: | v),A() is a log-partition
function of the natural parameter n;, and ¢ is a dispersion parameter.
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with the conditional probability density

F 1) = (g ) 5
. = e 204
Yl =\ e

Instead of using the plausible values, Gilleece, Cosgrove, and Sofroniou (2010) used the pro-
ficiency values z" for these variables as the dependent variable when conducting multilevel
analyses. The proficiency values can be considered as ordinal variables (see above), and the
GLMM can accommodate these by assuming, for example, the multinomial distribution as
the conditional density of the data and by using the cumulative logit function as the link
function. Thus, assuming y; can fall in m =1,..., M categories, then

6(5]'7)\1'

m j:].,...,]\4—17

Elyi <j [ =Py <j)=w; =
where v;; are the cumulative probabilities v;; = pi1 +- - - +pj; (with pij as the probability that
observation ¢ will fall into category j), §; are the intercept for category j, and \; = :B;r 5+zi—r ~.
The conditional probability density function for the multinomial is

m)!

flyi, -y | 7) = TDil " PiM-

il Yinr!
In addition to using the proficiency values, researchers sometimes use a binary variable as
the dependent variable when conducting multilevel analyses with LSA datasets (Karakolidis,
Pitsia, and Emvalotis 2016; Rabe-Hesketh and Skrondal 2006; Zhu 2014). The binary variable
is usually a function of the plausible values. Thus, for example, students with a scale score
not above the low international benchmark will be assigned a zero and the remaining students
will be assigned a one on the binary variable. The logistic link function is often used as a
means of accommodating binary responses in the GLMM. Thus, if we assume y; = 0 when
observation ¢ belongs to category 1 and y; = 1 when observation i belongs to category 2, then
the link function of the GLMM can be written as

eti

i=11v=Plyi=1=pi=x

with \; = wiT,B + ziT ~. The corresponding conditional density for this model is
Yi —H4
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where s = 1 is the most common default. Of course, the GLMM can accommodate many
other link functions and families of the conditional density (McCulloch et al. 2008). We
provided the above examples because they seem to us the most important ones in the context
of LSA studies.

The GLMM can also accommodate the multilevel structure of LSA datasets through proper
specification of Z and -, and we can demonstrate this possibility by using the example
of a two-stage sampling design with a continuous normally distributed response variable.
Extending this example to models with more than two stages or with response variables

flyilv) =
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that are not normally distributed is straightforward. Let us, then, assume a two-stage cluster
sampling design where schools were randomly sampled at stage 1 and students were randomly
sampled at stage 2. Let j =1,...,G and ¢ = 1,...,n; denote the indices of the units at level
2 (stage 1) and level 1 (stage 2). Assume also that mathematical achievement is the response
variable y;;, and that students’ social status x1;; and school region (urban or rural) T2ij
explain students’ achievement in mathematics. If we further assume that the school-based
average achievement of students and the relationship between social status and mathematical
achievement vary randomly across schools, then we can assume that the result will be a
random intercept and a random slope model. In terms of the GLMM, this model can be
expressed as

Ely [+] =XB+ Z~,
1z
1 =i mon
: : o1
1 Zing1 71
|1 zim @ong bo _ ,
T112  T212 3
: : . 2 I znc VoG
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where o1, - - ., Yog are the random effects due to the intercept, and 711, ..., v1g are the random
effects due to the slope of social status (with the zeros in Z replaced by empty spaces).
Because we are unlikely to be interested in the predicted values of v; = (y0; -+ )" but

instead interested in the variances and covariance of these effects, our goal with respect to
our example would typically be that of estimating

2’7 — 0-3/0 U’YUQ?'YI ,
! U"/ly’YO O"Yl
rather than predicting «; directly. Finally, let us assume that X, = 3, holds for all j (for a
critical reflection on this assumption, see Daniels and Zhao 2003; Heagerty and Zeger 2000).

In the following text we denote the probability of a single observation, conditional on the
fixed and random effects, by p(yi; | B,7;)-'° We can then express the likelihood of the data
having normally distributed random effects v; ~ Ng(0, X,) as

G G

J=1 J=1

with the n; x 1 response vectors y; = (y1; --- ynjj)T, and

p(y; | B) = /Hp(yz'j | B,75)e(vs | 0, X5)dvy; = /f(yj | B,75)e(v; | 0, X5)dv;,  (5)
=1

where p(v; | 0,X) is the multivariate normal distribution of dimension v = t 4+ 1 (when
a random intercept is assumed) or v = t (without a random intercept). In some GLMMs,

Tn the Bernoulli case considered above, for example, p(yi; | 8,7;) = pfj” (1 — py)t—Pid).



12 SURVEYHLM: Multilevel Analysis with Large-Scale Assessment Data in SAS

the integral in Equation 5 has a closed-form solution, as occurs, for example, when the
dependent variable is normally distributed and the linear mixed model is consequently used.
However, there are also models for which no analytic solution to this integral exists. The
literature contains many different proposed methods for estimating the parameters 8 and
X, in these cases (Booth and Hobert 1999; Breslow and Clayton 1993; Breslow and Lin
1995; Gamerman 1997; Lin and Breslow 1996; Natarajan and Kass 2000; Pinheiro and Bates
1995; Rabe-Hesketh and Skrondal 2006; Raudenbush, Yang, and Yosef 2000; Shun 1997; Shun
and McCullagh 1995; Wolfinger and O’Connell 1993; Zeger and Karim 1991). According to
Tuerlinckx et al. (2006) and the SAS Institute Inc. (2020), these methods can be represented
by two general types of solution. The first approximates the integral numerically (Booth and
Hobert 1999; Gamerman 1997; Natarajan and Kass 2000; Rabe-Hesketh and Skrondal 2006;
Zeger and Karim 1991) and the second approximates the integrand (Breslow and Clayton
1993; Breslow and Lin 1995; Lin and Breslow 1996; Raudenbush et al. 2000; Shun 1997; Shun
and McCullagh 1995; Wolfinger and O’Connell 1993), which means that the integral of this
approximation has a closed form. Our macro SURVEYHLM uses maximum quasi-likelihood
as the estimation method (e.g., for approximating the integrand) for models without random
effects and for multilevel models with a normally distributed dependent variable when level-
specific weights are not specified, whereas the adaptive Gaussian quadrature is used (e.g., for
approximating the integral) for all other models.

2.5. The SURVEYHLM macro

The SURVEYHLM macro fits multilevel models (Dempster, Rubin, and Tsutakawa 1981;
Hofmann 1997; Lindley and Smith 1972; Rabe-Hesketh and Skrondal 2006; Raudenbush and
Bryk 2002; Smith 1973; Woltman et al. 2012) with LSA datasets. It produces descriptive
statistics for the variables in the model, can handle up to three levels, and makes it possible
to specify, separately for each level, a random intercept, random slopes (Raudenbush and Bryk
2002), or both. It can also assume different correlation structures for the random components,
and it fits both general linear mixed models and linear mixed models (McCulloch et al. 2008).
It furthermore allows plausible values to be used as response variables, the response does
not necessarily need to be normally distributed, and users can specify both continuous and
categorical independent variables for each level. Centering the predictors around the class
mean is possible, as is centering around the grand mean (Raudenbush and Bryk 2002).

Weights can be specified on levels 1, 2, and 3, and the combined weight can also be specified.
If a combined weight is specified, the descriptive statistics are based on this weight; if not,
the descriptive statistics are unweighted. Various researchers recommend using level-specific
weights with LSA datasets (Asparouhov 2006; Pfeffermann et al. 1998; Rabe-Hesketh and
Skrondal 2006; Rutkowski et al. 2010). Consequently, if a multilevel analysis defines level-
specific weights, the SURVEYHLM macro uses these weights as the default in multilevel
analyses. If there is no such definition, the macro uses the combined weight or performs an
unweighted analysis. The SURVEYHLM macro also allows the level-specific weights to be
scaled (Asparouhov 2006; Carle 2009; Pfeffermann et al. 1998; Rabe-Hesketh and Skrondal
2006).

The standard errors for both descriptive statistics and multilevel coeflicients can be based on
a sandwich estimator or calculated with the jackknife replication technique or through the
provision of user-supplied replication weights (Grilli and Pratesi 2004; Kolenikov 2010; Korn
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and Graubard 2003; Kovacevic, Rong, and You 2006; Lohr 2010; Rust and Rao 1996; Wolter
2007). The macro’s sandwich estimators of the standard errors for the multilevel coefficients
are based on the classical empirical-based estimator (White 1982), and the macro supports
either a jackknife replication procedure or user-supplied replication weights (see Section 2).
If the user uses plausible values as dependent variables and calculates standard errors with
either jackknife or user-supplied replication weights, then he or she can decide whether to
use all plausible values or only the first plausible value for standard error calculations (see
Section 2).

We need, at this point, to make a comment about estimating of standard errors with the
jackknife replication technique or through user-supplied replication weights. For descriptive
statistics such as a function of totals, the properties of replication variance estimation tech-
niques are well studied (Kolenikov 2010; Lohr 2010; Rust and Rao 1996; Wolter 2007) and
typically result in consistent estimators of the standard errors. For multilevel models with
multilevel weights, various researchers have proposed different resampling approaches to es-
timating the standard errors (Korn and Graubard 2003; Kovacevic et al. 2006). In addition,
some software packages contain resampling approaches that include level-specific weights (see
Table 1). However, little is yet known about how proposed and implemented estimation
techniques behave within the context of multilevel models with multilevel weights. Korn
and Graubard (2003) investigate a jackknife estimator with joint inclusion probabilities in
a simulation study that involved simple random sampling and reported reasonable estima-
tors of the standard errors. Unfortunately, the authors did not provide further details of
the study’s design and its results. Grilli and Pratesi (2004) conducted a simulation study
that featured a complex sample design to investigate, among other considerations, Korn and
Graubard’s (2003) proposed jackknife estimator. The authors claimed that the proposed es-
timator appeared to be unreliable in this setting. However, it is difficult to assess the veracity
of their claim, as they did not detail their results. In a study that used informative sampling,
Kovacevic et al. (2006) assessed the behavior of two different bootstrapping estimators and
a sandwich estimator of the standard errors for multilevel models with multilevel weights.
In general, given the relative bias, it seems that bootstrap variance estimators overestimate
and sandwich estimators underestimate the variance. However, it also seems that across all
methods the bias decreases somewhat when the sample size increases (an outcome perhaps
indicative of consistency). However, the authors simulated only four sample-size combinations
and provided only graphical presentations of their results. They also gave no indication of
whether these results were statistically significant. As such, a comprehensive study designed
to investigate and compare the different suggested and implemented methods for estimat-
ing standard errors in multilevel models with multilevel weights is still needed, while further
theoretical and numerical research directed toward the behavior of these estimators remains
desirable.

