
JSS Journal of Statistical Software
July 2025, Volume 113, Issue 8. doi: 10.18637/jss.v113.i08

StepMix: A Python Package for Pseudo-Likelihood
Estimation of Generalized Mixture Models with

External Variables

Sacha Morin
Université de Montréal

Mila - Quebec AI Institute

Robin Legault
Massachusetts Institute of Technology

Operations Research Center

Félix Laliberté
Université de Montréal

Zsuzsa Bakk
Leiden University

Charles-Édouard Giguère
Institut universitaire en santé

mentale de Montréal

Roxane de la Sablonnière
Université de Montréal

Éric Lacourse
Université de Montréal

Abstract

StepMix is an open-source Python package for the pseudo-likelihood estimation (one-,
two- and three-step approaches) of generalized finite mixture models (latent profile and
latent class analysis) with external variables (covariates and distal outcomes). In many ap-
plications in social sciences, the main objective is not only to cluster individuals into latent
classes, but also to use these classes to develop more complex statistical models. These
models generally divide into a measurement model that relates the latent classes to ob-
served indicators, and a structural model that relates covariates and outcome variables to
the latent classes. The measurement and structural models can be estimated jointly using
the so-called one-step approach or sequentially using stepwise methods, which present sig-
nificant advantages for practitioners regarding the interpretability of the estimated latent
classes. In addition to the one-step approach, StepMix implements the most important
stepwise estimation methods from the literature, including the bias-adjusted three-step
methods with Bolk-Croon-Hagenaars and maximum likelihood corrections and the more
recent two-step approach. These pseudo-likelihood estimators are presented in this paper
under a unified framework as specific expectation-maximization subroutines. To facili-
tate and promote their adoption among the data science community, StepMix follows the
object-oriented design of the scikit-learn library and provides an additional R wrapper.

Keywords: mixture models, expectation-maximization, Python, R.

https://doi.org/10.18637/jss.v113.i08
https://orcid.org/0000-0002-8982-2072
https://orcid.org/0009-0005-6551-0591
https://orcid.org/0009-0003-9073-5595
https://orcid.org/0000-0001-9352-4812
https://orcid.org/0000-0002-8507-6412
https://orcid.org/0000-0003-2534-7142
https://orcid.org/0000-0002-4779-9900

2 StepMix: Generalized Mixture Models with External Variables in Python

1. Introduction
Mixture models are a family of probabilistic models that can be estimated from observed data
to discover hidden or latent subgroups within a population. They are often used to analyze
multivariate continuous and categorical data following some explicit assumptions about their
conditional distribution given a categorical latent variable. Mixture modeling belongs to
the field of model-based cluster analysis (McLachlan, Lee, and Rathnayake 2019) and takes
different names across academic disciplines (Sterba 2013). In health and social sciences, it
is often referred to as latent class analysis when the observed variables are categorical and
latent profile analysis when they are continuous (Oberski 2016). Mixture models can also
be presented under the more general framework of probabilistic graphical models as directed
acyclic graphs with latent variables (Koller and Friedman 2009).
In social sciences, mixture models are used in cross-sectional and longitudinal studies that
require to account for discrete population heterogeneity. For example, they are employed
in psychology, psychiatry and epidemiology to establish probabilistic diagnoses when a gold
standard is unavailable. Using national survey data, Lacourse, Baillargeon, Dupéré, Vitaro,
Romano, and Tremblay (2010) identified subgroups of adolescents that are more likely to
present specific diagnoses of conduct disorder (non-aggressive vs. aggressive). Other applica-
tions based on cross-sectional data include identifying patterns of mobile internet usage for
traveling (Okazaki, Campo, Andreu, and Romero 2015) and modeling recidivism rates among
latent classes of juvenile offenders (Mulder, Vermunt, Brand, Bullens, and Van Merle 2012).
Historically, two main approaches have been used for estimating the parameters of mix-
ture models. While it can be seen as a single likelihood maximization problem (Dayton
and Macready 1988), the estimation process can also be divided into distinct steps. The first
stepwise estimators of regression models became popular during the 1960s (Goldberger 1961).
In order to relate latent classes to observed indicators and distal outcomes, these methods
predict the class membership of the units based on the observed indicator variables before es-
timating the class-conditional distribution of the outcomes using the predicted latent classes.
Their main advantage over classical maximum likelihood estimators (MLE) lies in the fact
that they avoid the distal outcomes to contribute to the definition of the latent variables.
This property is essential in applications where the interpretability of the latent classes is an
important consideration. Among other advantages, stepwise methods are useful in the pres-
ence of missing data on distal outcomes, as the unobserved outcome variables only affect the
last step of the estimation procedure. Unfortunately, several studies highlighted that naive
stepwise methods produce highly biased estimates of the class-conditional distribution of the
distal outcomes (Croon 2002; Bolck, Croon, and Hagenaars 2004; Vermunt 2010; Devlieger,
Mayer, and Rosseel 2016). To alleviate this issue, stepwise estimators that mitigate or com-
pletely eliminate the bias introduced in the classification process have been proposed in the
literature (Bolck et al. 2004; Vermunt 2010; Bakk and Kuha 2018).
Although commercial packages implement modern bias-adjusted stepwise estimators, these
methods still have very limited availability in open-source software. Furthermore, they are
completely unavailable in Python (Van Rossum and Drake 2009), which considerably re-
duces their pool of potential users. As the popularity of mixture modeling increases among
applied researchers, so does the importance of making the state-of-the-art estimation meth-
ods publicly available in a well-documented software package. The goal of StepMix is to
respond to this need by providing the scientific community with a convenient open-source

Journal of Statistical Software 3

X

Y

Zp Zo

Figure 1: Family of mixture models that can be estimated by StepMix. Conditioning on
the latent class X blocks the paths between the observed indicators, illustrating graphically
the conditional independence assumptions and how the joint likelihood in (1) factorizes.

package implementing bias-adjusted stepwise estimators. Our Python package is distributed
via the Python Package Index (PyPI) at https://pypi.org/project/stepmix/. An R
wrapper is also available on the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=stepmixr.
This paper aims to introduce the StepMix package and present a self-contained reference
on pseudo-likelihood estimation of mixture models with external variables. The family of
mixture models studied in this work is formally defined in Section 2. Section 3 presents an
overview of the estimation methods developed in the literature for these models and of the
software packages in which they are implemented. Section 4 provides a detailed exposition
of the estimation methods implemented in StepMix under a unified framework. The basic
usage of our package and some of its most important features are discussed in Section 5.
Computational examples based on simulated and real-life datasets are presented in Section 6.
Section 7 concludes the paper.

2. Models
This section introduces the structure of the mixture models StepMix can estimate and the
main notation used in the paper. In its most general formulation, the model we consider is
composed of a latent categorical variable X, a set of observed indicators Y , a set of observed
covariates (or predictors) Zp, and a set of observed distal outcomes Zo. The support of each
of these sets of variables is respectively denoted by X , Y, Zp, and Zo. As illustrated in
Figure 1, the observed variables Zp, Y , and Zo are assumed to be conditionally independent
given the latent class X.
Throughout the paper, for the sake of notational simplicity, the name of the variables are
omitted in the formulas. For example, p(x, y) denotes the joint probability p(X=x, Y =y).
Furthermore, the notation p(·) indistinctly refers to the probability mass function (PMF) in
the case of discrete variables and to the probability density function (PDF) when handling
continuous variables.
In accordance with the literature, we will distinguish the measurement model (MM) from the
structural model (SM). They are respectively composed of the subsets of variables (X, Y) and
(Zp, X, Zo). The MM is specified by a set of parameters θM ∈ ΘM that can be partitioned as
θM = (θX , θY) ∈ (ΘX × ΘY), where θX and θY respectively specify the marginal distribution
of the latent classes and the class-conditional distribution of the indicator variables. The MM

https://pypi.org/project/stepmix/
https://CRAN.R-project.org/package=stepmixr
https://CRAN.R-project.org/package=stepmixr

4 StepMix: Generalized Mixture Models with External Variables in Python

defines, for any realization (x, y) ∈ X × Y, the joint probability:

p(x, y; θM) = p(x; θX)p(y | x; θY)

Analogously, we denote the parameters of the SM by θS = (θZp , θZo), where the sets of
parameters θZp and θZo respectively specify the distribution of the latent classes conditionally
on the observed covariates and the class-conditional distribution of the distal outcomes. In
the SM, the joint probability of a realization (x, zo) ∈ X × Zo given the covariates zp ∈ Zp is:

p(x, zo | zp; θS) = p(x | zp; θZp)p(zo | x; θZo)

In the absence of covariates, the latent class is treated as an exogenous variable in the SM.
In this case, the SM’s parameters reduce to θS = θZo and only specify the class-conditional
distribution of the distal outcomes.
Together, the MM and the SM form the complete model (CM), which specifies the probabil-
ities:

p(x, y, zo | zp; θM , θS) = p(x | zp; θX , θZp)p(y | x; θY)p(zo | x; θZo) (1)

We adopt a generative perspective on the CM when it does not contain covariates. This
means that the marginal distribution of all the variables, including the latent classes, is ex-
plicitly specified by the model. In particular, given fixed parameters (θX , θY , θZo), this allows
to directly sample observations (x, y, zo) from the CM. On the other hand, a conditional
perspective is adopted in the presence of covariates. In other words, the covariates Zp are
regarded as exogenous variables, and their marginal distribution is not estimated. Observa-
tions (x, y, zo) can then be sampled from the CM given fixed covariates zp and parameters
(θY , θZp , θZo). In this case, the parameters θX specifying the marginal distribution of the
latent classes are ignored in the CM. The conditional distribution of the latent variable in (1)
thus reduces to:

p(x | zp; θX , θZp) =
{

p(x; θX) if Zp = ∅,

p(x | zp; θZp) otherwise.
(2)

3. Related packages
Two classical approaches have been and are still widely applied in the literature for estimating
the mixture models illustrated in Figure 1. The first is the one-step approach, which directly
estimates the parameters of the CM through likelihood maximization. This estimation is
typically performed using the expectation-maximization (EM) algorithm (Dempster, Laird,
and Rubin 1977). The second is the so-called naive three-step approach. Its first step consists
of computing the MLE of the MM’s parameters without considering the SM. In the second
step, the latent class of each unit is predicted based on the estimated MM. In step three, after
replacing the latent classes with their predicted values from step two, the parameters of the SM
are estimated by likelihood maximization. The one-step and naive three-step approaches are
based on standard EM, classification, and maximum likelihood estimation procedures. They
can thus be implemented relatively easily based on any software for latent class modeling.
Nevertheless, the commercial software packages Latent GOLD (Vermunt and Magidson 2013)
and Mplus (Muthén and Muthén 2017) are the only ones that currently support three-step
estimators natively.