The estimation method the macro uses for fixed effects models (e.g., general linear models or
linear models) and for multilevel models with a normally distributed dependent variable when
level-specific weights are not specified is the maximum pseudo-likelihood method (Breslow and
Clayton 1993; Shall 1991; Tuerlinckx et al. 2006; Wolfinger and O’Connell 1993). The method
used for the maximum likelihood estimates in all other models is the adaptive Gauss-Hermit
quadrature method (Pinheiro and Bates 1995; Pinheiro and Chao 2006; Raudenbush et al.
2000; Tuerlinckx et al. 2006; Wolfinger and O’Connell 1993). The default optimizer is the
trust-region method (TRUREG). However, users can also use one of several alternative opti-
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mizers, namely, the Newton-Raphson method with ridging (NRRIDG), the Newton-Raphson
method with line-search (NEWRAP), the quasi-Newton method (QUANEW), the double-
dogleg method (DBLDOG), the conjugate gradient method (CONGRA), and the Nelder-
Mead simplex method (NMSIMP; Fletcher 2001). Finally, the macro enables specification
of the maximum number of iterations and function calls. Details about the SURVEYHLM
macro code are set out in Appendix A.

3. Comparison of available software

Research on multilevel-analysis models, especially the GLMM, has not only flourished since
the early 1980s but also been accompanied by the development of a variety of software pro-
grams. Because it is beyond the scope of this paper to compare all these programs, we restrict
our comparison to (a) the packages for multilevel or GLMM analysis that are available in R
(R Core Team 2025), and (b) the programs most frequently used for multilevel analysis of
LSA datasets (see Section 2.4).!1 The second set of programs includes HLM (Raudenbush,
Bryk, and Congdon 2013), Mplus(Muthén and Muthén 2017), Stata (StataCorp 2019), and
SAS/STAT (SAS Institute Inc. 2022), and the first set (i.e., those programs are most often
used in R) are glmm (Knudson 2017), nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core
Team 2017), Ime4 (Bates, Méchler, Bolker, and Walker 2015), MASS (Venables and Rip-
ley 2002), glmmTMB (Brooks et al. 2017), glmmLasso (Groll and Tutz 2014; Groll 2017),
GLMMadaptive (Rizopoulos 2020), and MCMCglmm (Hadfield 2010).'2

The glmm function in the package glmm fits the GLMM by using the ordinary Monte Carlo
(MC) method to approximate the likelihood. Available distributions include the binomial, the
Bernoulli, and the Poisson distribution. Multiple random components (i.e., multiple levels)
are possible. However, the package assumes that G (= X)) is diagonal wherever distinct vari-
ance components can be set as equal. The 1lme function in the package nlme provides more
flexibility in terms of defining G, and it also fits linear mixed-effects models. The maximum
likelihood (ML) approach or the restricted maximum likelihood (REML) approach can be
used for the estimation. Multiple random components are possible, as are flexible definitions
of the structure of G (e.g., unstructured or diagonal). The packages also allow for modeling of
the structures for the (level 1) residual matrix R (e.g., heteroscedasticity), but the Gaussian
default distributional family with the identity link cannot be changed. This change is possible
with the glmer function of the package Ime4. Available distributions include, for example, the
binomial, the Poisson, and the gamma distribution. Depending on the assumed distribution,
the link function can be, for example, the logit link or the probit link, while the Laplace
approximation (LA) or adaptive Gauss-Hermit quadrature (AGH) can be used for maximum
likelihood estimation. Multiple random components are possible, but the AGH is not available
for multiple random components. Also, although the Ime4 package provides some function-
ality for modeling the structure of G, it does not provide the same flexibility for defining this
structure that the nlme package does. In addition, defining a structure for R (other than

H¥or example, software such as the Mixed-Up Suite (Hedeker and Gibbons 1996a,b), the ASReml program
(Gilmour, Gogel, Cullis, Welham, and Thompson 2015), the R packages rstan (Carpenter et al. 2017), PLmixed
(Rockwood and Jeon 2019), blme (Chung, Rabe-Hesketh, Dorie, Gelman, and Liu 2013), and multilevel (Bliese
2016) are not part of our comparison. In general, these packages contain no features additional to those covered
by the software considered here. Also, to the best of our knowledge, educational research typically does not
use these packages to analyze LSA datasets.

2For an introduction to multilevel analysis with R, see Finch, Bolin, and Kelley (2014).
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homoscedasticity) is not currently possible. The glmmPQL function in the MASS package uses
penalized quasi-likelihood (PQL) to fit GLMMs. It offers different distributional families and
link functions as well as ability to define the structure of R. Multiple random components are
possible, but the software assumes that the random effects are i.i.d. The glmmTMB package
fits GLMM using LA estimation via the TMB package (Kristensen, Nielsen, Berg, Skaug, and
Bell 2016). It is especially useful when zero-inflated count data should be analyzed, because
it includes the Conway-Maxwell-Poisson distribution for the dependent variable. Other dis-
tributions, for example, the binomial, the Poisson, and the Gaussian, can also be specified,
of course. Flexible definitions of the structure of G are possible and, in general, more than
three levels can be estimated. The glmmLasso package also fits GLMM using LA estimation.
However, a penalty term is included in the corresponding log-likelihood function allowing for
automatic variable selection by Ll-penalized estimation. Hence, this package is particularly
helpful when a set of relevant independent variables should be selected from a set of many
independent variables. Available distributions include the Gaussian, the binomial, and the
Poisson. Flexible definitions of the structure of G' are possible, and, in general, more than
three levels can be estimated. With the GLMMadaptive package, GLMM for non-normally
distributed dependent variables can be fitted. Available distributions include the binomial or
the Poisson. AGH is used as the estimation method, and G can be either unstructured or
diagonal. However, the GLMMadaptive package cannot be used to estimate models that have
more than two levels. The MCMCglmm function of the MCMCglmm package enables Bayesian
estimation of the GLMM. It also allows multiple responses to follow different types of distri-
bution. The MCMCglmm furthermore allows for multiple random effects, and for definition of
residual R and random-effect G variance structures.

A major drawback of all these packages with respect to analyzing LSA datasets is that none
of them considers the special features of these datasets (i.e., plausible values, weighting, re-
peated replication techniques). However, the withReplicates function in the survey package
(Lumley 2004, 2016) does, of course, enable estimation of the replication-based sampling vari-
ance s2, while the function withPV enable the use of plausible values. It should be mentioned
here, that the intsvy package (Caro and Biecek 2017) does consider the special features of
LSA datasets. To our knowledge, it is the most comprehensive R package for analyzing LSA
datasets. It provides tools for importing, merging, and analyzing data from international
assessment studies. Among the available analyses functions are mean statistics, standard de-
viations, regression estimates, correlation coeflicients, and frequency tables. However, mixed
model estimation in general and GLMM analyses in particular are not supported by this
package.

We are reasonably certain that the only multilevel-analysis R function that simultaneously
accounts for the special features of LSA datasets is the BIFIE.twolevelreg function from
the BIFIEsurvey package (BIFIE 2017). This function uses full maximum likelihood (FML)
estimation to fit two-level linear mixed-effects models. Level-specific weights are feasible with
this package, as is definition of multiple random components. Constraining elements of G to
fixed values is also possible. The standard errors either can be based on a sandwich estimator
or can be computed using the repeated replication technique, while the BIFIE.data function
or the BIFIE.data. jack function can be used to define the survey sample design. However,
estimates of the sample variance are based on the M repeated application of Equation 4 (one
cycle for each plausible value) as described in step 10 of Section 2.3 of this article (see also
Bruneforth, Oberwimmer, and Robitzsch 2016). Hence, if we wanted to analyze TIMSS and
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PIRLS data in the manner it was usually done until 2011 (i.e., with estimates of the sample
variance based only on the first plausible value), then we would have to perform the desired
analysis (e.g., sample mean, multilevel analysis) separately for each plausible value and then
merge the results manually using the post-processing functionality of R. Furthermore, we
would not be able to change the identity link function or the default Gaussian distribution.

Version 7 of the HLM program (Raudenbush et al. 2013) fits hierarchical models with up to
four levels. Available distributions include the Gaussian, the binomial, the Poisson, and the
multinomial. Depending on the assumed distribution and the number of levels, researchers
can use LA, AGH, REML, or FML as the estimation method. Multiple random components
are possible, and level-specific weights can be defined. Heterogeneous residual variances are
also possible while, in general, G is assumed to be unstructured. The program supports
the use of plausible values, but does not permit repeated replication estimation. Version 8
of Mplus (Muthén and Muthén 2017), among other such programs, enables researchers to
implement hierarchical models of up to three levels. The dependent variable for two-level
models can be continuous, censored, binary, ordinal, nominal, or counts, and for three-level
models continuous or categorical. Available estimators include FML (up to three levels),
limited information weighted least squares (LLS; Asparouhov and Muthén 2007), the Muthén
limited information estimator (MLS; Muthén 1994), and the Bayes estimator (up to three
levels). Multiple random components are possible, and level-specific weights can be used.
Mplus also offers considerable flexibility in defining the structure of both R and G. The
program furthermore supports plausible values, but does not permit user-supplied replication
weights (for multilevel analysis). Stata (StataCorp 2019) provides many functions for fitting
multilevel models. Of these, the most commonly used are the meglm and gllamm (Rabe-
Hesketh, Skrondal, and Pickles 2004, 2005). The meglm function fits multilevel mixed-effects
GLMs. Available distributions include the Gaussian, binomial, gamma, and Poisson. LA,
two versions of AGH, and nonadaptive Gauss-Hermit quadrature (GH) can be used as the
estimator. Multiple random components are possible with Stata. Level-specific weights can
be used and the structure of G defined. The gllamm function fits generalized linear latent and
mixed models. Available distributions include the Gaussian, binomial, gamma, and Poisson.
AGH or nonadaptive GH can be used as the estimation method. Multiple random components
are possible, level-specific weights are supported, and G is assumed to be unstructured.
Although these two functions do not provide options for handling plausible values or producing
replication variance, the pv function (designed specifically for PISA, TIMSS, and PIRLS
student achievement data; Macdonald 2008) and repest (designed to be used with PISA
and other OECD study datasets; Avvisati and Keslair 2014) enable estimation with weighted
replicate samples and plausible values. However, the pv’s default estimation method for
TIMSS and PIRLS data corresponds to the procedure typically used in TIMSS and PIRLS
until 2011. Analyses focused on TIMSS 2015 or PIRLS 2016 datasets may therefore not
provide the estimates for the standard errors that are usually reported.

SAS/STAT provides different procedures for estimating multilevel models. Among those used
most often are PROC MIXED, PROC NLMIXED, and PROC GLIMMIX. The first of these uses either
the REML, ML, or MIVQUEO (Hartley, Rao, and LaMotte 1978) method to fit linear mixed
models. Multiple random components are possible, and the structure of R and G can be
defined flexibly. However, the procedure does not permit use of level-specific weights. PROC
NLMIXED, however, does support level-specific weights in models with no more than two levels.
This procedure uses AGH, GH, or the first-order method (TS) developed by colleagues Beal
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and Sheiner (1982, 1988) and Shiner and Beal (1985) to fit nonlinear mixed-effects models.
The procedure allows for multiple random components and enables flexible definition of the
structure of G and R. PROC NLMIXED likewise provides users with a very flexible means of
defining the conditional distribution of the data (given the random effects). However, the
standard forms of this distribution (e.g., Gaussian, binary, binomial, gamma, Poisson) are
also available. The PROC GLIMMIX procedure fits generalized linear mixed models. LA, AGH,
GH, or different pseudo-likelihood (PL) techniques can be used, with choice of technique
dependent on the model. Multiple random components are possible, level-specific weights
are supported, and the structure of G and R can be defined very flexibly. The built-in
conditional distributions of the data include the Gaussian, binary, binomial, gamma, Poisson,
and multinomial. Users can also define their own mean and variance function. In short,
PROC GLIMMIX is a highly general procedure. However, like the other SAS/STAT procedures
considered here, PROC GLIMMIX does not consider the special features of LSA datasets, which
again explains why we developed the SAS SURVEYHLM macro. The macro is based on the
PROC GLIMMIX procedure, but we expanded it so that it can also handle plausible values and
repeated replication techniques.