Journal of Statistical Software 5

The first bias-adjusted stepwise estimator that was introduced in the literature is the Bolk-
Croon-Hagenaars three-step method (BCH), named after its authors (Bolck et al. 2004). The
original BCH approach was improved by Vermunt (2010), who also proposed the so-called ML
three-step method. The main idea of bias-adjusted methods is to estimate the probability of
misclassifying units in the second step in order to perform a correction of the imputed class
weights used in step three. These methods are implemented in Latent GOLD and Mplus, but
are unavailable in open-source software.
An alternative stepwise estimator is the two-step approach (Bakk and Kuha 2018). This
method bypasses the classification step of the three-step approach and thus eliminates the
bias resulting from misclassification errors. It follows the logic of stepwise regression modeling
(Goldberger 1961) by first estimating the parameters of the MM before performing a pseudo-
maximum likelihood estimation of the CM in which the estimated MM’s parameters are held
fixed. The two-step approach is available in Latent GOLD and Mplus, and can easily be
implemented in any software package allowing for conditioning on a set of fixed parameters.
Unfortunately, most model-based clustering open-source packages do not allow using fixed
parameters in this manner. The only exception is the recent R (R Core Team 2025) package
multilevLCA (Lyrvall, Mari, Bakk, Oser, and Kuha 2023).
These stepwise estimation methods all fall within the frequentist paradigm of pseudo-maximum
likelihood estimation. Although this is outside of the scope of this paper, it is worth men-
tioning that a Bayesian perspective on mixture modeling can also be adopted. In particular,
maximum a posteriori (MAP) estimation makes it possible to include prior information in
the analysis and is exploited as a regularization technique in model-based clustering (Fraley
and Raftery 2007). In addition to MAP estimation based on the EM algorithm, BayesLCA
(White and Murphy 2014) supports Gibbs sampling (Geman and Geman 1984) and a vari-
ational Bayes approximation method (Ormerod and Wand 2010). The packages depmixS4
(Visser and Speekenbrink 2010), randomLCA (Beath 2017), mclust (Scrucca, Fop, Murphy,
and Raftery 2016) and scikit-learn (Pedregosa et al. 2011) also implement Bayesian methods
in the context of one-step estimation, primarily for regularization purposes.
A list of popular R and Python packages for the estimation of mixture models follows.

• mclust (Scrucca et al. 2016) is an R package implementing Gaussian mixture models
with different covariance structures. The package also features functions for model-
based hierarchical clustering and model selection. AutoGMM (Athey, Liu, Pedigo, and
Vogelstein 2019) is a Python package with similar features.

• MoEClust (Murphy and Murphy 2020) is an R package for parsimonious finite multi-
variate Gaussian mixtures of experts models. The package supports mclust’s different
covariance structures and also gating/expert network covariates.

• scikit-learn (Pedregosa et al. 2011) offers a number of Gaussian mixture models in
Python and is a StepMix dependency.

• multilevLCA (Lyrvall et al. 2023) is an R package for multilevel latent class models.
It allows for the inclusion of covariates using the one-step and two-step estimators but
does not support distal outcomes. It is currently the only other open-source package
that implements a stepwise approach.

6 StepMix: Generalized Mixture Models with External Variables in Python

Package Version R Python scikit-learn
API

Two-step
estimation

Bias-adjusted
three-step
estimation

Gaussian and
non-Gaussian
components

Covariates

StepMix 2.1.3 ✓ ✓ ✓ ✓ ✓ ✓ ✓
scikit-learn 1.2 ✓ ✓
multilevLCA 1.1 ✓ ✓ ✓ ✓
mclust 6.0 ✓
MoEClust 1.5.2 ✓ ✓
AutoGMM 2.0.1 ✓ ✓
MixMod 0.2.0 ✓ ✓
Rmixmod 2.1.8 ✓ ✓
poLCA 1.6.0.1 ✓ ✓
depmixS4 1.5 ✓ ✓ ✓
randomLCA 1.1-2 ✓
BayesLCA 1.9 ✓
e1071::lca 1.7-13 ✓
glca 1.3.3 ✓ ✓
VarSelLCM 2.1.3.1 ✓ ✓
FlexMix 2.3-18 ✓ ✓ ✓

Table 1: Features of open-source software packages for mixture models estimation.

• FlexMix (Grün and Leisch 2008) is an R package that provides a flexible framework for
finite mixture models of generalized linear models. It supports models with covariates
as well as several families of probability distributions.

• PoLCA (Linzer and Lewis 2011) is an R package for one-step estimation of latent class
models with categorical observed variables and covariates. It does not support Gaussian
components.

• MixMod and Rmixmod (Lebret, Iovleff, Langrognet, Biernacki, Celeux, and Govaert
2015) are the Python and R interfaces to the C++ (Stroustrup 2013) mixmodLib library.
These packages are based on a generalized linear model perspective and implement
model-based clustering methods for quantitative and qualitative data. They provide
different variants of the EM algorithm, including the stochastic EM and the classification
EM (see McLachlan and Krishnan 2007 for a presentation of these methods). However,
these packages do not support models with covariates.

In Table 3, the main features of StepMix are compared with those of the previously mentioned
software as well as the other open-source R and Python packages, LCA from e1071 (Meyer et al.
2024), glca (Kim, Jeon, Chang, and Chung 2022), and VarSelLCM (Marbac and Sedki 2019).
Table 3 indicates the programming languages of each package and, for Python packages,
whether they follow a scikit-learn API. It also reports which packages natively support two-
step and three-step estimation methods in addition to the standard one-step approach. The
last two columns indicate whether each package supports both Gaussian and non-Gaussian
indicators and outcome variables and whether the SM can contain covariates.
StepMix is the first open-source software that natively implements bias-adjusted three-step
methods. In addition to enabling the users of Python to use mixture models with covariates
and both Gaussian and non-Gaussian components, StepMix is also the first package to support

Journal of Statistical Software 7

pseudo-likelihood estimation of mixture models in this language. One of our package’s primary
advantages over open-source and commercial existing software is that it strictly follows the
scikit-learn interface. All the tools implemented in scikit-learn, including model selection and
hyperparameter tuning methods, can thus be directly applied to Python’s StepMix estimator.
In social sciences, Latent GOLD and Mplus are still the main tools used to estimate latent
class models, mostly because of the lack of comprehensive packages in Python or R for mixture
modeling. These software packages implement one-step, two-step, and bias-adjusted three-
step estimators, with some limitations regarding the available distributions for non-categorical
outcome variables. However, their code implementation of estimation methods is not open-
source and thus cannot be directly inspected by researchers. Furthermore, these packages
are expensive, making them inaccessible to a large part of the scientific community, hence
the still frequent use of the one-step and naive three-step approaches in the literature. By
bridging the gap between the features of commercial and open-source software StepMix, aims
to foster the adoption of the state-of-the-art estimation methods of mixture models among
applied researchers.

4. Pseudo-likelihood estimation methods
The main objective of the estimation methods implemented in StepMix is to approximate
the parameters of the generalized mixture model illustrated in Figure 1 using the maximum
likelihood principle. In the estimation process, the MM and the SM can be considered either
jointly or separately. This section presents the stepwise estimation methods from the literature
under a unified framework in which each approach is based on the maximization of specific
log-likelihood and pseudo-log-likelihood functions using the EM algorithm. The log-likelihood
functions of the MM, SM, and CM are first presented in Section 4.1. Then, the EM algorithm
is derived for the CM in Section 4.2. In Sections 4.3 to 4.5, the one-step, two-step, and
three-step methods implemented in StepMix are described as specific EM subroutines that
are applied on the MM, SM, and CM. This presentation highlights the fact that the stepwise
estimation methods from the literature all share a very similar structure and primarily differ
by the parameters that are considered fixed in the estimation process and, for three-step
methods, by the definition of imputed class weights.

4.1. Likelihood functions
Suppose we have a sample of units i ∈ N , each with observed covariates, indicators, and distal
outcomes (Zp

i , Yi, Zo
i) = (zp

i , yi, zo
i). Also, let the support of the latent variables Xi be given

by a set of K classes X = {1, . . . , K}. Finally, suppose that each unit has been given a sample
weight ωi ∈ R. The log-likelihood function of the MM, SM, and CM are then respectively
denoted by ℓM

N , ℓS
N and ℓC

N , and are given by:

ℓM
N (θM | y) =

∑
i∈N

ωi log p(yi; θM)

=
∑
i∈N

ωi log

∑
k∈X

p(Xi=k, yi; θM)


=
∑
i∈N

ωi log

∑
k∈X

p(Xi=k; θX)p(yi | Xi=k; θY)



8 StepMix: Generalized Mixture Models with External Variables in Python

ℓS
N (θS | zp, zo) =

∑
i∈N

ωi log p(zo
i | zp

i ; θS)

=
∑
i∈N

ωi log

∑
k∈X

p(Xi=k, zo
i | zp

i ; θS)


=
∑
i∈N

ωi log

∑
k∈X

p(Xi=k | zp
i ; θZp)p(zo

i | Xi=k; θZo)



ℓC
N (θM , θS | y, zo | zp) =

∑
i∈N

ωi log p(yi, zo
i | zp

i ; θM , θS)

=
∑
i∈N

ωi log

∑
k∈X

p(Xi=k, yi, zo
i | zp

i ; θM , θS)


=
∑
i∈N

ωi log

∑
k∈X

p(Xi=k | zp
i ; θX , θZp)

p(yi | Xi=k; θY)p(zo
i | Xi=k; θZo)


StepMix supports missing data in the indicators and distal outcomes through full informa-
tion maximum likelihood (FIML). This method was first outlined by Hartley and Hocking
(1971), and is a direct generalization of maximum likelihood estimation to datasets con-
taining data points with missing observed variables. The FIML approach makes it pos-
sible to use all available information despite missing data by defining the probabilities in
the likelihood function only with respect to the observed variables for each unit. For-
mally, let us consider a MM with D independent indicators. Suppose that the indicators
yid of unit i ∈ N are missing for each dimension d ∈ D̄i ⊆ D = {1, . . . , D}. In the
FIML framework, the probability p(yi | Xi=k; θY) = ∏

d∈D p(yid | Xi=k; θY) is replaced
by p(yi | Xi=k; θY) = ∏

d∈D\D̄i
p(yid | Xi=k; θY). If no indicator is observed, i.e., D̄i = D,

then we fix p(yi | Xi=k; θY) = 1. In the absence of missing data, FIML reduces to classical
likelihood maximization. Everywhere in the paper, including in the definition of the above
log-likelihood functions, the probabilities p(yi | Xi=k; θY) and p(zo

i | Xi=k; θZo) are therefore
assumed to respect the definition required for the use of FIML.

4.2. EM algorithm

The log-likelihood functions of Section 4.1 are generally multi-modal and non-convex due
to the presence of a sum within the logarithm. The computation of their MLE is thus not
straightforward and is tackled via the EM algorithm in StepMix.
The EM algorithm, introduced by Dempster et al. (1977), is the standard approach in the
literature for maximum likelihood estimation in statistical models with latent categorical
variables. The main idea of this method is to replace the log probability of each observation
by a lower bounding auxiliary function to obtain a pseudo-likelihood function that is easier
to maximize than the original log-likelihood function.