SAS contains not only procedures for estimating multilevel models but also procedures specif-
ically designed for survey sample designs: PROC SURVEYSELECT, PROC SURVEYFREQ, PROC
SURVEYMEANS, PROC SURVEYREG, PROC SURVEYLOGISTIC, PROC SURVEYPHREG and
PROC SURVEYIMPUTE. With PROC SURVEYSELECT a variety of methods are available for se-
lecting probability-based (simple or complex multistage) random samples. In order to calcu-
late one-way to n-way frequency and cross tabulation tables from sample survey data PROC
SURVEYFREQ can be used. PROC SURVEYFREQ (like the other survey procedures) can han-
dle data from complex multistage survey designs with stratification, clustering, and unequal
weighting. It provides a choice of variance estimation methods (for example, bootstrap or
jackknife). PROC SURVEYMEANS computes statistics such as means, totals, proportions, quan-
tiles, geometric means, and ratios from a survey sample. PROC SURVEYREG performs linear
regression analysis for sample survey data, PROC SURVEYLOGISTIC fits linear logistic regres-
sion models for discrete response survey data, and PROC SURVEYPHREG performs regression
analysis based on the Cox proportional hazard model for sample survey data. Finally, PROC
SURVEYIMPUTE uses a fractional hot-desk imputation method or some other traditional hot-
desk imputation technique to impute missing values in a dataset. The procedure also creates
replicate weights that account for the imputation and that can be used for replication-based
variance estimation for complex surveys. However, none of these procedures can handle plau-
sible values. Hence, if plausible values are used with these procedures then a procedure
like PROC MIANALYZE must be used to combine the results obtained for each plausible value
separately. In addition, these procedures do not support GLMM analyses.

Table 1 presents a summative comparison of the software discussed in this section of our
article (the SAS survey procedures discussed above were not included in the table because
they do not support GLMM analyses). Compared to the other GLMM procedures already
implemented in SAS, the SURVEYHLM macro can handle plausible values. Also, because the
user can supply replication weights, the SURVEYHLM macro provides a variety of variance
estimation methods based on the repeated replication technique (in addition to a sandwich
estimator of the standard errors). Level-specific weights are supported by the macro, and
different scaling procedures are available to scale these weights. Moreover, because the macro
supports level-specific replication weights, it can be used to estimate resampling approaches
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Features
Famil Level evel-
Software Function Estimation — eves G R PVs specific RRT
Gaussian Other 2 3 >3 weights
glmm MC v v /v / d e vh
1me ML, REML v VY /o Ve e
glmer LA, AGH v v/ /o e v
glmmPQL PQL v v v/ v/ d Ve v
R g1lmmTMB LA v /v /7 f e vh
glmmLasso LA v /7 /1 Ve vh
GLMMadaptive AGH Va4 f e vh
MCMCglmm MCMC v v/ /o e v
BIFLE. FML v v t v v
twolevelreg
LA, AGH
HLM ’ v VvV / u o/
REML, FML
Mplus ML, LLS v o/ f ooV
MLS, Bayes
Stat meglm LA, AGH,GH v O/ Y/ vi v e
ata
gllamm AGH, GH v S O/ / ou vi v e
PROC REML, ML y e
MIXED MIVQUEO
SAS PROC AGH,GH, TS v o /v /o Ve
NLMIXED
PROC LA, AGH
GLIMMIX GH, PL v AR A AE v/
SURVEYHLM AGH, PL v VR4 f oo/ v

Estimation abbreviations: PVs, plausible values; RRT, repeated replication technique; MC, Monte Carlo;
ML, maximum likelihood; REML, restricted maximum likelihood; LA, Laplace approximation; AGH, adap-
tive Gauss-Hermit quadrature; PQL, penalized quasi-likelihood; MCMC, Markov chain Monte Carlo; FML,
full maximum likelihood; LLS, limited information weighted least square; MLS, Muthén limited information
estimator; GH, nonadaptive Gauss-Hermit quadrature; TS, first-order method; PL, pseudo-likelihood tech-

niques.

G abbreviations: d, diagonal; f, flexible; u, unstructured. Repeated replication technique notes:

2Uses the withPV function of the survey package. *Uses the withReplicates function of the survey package.
“The method implemented for TIMSS and PIRLS corresponds to the method used in TIMSS and PIRLS
since 2015. ?Uses the pv or repest function (the implemented method for TIMSS and PIRLS corresponds
to the method used in TIMSS and PIRLS until 2011). ®Supports level-specific weights for models with no
more than two levels.

Table 1: Comparison of available software for multilevel analyses.
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that include level-specific weights. Centering the predictors around the class mean is possi-
ble, as is centering around the grand mean. In addition to the results of the GLMM analysis
our macro can be used to produce descriptive statistics for LSA datasets. Hence, the SUR-
VEYHLM macro can be used, for example, to fit not only a three level linear mixed model
with random intercepts and random slopes on either level two, level three, or both levels, with
plausible values as the dependent variable (see Section 5.1) but also a three level multino-
mial mixed model using the benchmark values (TIMSS and PIRLS) or the proficiency levels
(PISA) as the dependent variable (see Section 5.2). The standard errors for both of these
analyses can be based on a sandwich estimator or on different repeated replication techniques.
Because the macro allows for the specification of different covariance structures for the vari-
ance components, users can also test hypotheses about specific covariance structures. For
example, users can test the hypothesis that the variances and covariances of multiple random
slopes are equal or that the random slopes do not correlate at all (see Section 5.3). Finally, in
order to conduct a diagnostic check of the GLMM analysis, the macro can print out different
residual plots and ensure that during any further analyses the estimated fixed and random
effects for each dependent variable (e.g., plausible value) and the combined model are saved
by default.

4. Invocation of the SURVEYHLM macro

The following set of code invokes the SURVEYHLM macro. Necessary arguments are written
in uppercase letters (NEST3 is a necessary argument only if a three-level model is analyzed).
Any default values are written after the equals sign.

#macro surveyhlm(DATN = , ROOTPV = , NPV = 1, noint = n, xvarl = , xvar2 = ,
xvar3 = , cvarl = , cvar2 = , cvar3 = , ccent2 = , ccent3 =, gcent = ,
norint2 = n, norint3 = n, rslope2 = , rslope3 = , NEST1 = , NEST2 = ,
NEST3 = , liwgt = , 12wgt = , 13wgt = , wgt = , sfw = 1, sfb2 = 2,
sfb3 = 2, jkrep = , jkzone = , nrwgt = , jktyp = full, jkfac = 0.5,
repwp = , shrtcut = n, srvysam =y, odesc = n, graph = n, label = model,
gpoints = , tec = trureg, gconv = 1E-8, maxfunc = , maxiter = , type2 = ,
typed = , ldata2 = , clist2 = , 1ldata3 = , clist3 = , dist = normal,
start = y, startrw = y, 1libd = , libe = );

The macro parameters are as follows.

e DATN: The input SAS dataset to be used for the analysis.

e ROOTPV: The dependent variable of the model. If &NPV = 1, it signifies the name of
the dependent variable. If &NPV > 1, then ROOTPV is the root name of the dependent
variable. The names of the plausible values in the dataset must therefore be ROOTPV&N,
with N denoting an index that ranges from 1 to &NPV.

e NPV: If plausible values are used, then the number of plausible values must be specified
here, else one.

e noint: If no intercept is required in the fixed effects model, then noint = y, else noint
= n.
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xvarl, xvar2, and xvar3: The variable names of the continuous predictors in the
multilevel model for levels 1, 2, and 3.

cvarl, cvar2, and cvar3: The variable names of the categorical predictors in the
multilevel model for levels 1, 2, and 3.

ccent2: The names of the level 1 (continuous) predictor variables that should be cen-
tered around the level 2 means (with the class mean centering on level 2). The variable
names must also appear in xvarl (or in cvarl).

ccent3: The names of the level 1 or level 2 (continuous) predictor variables that should
be centered around the level 3 means (with the class mean centering on level 3). The
variable names must also appear in xvarl or xvar2 (or in cvarl and cvar2).

gcent: The names of the (continuous) predictor variables that should be centered
around the grand mean (i.e., the grand mean centering). The variable names must
also appear in xvarl, xvar2, or xvar3 (or in cvarl, cvar2, and cvar3).

norint2 and norint3: If a random intercept is to be included on level 2 (level 3), then
norint2 = n (norint3 = n), else norint2 = y (norint3 = y).

rslope2: The names of the level 1 predictors with random slopes on level 2. The
variable names must also appear in xvari or in cvarl.

rslope3: The names of the level 1 or level 2 predictors with random slopes on level 3.
The variable names must also appear in xvarl, xvar2, cvarl, or cvar2.

NEST1: The name of the level 1 identifier variable. This is usually an ID assigned to
students, for example, IDSTUD in PIRLS and TIMSS.

NEST2: The name of the level 2 identifier variable. This is usually an ID assigned to
classes (or schools), for example, IDCLASS (or IDSCHOOL) in PIRLS and TIMSS.

NEST3: The name of the level 3 identifier variable. This is usually an ID assigned to
schools (or countries), for example, IDSCHOOL (or IDCNTRY) in PIRLS and TIMSS.

liwgt, 12wgt, and 13wgt: The name of the variable with the level 1, level 2, and/or
level 3 specific weight.

wgt: The name of the variable with the combined weight, for example, HOUWGT in
PIRLS and TIMSS.

sfw: Scaling of the level-1 specific weight 11wgt (0: unscaled; 1: scaled to sample size;
2: scaled to effective sample size).

sfb2: Scaling of the level-2 specific weight 12wgt, where 0: unscaled; 1: sum of 11wgt *
12wgt is the sample size (with 11wgt unscaled); 2: sum of 11lwgt * 12wgt is the sample
size (with 11lwgt scaled to sample size); and 3: sum of 1lwgt * 12wgt is the effective
sample size (with 11wgt scaled to the effective sample size).
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sfb3: Scaling of the level-3 specific weight 13wgt, where 0: unscaled; 1: sum of 11lwgt *
13wgt is the sample size (with 11wgt unscaled); 2: sum of 11wgt * 13wgt is the sample
size (with 11lwgt scaled to sample size); and 3: sum of 11lwgt * 13wgt is the effective
sample size (with 11wgt scaled to the effective sample size).

jkrep: The name of the variable with the jackknife replication code, for example,
JKREP in PIRLS and TIMSS.

jkzone: The name of the variable with the jackknife zone assignment, for example,
JKZONE in PIRLS and TIMSS.

nrwgt: The number of replication samples that should be used, with nrwgt = 150
having usually been used for PIRLS and TIMSS since 2015 and nrwgt = 75 for PIRLS
and TIMSS usually used before 2015.

jktyp: The type for constructing the jackknife replication weights (see Section 2), with
jktyp = full having usually been used for PIRLS and TIMSS since 2015 and jktyp
= half usually used for PIRLS and TIMSS before 2015.

jkfac: The variance factor for the replication variance, with jkfac = 0.5 having usu-
ally been used for PIRLS and TIMSS since 2015 and jkfac = 1.0 usually used for
PIRLS and TIMSS before 2015.

repwp: The root name of the user-supplied replication weights, which means repwp&i
must be the names of the user-supplied replication variables in the dataset.

shrtcut: If the replication variance should be the average across all plausible values,
then shrtcut = n; else if the replication variance should be based only on the first
plausible value, then shrtcut = y, with shrtcut = n having usually been used for
PIRLS and TIMSS since 2015 and shrtcut = y usually used for PIRLS and TIMSS
before 2015.

srvysam: If standard errors of the multilevel fixed and random effects should be based
on the replication technique, then srvysam = y; else if these standard errors should be
based on the sandwich estimator, then srvysam = n.

odesc: If only descriptive statistics should be estimated and no multilevel analysis
should be performed, then odesc = y, else odesc = n.

graph: Should residual plots be printed, then graph = y, else graph = n.
label: The label for the analysis.

gpoints: The number of quadrature points in each dimension of the integral for fitting
the random-effect models. If not specified (the default), the number of quadrature
points is selected adaptive. If there are v random effects for each subject and gpoints
= n, then nY evaluations (or (npv)n" if plausible values are used) of the conditional
log likelihood for each observation are necessary to compute one value of the objective
function. Increasing the number of quadrature nodes can therefore substantially increase
the computational burden. This outcome is especially likely if the standard errors of
the multilevel parameter estimates should be based on the replication technique. This
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is because the number of evaluations increases to (nrwgt + 1)n? (or (nrwgt + npv)n? if
plausible values are used. When gpoints = 1, the adaptive quadrature approximation
results are similar to the results of the Laplace approximation.

tec: Determines the optimization technique. Possible values are TRUREG, NRRIDG,
NEWRAP, QUANEW, DBLDOG, CONGRA, and NMSIMP.

gconv: Specifies a relative gradient convergence criterion (see the documentation for
the nloptions statement for the PROC GLIMMIX procedure in SAS Institute Inc. 2017).

maxfunc: Specifies the maximum number of function calls in the optimization process.
The default value depends on the optimization technique (see the documentation for
the nloptions statement for the PROC GLIMMIX procedure in SAS Institute Inc. 2017).

maxiter: Specifies the maximum number of iterations in the optimization process. The
default value depends on the optimization technique (see the documentation for the
nloptions statement for the PROC GLIMMIX procedure in SAS Institute Inc. 2017).

type2 and type3: Specifies the structure of R for fixed effects models and the covariance
structure G for random effects models on level 2 and level 3 (for details, see the random
statement for the PROC GLIMMIX procedure in SAS Institute Inc. 2017).

ldata2 and ldata3: If type2 = lin(q) (type3 = 1lin(q)), then ldata2 (1data3) is a
SAS dataset with the matrices of the assumed linear combinations.

clist2 and clist3: If type2 = sp(exp) (c-list) (or type3 = sp(exp) (c-list)),
then clist2 (clist3) is a list of variable names for the argument (c-1list).

dist: Specifies the (conditional) probability distribution of ROOTPV (see the documen-
tation for the model statement for the PROC GLIMMIX procedure in SAS Institute Inc.
2017).

start: If plausible values are used as dependent variables, then the random components
estimated by using the first plausible value can be used as starting values for estimating
these components for the other plausible values (start = y); else if start = n, then
the built-in procedure for estimating the starting values for the random components
is used for all plausible values (for details, see the PROC GLIMMIX procedure in SAS
Institute Inc. 2017).

startrw: If the user requests replication-based standard errors for the multilevel pa-
rameter estimates, then estimates of the random components for the model with the full
sample can be used as starting values for the estimates of these components when repli-
cated samples are used. Thus, startrw = y; else startrw = n if the built-in procedure
for estimating the starting values for the random components is used for all replications
(for details, see the PROC GLIMMIX procedure in SAS Institute Inc. 2017).

libd: A libref for the dataset DATN. The default is the working directory.

libe: A libref where the results of the analysis should be saved. The default is the
working directory.
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5. Application of the SURVEYHLM macro

This section includes three examples of using the macro for analyses of PIRLS and TIMSS
data. We chose these examples because they allowed us to account for a variety of analysis
specifications, such as continuous and categorical dependent and independent variables, cen-
tering, two-level and three-level analyses, and handling TIMSS’ and PIRLS’ data from before
and after 2011 (see Section 2 of this article). Example 3 also accommodates the specific
testing of assumptions on the variance and covariance structures within the model.

5.1. Application 1: Two-level versus three-level analysis

The first example specifies a multilevel analysis on two versus three levels. The dependent
variable (asmmatO) is the continuous student mathematics achievement scale from TIMSS
2015. Predictors include the motivation to learn mathematics at the individual student level,
that is, level 1 (SLM_sca0), teachers’ confidence in their ability to adapt their teaching at the
class level, that is, level 2 (AT_MEAN), and the overall use of the language of the LSA test within
schools at the class level versus the school level, that is, level 3 (ACBG04d). Conceptually, the
difference modeled at level 2 is that the language used in the test is assumed to be a class
characteristic, yet the language used in the whole school is likely to be the same throughout
the school if all teachers in it are teaching the school curriculum in that one language. If
this is the case, then the language characteristic can be modeled on level 3. The data that
we used for our analysis (T15_prep) was the mathematics achievement data from the Dutch
fourth-grade students who participated in TIMSS 2015 (Mullis et al. 2016a,b).

As shown by, for example, Deci and Ryan (1985), students’ intrinsic motivation is a strong
predictor of their achievement in a school subject, mainly because the extent to which they
are interested in that subject tends to determine the extent to which they engage in learning
it and thus achieving in it (Pintrich, Smith, Garcia, and McKeachie 1991). Mathematics is
no exception in this regard, as is evident from the TIMSS 2015 data, where the achievement
of Dutch students who said they liked learning mathematics very much was, on average, 38
scale score points higher than the average achievement of students who said they did not like
learning maths (Mullis et al. 2016a). We therefore included, in our analysis, motivation as a
level-1 predictor of student achievement in mathematics.

At the class level, adapted teaching (i.e., teaching directed toward meeting students’ individual
interests and learning needs) has become a focus of interest among educational stakeholders
in recent years due to the increase in student heterogeneity in many classrooms worldwide.
Adapted teaching has been associated with fostering student achievement because it makes
the subject more relevant to the individual learner (see, for example, Schulz-Heidorf and
Solheim 2016; Van De Pol, Volman, Oort, and Beishuizen 2014). Our analysis therefore
modeled the influence that teachers’ confidence in adapting their teaching had on the TIMSS
2015 mathematics scores of the fourth-grade Dutch students. Because the extent to which
students are familiar (native) users of the language of a test is known to have a strong influence
on their achievement on that test (Mullis et al. 2017), our analysis tested whether this variable
showed as a composite effect when considered as a school (versus class) indicator.

For i =1,...,n; students in j = 1,...,G classes, the model that we estimate correspond to
the following equation

asmmatOZ-j = 50 + SLM_scaOij X 51 + ACBGO4dj X /82 + AT_MEAN]' X 63 + Yoj =+ €ij,
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Convergent status

Convergent ASMMAT01 |ASMMAT02 ASMMATO03 < ASMMAT04 <ASMMATO05
Status 0 0 0 0 0
Convergence Convergence Convergence Convergence Convergence
criterion criterion criterion criterion criterion
(GCONV=1E- (GCONV=1E- (GCONV=1E- (GCONV=1E- (ABSGCONV=0.00
Reason 8) satisfied. 8) satisfied.  8) satisfied. 8) satisfied. 001) satisfied.
Number of observations
Label ASMMATO1 ASMMATO02 ASMMATO03 ASMMATO04 ASMMATO5
Number of Observations Read 4515 4515 4515 4515 4515
Number of Observations Used 2459 2459 2459 2459 2459

Fit statistics

Description Value
-2 Log Likelihood 26499,87
AIC (smaller is better) 26513,87
AICC (smaller is better) 26513,92
BIC (smaller is better) 26533,56
CAIC (smaller is better) 26540,56
HQIC (smaller is better) 26521,87

Conditional fit statistics

Description Value
-2 log L(ASMMATO5 | . effects) 26195,17
Pearson Chi-Square 6073694,98
Pearson Chi-Square / DF 2469,99

Random components (covariances)
Effect Row Col1
Intercept 1 189,38

Random components (correlations)
Effect Row coL1
Intercept 1 1

Random components (standard errors)

CovParm Subject Estimate StdErr
UN(1,1) IDCLASS 189,378541 49,105
Residual 2686,585172 158,554

Fixed effects

Nimpute Parm SLM_scal ACBG04d Estimate StdErr DF tvalue Probt
5 Intercept . . 555,321152 9,9674 293,48 557139  <.0001
5 AT_MEAN . . -1,838213 3,1832 605,35 -0,5775 0,2819
5 SLM_sca0 0 . -29,846283 3,5438 911,83  -8,422  <.0001
5 SLM_sca0 1 . -16,480691 3,1891 436,61 -51679  <.0001
5 SLM_sca0 2 . 0 0 . . .
5 ACBG04d . 0 -31,458616 16,106 1772,23| -1,9532  0,0255
5 ACBG04d . 1 0 0

Figure 1: Output for the two-level analysis obtained with the SURVEYHLM macro.

where vp; is the random intercept term. The syntax that we used for estimating this model
was as follows.

%surveyhlm(DATN = T15_prep, ROOTPV = asmmatO, NPV = 5, CVAR1 = SLM_scao,

CVAR2 = ACBGO4d, XVAR2 = AT _MEAN, GCENT = at_mean, NEST1 = idstud,
NEST2 = idclass, WGT = MATWGT, L1WGT = WGT_L1, L2WGT = WGT_L2o0,
JKREP = JKREP, JKZONE = JKZONE, NRWGT = 150, LABEL = modell2Lsyv,
TYPE2 = UN, QPOINTS = 1, LIBD = &dpath, LIBE = &dpath);

Thus, for the dataset T15_prep, we analyzed a two-level model with a student identifier
for level 1 (NEST1 = idstud) and a class identifier for level 2 (NEST2 = idclass), with five
plausible values (NPV = 5) serving as dependent variables. Because the dataset came from
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TIMSS 2015, we were able to use JKREP and JKZONE together with NRWGT = 150 and the
default values JKTYP = full, and JKFAC = 0.5 to build appropriate replication weights. We
requested an unstructured form for the variance components (TYPE2 = UN).