Journal of Statistical Software 9

In the following, we derive the EM algorithm for the CM. For each unit i ∈ N , the log
probability of the observations (yi, zo

i), given the covariates zp
i and the CM’s parameters

(θM , θS), is underestimated by an auxiliary function Li(qi, θM , θS), which is parameterized by
a probability distribution qi(·).

log p(yi, zo
i | zp

i ; θM , θS) = log
(∑

x∈X
p(x, yi, zo

i | zp
i ; θM , θS)

)

= log
(∑

x∈X

qi(x)p(x, yi, zo
i | zp

i ; θM , θS)
qi(x)

)
(3)

= log
(

Eqi

[
p(x, yi, zo

i | zp
i ; θM , θS)

qi(x)

])

≥ Eqi

[
log

(
p(x, yi, zo

i | zp
i ; θM , θS)

qi(x)

)]
(4)

=: Li(qi, θM , θS)

For (3) to hold, the only condition on q(·) is that q(x) > 0 ∀x ∈ X . In equation 4 results
from Jensen’s inequality, using the fact that the logarithm function is concave.
From there, we want to select the probability distribution qi(·) that maximizes the lower
bounding function Li(qi, θM , θS) for it to approximate log p(yi, zo

i | zp
i ; θM , θS) as closely as

possible. To do so, we start by rewriting Li(qi, θM , θS) in terms of the Kullback–Leibler (KL)
divergence of distribution q(·) from the conditional distribution of the latent variable Xi given
the observations of unit i and the CM’s parameters.

Li(qi, θM , θS) =
∑
x∈X

qi(x) log
(

p(x, yi, zo
i | zp

i ; θM , θS)
qi(x)

)

=
∑
x∈X

qi(x) log
(

p(x | zp
i , yi, zo

i ; θM , θS)p(yi, zo
i | zp

i ; θM , θS)
qi(x)

)

=
∑
x∈X

qi(x)
(

log
(

p(x | yi, zo
i | zp

i ; θM , θS)
qi(x)

)
+ log (p(yi, zo

i | zp
i ; θM , θS))

)
=
∑
x∈X

qi(x) log
(

p(x | zp
i , yi, zo

i ; θM , θS)
qi(x)

)
+
∑
x∈X

qi(x) log (p(yi, zo
i | zp

i ; θM , θS))

= −
∑
x∈X

qi(x) log
(

qi(x)
p(x | zp

i , yi, zo
i ; θM , θS)

)
+
∑
x∈X

qi(x) log (p(yi, zo
i | zp

i ; θM , θS))

= −DKL(qi(·)∥p(· | zp
i , yi, zo

i ; θM , θS))
+
∑
x∈X

qi(x) log (p(yi, zo
i | zp

i ; θM , θS))

10 StepMix: Generalized Mixture Models with External Variables in Python

= −DKL(qi(·)∥p(· | zp
i , yi, zo

i ; θM , θS))
+ log (p(yi, zo

i | zp
i ; θM , θS))

∑
x∈X

qi(x)

= −DKL(qi(·)∥p(· | zp
i , yi, zo

i ; θM , θS)) + log (p(yi, zo
i | zp

i ; θM , θS)) (5)

Maximizing (5) with respect to q(·) over the set Q of probability distributions that are strictly
positive over X is then relatively straightforward.

arg max
qi∈Q

{Li(qi, θM , θS)} = arg max
qi∈Q

{−DKL(qi(·)∥p(· | zp
i , yi, zo

i ; θM , θS))

+ log (p(yi, zo
i | zp

i ; θM , θS))}
= arg max

qi∈Q
{−DKL(qi(·)∥p(· | zp

i , yi, zo
i ; θM , θS))} (6)

= arg min
qi∈Q

{DKL(qi(·)∥p(· | zp
i , yi, zo

i ; θM , θS))}

= p(· | zp
i , yi, zo

i ; θM , θS) (7)

(6) is obtained by removing the second term from the maximization problem. This can be done
since this term does not depend on the distribution qi(·) with respect to which the expression
must be maximized. From there, the problem reduces to minimizing a KL divergence. We
use the fact that the distribution that minimizes the KL divergence from a distribution p(·)
is p(·) itself to obtain the result in (7).
After fixing the probability distributions qi(·) for each unit i ∈ N , the log-likelihood function
ℓC

N (θM , θS | zp, y, zo) of the CM can be approximated by replacing the log probability of each
unit i ∈ N by its auxiliary function Li(qi, θM , θS). The resulting pseudo-likelihood can then
be maximized to approximate the MLEs of the original log-likelihood function.

arg max
(θM ,θS)∈(ΘM ,ΘS)

{∑
i∈N

ωiLi(qi, θM , θS)
}

= arg max
(θM ,θS)∈(ΘM ,ΘS)

{∑
i∈N

ωi

(∑
x∈X

qi(x) log (p(x, yi, zo
i | zp

i ; θM , θS))

−
∑
x∈X

qi(x) log (qi(x))
)}

= arg max
(θM ,θS)∈(ΘM ,ΘS)

{∑
i∈N

ωi

(∑
x∈X

qi(x) log (p(x, yi, zo
i | zp

i ; θM , θS))
)

−
∑
i∈N

ωi

(∑
x∈X

qi(x) log (qi(x))
)}

= arg max
(θM ,θS)∈(ΘM ,ΘS)

{∑
i∈N

ωi

(∑
x∈X

qi(x) log (p(x, yi, zo
i | zp

i ; θM , θS))
)}

(8)

Analogously to (6), (8) is obtained by removing the terms that do not depend on the deci-
sion variables from the optimization problem. (8) corresponds to a likelihood maximization
problem under complete information, as the latent variables Xi are now treated as observed
variables. The parameters (θM , θS) ∈ (ΘM , ΘS) maximizing the objective function can thus
be computed as in a standard MLE setting, without latent variables.

Journal of Statistical Software 11

The EM algorithm starts from an initial set of estimated parameters (θ̂(0)
M , θ̂

(0)
S) ∈ (ΘM ×ΘS).

At each iteration, the distributions qi(x), i ∈ N are updated using the incumbent estimates
of the CM parameters. More precisely, for each unit i ∈ N and each class k ∈ X , we will
denote the so-called class responsibilities by τ

(t)
ik

:= q
(t)
i (X=k) = p(X=k | zp

i , yi, zo
i ; θ̂

(t)
M , θ̂

(t)
S),

which corresponds to the conditional distribution of Xi given the observations of unit i and
the current estimated CM’s parameters at iteration t ∈ {0, 1, . . . }. This step is called the
expectation step (E Step) since it corresponds to maximizing the expectation in (4). The
estimated CM’s parameters are then updated by solving the complete information maximum
likelihood problem given in (8) for the current imputed class weights q

(t)
i (X=k) = τ

(t)
ik

. This
latter step is referred to as the maximization step (M step).
This process is repeated iteratively until a user-defined convergence criterion is satisfied. As
extensively discussed in Wu (1983), under mild conditions, the EM algorithm is guaranteed
to converge to a local maximum of the original log-likelihood function. In practice, the EM
algorithm is generally executed multiple times using different starting points to identify a
global maximum with high probability. The convergence criteria implemented in StepMix
are the relative and absolute gap between the average log-likelihood of subsequent estimated
parameters.

4.3. One-step method
For a set of units i ∈ N with observed covariates, indicators, and distal outcomes (Zp

i , Yi, Zo
i) =

(yi, zp
i , zo

i), the objective of the one-step estimation method is to compute the MLE (θ̂C
M , θ̂C

S) =
arg max(θM ,θS)∈ΘM ×ΘS

ℓC
N (θM , θS | zp, y, zo) of the CM’s parameters. In StepMix, this is done

by applying the EM algorithm on the CM directly, as presented in Algorithm 1. The nota-
tion (θ̂C

M , θ̂C
S) makes explicit the fact that the parameters θM and θS of the MM and SM are

estimated by maximizing the log-likelihood function ℓC
N (·) of the CM in the one-step method.

It intends to avoid notational ambiguity between this section and Sections 4.4 and 4.5. The
lighter notation (θ̂M , θ̂S) in used in the pseudocode.
The one-step approach is the most natural way to estimate the CM’s parameters based on a
single dataset in which the observable variables of both the MM and the SM are available for
all the units. In this setting, the one-step approach is generally the method that minimizes the
bias and the variance of the CM’s parameter estimates. This has been illustrated in several
computational studies (Vermunt 2010; Asparouhov and Muthèn 2014; Bakk and Kuha 2018),
and is also visible in the results of Section 6. Nonetheless, as discussed in the same works,
this method suffers from important practical and theoretical limitations. First, when using
the one-step approach, model selection can be computationally cumbersome in the context of
exploratory studies in which the number of potential indicator variables or covariates is large.
Indeed, each time a variable is added to or removed from the model, both the SM and the MM
must be re-estimated. This can cause computation time issues when using complex models
and large datasets. The main theoretical drawback of this method, however, lies in the fact
that it makes the estimators of the MM, and thus the interpretation of the latent classes,
dependent on the SM. As a consequence, researchers cannot properly study the relation
between a given latent variable and multiple research questions using the one-step approach.
Finally, this method requires both the MM and the SM’s parameters to be estimated using
the same set of units. In practice, this can lead to methodological issues and limit the quality
of the estimators of the MM’s parameters. For example, a group of researchers may publish
a MM model estimated on a very large sample or census data without being allowed to share

12 StepMix: Generalized Mixture Models with External Variables in Python

Algorithm 1 One-step method
Initialize (θ̂(0)

M , θ̂
(0)
S) ∈ (ΘM × ΘS)

STEP 1 : EM algorithm on the CM
Set t = 0
repeat

E Step
τ

(t)
ik = p(Xi=k|yi, zo

i ; zp
i , θ̂

(t)
M , θ̂

(t)
S), ∀i ∈ N, ∀k ∈ X ▷ Update responsibilities

M Step
θ̂

(t+1)
M = arg max

θM ∈ΘM

∑
i∈N

ωi
∑

k∈X
τ

(t)
ik log p(Xi=k, yi; θM) ▷ Update θ̂M

θ̂
(t+1)
S = arg max

θS∈ΘS

∑
i∈N

ωi
∑

k∈X
τ

(t)
ik log p(Xi=k, zo

i ; zp
i , θS) ▷ Update θ̂S

t = t + 1
until convergence
Set (θ̂M , θ̂S) = (θ̂(t)

M , θ̂
(t)
S) ▷ Estimated CM parameters

Return (θ̂M , θ̂S) ▷ Return estimated CM parameters

the data, for example, for privacy reasons. In this case, a second group of researchers wishing
to use the same MM would need to re-estimate it using their own dataset, possibly smaller,
to estimate the parameters of their SM. The primary motivation of multi-step methods is
thus to overcome these limitations by eliminating the dependency of the MM’s parameters
estimates on the SM.

4.4. Two-step method

The two-step method requires a set of units i ∈ N1 with observed indicators Yi = yi and a
set of units j ∈ N2 with observed covariates, indicators, and distal outcomes (Zp

j , Yj , Zo
j) =

(zp
j , yj , zo

j). There are no further constraints on samples N1 and N2. In particular, N1 and
N2 can be disjoint, but it is also possible that N1 = N2 or N2 ⊂ N1.
This approach aims at computing the MLE θ̂M

M = arg maxθM ∈ΘM
ℓM

N1
(θM | y) of the MM’s

parameters on sample N1 and the maximum pseudo-likelihood estimator (MPLE) θ̂
C|M
S =

arg maxθS∈ΘS
ℓC

N2
(θS | zp, y, zo; θ̂M) of the CM’s parameters on sample N2 conditionally on a

fixed estimator θ̂M of the MM model parameters.
In the first step, the EM algorithm is directly applied on the MM based on sample N1. In
the second step, the EM algorithm is applied on the CM for sample N2, but the estimated
MM’s parameters θ̂M obtained in the first step are held fixed instead of being re-estimated.
This procedure is detailed in Algorithm 2.
The idea of the two-step approach was first suggested by Bandeen-Roche, Miglioretti, Zeger,
and Rathouz (1997) as a method of evaluating the mutual sensitivity of the MM and SM’s
parameters in mixture models with discrete outcomes. It has then been applied by Xue and
Bandeen-Roche (2002) in the context of SMs with covariates and by Bartolucci, Montanari,
and Pandolfi (2014) in the case of latent Markov models for longitudinal data. Quite recently,
Bakk and Kuha (2018) carried out the first comprehensive study of the two-step approach
for generalized mixture models and provided empirical evidence for the superiority of the

Journal of Statistical Software 13

Algorithm 2 Two-step method
Initialize (θ̂(0)

M , θ̂
(0)
S) ∈ (ΘM × ΘS)

STEP 1 : EM algorithm on the MM
Set t = 0
repeat

E Step
τ

(t)
ik = p(Xi=k|yi; θ̂

(t)
M), ∀i ∈ N1, ∀k ∈ X ▷ Update responsibilities

M Step
θ̂

(t+1)
M = arg max

θM ∈ΘM

∑
i∈N1

ωi
∑

k∈X
τ

(t)
ik log p(Xi=k, yi; θM) ▷ Update θ̂M

t = t + 1
until convergence
Set θ̂M = θ̂

(t)
M ▷ Estimated MM parameters

STEP 2 : EM algorithm on the CM with θ̂M fixed
Set t = 0
repeat

E Step
τ

(t)
jk = p(Xj=k|yj , zo

j ; zp
j , θ̂M , θ̂

(t)
S), ∀j ∈ N2, ∀k ∈ X ▷ Update responsibilities

M Step
θ̂

(t+1)
S = arg max

θS∈ΘS

∑
j∈N2

ωj
∑

k∈X
τ

(t)
jk log p(Xj=k, zo

j ; zp
j , θS) ▷ Update θ̂S

t = t + 1
until convergence
Set θ̂S = θ̂

(t)
S ▷ Estimated SM parameters

Return (θ̂M , θ̂S) ▷ Return estimated CM parameters

two-step approach over the widely used naive and bias-adjusted three-step methods in terms
of bias and mean-squared error of the SM’s parameters estimates. The two-step approach
is an example of a two-stage pseudo-maximum likelihood estimation method (Besag 1975;
Gong and Samaniego 1981), and thus inherits from the theoretical properties of this class of
estimators. In particular, this implies that the two-step estimators of the SM’s parameters
are consistent. For most applications in which the joint estimation of the MM and the SM’s
parameters is undesirable, the two-step approach should be preferred to three-step methods,
as it avoids introducing a classification error that would negatively affect the quality of the
SM’s parameters estimates computed in the last step.

4.5. Three-step method

Like the two-step method, the three-step approach is based on a set of units i ∈ N1 with
observed indicators Yi = yi and a set of units j ∈ N2 with observed covariates, indicators,
and distal outcomes (Zp

j , Yj , Zo
j) = (zp

j , yj , zo
j). Its first objective is also to compute the MLE

θ̂M
M = arg maxθM ∈ΘM

ℓM
N1

(θM | y) of the MM’s parameters based on sample N1. From there,
the goal is to compute a MPLE θ̂S

S = arg maxθS∈ΘS
ℓ̃S

N2
(θS | z; w) of the SM’s parameters for

sample N2. The pseudo-log-likelihood function ℓ̃S
N2

(θS | z; w) is defined in a different way for

14 StepMix: Generalized Mixture Models with External Variables in Python

each variant of the three-step method, but, in each case, only depends on the MM through a
vector of imputed class weights wj ∈ RK for each unit j ∈ N2.
After applying the EM algorithm to the MM in the first step, imputed class weights are com-
puted in the second step based on the estimated MM’s parameters. In the naive version with
soft assignment, the imputed class weights of each unit correspond to the class membership
probabilities given by the MM. If modal assignment is used instead, each unit is completely
assigned to its most likely latent class. The imputed class weights are then used in the third
step to estimate the SM’s parameters through a single iteration of the EM algorithm in which
the responsibilities are fixed to the class weights obtained in the second step.
In the absence of uncertainty on the real latent classes, under usual regularity conditions on the
distributions of the SM’s variables, the naive three-step method would inherit the consistency
and asymptotic normality properties of the MLE. However, the assignation phase of the three-
step methods generally suffers from a non-negligible classification error rate which leads to
biased estimates of the SM’s parameters. In particular, Bolck et al. (2004) demonstrated that
the uncorrected three-step approach underestimates the strength of the relationship between
the distal outcomes variable and class membership. This can be intuitively understood by
noticing that classification errors introduce units drawn from other classes in the subsample
used to estimate the structural parameters of a given latent class. Thus, the higher the
classification error rate, the more similar these subsamples become in terms of true class
membership. As a consequence, the true conditional distribution of the outcomes given a
class c ∈ X impacts the estimated conditional distribution of the outcomes for other classes
s ∈ X . In practice, high misclassification rates thus lead to excessively similar estimated
class-conditional distributions.
Two bias-adjusted three-step methods, namely the BCH (Bolck et al. 2004; Vermunt 2010)
and ML (Vermunt 2010; Bakk, Tekle, and Vermunt 2013) methods, have been developed to
alleviate the downward bias of the naive three-step approach. They both include in their
second step the computation of a left stochastic matrix D ∈ RK×K whose component (c, k)
contains the probability p(W=k | X=c; θ̂M) of assigning to class k a unit that actually belongs
to class c, given the estimated MM’s parameters θ̂M . As explained by Vermunt (2010), if the
support Y of the indicator variables Y is finite, this probability can be computed exactly by
summing over all the possible realizations of Y .

Dck = p(W=k | X=c; θ̂M) =
∑

y∈Y p(X=c | Y =y; θ̂M)w̄y
k

p(X=c; θ̂M)
, ∀(c, k) ∈ X 2

Note that the definition of matrix D depends on the type of assignment A ∈ {soft, modal}
used in the second step through the weight w̄y

k given to class k for a unit with observed
indicators y. This value is defined as follows.

w̄y
k =

{
p(X=k | Y =y; θ̂M) , if A = soft,

1[arg maxc∈{1,...,C} p(X | Y =y; θ̂M) = k] , if A = modal.

In the presence of continuous indicators, or if |Y| is too large for the previous expression to
be computed in a reasonable time, the probability p(W=k | X=c; θ̂M) can be estimated using
the empirical distribution given by the observed sample N2. This latter definition is natively
used in StepMix for computational efficiency concerns. Matrix D is thus computed as:

Journal of Statistical Software 15

X

W

Zp Zo

Figure 2: Model used in the third step of the three-step method with ML correction.

Dck = p̂(W=k | X=c; θ̂M) =
∑

j∈N2 p(X=c | Y =yj ; θ̂M)wjk

p(X=c; θ̂M)
, ∀(c, k) ∈ X 2

where wjk = w̄
yj

k .
The third step of the BCH method is identical to that of the naive three-step method. It
consists of estimating the SM’s parameters through a single iteration of the EM algorithm
using imputed class weights. The only difference is that, in BCH, these weights are computed
based on the inverse of matrix D and, for each unit j ∈ N2, are typically negative, except
for the most probable class k based on the observed indicators yj and the estimated MM’s
parameters θ̂M . We refer the interested reader to Vermunt (2010); Bakk et al. (2013) for a
detailed discussion on the BCH method.
In the case of the ML correction, the third step consists in splitting each unit j ∈ N2 into
K copies k ∈ X with weight wjk and predicted class membership Wj=k, and applying the
standard EM algorithm with multiple iterations on the model illustrated in Figure 2. This
model is identical to the CM, except that the observed indicator variables are replaced by
the predicted class membership, whose class-conditional distribution is given by p(W=k |
X=c; θ̂M) = Dck.
At the t-th iteration of the EM algorithm, the responsibility of the k-th copy of unit j ∈ N2,
with predicted class membership Wj=k, is given by:

τ
(t)
jkc = p(Xj=c | zp

j , Wj=k, zo
j ; θ̂M , θ̂

(t)
S)

=
p(Wj=k, zo

j | zp
j , Xj=c; θ̂M , θ̂

(t)
S)p(Xj=c | zp

j ; θ̂M , θ̂
(t)
S)

p(Wj=k, zo
j | zp

j ; θ̂M , θ̂
(t)
S)

=
p(Wj=k | Xj=c; θ̂M)p(zo

j | zp
j , Xj=c; θ̂

(t)
S)p(Xj=c | zp

j ; θ̂M , θ̂
(t)
S)

p(Wj=k, zo
j | zp

j ; θ̂M , θ̂
(t)
S)

=
Dckp(zo

j | zp
j , Xj=c; θ̂

(t)
S)p(Xj=c | zp

j ; θ̂M , θ̂
(t)
S)

p(Wj=k, zo
j | zp

j ; θ̂M , θ̂
(t)
S)

= Dck

p(zo
j | zp

j , Xj=c; θ̂
(t)
S)p(Xj=c | zp

j ; θ̂M , θ̂
(t)
S)

p(zo
j | zp

j ; θ̂
(t)
S)

p(zo
j | zp

j ; θ̂
(t)
S)

p(Wj=k, zo
j | zp

j ; θ̂M , θ̂
(t)
S)

= Dckp(Xj=c | zp
j , zo

j ; θ̂
(t)
S)

p(zo
j | zp

j ; θ̂
(t)
S)

p(Wj=k, zo
j | zp

j ; θ̂M , θ̂
(t)
S)

16 StepMix: Generalized Mixture Models with External Variables in Python

∝ Dckp(Xj=c | zp
j , zo

j ; θ̂
(t)
S)p(zo

j | zp
j ; θ̂

(t)
S) (9)

In practice, to avoid having to handle a duplicated dataset in the third step of the three-step
ML method, we express the responsibility τ

(t)
jc of class c ∈ X for each unit j ∈ N2 as the

weighted sum of the responsibilities τ
(t)
jkc.