Figure 1 depicts the output for the two-level analysis. First, the convergent status for the
multilevel analysis for each of the five plausible values is reported. As can be seen, all five
models fulfill the convergence criterion. Therefore, it can be assumed that all five models
converged. Second, the number of observations read and the number of observations used for
the analysis are reported. Overall, the dataset includes n = 4, 515 records, with n = 2,459 of
these cases used for the analysis (the drop out is due to missing values on at least one of the
variables). While in the first two tables the results are depicted separately for each of the five
plausible values, the point estimates of the following tables are based on the average across
the five plausible values according to Rubin’s formula (Section 2.1), and the standard errors
are based on the repeated replication technique (Section 2.3). Consequently, for example, the
different fit statistics depicted in the next table of the output are the average across the fit
statistics for the separate plausible values.

The fit statistics are particularly useful for comparing competing models. However, because
these fit statistics depend on the random components, the conditional fit statistics are also
given. The estimated value of the random component (67 = 189.38), the corresponding
standard error (65g.; = 49.11), and the residual variance (62 = 2,686.59) are printed next.
In general, given these results, assuming a model with a random intercept is plausible. In
the final table of the output estimates for the fixed effects are reported. For each fixed effect,
the number of imputations, the parameter name, the level of the variable (for non-continuous
independent variables), the estimated value, the standard error of the estimate, the degrees
of freedom, the t-value, and the corresponding probability value are given. In this two-level
model the effects for the first dummy (0 = very much like learning maths; 1 = do not like
learning maths) and second dummy (0 = very much like learning maths; 1 = like learning
maths) of SLM_sca0 as well as for ACBGO4d (0 = speaks language of test; 1 = do not speak
language of test) are significant. Hence, given this two-level model, one would assume that
the motivation to learn mathematics and that the test language is the same as the student’s

native language are positively associated with maths achievement.

For the three-level analysis, we used basically the same syntax as the syntax we used for
the two-level model. However, instead of having just a two-level identifier we now, of
course, needed a three-level identifier (i.e., NEST1 = idstud, NEST2 = idclass, and NEST3
= idschool), corresponding level-3 specific weights (i.e., LIWGT = WGT_L1, L2WGT = WGT_L2,
L3WGT = WGT_L3), and the independent variable ACBGO4d set on level 3.

Fori=1,...,n; students in j = 1,...,G}, classes and k = 1,..., K schools, the model that
we estimated corresponded to the following equation

asmmatO;;i = Bo + SLM_scaOijk x (1 + ACBGO4d,, X (35 + AT_MEANj X (3
+Y05 + Yok + €ijk;

where 7p; is the random intercept term for class membership and gy, is the random intercept
term for school membership. The syntax that we used for this model was as follows.

%surveyhlm(DATN = T15_prep, ROOTPV = asmmatO, NPV = 5, CVAR1
CVAR3 = ACBGO4d, XVAR2 = AT _MEAN, GCENT = at_mean, NESTI1

SLM_sca0,
idstud,
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Convergent status
Convergent ASMMATO1 ASMMAT02 ASMMATO03
Status 0 0 0
Convergence
Convergence criterion  Convergence criterion
(GCONV=1E-8) criterion (GCONV=1E: (GCONV=1E-8)
Reason satisfied. 8) satisfied. satisfied.
Number of observations
Label ASMMATO1 ASMMATO02 ASMMATO03
Number of Observations Read 4515 4515 4515
Number of Observations Used 2459 2459 2459
Fit statistics

Description Value

-2 Log Likelihood 26419,06

AIC (smaller is better) 26435,06

AICC (smaller is better) 26435,12

BIC (smaller is better) 26454,41

CAIC (smaller is better) 26462,41

HQIC (smaller is better) 26442,83

Conditional fit statistics

Description Value

-2 log L(ASMMATO5 | r. effects) 26200,61

Pearson Chi-Square 6090918,6

Pearson Chi-Square / DF 2476,99

Random components (covariances)

Stmt Effect Subject Row
IDCLASS(IDSCHOO
1 Intercept L) 3013 1
1 Intercept 2
1 Intercept 3
1 Intercept 4
2 Intercept IDSCHOOL 3 1
Random components (correlations)
Stmt Effect Subject Row
IDCLASS(IDSCHOO
1 Intercept L)3013 1
1 Intercept 2
1 Intercept 3
1 Intercept 4
2 Intercept IDSCHOOL 3 1
Random components (standard errors)
CovParm Subject Estimate StdErr
UN(1,1) IDCLASS(IDSCHOOL) 95,242819 78,119
UN(1,1) IDSCHOOL 91,233181 68,799
Residual 2688,806395 158,749
Fixed effects
NIimpute Parm SLM_sca0 ACBG04d
5 Intercept . .
5 AT_MEAN .
5 SLM_sca0 0
5 SLM_sca0 1
5 SLM_sca0 2 .
5 ACBG04d 0
5 ACBG04d 1

ASMMAT04

0

Convergence
criterion
(ABSGCONV=0.0
0001) satisfied.

ASMMATO04
4515
2459

Col1

95,2428
0
0
0
91,2332

coL1

- o000~

Estimate
552,16745
-0,929822
-29,893138
-16,591164
0
-28,937033
0

ASMMATO05

0

Convergence
criterion
(GCONV=1E-8)
satisfied.

ASMMATO05
4515
2459

Col2

0
95,2428
0
0

coL2

. oo-o

StdErr
10,0079
3,2007
3,5382
3,1977
0
16,0697
0

Col3

0
0
95,2428
0

coL3

. o=oo

DF
426,18
664,11
1086,7
375,93

406,16

SURVEYHLM: Multilevel Analysis with Large-Scale Assessment Data in SAS

Col4

® o oo

95,242;

coL4

. mooo

tvalue
55,1734
-0,2905
-8,4486
-5,1884

-1,8007

Probt
<.0001
0,3858
<.0001
<.0001

0,0362

Figure 2: Output for the three-level analysis obtained with the SURVEYHLM macro.

NEST2 = idclass, nest3 =
L2WGT = WGT_L2, L3wgt =
NRWGT = 150, LABEL
startrw

idschool, WGT = MATWGT, L1WGT = WGT_L1,
WGT_L3, JKREP = JKREP, JKZONE = JKZONE,

= model13Lsyv, TYPE2 = UN, TYPE3 = UN, QPOINTS = 1,
= n, LIBD = &dpath, LIBE = &dpath);

Figure 2 depicts the output for the three-level analysis. As can be seen, compared to the
two-level analysis, the estimated random intercept variance on level two has decreased to
62 ;5 = 95.24, while the random intercept variance on level three is now 6% ;5 = 91.23. In
addition, all fit statistics for the three-level model are smaller than the corresponding fit
statistics for the two-level model, suggesting that the three-level model is more suitable for
these data than the two-level model. With respect to the fixed effects, in the three-level model
the significant factors are the same as the significant factors in the two-level model.
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5.2. Application 2: Multilevel analysis with categorical dependent variables

We chose a categorical dependent variable for our second analysis. This time, we used PIRLS
2011 data from the German students who participated in the study (Foy and Drucker 2013;
Mullis, Martin, Foy, and Drucker 2012). PIRLS categorized students’ reading literacy achieve-
ment scores into benchmarks, with scores of 400 points and under marking the low interna-
tional benchmark, scores between 401 and 475 points marking the intermediate international
benchmark, scores between 478 and 550 points denoting the high international benchmark,
and scores between 551 and 625 points or more denoting the advanced international bench-
mark (Foy and Drucker 2013, see also Section 2.1 of this article). When conducting our
second analysis, we categorized the dependent variable (bmhr0) as 0 = students at the high
and advanced benchmarks and 1 = students at the intermediate and low benchmarks.

As the predictor of student performance at the individual level, PIRLS used the number of
books in the student’s home (bookr with 1 = 0-200 books and 0 = more than 200 books) as
an indicator of a family’s cultural capital (Bourdieu 1983; Gustafsson, Hansen, and Rosén
2013). The number of books at home is seen as an indicator of the extent to which a family
values education and provides a supportive learning environment, which, in turn, influences
how well students perform at school (Bradley and Corwyn 2002; Noble, McCandless, and
Farah 2007).

A student’s performance on a reading test can potentially also be explained by teacher char-
acteristics such as formal training (Myrberg 2007). While most of the questions on this
matter in the PIRLS 2011 teacher survey focused on pedagogical or didactical aspects, such
as teaching reading, educational psychology, special education, assessment methods in read-
ing, and the like, the question on the extent to which teachers had studied reading theory
tapped into a more theoretical aspect of reading literacy that nonetheless might influence how
many students in a teacher’s class reach the advanced or high international reading literacy
benchmarks. We investigated this consideration using the variable readtr as our predictor of
student achievement (per benchmark) in our two-level model. Here, 1 = reading theory was
not studied, or teachers had an overview or introduction to the topic and 0 = reading theory
was an area of emphasis.

Fori=1,...,n; students in j = 1,..., G schools, the model that we estimated corresponded
to the following equation

ehis

E[omhr0;; = 0 | ;] = P(bmhr0;; = 0) = Tr o

with \;; = Bo + bookr;; X 1 + readtr; x 32+, where vp; is the random intercept term for
school membership. The syntax that we used for this analysis was as follows. Note, however,
in comparison to our first analysis, that we needed to specify the distribution parameter DIST
= binary.

/isurveyhlm(DATN = p11_model2, ROOTPV = bmhrO, NPV = 5, CVAR1 = bookr,
cvar?2 = readtr, NEST1 = idstud, NEST2 = idschool, WGT = TCHWGT,
L1WGT = studwgt, L2WGT = classwgt, JKREP = JKREP, JKZONE = JKZONE,
NRWGT 75, JKTYP = half, JKFAC = 1.0, SHRTCUT = y, LABEL = modellZ2syv,
TYPE2 = UN, dist = BINARY, startrw = n, QPOINTS = 7, LIBD = &dpath,
LIBE = &dpath);
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Fixed effects

Nimpute Parm bookr readtr| Estimate StdErr DF tvalue Probt
5 Intercept . . 0,527949) 0,10995 305,624 4,8017 <.0001
5 bookr 0 . 0 0,10614 . 0 .
5 bookr 1 . -0,820161| 0,04893 164,062 -16,7617 <.0001
5 readtr . 0 0,109259 0,16253 242,508 0,6722 0,251
5 readtr . 1 0 0

Figure 3: Output for the multilevel analysis with categorical dependent variable in SUR-
VEYHLM (SURVEYHLM models the probability of P(y = 0) for binary dependent variables

when DIST = binary).

As can be seen in Figure 3, this second model indicated that students from homes with fewer
than 200 books were less likely than the students with more than 200 books in their home
to attain the advanced or high international benchmarks. The emphasis on reading theory
during teachers’ formal training, however, showed no association with students’ benchmark
placements.

5.3. Application 3: Testing for specific covariance structures

For our third model, we decided to conduct an analysis that tested structures beyond those in
the typical multilevel analysis. Because the TYPE-statement allows for a variety of covariance
structures (for details, see the random statement of the PROC GLIMMIX procedure in SAS In-
stitute Inc. 2017), we selected statement TYPE = TOEP(2). It specifies a two-banded Toeplitz
covariance matrix that assumes equal variances in the slopes and equal covariance of the
random terms. It also assumes that one of the three predictors will not correlating with the
remaining two. In essence, this model is useful for analyses that use an effect-coded ordinal
variable as the predictor variable. The assumption is that the variation of the regression slopes
(the differences between the current code and the reference group) is the same for all steps
involving the ordinal variable. In addition, because covariates exist only between the adjacent
steps (equal), it is they, the adjacent steps, that show relationships. We again used German
PIRLS data from 2011 (Foy and Drucker 2013; Mullis et al. 2012) to specify this structure
in the SURVEYHLM macro. Our dependent variable was overall reading achievement with
an average achievement score of 541 score points. Our predictors of students’ overall reading
achievement were students’ availability of books at home (books, with 0 = 0-10 books, 1 =
11-25 books, 2 = 26-100 books, 3 = 101-200 books, and 4 = more than 200 books). The
association between number of books at home and academic achievement is generally positive
(Mullis et al. 2017).

While the regression slopes of such structures are tested relatively often in multilevel analyses,
complex structures involving slope variances and the covariances of their random terms have
seldom been tested to date. To analyze whether different numbers of books at home showed
equal variance in the random effects across classes, and equal covariance between adjacent
steps in the ordinal-coded variable, we used the SURVEYHLM macro with the specification
TYPE2 = TOEP(2).

Fori=1,...,n; students in j = 1,..., G schools, the model that we estimated corresponded
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Random components (correlations)

Effect books| Row, COL1 COL2 COL3] cCoL4 COL5 coLé6
Intercept _ 1 1/ 0,565215 0 0 0 0
books none or few (0-10) 2 0,55215 1/ 0,55215 0 0 0
books one bookcase (26-100) 3 0 0,55215 1/ 0,55215 0 0
books one shelf (11-25) 4 0 0 0,55215 1/ 0,55215 0
books three or more bookcases (200+) 5 0 0 0 0,55215 1/ 0,55215
books two bookcases (101-200) 6 0 0 0 0 0,55215 1

Figure 4: Random components (correlations) with a two-banded Toeplitz covariance structure
in the SURVEYHLM macro.

to the following equation

asrreal;; = Bo + booksy j; X 51+ booksg ;; X By + booksg ;; X B3 + booksy j; X B4 + Yoj
+booksi i X 715 + bookss ;; X 25 + bookss ;;j X y3; + booksy 5 X Y45
+bookss ij X V55 + €5,

where 7p; is the random intercept term for the school membership and vi4,...,7s5; are the

random slope terms for the dummies of the books variable. For the variance components in
Xy, we assume

o2 o4 0 0 0 O

o1 02 o4 0 0 0

> 0 o 02 00 0 O
BTl 0o0 0 o4 02 o 0]

0 0 0 o 02 o

0 0 0 0 o o2

when TYPE2 = TOEP(2) and
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Ov3vo Ovam Oz Oq3  Oyzya Oyzos
Oviv0 Ovav1 Oyaye Tyans 034 04,75
v Ovsm vz O3 Oyse O 35

when TYPE2 = UN. The syntax for this analysis was as follows.

%surveyhlm(DATN = P11_model3, ROOTPV = asrreaO, NPV = 5, CVAR1 = books,
RSLOPE2 = books, NEST1 = idstud, NEST2 = idschool, WGT = TCHWGT,
L1WGT = studwgt, L2WGT = classwgt, JKREP = JKREP, JKZONE = JKZONE,
NRWGT = 75, JKTYP = half, JKFAC = 1.0, SHRTCUT = y, LABEL = model3toe,
MAXFUNC = 1500, TYPE2 = TOEP(2), start = n, startrw = n, gpoints = 2,
LIBD = &dpath, LIBE = &dpath);

As can be seen from the results in Figure 4, the correlations between the random effects
of different numbers of books at home were estimated to be r = 0.55. Thus, the across-
class correlation between the random slopes for different numbers of books was of medium
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Random components (correlations)

Effect books| Row coL1 COL2 COL3 coL4 COL5 coLeé
Intercept _ 1 1 -0,00015 -0,00053 -0,00034 -0,00006 -0,00028
books none or few (0-10) 2/ -0,00015 1 0,01984 0,06549 -0,1958| -0,16659
books one bookcase (26-100) 3 -0,00053 0,01984 1. 0,00051 -0,08828 -0,23491
books one shelf (11-25) 4/ -0,00034 0,06549 0,00051 1 0,14504 -0,13297
books three or more bookcases (200+) 5 -0,00006 -0,1958 -0,08828 0,14504 1 -0,17683
books two bookcases (101-200) 6 -0,00028 -0,16659 -0,23491 -0,13297| -0,17683 1

Figure 5: Random components (correlations) with an unstructured covariance structure in
the SURVEYHLM macro.

strength when a two-banded Toeplitz covariance structure was assumed. In comparison,
Figure 5, which presents the correlation matrix for an unstructured covariance matrix, shows
correlations below (above) the second band, but most of them are very small. The fit statistics
for these models (AIC = 83,427.2 and BIC = 83,528.6 for the unstructured case, and AIC =
83,066.2 and BIC = 83,096.2 for the two-banded Toeplitz case) also support the hypothesis
of a two-banded Toeplitz covariance structure. While the outcome of this analysis warrants
debate, it shows that the SURVEYHLM macro, along with the other presented specifications,
allows for complex analyses beyond the scope of typical multilevel analyses of large-scale
educational assessment data.

6. Conclusion

Based on a comparison of the software packages typically used to conduct multilevel analyses
of large-scale assessment (LSA) datasets, we developed the SAS macro SURVEYHLM for
researchers conducting multilevel analyses of large-scale educational assessment data. The
SURVEYHLM macro fits multilevel models with LSA datasets and uses the GLMM for esti-
mation purposes. The dependent variable can therefore be, for example, continuous plausible
values or an ordinal transformation of these values (usually called benchmark values or pro-
ficiency levels). General linear models and linear models can also be fitted with this macro.

Maximum pseudo-likelihood is used as the estimation method for fixed effects models (Breslow
and Clayton 1993; Shall 1991; Tuerlinckx et al. 2006; Wolfinger and O’Connell 1993), while
maximum likelihood estimates with Gauss-Hermit quadrature are used for all other models
(Pinheiro and Bates 1995; Pinheiro and Chao 2006; Raudenbush et al. 2000; Tuerlinckx et al.
2006; Wolfinger and O’Connell 1993). However, use of the Gauss-Hermit quadrature can
slow down the estimation process, especially for models with more than three random effects.
The software for v random effects and n quadrature points needs at least n, (or (npv)n)
evaluations of the conditional log likelihood for each observation. Because the current version
of the SURVEYHLM macro does not support crossed random effects or repeated measures,
it cannot be used to fit special kinds of multilevel models, such as item-response models.

We demonstrated, through three applications (analyses), the usefulness of the SURVEYHLM
macro. These highlighted the possibilities that the macro presents for fitting three-level mod-
els with LSA datasets. These possibilities include estimating repeated replication technique-
based standard errors, having response variables that are not normally distributed, and mod-
eling different correlation structures for the random effect. Until now, no software package
has been able to capture all these features simultaneously. Our applications also showed
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that these possibilities lead to parameter estimators that are more in line with the technical
requirements of LSA datasets. Because the other parameter estimators also lead to other
interpretations of the results, future multilevel analyses of LSA datasets need to take these
details into account.
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A. The SURVEYHLM macro code

In the next two sections, we set out the SURVEYHLM code. Section A.1 presents the code
for calculating means, variances, and frequencies, while Section A.2 provides the code for
calculating multilevel models.

A.1. Means, variances, and frequencies

The SURVEYHLM macro produces, by default, descriptive statistics for all variables in the
multilevel model. The statistics for each continuous variable include the following: the total
number of observations, the number of missing observations, the number of non-missing
observations, the minimum and the maximum values, and the arithmetic mean, standard
error, variance, and standard deviation. The statistics for categorical variables include the
frequencies per category, the cumulative frequencies, the percentages, the standard errors of
these percentages, and the cumulative percentage. If the analysis includes use of a combined
weight (i.e., &wgt exists), the macro weights the results, and if it requests use of a repeated
replication technique (i.e., either &jkrep and &jkzone or &rwnames), the standard errors are
based on this technique. In addition, if the analysis uses plausible values as the dependent
variable (i.e., &npv > 1) and requests use of the repeated replication technique, the macro
uses either all plausible values to calculate the standard errors (i.e., &shrtcut = n) or just
the first plausible value (i.e., &shrtcut = y).

Before we present the syntax for creating these descriptive statistics, please note in particular
the syntax for the macro parameter &dataset. This parameter makes it possible to distin-
guish different datasets because it combines the technique that needs to be used to calculate
standard errors and the available weights (see Table 2).!3 Assume, for example, that the user
has supplied replication weights. If the macro parameters &12wgt, &liwgt, and &wgt also
exist, then &dataset = 1. If, however, no weight is specified, then &dataset = 4. The com-
bination of these different characteristics thus distinguishes 18 datasets. However, it should
be mentioned that the macro variable &dataset is an internal variable, which means users
must not define it. Instead, &dataset automatically defines the variable, with the definition
based on the information supplied during invocation of the SURVEYHLM macro.

Existing weighting parameter

SE L2/L1/WGT L2/L1 WGT None L3/L2/L1/WGT L3/L2/L1
REPW 1 2 3 4 13 14
JACK ) 6 7 8 15 16
MODL 9 10 11 12 17 18

Table 2: Datasets differentiated via &dataset.

13Table 2 uses abbreviations for the names of the macro parameter. For example, L2 means level 2 weights
(i-e., &12wgt exists). The name of the technique used to calculate the standard errors (the column labeled SE)
is also abbreviated. REPW means that calculation of the standard errors is based on the repeated replication
technique and includes user-supplied replication weights. JACK indicates that the jackknife technique is being
used for calculating the standard errors, and MODL denotes sandwich estimators for the standard errors.



Journal of Statistical Software 45

Means and variances

We will first present the syntax for calculating the means and variances when &npv = 1 and
then the syntax for &npv > 1.

proc iml;
use &datnr;
read all var {&dvnames &xvarl &xvar2 &xvar3} into y3;

%if &dataset. in 2/4/6/8/10/12/14/16]/18 Jthen jdo;

wgt = j(nrow(y3), 1, 1);

Zend;

selse if &dataset. in 1/3/5/7/9/11/13[/15/17 Jthen Jdo;
use &datnr;

read all var {&wgt} into yO;

wgt = yO0;

Zend;

dvw = y3 # wgt;

wes = dvw[+, ];

wgtmis = wgt # (y3 ™= .);

sumwgt = wgtmis[+, ];
m = wcs / sumwgt;

mt = t(m);

dif = y3 - m;
dif2dif = dif # dif;
difw = dif2dif # wgt;
difs = difw[+, J;
var = difs / (sumwgt - 1);
vart = t(var);

std = sqrt(var);

stdt = t(std);

In the first part of the syntax, the variables whose names appear in &dvnames (the continuous
dependent variables), &xvar1l (the level-1 continuous predictors), &xvar2 (the level-2 contin-
uous predictors), or &xvar3 (the level-3 continuous predictors) are written to the vector y3.
The second part of the syntax estimates the means and the variances for the y3 variables.
If the analysis is unweighted, a vector of ones for wgt is created, otherwise the weights are
used. Before the remaining calculations are carried out, the wgt vector weights the individual
values to obtain dvw. Thus, the mean estimates for the variables m are based on the sum
of weighted individual values across observations wcs divided by the sum of weights across
the non-missing observations sumwgt. In a step that corresponds with the weighting of the
individual values, the squared differences between the individual values and the means are
also weighted to obtain difw. The sum of these squares per variable (i.e., difs) is divided by
the degrees of freedom sumwgt - 1 to obtain the row vector var, with the variances for each
variable in the columns.