τ
(t)
jc =

∑
k∈X

wjkτ
(t)
jkc

=
∑
k∈X

wjkDckp(Xj=c | zp
j , zo

j ; θ̂
(t)
S)

p(zo
j | zp

j ; θ̂
(t)
S)

p(Wj=k, zo
j | zp

j ; θ̂M , θ̂
(t)
S)

(10)

∝∼
∑
k∈X

wjkDckp(Xj=c | zp
j , zo

j ; θ̂
(t)
S)p(zo

j | zp
j ; θ̂

(t)
S) (11)

= p(zo
j | zp

j ; θ̂
(t)
S)

∑
k∈X

wjkDckp(Xj=c | zp
j , zo

j ; θ̂
(t)
S)

∝
∑
k∈X

wjkDckp(Xj=c | zp
j , zo

j ; θ̂
(t)
S)

= wjDT
c p(Xj=c | zp

j , zo
j ; θ̂

(t)
S) (12)

(11) is obtained by replacing the class responsibilities τ
(t)
jkc by their unnormalized form, given

in (9) in the summation. This operation leads to an expression that is exactly proportional
to (10) when using hard assignments, but not for soft assignments. However, in the latter
case, it generally has a very small effect on the final class responsibilities. Those are obtained
by normalizing (12), as shown in Algorithm 3.
Although the three-step methods are generally dominated by the two-step approach regard-
ing the bias and variance of the SM’s parameters estimates (Bakk and Kuha 2018), they can
present significant methodological advantages over the two-step approach for practitioners.
Indeed, since the third step only depends on the MM through imputed class weights, estimat-
ing different SMs based on a three-step method does not require the researchers to have access
to the indicator variables once the weights have been computed. For example, this allows the
data owner to share only the relevant covariates, distal outcomes, and precomputed weight
vectors with researchers interested in a particular structural model without disclosing the
measurement model data. This property can be especially advantageous when the observed
indicators used to estimate the measurement model contain sensitive data.
Regarding the differences between the naive and bias-adjusted three-step methods, the sole
advantage of the naive three-step approach is that its interpretation is very intuitive due to
its explicit classification step. The BCH method is very similar in this regard, except that
it produces imputed class weights that can be negative. Although slightly more complex
to interpret and computationally more expensive than the other three-step approaches, the
ML method generally produces the best estimators of the SM’s parameters (Vermunt 2010;
Bakk et al. 2013; Bakk and Kuha 2018). Computational experiments carried out by Bakk
et al. (2013) indicate that soft assignments generally produce better estimates than modal
assignments for all the three-step methods, although the difference in the resulting SM’s
parameters estimates is usually relatively small.

Journal of Statistical Software 17

Algorithm 3 Three-step method
Initialize (θ̂(0)

M , θ̂
(0)
S) ∈ (ΘM × ΘS), select A ∈ {soft, modal}, select C ∈ {ML, BCH, none}

STEP 1 : EM algorithm on the MM
Set t = 0
repeat

E Step
τ

(t)
ik = p(Xi=k|yi; θ̂

(t)
M), ∀i ∈ N1, ∀k ∈ X ▷ Update responsibilities

M Step
θ̂

(t+1)
M = arg max

θM ∈ΘM

∑
i∈N1

ωi
∑

k∈X
τ

(t)
ik log p(Xi=k, yi; θM) ▷ Update θ̂M

t = t + 1
until convergence
Set θ̂M = θ̂

(t)
M ▷ Estimated MM parameters

STEP 2 : Class weights based on the MM

Set wjk =
{

p(Xj=k|yj ; θ̂M) , if A = soft
1[arg maxc∈X p(Xj=c|yj ; θ̂M)=k] , if A = modal

, ∀j ∈ N2, ∀k ∈ X ▷

Weights
if C ∈ {BCH, ML} then ▷ Bias correction methods

Define the r.v. Wj with pmf p(Wj=k) = wjk, ∀j ∈ N2, ∀k ∈ X ▷ Predicted class
membership

Set Dck = p(W=k|X=c; θ̂M), ∀(c, k) ∈ X 2 ▷ Estimated misclassification probabilities
if C = BCH then

wj = wjD−1, ∀j ∈ N2 ▷ Bias-adjusted weights
else

Set w∗
j = wjDT , ∀j ∈ N2 ▷ Class-conditional probability of predicted class

membership
end if

end if

STEP 3 : EM algorithm on the SM, based on imputed class weights
Set t = 0
repeat

E Step
if C = ML then

τ
(t)
jk = w∗

jkp(Xj=k|zo
j ; zp

j , θ̂
(t)
S), ∀j ∈ N2, ∀k ∈ X ▷ Update responsibilities

else
τ

(t)
jk = wjk, ∀j ∈ N2, ∀k ∈ X ▷ Imputed class weights used as responsibilities

end if
τ

(t)
jk = τ

(t)
jk∑

c∈X τ
(t)
jc

∀j ∈ N2, ∀k ∈ X ▷ Normalize responsibilities
M Step

θ̂
(t+1)
S = arg max

θS∈ΘS

∑
j∈N2

ωj
∑

k∈X
τ

(t)
jk log p(Xj=k, zo

j ; zp
j , θS) ▷ Update θ̂S

t = t + 1
until convergence
Set θ̂S = θ̂

(t)
S ▷ Estimated SM parameters

Return (θ̂M , θ̂S) ▷ Return estimated CM parameters

18 StepMix: Generalized Mixture Models with External Variables in Python

5. The StepMix package
This section gives an overview of the StepMix package. Before detailing the supported esti-
mators and providing code examples, we first discuss the StepMix documentation and how
our package relies on the existing Python ecosystem.

5.1. Software and documentation

StepMix follows the object-oriented interface of the scikit-learn Python library (Pedregosa
et al. 2011), therefore exposing an API that is both familiar to machine learning practition-
ers and intuitive for beginners and students. The strict adherence to the scikit-learn inter-
face enables easy comparisons with other latent class/clustering methods in the scikit-learn
ecosystem and grants StepMix users access to cross-validation iterators for model selection
and hyperparameter tuning.
The StepMix source code was heavily inspired by, and depends on, the scikit-learn Gaus-
sian mixture implementation. Most computations rely on vectorized operations over NumPy
arrays (Harris et al. 2020), and StepMix estimators can be saved and loaded using stan-
dard Python tools, such as the Pickle module. Documentation follows the NumPy-style
docstring convention and is compiled into a web page at https://StepMix.readthedocs.
io/en/latest/, which also features interactive notebook tutorials accessible to any user with
a web browser.

5.2. Estimators

The simplest StepMix models do not include external variables (covariates and distal out-
comes) and only have a single set of observed indicators. These models correspond to Gaussian
or categorical mixtures, the latter of which is not currently available in scikit-learn (as of ver-
sion 1.2). For example, assuming some integer-encoded categorical data is stored in the array
Y, either as a NumPy array or a pandas data frame (McKinney 2010; The pandas Develop-
ment Team 2020), a StepMix estimator for three latent classes can be declared and fit with
the following commands.

model = StepMix(n_components = 3, measurement = "categorical")
model.fit(Y)

The most important parameters of a StepMix estimator are the number of latent classes
(n_components) and the specified conditional distribution (measurement). All options and
distributions for the measurement argument are detailed in Table 2. Additional parameters of
interest include seeding (random_state) and various EM optimization parameters, such as the
maximum number of EM iterations (max_iter), the tolerance for stopping the optimization
(abs_tol) and the number of different initializations to try (n_init). Users can obtain
a detailed model report presenting parameters and fit statistics (verbose=1), examples of
which are provided in Appendix A.
Adding a second set of observed variables and specifying a SM is a simple matter of adding
a structural argument (the options of which are also detailed in Table 2). For the SM,
StepMix relies on the familiar scikit-learn supervised learning interface: The SM data is
provided as a second set of variables, typically reserved for target labels. This allows a clear

https://StepMix.readthedocs.io/en/latest/
https://StepMix.readthedocs.io/en/latest/

Journal of Statistical Software 19

StepMix Observed
variable

Parameters
(for each x ∈ {1, ..., K}) PDF/PMF

binary zo ∈ {0, 1}D πx ∈ [0, 1]D p(zo|x) =
∏D

d=1 zo
dπx,d + (1 − zo

d)(1 − πx,d)

categorical zo ∈ {0, . . . , C}D Px ∈ [0, 1]D×C∑C
c=1 Px,d,c = 1 p(zo|x) =

∏D
d=1 Px,d,zo

d

gaussian_unit zo ∈ RD µx ∈ RD p(zo|x) = N (zo; µx, I)

gaussian_spherical zo ∈ RD µx ∈ RD, σ2
x ∈ R p(zo|x) = N (zo; µx, σ2

xI)

gaussian_diag zo ∈ RD µx ∈ RD, σ2
x ∈ RD p(zo|x) = N (zo; µx, diag(σ2

x))

gaussian_full zo ∈ RD µx ∈ RD, Σx ∈ RD×D p(zo|x) = N (zo; µx, Σx)

covariate zp ∈ RD βx ∈ RD, bx ∈ R p(x|zp) = exp(β⊤
x zp+bx)∑K

k=1
exp(β⊤

k
zp+bk)

Table 2: Probability distributions supported by StepMix, and the associated strings to be
passed as the measurement and/or structural arguments of the constructor (first column)
for some observed variable of dimension D and K latent classes. StepMix can be used to
fit a single set of observed variables (by only specifying measurement) and provides a syntax
for combining continuous and categorical variables in a single model. For notational clarity,
parameters for a single latent class are shown, and all D categorical variables are integer-
encoded. N (·; µ, Σ) denotes the pdf of a Gaussian distribution parametrized by a mean µ
and a covariance matrix Σ.

separation between the MM and the SM data, and makes a clear distinction in the case where
only a MM is specified.
The specific stepwise estimation procedure (n_steps) (see Section 4) and three-step specific
arguments (assignment, correction) can also be passed. A StepMix model for three-step
estimation with a BCH correction and soft assignment of a model with categorical indicators
Y and continuous distal outcomes Z_o would look like:

model = StepMix(n_components = 3, measurement = "categorical",
structural = "gaussian_unit", n_steps = 3, assignment = "soft",
correction = "BCH")

model.fit(Y, Z_o)

As with any scikit-learn estimator, StepMix objects come with an array of useful methods
for inference and model interpretation:

• model.predict(Y, Z_o) to predict the latent class x for each observation;

• model.predict_proba(Y, Z_o) to predict p(x | y, zo) for each observation;

• model.score(Y, Z_o) to compute the average log-likelihood of the CM over the dataset;

20 StepMix: Generalized Mixture Models with External Variables in Python

• model.aic(Y, Z_o) to compute the Akaike information criterion (Akaike 1974) over
the dataset;

• model.bic(Y, Z_o) to compute the Bayesian information criterion (Schwarz 1978) over
the dataset;

• model.get_mm_df() to get the MM model parameters θY as a data frame;

• model.get_sm_df() to get the SM model parameters θS as a data frame;

• model.get_cw_df() to get the marginal distribution over latent classes p(x; θX) as a
data frame;

• model.sample(100) to sample 100 observations from the fitted model.

The methods can be similarly used with some covariate data Z_p or some complete model
data Z. We note that sampling from a fitted StepMix model is only possible if the marginal
over the latent variable X is explicitly specified, i.e., when no covariates are used in the model
(see (2)).

5.3. Nonparametric bootstrapping

Fitted StepMix objects include a bootstrap_stats method to obtain mean and standard
error estimates of model parameters via nonparametric bootstrapping. We run a permutation
test to align classes with the main estimator and avoid label switching between repetitions.
The method can be called with

stats_dict = model.bootstrap_stats(Y, Z_o, n_repetitions = 10,
progress_bar = True)

which returns a Python dictionary with the following attributes

• stats_dict["samples"]: Bootstrapped samples in a long-form format;

• stats_dict["mm_mean"]: Means of the MM parameters;

• stats_dict["mm_std"]: Standard errors of the MM parameters;

• stats_dict["sm_mean"]: Means of the SM parameters;

• stats_dict["sm_std"]: Standard errors of the SM parameters;

• stats_dict["cw_mean"]: Means of the class weights (marginal distribution);

• stats_dict["cw_std"]: Standard errors of the class weights.

All attributes in the bootstrap_stats output dictionary are pandas data frames.
Users can pass the data frame of bootstrapped samples to the seaborn library (Waskom 2021)
for visualization, as shown in one of our tutorials (https://colab.research.google.com/
drive/14DJCqFTUaYp3JtLAeAMYmGHFLCHE-r7z).

https://colab.research.google.com/drive/14DJCqFTUaYp3JtLAeAMYmGHFLCHE-r7z
https://colab.research.google.com/drive/14DJCqFTUaYp3JtLAeAMYmGHFLCHE-r7z

Journal of Statistical Software 21

5.4. Additional features

StepMix provides additional functionalities, which are detailed in the documentation and
tutorials, including:

• Support for missing values. Most models introduced in Table 2 can be suffixed with
_nan (e.g., binary_nan) to enable full information maximum likelihood training (Sec-
tion 4.1). The gaussian_full and covariate models do not currently support FIML;

• A dictionary-based syntax for combining multiple models in measurement or structural,
allowing, for example, to declare a MM with both categorical and continuous vari-
ables or a SM with a covariate and an outcome (see example in Section 6.3).

Finally, StepMix was designed with modular methods for stepwise estimation, meaning each
step in the estimation procedures can be represented as a standalone method call. For ex-
ample, the naive three-step method can also be used by independently calling methods for i)
fitting the MM with the EM algorithm, ii) performing soft assignments, and iii) fitting the
SM by calling the M-step:

model.em(Y)
soft_assignments = model.predict_proba(Y)
model.m_step_structural(soft_assignments, Z_o)

Access to lower-level steps in the estimation will hopefully further stepwise estimation research
by allowing researchers to investigate existing methods and more easily implement new ones.

6. Computational examples
In this section, we carry out two simulation studies to replicate Latent Gold results presented
in Bakk and Kuha (2018) (Sections 6.1 and 6.1) followed by another simulation to test a
complete model in the presence of missing values (Section 6.3). We then present a case study
on a real-life dataset (Section 6.4) and conclude with a comparison of StepMix log-likelihoods
with other packages on various datasets (Section 6.5).
The StepMix source code includes functions to simulate the datasets used in this section as
well as instructions to reproduce our results. See the scripts directory at https://github.
com/Labo-Lacourse/stepmix.

6.1. Distal outcome simulation study

For the first simulation study, we consider a dataset with K = 3 latent classes, DM = 6
binary indicator variables, and DS = 1 continuous outcome variable, which is modeled as a
mixture of unit variance Gaussians (see Table 2). Therefore, the MM’s parameters are given
by θM = {ρ, π}, where π ∈ [0, 1]DM ×K represents class-conditioned binary probabilities, and
the marginal distribution of the latent variable respects p(X=k) = ρk. The SM’s parameters

https://github.com/Labo-Lacourse/stepmix
https://github.com/Labo-Lacourse/stepmix

22 StepMix: Generalized Mixture Models with External Variables in Python

are θS = {µ}, µ ∈ RDS×K . The true values of the parameters are:

ρ = [1/3, 1/3, 1/3], µ = [−1, 1, 0],

π =



γ γ 1 − γ

γ γ 1 − γ

γ γ 1 − γ

γ 1 − γ 1 − γ

γ 1 − γ 1 − γ

γ 1 − γ 1 − γ


,

where the parameter γ controls the strength of the association between the latent class and
the binary variables. Bakk and Kuha (2018) use for γ the values 0.9, 0.8, and 0.7 and call
them the high-, medium-, and low-separation conditions, respectively.
To respect the original experiment design, we consider simulations with sample sizes n of 500,
1000, and 2000, resulting in nine configurations (three sample sizes × three class separations).
For each configuration, 500 data sets are generated. For simplicity, the authors only reported
results for the estimates of parameter µ2 = 1. We therefore present the same statistics for
all estimation methods. It should be noted that we use modal assignments for all three-step
simulations following the specifications in Bakk and Kuha (2018). To minimize the variance in
the estimation of the bias and the root-mean-squared error (RMSE) of the different estimators
of µ2 in different class separation settings, we used common random numbers to generate our
simulated datasets.
The StepMix code for a single simulation of the high-separation one-step case is the following.
Please note that the distal outcome is referred to as the response in the source code due to
the terminology used in Bakk and Kuha (2018). We begin by simulating the dataset – Y is
the matrix of MM data and Z_o is the matrix of SM outcome data – before instantiating the
model and fitting it. We finally retrieve the means of the SM.

from stepmix.datasets import data_bakk_response
from stepmix.stepmix import StepMix

Y, Z_o, _ = data_bakk_response(n_samples = 2000, sep_level = 0.9,
random_state = 42)

model = StepMix(n_components = 3, measurement = "binary",
structural = "gaussian_unit", n_steps = 1, random_state = 42,
verbose = 1)

model.fit(Y, Z_o)
mus = model.get_sm_df()

The model report for the above example is presented in Appendix A.1.
The full results of our simulations are shown in Table 3. The StepMix results are consistent
with the ones presented in Table 4, taken from Bakk and Kuha (2018) in which models
were estimated with Latent GOLD version 5.1. The most noticeable difference is that our
implementations of the two-step and ML methods seem to produce slightly better estimates

Journal of Statistical Software 23

Class
separation

Sample
size Mean bias RMSE

1-step 2-step 3-step 1-step 2-step 3-step

Naive BCH ML Naive BCH ML
Low (γ = 0.7) 500 0.10 −0.19 −0.64 −0.38 −0.14 0.6 0.3 0.6 0.8 0.1

1000 0.10 −0.07 −0.61 −0.23 −0.05 0.1 0.2 0.3 0.6 0.2
2000 −0.00 −0.02 −0.57 −0.11 −0.01 0.8 0.7 0.8 0.4 0.7

Medium (γ = 0.8) 500 0.00 −0.03 −0.31 −0.04 −0.02 0.1 0.5 0.3 0.8 0.5
1000 −0.00 −0.02 −0.29 −0.01 −0.01 0.8 0.9 0.0 0.2 0.9
2000 −0.00 −0.01 −0.28 0.00 −0.00 0.6 0.7 0.9 0.9 0.7

High (γ = 0.9) 500 −0.00 −0.01 −0.08 0.00 −0.00 0.9 0.9 0.2 0.9 0.9
1000 −0.00 −0.00 −0.08 0.00 0.00 0.7 0.6 0.0 0.6 0.6
2000 −0.00 −0.00 −0.08 0.00 −0.00 0.5 0.4 0.9 0.4 0.4

Table 3: Simulation results for StepMix point estimates of one parameter in an outcome SM
(with true value µ2 = 1). As described in the main text, three degrees of class separation in the
MM (lower is harder) and three sample sizes are tested. Each configuration is simulated 500
times and the average parameter bias and RMSE are reported for one-, two- and three-step
estimation, as well as the BCH and ML bias correction methods in the three-step case.

Class
separation

Sample
size Mean bias RMSE

1-step 2-step 3-step 1-step 2-step 3-step

Naive BCH ML Naive BCH ML
Low (γ = 0.7) 500 0.1 −0.32 −0.66 −0.38 −0.36 0.9 0.4 0.0 0.0 0.7

1000 0.1 −0.16 −0.60 −0.22 −0.20 0.2 0.0 0.3 0.7 0.3
2000 0.0 −0.08 −0.58 −0.12 −0.11 0.8 0.1 0.9 0.7 0.3

Medium (γ = 0.8) 500 0.0 −0.03 −0.31 −0.03 −0.03 0.1 0.3 0.3 0.6 0.3
1000 0.0 −0.01 −0.29 0.10 −0.01 0.8 0.9 0.0 0.2 0.9
2000 0.0 0.10 −0.29 0.00 0.00 0.5 0.7 0.9 0.9 0.7

High (γ = 0.9) 500 0.0 0.00 −0.08 0.00 0.00 0.8 0.9 0.2 0.9 0.9
1000 0.1 0.10 −0.07 0.10 0.10 0.6 0.6 0.0 0.7 0.6
2000 0.0 0.00 −0.08 0.00 0.00 0.4 0.4 0.9 0.5 0.4

Table 4: Simulation results for point estimates of one structural parameter of an outcome
SM (with true value µ2 = 1) over 500 simulated data sets. Results are from Bakk and Kuha
(2018) and produced using Latent GOLD. Please refer to Table 3 for simulation details.

compared to the commercial implementation in the low-separation condition, especially with
small sample sizes.
The general conclusions presented by Bakk and Kuha (2018) can be drawn from both Ta-
bles 3 and 4. The one-step estimator is globally unbiased and systematically has the lowest
RMSE. The naive three-step estimator is severely biased and has the highest RMSE. Its bias
decreases with increasing class separation and is essentially unaffected by sample size. As
the class separation level and the sample size increase, the bias-adjusted three-step methods
progressively reduce this bias.
The two-step estimator is consistently better than the bias-adjusted three-step estimators.

24 StepMix: Generalized Mixture Models with External Variables in Python

Its smaller RMSE suggests that avoiding the extra step of three-step estimation may improve
the quality of the resulting estimator. This conclusion appears to be quite intuitive since
the second step of the three-step methods does not add any information to the model that
was not already encapsulated in the MLE θ̂M obtained in step one. In the medium- and
high-separation conditions, the two-step estimator also performs essentially as well as the
one-step estimator, suggesting that there is little loss of efficiency from moving from one-step
estimation to an appropriate multi-step approach in this setting.

6.2. Covariate simulation study

The second simulation is concerned with a structural covariate model where the latent class
X is a response to an observed one-dimensional predictor Zp. Specifically, the SM is a multi-
nomial logistic model (Table 2, covariate). For the simulation at hand, Zp is a uniformly
sampled integer between 1 and 5. The ground truth parameters of the structural model are:{

β = [0.00, −1.00, 1.00],
b = [0.00, 2.35, −3.66],

with θS = (β, b). The intercepts b were tuned to ensure approximately equal class sizes when
averaged over Zp. We consider the same binary indicators π as in the outcome simulation
(Section 6.1), and the parameters of the MM are now defined as θM = (π), since we ignore
the class weights ρ to follow the conditional likelihood perspective presented in (2) for the
covariate case. The simulation specifications are otherwise identical to the ones presented in
Section 6.1.
Similarly to Section 6.1, we present the code for a single covariate simulation. We begin by
simulating the dataset.

from stepmix.datasets import data_bakk_covariate
from stepmix.stepmix import StepMix
Y, Z_p, _ = data_bakk_covariate(n_samples = 2000, sep_level = 0.9,

random_state = 42)

Contrary to other models, the covariate model does not have a closed-form MLE for the M-
Step and requires a numerical optimization method for fitting parameters, the arguments of
which can be optionally specified by passing a Python dictionary to the structural_params
parameter in StepMix.

covariate_params = {"method": "newton-raphson", "max_iter": 1,
"intercept": True}

model = StepMix(n_components = 3, measurement = "binary",
structural = "covariate", n_steps = 1, random_state = 42,
structural_params = covariate_params)

model.fit(Y, Z_p)

We conclude by retrieving the coefficients of the SM and using the pandas library API to
subtract the coefficients of the second class from all coefficients, therefore setting this class
as the reference class.