If the user requests standard errors for the means, these will simply be the standard deviations
(i.e., the square root of var) of the variables divided by the square root of n (see the following
code). However, if the user wants to calculate standard errors, with these ideally based on
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the repeated replication technique, a few more steps are required. First, the variables whose
names appear in &dvnames, &xvarl, &xvar2, or &xvar3 and that are in the dataset with the
name &datndesc0'* are read into the matrix p1. The first row of p1 is then written into the
vector d1, and the remaining rows are written into the matrix d2. The squared differences of
each row of d2 from d are calculated in the do loop, and these differences combine to form
the matrix pdifall. The sum of these squared differences per variable (i.e., pdifall[+, ])
is then multiplied by &jkfac (usually &jkfac = 0.5 or &jkfac = 1, see Section 2) to obtain
totvar, and the square root of totvar gives the replication variance for the variables.

#if &dataset. in 9/10[/11/12/17]18 Jthen Jdo;

n = countn(y3, "col");

stder = std / sqrt(n);
%end;
selse Jif &dataset. in 1/2/3/4]5/6|7/8/13/14/15/16 Jthen jdo;
use &datndescO;

read all var{&dvnames &xvarl &xvar2 &xvar3} into pl;
d = pl;

d1 = p1[1, 1;

d2 = p1[2:&njk1, ];

do i =1 to &nrwgt;

pdif = (d1 - d2[i, ]) ## 2;

pdifall = pdifall // pdif;

end;

jkvar = pdifall[+, ];

totvar = &jkfac * jkvar;

stder = totvar ## .5;
Jend;
stdet = t(stder);
Out2 = mt || stdet || vart || stdt;

The syntax for calculating the descriptive statistics when &npv > 1 strongly resembles the
syntax for the &npv = 1 case. In practical terms, differences occur only for the dependent
variables. If plausible values are used as the dependent variable, then the mean, standard
deviation, and standard errors for the dependent variable must heed the measurement error
of this variable. The mean is now the arithmetic mean across all &npv plausible values, while
the standard deviation and the standard error take into account the imputation variance
(i.e., the variance between the plausible values). As can be seen below, the estimate of the
mean gm is now the arithmetic mean of the &npv means (one for each plausible value), and
the imputation variance impvar is a function of the variance between the &npv means of the
dependent variable. The standard deviation is calculated by averaging the &npv variances
(one for each plausible value) and adding the imputation variance to this term.

outs = out2[1:&npv, 1];

gm = outs[:, 1;
impv = var(outs);

MThe dataset &datndescO contains the means for each replicated sample i and the means for the total
sample. Thus, the first row of &datndescO contains the sample means for the total sample, the second row the
sample means for the first replicated sample, and so on.
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impvar = Jsysevalf(Jsysevalf(&npv + 1) / &npv) * impv;
vars var[, 1:&npv];
(vars[, +1) / (&npv);
mvars = mvar + impvar;
std = mvars ## .5;
%if &dataset. in 9/10/11/12/17]18 Jithen Jdo;
stder = std / sqrt(al1, 1]);
%end;
/ielse Jif &dataset. in 1/2/3/4]5/6]718/13/14/15/16 Jthen Jdo;
totvars = totvar[, 1:&npv];
%if Jlowcase(&shrtcut) = y Jthen Jdo;
totvar = totvars[, 1] + impvar;
stder = totvar ## .5;
Zend;
%else J}if Jlowcase(&shrtcut) = n Jithen Jdo;
totvar = (totvars[, +]) / (&npv);
totvarl = totvar + impvar;
stder = totvarl ## .5;
%end;
Zend;

mvar

The procedure for calculating the standard error of the mean depends on the macro parameter
&shrtcut. For %lowcase(&shrtcut) = y, only the replication variance of the first plausi-
ble value is used, and the imputation variance must be added to the replication variance.
Thus, instead of using totvar = &jkfac * jkvar, we use totvar = (&jkfac * jkvar) +
impvar. When %lowcase(&shrtcut) = n, the &npv replication variances are averaged, and
the imputation variance is added to this average value. Thus, in comparison to the code above,
totvar = k + impvar with k = jkvari[, +] / &npv and jkvarl = &jkfac * jkvar.

Frequencies

The PROC FREQ function of SAS is used, within a do loop, to calculate the frequencies for each
variable &cvar (i.e., for each dependent or independent categorical variable of the GLMM
model). The estimated statistics in the data steps following the frequency function are
rounded, and the standard error for the percentage per category is calculated. In addi-
tion, the retain statement determines the order in which the statistics will be presented in
the eventual printed-out dataset.

%do t = 1 Jto &ncvar;

#let cvarf = J)scan(&cvar, &t);

proc freq data = &datnr;

tables &cvarf / outcum out = &datndesc3._&t.;
&wgtn;

run;
send;

#do u 1 Jto &ncall;
%let cvarf = Jscan(&cvarp, &u);
data svyhlm_&cvarf._print (keep = &cvarf Frequency Percent CumFrequency
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CumPercent StdErr);
set &datndesc3._&u.;
if percent = . then delete;
countn = round(count, 1);
percentn = round(percent, 0.01);
cum_freqn = round(cum_freq, 1);
cum_pctn = round(cum_pct, 0.01);
if stderr = . then do;
stderrl = round(sqrt(percent * (100 - percent) / &nobs), 0.001);
stderr = round(stderrl, 0.01);
drop stderri;
end;
drop count percent cum_freq cum_Pct;
rename countn = Frequency percentn = Percent cum_freqn = CumFrequency
cum_pctn = CumPercent;
run;
data svyhlm_&cvarf._print;
retain &cvarf Frequency CumFrequency Percent StdErr CumPercent;
set svyhlm_&cvarf._print;
run;
send;

If standard errors need to be based on the repeated replication technique, then the frequency
procedure is applied &nrwgt times to each variable &cvar with the appropriate weighting
variable rwgt&k within a do loop (not depicted here). After the variables have been rounded
and reordered, the &nrwgt datasets with the replicated estimates of the statistics are combined
into the dataset &datndesc4, and the replication-based estimates of the standard errors are
calculated again, this time with the SAS’s PROC IML procedure. In essence, the IML syntax
used to calculate the standard error of the mean (see above) can also be used here.

With respect to &npv > 1, the frequencies for each plausible value are calculated within a
do loop (not depicted here), the results of the frequency procedures are then averaged across
the different plausible values, and the dataset is readied for presentation in printed form. If
a user requests that replication variance be generated for the percentages of each category
of the dependent variable, further analysis, involving three steps, is necessary. During the
first step, the PROC MIANALYZE procedure of SAS calculates the between imputation variance
for the percentages. The second step involves estimation of the sample statistics for the
replication samples (not depicted here), and the third involves calculation of the replication
variance. Once again, the syntax used is basically the same as the IML syntax presented
above. However, as can be seen from the next set of syntax, users need to take account of
the imputation variance, that is the variance of percent across the &npv plausible values.'?

proc iml;

use svyhlm_&cvarf._print;

read all var {Percent} into y1;

#if &ntvar > 1 and &t > &ncvars Jthen Jdo;

1

Ssvyhlm_&cvarf._print is a dataset with the percentages of the whole sample, whereas
svyhlm_pcfreq_vi_m is a dataset with the results of the PROC MIANALYZE procedure.
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use svyhlm_pcfreq_vi_m;

read all var {BetVar} into y3;

impvar = Jsysevalf(Jisysevalf(&npv + 1) / &npv) * y3;
%end;

Because calculation of repeated replication-based standard errors when %lowcase (&shrtcut)
= n uses essentially the same procedure as the one described for %lowcase(&shrtcut) = y,
we decided not to present its code here. However, it is important to remember that the
aforementioned procedure must be applied separately to each plausible value, and the &npv
different estimates for totvar must be averaged so that the square root of this average becomes
the repeated replication-based standard error.

A.2. Multilevel analysis

The syntax code for multilevel analyses is, not surprisingly, more detailed than that of the
code presented in Section A.1. Here, the syntax code is used to prepare the dataset (e.g., cen-
ter the variables, scale the weights, construct level-specific replication weights) and define
the model components (e.g., the number of iterations, the estimation method, the type of
covariance structure for the random components) and/or the post-processing of the results
(e.g., checking for convergence of the estimation, transforming the covariance matrix of the
random components into a correlation matrix, and preparing the results for print presenta-
tion). However, because discussion of these details of the syntax is not feasible within the
scope of this article, we focus only on the code’s essential elements.

Estimating the multilevel model

We used the PROC GLIMMIX procedure from SAS to estimate the multilevel model.' The
multilevel analyses are performed in an inner loop (for the repeated replication estimates)
and an outer loop (for the different plausible values).!” We then used the dataset defined

%Ene, Leighton, Blue, and Bell (2015) and Zhu (2014) have shown that PROC GLIMMIX can be used for
multilevel analyses in SAS by applying this procedure, among others, to the same Programme for International
Student Assessment (PISA) data introduced by Rabe-Hesketh and Skrondal (2006). We therefore decided to
use that procedure in our SURVEYHLM macro. We could have used, as an alternative, PROC NLMIXED, which is
what Anderson, Kim, and Keller (2014), Kurada (2016), and Vock, Davidian, and Tsiatis (2014) did. However,
if level-specific weights need to be used, then the user needs to specify the replicate statement (Anderson
et al. 2014). Unfortunately, if more than one random statement is used, which is necessary, for example, for
a three-level model, then the statement replicate is not allowed (SAS Institute Inc. 2016b). Hence, PROC
NLMIXED cannot be used for multilevel analyses with level-specific weights and more than two levels. Another
way to estimate multilevel models in SAS is through use of the PROC IML procedure (SAS Institute Inc. 2016a).
However, it implies, among other considerations, that the objective function of the multilevel model and the
optimization procedure must be specified manually. In addition, all desirable statistics that are additional to
the multilevel coefficients and the random components and are part of the objective function must be calculated
separately. Such statistics include Akaike’s information criteria (Akaike 1974) and Schwarz’s Bayesian criterion
(Schwarz 1978). Because PROC GLIMMIX provides these additional statistics without additional code, the use
of PROC IML seems inefficient.