Journal of Statistical Software 25

Class
separation

Sample
size Mean bias RMSE

1-step 2-step 3-step 1-step 2-step 3-step

Naive BCH ML Naive BCH ML
Low (γ = 0.7) 500 0.03 −0.27 −0.63 −0.29 −0.31 0.27 0.41 0.65 0.57 0.45

1000 0.01 −0.15 −0.61 −0.19 −0.18 0.17 0.29 0.62 0.42 0.33
2000 −0.00 −0.09 −0.62 −0.11 −0.10 0.12 0.20 0.62 0.33 0.23

Medium (γ = 0.8) 500 0.02 −0.03 −0.39 −0.03 −0.05 0.16 0.18 0.40 0.29 0.21
1000 0.01 −0.02 −0.37 0.01 −0.02 0.12 0.13 0.38 0.21 0.14
2000 −0.00 −0.01 −0.37 0.01 −0.01 0.08 0.09 0.38 0.14 0.10

High (γ = 0.9) 500 0.02 0.01 −0.12 0.01 0.01 0.13 0.13 0.16 0.15 0.14
1000 0.01 0.00 −0.12 0.01 0.01 0.09 0.09 0.15 0.11 0.10
2000 −0.00 −0.00 −0.13 −0.00 −0.00 0.07 0.07 0.14 0.07 0.07

Table 5: Simulation results for StepMix point estimates of one parameter in a covariate SM
(with true value β2 = 1) over 500 simulated data sets. Simulation details are presented in the
main text and in Table 3.

Class
separation

Sample
size Mean bias RMSE

1-step 2-step 3-step 1-step 2-step 3-step

Naive BCH ML Naive BCH ML
Low (γ = 0.7) 500 0.40 −0.24 −0.59 −0.25 −0.27 0.50 0.80 0.00 0.80 0.20

1000 0.30 −0.16 −0.60 −0.16 −0.20 0.90 0.20 0.20 0.50 0.50
2000 0.10 −0.09 −0.60 −0.11 −0.12 0.20 0.20 0.10 0.60 0.40

Medium (γ = 0.8) 500 0.10 −0.05 −0.40 −0.03 −0.06 0.70 0.00 0.10 0.00 0.20
1000 0.10 −0.01 −0.37 0.20 −0.02 0.10 0.30 0.80 0.40 0.40
2000 −0.01 −0.01 −0.37 0.10 −0.01 0.80 0.90 0.80 0.50 0.00

High (γ = 0.9) 500 0.20 0.10 −0.11 0.20 0.10 0.30 0.30 0.70 0.60 0.40
1000 0.10 0.10 −0.12 0.10 0.10 0.90 0.90 0.50 0.00 0.00
2000 0.00 0.00 −0.12 0.10 0.00 0.70 0.70 0.30 0.70 0.70

Table 6: Simulation results for point estimates of one parameter in a covariate SM (with
true value β2 = 1) over 500 simulated data sets. Results are from Bakk and Kuha (2018)
and produced using Latent GOLD. Simulation details are presented in the main text and in
Table 3.

betas = model.get_sm_df()
betas = betas.sub(betas[1], axis = 0)

Covariate simulation results are presented in Table 5. The results largely echo the ones
presented in Section 6.1, with StepMix yielding by and large similar estimates to those found
in Bakk and Kuha (2018) and reproduced in Table 6. Again, stepwise estimators (except naive
three-step) produce globally unbiased estimates, and the StepMix implementation appears to
slightly outperform Latent GOLD in the two-step and ML cases.

6.3. Complete simulation study

As a final simulation, we merge the outcome and covariate models of the previous sections

26 StepMix: Generalized Mixture Models with External Variables in Python

into a CM. We fix the degree of class separation in the MM (γ = 0.8) and instead vary the
ratio of data missing completely at random in both the MM and the outcome to showcase
our FIML implementation.
We again begin our example by simulating the dataset. This time, Z includes the covariate
variable as the first column and the outcome as the second column.

from stepmix.datasets import data_bakk_complete
from stepmix import StepMix
Y, Z, _ = data_bakk_complete(n_samples = 2000, sep_level = 0.8,

nan_ratio = 0.25, random_state = 42)

While we previously specified models as simple strings (e.g., "binary"), the structural model
for this example requires both a covariate and a continuous outcome. This setting requires a
more complex model description, which with StepMix can be achieved using a nested Python
dictionary. The nested dictionaries represent different submodels using different columns of Z
as inputs. The keys in the main dictionary can be arbitrary strings to name the submodels.
The following descriptor indicates that the first column in Z should be passed to a covariate
submodel with the given method and max_iter arguments. The next column should be passed
to a gaussian_unit_nan submodel. The _nan suffix ensures support for missing values.

structural_descriptor = {
"covariate": {"model": "covariate", "n_columns": 1,

"method": "newton-raphson", "max_iter": 1},
"response": {"model": "gaussian_unit_nan", "n_columns": 1}}

The above descriptor can be extended to accommodate an arbitrary number of columns and
submodels. We could also define a similar measurement_descriptor, although this is not
needed here since the MM is homogenous and only includes binary variables. We conclude
this example by instantiating a StepMix estimator and fitting it. Now that the structural
model is more complex, we rely on the pandas API to specifically select the parameters of
the SM model called response, as defined by the key in the descriptor.

model = StepMix(n_components = 3, measurement = "binary_nan",
structural = structural_descriptor, n_steps = 1, random_state = 42)

model.fit(Y, Z)
mus = model.get_sm_df().loc["response"]

We present the complete simulation results in Table 7. We find that the one-step, two-step,
and ML methods are globally unbiased, even in the presence of data missing completely
at random. As expected, the RMSE increases with the ratio of missing values due to the
decreasing effective sample size associated with each parameter. Naive three-step (and, to a
lesser extent, three-step with BCH correction) yields noticeably inferior estimates as the ratio
of missing data increases.

6.4. Using parents’ social status to predict respondents’ family income

In this section, we illustrate the use of StepMix on a real-life dataset (n=3029) that was
previously studied by Bakk, Oberski, and Vermunt (2016) and Bakk and Kuha (2021). This

Journal of Statistical Software 27

Missing
values

Sample
size Mean bias RMSE

1-step 2-step 3-step 1-step 2-step 3-step

Naive BCH ML Naive BCH ML
0% 500 0.01 −0.00 −0.30 −0.03 0.00 0.09 0.11 0.33 0.18 0.11

1000 −0.00 −0.00 −0.29 0.00 −0.00 0.06 0.07 0.30 0.13 0.08
2000 −0.00 −0.00 −0.28 0.01 −0.00 0.05 0.05 0.29 0.09 0.05

25% 500 0.00 −0.04 −0.45 −0.13 −0.00 0.11 0.17 0.47 0.28 0.16
1000 −0.00 −0.01 −0.43 −0.08 −0.00 0.08 0.10 0.45 0.21 0.10
2000 0.00 0.00 −0.41 −0.03 0.00 0.05 0.07 0.42 0.14 0.07

50% 500 0.00 −0.09 −0.57 −0.22 −0.00 0.14 0.24 0.60 0.40 0.20
1000 0.00 −0.04 −0.57 −0.16 0.00 0.10 0.17 0.59 0.31 0.15
2000 0.00 0.00 −0.54 −0.08 0.01 0.07 0.12 0.56 0.23 0.11

Table 7: Simulation results for StepMix point estimates of a SM’s parameter in a model
with six indicators, a covariate, and an outcome variable. We study the estimates of a single
parameter in the outcome model (with true value µ2 = 1) over 500 simulated data sets. For
this simulation, we fix the degree of class separation in the MM (γ = 0.8) and instead vary
the ratio of data missing completely at random in the indicators and the outcome.

analysis is based on the 1976 (n1=1499) and 1977 (n2=1530) American General Social Surveys
(GSS) conducted by the National Opinion Research Center. The data is publicly accessible
via the gssr package (Healy 2025).
We consider a MM relating three indicators (the father’s job prestige, the mother’s highest
degree and the father’s highest degree) to a latent variable with K = 3 latent classes, inter-
preted as the parents’ social status (low, middle and high). The father’s job prestige score
was measured on a scale ranging from 12 to 82 and recoded into three categories: Low (36
or less), medium (37-61) and high (62 or above). The father’s and mother’s education were
measured on a 5-point scale ranging from 0 (less than high school) to 4 (graduate). In the
SM, the parents’ social status is used to predict the respondent’s annual family income, in
thousands of dollars. To account for the skewed distribution of this unique distal outcome, it
is modeled as a normal variable with class-dependent mean and variance. Missing values for
the annual family income are present in the GSS dataset.
This model was first estimated by Bakk et al. (2016) using the stepwise estimation methods
implemented in Latent GOLD and handling the missing data through listwise deletion. Bakk
and Kuha (2021) also compared the one-, two-, and three-step (BCH and ML) approaches
on this dataset, but this time using FIML. We apply the same experimental setup as the
latter study, but using StepMix instead of Latent GOLD for the estimation of each model.
Appendix A.2 includes an example of a StepMix ML model report after fitting the GSS data.
Table 8 presents the estimated class proportions and the resulting class-conditional empirical
distribution of the MM’s indicators. Table 9 reports the estimated parameters of the SM
provided by each stepwise approach and their standard errors (SEs) and p values, estimated
by nonparametric bootstrapping based on 100 repetitions. The reported SEs are obtained by
calculating the standard deviation (SD) of a given bootstrapped parameter using StepMix’s
nonparametric bootstrap module (Section 5.3). These bootstrapped parameters are the mean

28 StepMix: Generalized Mixture Models with External Variables in Python

Social status Low Middle High
Class size 0.70 0.23 0.07
Father’s job prestige

Low 0.47 0.31 0.05
Medium 0.53 0.67 0.46
High 0.00 0.02 0.49

Mother’s education
Below high school 0.82 0.14 0.15
High school 0.17 0.79 0.44
Junior college 0.00 0.03 0.01
Bachelor 0.01 0.04 0.30
Graduate 0.00 0.01 0.10

Father’s education
Below high school 0.95 0.06 0.00
High school 0.05 0.89 0.11
Junior college 0.00 0.00 0.05
Bachelor 0.00 0.05 0.39
Graduate 0.00 0.00 0.44

Table 8: Estimated MM parameters (marginal distribution of social classes and class-
conditional distribution of parents’ education and job prestige).