Yn preliminary versions of our macro, we used the BY processing features of SAS instead of the loops
presented here. However, our results suggest that the running time of the macro will decrease when the BY
processing feature is used. Hence, we decided to implement the loops in this final version. We nevertheless
strongly recommend use of the BY processing features of SAS whenever possible (Cassell 2007; Novikov 2003).
In general, using the BY processing future of SAS is more efficient, is less error-prone, and needs less calculation
time than looping.
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by name in the macro parameter &datnrlm to invoke the GLIMMIX procedure. Although
this dataset was essentially the same as the dataset the user supplied for the SURVEYHLM
model, it now included, among other features and, if requested, the scaled weights and the
replication weights. The macro parameter &method specifies the estimation method, and if
the model has no random effects, the method is &method = method = mspl, which means
that the estimation method for a model such as this one is the maximum pseudo-likelihood.
For all other models, &method = method = quad(&qpoints). Consequently, the estimation
methods used for these models are the maximum likelihood estimation with Gauss-Hermit
quadrature and, if specified, the user-specified number of quadrature points &gpoints. We
also used the option empirical = classical, which implies that the standard errors for the
multilevel coefficients will be based on the sandwich variance estimator whenever the user
does not specify the repeated replication-based technique.

%#do pv = 1 Jito &npv;
%do i = 0 Jto &nrwgtc;
proc glimmix data = &datnrlm &method &plotsm empirical = classical;
nloptions gconv = &gconv &maxf &maxi technique = &tec;
class &sub3 &sub2 &cvarln &cvar2n &cvar3n;
model &y = &xvarln &xvar2n &xvar3n &cvarln &cvar2n &cvar3n / &nointr
solution dist = &dist &obsweightc;
%if &mod. in 1/2/3/4 Ythen Ydo;
random &inter2 &res &rslopen / sub = &sub2 g &gs &rweight2c type = &type2
&ldatan2;
%end;
selse if &mod. in 5/6/7/8/9/10/11/12/13 Jthen Jdo;
random &inter2 &rslopen / sub = &sub2(&sub3) g &gs &rweight2c
type = &type2 &ldatan2;
random &inter3 &rslopen3 / sub = &sub3 g &gs &rweight3c type = &type3
&ldatan3;
%end;

4if &i = 0 and &pv > 1 and Jlowcase(&start) = y Jthen Jdo;
parms / pdata = svyhlm_vp_1;
send;

&wgtlmc ;
ods output CovParms = svyhlm_vp_&pv._jk_&1i.
ParameterEstimates = svyhlm_p_&pv._jk &i. &convst
&gmat &constat &gv &fitstat &nobsglm ;
run;

%end;

Zend;

Note that in the row beginning with the statement nloptions, we define some options for the
nonlinear optimization procedure. We specify the relative gradient convergent criterion with
gconv and &gconv = 1E-8 as the default. The macro parameters &maxf and &maxi define
the maximum number of function calls and the maximum number of iterations during the
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&mod Levels FIX RI2 RS2 RI3 RS3

1 2 v 4

2 2 v 4 v

3 1 v

4 2 v v

5 3 4 4 v

6 3 v 4 4
7 3 4 4 v v
8 3 4 v v

9 3 v v v
10 3 v v v v/
11 3 v 4 v v

12 3 v 4 4 v/
13 3 v 4 v v v/

Table 3: Possible values for &mod and models that can be fitted with the SURVEYHLM
macro.

optimization. The default values for this parameter depend on the optimization technique
(i.e., on &tec) that is used in the technique statement. (For details of possible options for
&gconv, &maxf, &maxi, and &tec, see the documentation for the nloptions statement for the
PROC GLIMMIX procedure in SAS Institute Inc. 2017.)

The class statement defines the variables that should be considered as categorical. These
are the level identifiers &sub3 and &sub2 and the categorical predictor variables &cvarin,
&cvar2n, and &cvar3n. The identifier for the fixed effects model is &sub2 = &nestl, else
&sub2 = &nest2; for the three-level models it is &sub3 = &nest3, and the model statement
defines the dependent variable with the name &y. Also included as independent variables
are the continuous predictor variables &xvarin, &xvar2n, and &xvar3n, and the categorical
predictor variables &cvarin, &cvar2n, and &cvar3n. Several options are specified after the
front slash. The macro parameter &nointr defines whether an intercept should be included
in the model, and because &nointr is per default empty, an intercept is included. If an
intercept is not included in the model, then the user must specify noint = y when invoking
the %SUREVYHLM macro. The statement solution requests a solution for the fixed effects
parameters, and dist specifies the probability distribution of the data. (For details about
possible options for &dist, see the documentation for the PROC GLIMMIX procedure in SAS
Institute Inc. 2017.) The default is &dist = normal, which means a normally distributed
dependent variable is assumed. If the user requests a level-1 specific weight, this appears in
&obsweightc.

The following statement (i.e., random) is conditional, which means it is executed only when
&mod = 1, &mod = 2, &mod = 3, or &mod = 4. The macro parameter &mod defines the model
that the user requests.!® Table 3 presents an overview of the possible values for &mod. Thus,
for example, when &mod = 1, the estimated model will be a two-level model with a random
intercept on level 2, and when &mod = 5, the requested model will be a three-level one with

The macro variable &mod is an internal variable, which means it is based on the information the user
supplied during invocation of the SURVEYHLM macro. It also means that appropriate values to &mod will be
assigned automatically.
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a random intercept on level 2 and random slopes on level 3. The conditional statement of
random therefore implies that this statement will only be executed if the analysis involves a
fixed effects model or a level-2 model.

The macro parameter &inter2 in the random statement is &inter2 = intercept if a random
intercept is assumed, else &inter2 is empty. The &res parameter is defined only for the fixed
effects model, that is, when &mod = 3. In that case, &res = _residual_, meaning that the
residual on level 1 is assumed to be random. If the user defines the random slopes on level
2 (i.e., if &rslope2 is not empty), then the names of these variables occur in &rslopen.
Several options are available after the front slash of the random statement. The option sub
defines the subject in the specified model, and complete independence is assumed across the
subjects. If the model is a fixed effects one, &sub2 = &nestl, the subject across which the
&res = _residual_ varies randomly is the level-1 identifier. For all other models, &sub2 =
&nest2, which means the random effects specified in &inter2 and &rslopen vary randomly
across the level-2 identifier. The G option displays the estimated random components of the
G matrix, and &rweight2c = weight = &l2wgts defines the level-2 specific weight, if the
user supplies this. The type argument specifies the structure of R when &mod = 3 and the
structure of G when &mod ~= 3. The default type is &type2 = vc, which means a distinct
variance component has been assigned to each random effect and the covariances between
the random effects are assumed to be zero. (For other possible options of the type argument,
see SAS Institute Inc. 2016b.) The macro parameter &ldatan?2 is necessary when &type2 =
lin(q). In this instance, &ldatan2 = ldata = &ldata2, and &ldata2 defines the dataset
with the matrices of the assumed linear combination.

If the user analyzes a three-level model, two random statements are executed. The first is
for the level-2 random components, and the second is for the level-3 random components.
Although the meaning of the macro parameter is nearly the same as that for the two-level
model, the &rweight, &type, and &ldatan arguments are now available for both levels. In
addition, the first sub statement shows that if the model is a three-level one, we can assume
that the level-2 units (i.e., &sub2) are nested within the level-3 unit (i.e., &sub3).

The &wgtlmc parameter is defined only when &dataset = 3, &dataset = 7, or &dataset =
11. In this case, &wgtlmc = weight &wgt, and &rweight2c and &rweight3c will be empty.
The ods output statement defines the different output datasets. Fit statistics, number of
observations, random components together with their standard errors, and the fixed effects
parameter estimates are written to the working directory for all possible models. Information
about the convergence status, conditional fit statistics, and the G matrix is also written to
the working directory for all models, except the fixed effects model, and all datasets are used
afterwards for generating the print output. The information about the convergent is also used
to determine if the analysis will continue. If convergence using the whole sample does not
occur, the analysis will be interrupted.

Estimating repeated replication-based standard errors

The procedure for estimating the repeated replication-based standard errors for the fixed
effects and the random components consists of two steps. First, the appropriate PROC GLIMMIX
syntax is run &nrwgt times, during which each pass is made with the corresponding replication
weight (see the previous section). Second, the replication-based variance is estimated within
a PROC IML step. We do, however, need to comment on the convergent information. If
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a replication-based PROC GLIMMIX procedure does not converge, the fixed effects parameter
estimates and the random component estimates from the appropriate full model will be used
as the default output for this run. However, a message will be sent to the SAS log that tells
the user the number of &nrwgt replications that did not converge.

The fixed effects parameter estimates and the random component estimates of the &nrwgt
replication-based analysis are each combined into a single dataset, and these datasets are
used in the PROC IML step that calculates the replication-based standard errors. As can be
seen from the code for &npv > 1 and %lowcase(&shrtcut) = n set out below, the replication
variance for each of the &npv plausible values is calculated in a do loop, written into the object
E, and outputted to the dataset surveyhlm_p_iml1l_&pv.

#do pv = 1 Jto &npvr;

%#let tempjkp = JNewDatasetName (temp) ;
data &tempjkp;

merge 7namep (svyhlm_p_&pv._jk_, &nrwgt);
run;

%#let tempjkv = JNewDatasetName (temp) ;
data &tempjkv;

merge jnamep (svyhlm_vp_&pv._jk_, &nrwgt);
run;

proc iml;

start e(p, pl, p2) global(E);

pp = pl, 11;

do i =1 to &nrwgt;

pdif = (pp - p1l[, i]) ## 2;

pdifall = pdifall || pdif;

end;

jkvarl = pdifalll[, +];

jkvar = &jkfac * jkvari;

%#if &npv > 1 Jthen jdo;

impv = p2[, 1];

impvar = Jsysevalf (Jsysevalf(&npv + 1) / &npv) * impv;

totvar = jkvar + impvar;

send;

selse Jdo;

totvar = jkvar;

%end;

E = totvar;

finish e;

use svyhlm_p_&pv.;

read all var{Estimate} into p;

use &tempjkp;

read all var _num_ into pl;

%if &npv > 1 Jthen Jdo;

use svyhlm_p_vi_m;
read all var{BetVar} into p2;
Zend;
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selse Jdo;

use svyhlm_p_&pv.;

read all var{Estimate} into p2;

%end;

run e(p, pl, p2);

create svyhlm_p_imll_&pv. from E[colname = {"Tot&pv."}];
append from E;

close svyhlm_p_imll_é&pv.;
Zend;

The datasets surveyhlm_p_iml1l_&pv. are then combined into a single dataset, and PROC IML
is used to average the &npv replication variance estimates. The square root of this average is
the desired estimate of the replication-based standard errors (one for each fixed effect).

%#let tempjkpc = )NewDatasetName (temp) ;
data &tempjkpc;
merge jnamep(svyhlm_p_imll_, &npvr);
run;
proc iml;

start f(p, pl) global(F);
pf = pl, 11;

df = p[, 2];

totvar = pl;

totvarl = (totvar[, +]) / (&npvr);
stder = totvarl ## .5;

tvalue = divide(pf, stder);

do i = 1 to nrow(df);

if df[i] > O then prtc = 1 - probt(abs(tvaluel[i]), df[il);

else prtc = .;

prt = prt // prtc;

end;
F = stder || df || tvalue || prt;
finish f;

use svyhlm_p_print;
read all var{Estimate DF} into p;

use &tempjkpc;
read all var _num_ into pl;
run f(p, pl);
%let tempjkpr = JNewDatasetName (temp) ;
create &tempjkpr from F[colname = {"StdErr" "DF" "tvalue" "Probt"}];
append from F;

close &tempjkpr;
quit;
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