Model Low class income Middle class income High class income
1-step 20.32 (0.93) 26.10 (3.02) 67.90 (3.18)
2-step 25.25 (2.48) 38.41 (6.14) 50.66 (7.13)
Naive 3-step 27.44 (0.59) 35.94 (1.28) 43.67 (3.85)
3-step BCH 26.71 (0.74) 36.81 (1.64) 44.68 (4.26)
3-step ML 21.05 (1.52) 44.73 (5.25) 61.26 (11.77)

Table 9: Estimated SM parameters (class-conditional average annual family income) and their
standard error for each stepwise method.

incomes for each latent class in Table 9 and the difference between the mean income of the
reference latent class (low) and those of the middle and high classes in Table 10. Table 10
presents two-tailed Z-tests to assert whether the class-specific mean incomes for the middle
and high classes are identical to that of the low social class.
The results obtained with StepMix are consistent with those reported by Bakk and Kuha
(2021). Table 8 indicates that the low, middle and high social classes respectively compose
approximately 70%, 23% and 7% of the sample. The class-conditional distribution of the
indicators is highly heterogeneous, which highlights a strong association between the level of
education and job prestige of the parents.
The results of Table 9 show that the estimated SM’s parameters vary considerably between
methods. For example, the estimated average family income in the highest social class ranges
from 43.67 thousand dollars a year with the naive three-step method to 67.90 thousand
dollars a year with the one-step method. In this case study, the assumption of normality of
the class-conditional annual income is violated, as previously discussed by Bakk et al. (2016)

Journal of Statistical Software 29

Model Est. SE Z P (> |z|)
1-step

Middle class 5.79 3.78 1.53 p = .126
High class 47.58 3.49 13.63 p < .001

2-step
Middle class 13.16 8.38 1.57 p = .116
High class 25.41 6.22 4.09 p < .001

Naive 3-step
Middle class 8.50 1.41 6.02 p < .001
High class 16.22 3.83 4.24 p < .001

3-step BCH
Middle class 10.11 1.93 5.24 p < .001
High class 17.97 4.22 4.26 p < .001

3-step ML
Middle class 23.68 6.27 3.77 p < .001
High class 40.21 11.58 3.47 p < .001

Table 10: Family’s income differences between classes for each method.

and Bakk and Kuha (2021). In the one-step approach, the joint estimation of the MM and
the SM propagates this specification error from the SM to the definition of the latent classes.
As a result, the estimated proportion of each class in the sample changes to 62%, 20% and
18%, and the empirical distribution of the indicators in both smaller classes is practically
indistinguishable. This observation illustrates that the definition of the SM can significantly
impact the interpretation of the latent class in the one-step approach, making it less suitable
for real-life applications.
Regarding the variance of the estimators, the naive three-step method leads to the lowest
bootstrap estimates of the SM’s parameters’ SEs. However, the resulting estimated class-
conditional average incomes are biased since this method does not consider the uncertainty
of class assignments. Among the two-step and bias-corrected three-step estimators, the BCH
method has the smallest SEs across bootstrapped means. This is consistent with the results
obtained by Bakk and Kuha (2021), whose results indicate that BCH method is the least sen-
sitive to violations of distributional assumptions. Compared to the three-step ML approach,
the two-step method has noticeably closer estimated means to the BCH method.
These differences in the estimated SM’s parameters and their SEs are important from an
applied perspective as they can lead to significant differences in the conclusion of the study.
Based on the p values of the Z-tests of Table 10, researchers would reach different conclusions
regarding the difference in respondent’s family income between those whose parents were
classified in the low and middle social statuses. According to the more robust BCH approach,
we should conclude that the incomes are, on average, significantly higher when their parents
had a middle social status (Z = 5.24; p < 0.001) than low social status. Researchers using
the one-step (Z = 1.53; p = 0.126) or the two-step approach (Z = 1.57; p = 0.116) would
incorrectly fail to reject the null hypothesis. This highlights the importance of comparing
different stepwise estimators when studying real data, as imperfect model specification is
almost unavoidable in practice.

30 StepMix: Generalized Mixture Models with External Variables in Python

Latent class analysis Latent profile analysis
Carcinoma Response simulation Covariate simulation Iris Diabetes Banknote

Software MM only 1-step 1-step MM only 1-step 1-step

StepMix −293.705 −8600.793 −5192.049 −180.185 −2407.146 −771.669
poLCA −293.705 - −5192.049 - - -
mclust - - - −180.186 - -
MoEClust - - - −180.186 - −771.669
Mplus −293.705 −8599.609 −5192.049 −180.185 −2407.146 −771.668

Table 11: Comparison of StepMix log-likelihoods with log-likelihoods from poLCA (Linzer
and Lewis 2011), mclust (Scrucca et al. 2016), MoEClust (Murphy and Murphy 2020), and
Mplus (Muthén and Muthén 2017). For latent class analysis (binary or categorical MM), we
consider the Carcinoma dataset (Agresti 2002) and the two simulation datasets from Bakk and
Kuha (2018) discussed in Sections 6.1 and 6.2. For latent profile analysis (continuous MM),
we benchmark the Iris (Anderson 1935; Fisher 1936), Diabetes (Reaven and Miller 1979), and
Banknote (Flury 1988) datasets. We used three classes for each dataset except for Banknote,
where we used two. Latent class models were computed with default MM parameters. In
the case of latent profile models, we used diagonal covariance matrices for each class in the
Diabetes and Banknote examples, which corresponds to mclust’s “VVI” model and StepMix’s
gaussian_diag model. For the Iris example, we used general covariance matrices for each
class, which corresponds to mclust’s “VVV” model and StepMix’s gaussian_full model.
For Mplus, we manually defined the covariance structure to match other packages. The 1-
step approach was used for all SMs to facilitate package comparison. Results were obtained
using the default optimization parameters of each package, except in the Iris example, where
20 random initializations were used for StepMix and Mplus. The “class” variable was used
as a categorical distal outcome in the Diabetes example, and “status” was used as a binary
covariate in the Banknote example. All packages found solutions in under one second for all
datasets. The “-” entries indicate models that are not supported and were thus not estimated
by the corresponding package.

6.5. Comparison with other packages

We present a comparison of the log-likelihoods obtained with StepMix and four other mix-
ture modeling packages on six datasets in Table 11. StepMix yields log-likelihoods that are
nearly identical to existing commercial and open-source software, validating the quality of
our implementation.

7. Conclusion
We presented StepMix, an open-source package for mixture model estimation with continuous
and categorical variables. To the best of our knowledge, StepMix is the first Python package
to implement bias-adjusted stepwise estimators for mixture models with external variables,
potentially exposing a completely new user base to these methods. The familiar scikit-learn
interface, the support for missing values, and the R wrapper are additional features that we
believe will make StepMix a relevant tool for the community. Furthermore, we presented
all estimation procedures as variants of the EM algorithm to provide a unified framework of

Journal of Statistical Software 31

analysis. This framework also guided the implementation of StepMix, resulting in modular
source code that is conducive to the implementation of new features, such as novel stepwise
estimation methods or additional conditional distributions. As a future development, all of
the 14 Gaussian covariance decompositions implemented in mclust and MoEClust could be
added to StepMix. We could also implement efficient initialization methods for the EM algo-
rithm instead of relying on random initialization. It would also be interesting to extend the
capabilities of StepMix to deal with high dimensional data using recent regularization tech-
niques (Robitzsch 2020), and potentially handle large data sets through the implementation of
additional EM methods. Other extensions could include the support for generalized mixture
models for longitudinal data, such as growth mixture models (Ram and Grimm 2009), latent
class growth models (Nagin 1999), and mixtures of hidden Markov models (Van de Pol and
Langeheine 1990).

Acknowledgments
Sacha Morin and Robin Legault contributed equally to this work.
This research was funded in part by Natural Sciences and Engineering Research Council
of Canada (NSERC) PGS D Scholarships [SM, RL], by Fonds de recherche du Québec –
Nature et technologies (FRQNT) master’s [SM, RL] and doctoral scholarships [S.M., R.L.],
by IVADO MSc Excellence Scholarships [SM, RL], as well as by the Canadian Institutes of
Health Research (CIHR) (grant number 170633), the Social Sciences and Humanities Research
Council (SSHRC) and the Centre for the Study of Democratic Citizenship (CSDC) [RS]. This
research was enabled in part by computing resources provided by Mila (mila.quebec).

References

Agresti A (2002). Categorical Data Analysis. John Wiley & Sons.

Akaike H (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions
on Automatic Control, 19(6), 716–723. doi:10.1109/tac.1974.1100705.

Anderson E (1935). “The Irises of the Gaspé Peninsula.” Bulletin of American Iris Society,
59, 2–5. doi:10.1130/spe117-p1.

Asparouhov T, Muthèn B (2014). “Auxiliary Variables in Mixture Modeling: Three-Step
Approaches Using Mplus.” Structural Equation Modeling: A Multidisciplinary Journal,
21(3), 329–341. doi:10.1080/10705511.2014.915181.

Athey TL, Liu T, Pedigo BD, Vogelstein JT (2019). “Autogmm: Automatic and Hierarchical
Gaussian Mixture Modeling in Python.” arXiv 1909.02688, arXiv.org E-Print Archive.
doi:10.48550/arXiv.1909.02688.

Bakk Z, Kuha J (2018). “Two-Step Estimation of Models Between Latent Classes and External
Variables.” Psychometrika, 83(4), 871–892. doi:10.1007/s11336-017-9592-7.

Bakk Z, Kuha J (2021). “Relating Latent Class Membership to External Variables: An
Overview.” British Journal of Mathematical and Statistical Psychology, 74(2), 340–362.
doi:10.1111/bmsp.12227.

https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.1130/spe117-p1
https://doi.org/10.1080/10705511.2014.915181
https://doi.org/10.48550/arXiv.1909.02688
https://doi.org/10.1007/s11336-017-9592-7
https://doi.org/10.1111/bmsp.12227

32 StepMix: Generalized Mixture Models with External Variables in Python

Bakk Z, Oberski DL, Vermunt JK (2016). “Relating Latent Class Membership to Continuous
Distal Outcomes: Improving the Ltb Approach and a Modified Three-Step Implemen-
tation.” Structural Equation Modeling, 23(2), 278–289. doi:10.1080/10705511.2015.
1049698.

Bakk Z, Tekle FB, Vermunt JK (2013). “Estimating the Association between Latent Class
Membership and External Variables Using Bias-Adjusted Three-Step Approaches.” Socio-
logical Methodology, 43(1), 272–311. doi:10.1177/0081175012470644.

Bandeen-Roche K, Miglioretti DL, Zeger SL, Rathouz PJ (1997). “Latent Variable Regression
for Multiple Discrete Outcomes.” Journal of the American Statistical Association, 92(440),
1375–1386. doi:10.1080/01621459.1997.10473658.

Bartolucci F, Montanari GE, Pandolfi S (2014). “A Comparison of Some Estimation Methods
for Latent Markov Models with Covariates.” In Proceedings of COMPSTAT, pp. 531–538.

Beath KJ (2017). “randomLCA: An R Package for Latent Class with Random Effects Anal-
ysis.” Journal of Statistical Software, 81(13), 1–25. doi:10.18637/jss.v081.i13.

Besag J (1975). “Statistical Analysis of Non-Lattice Data.” Journal of the Royal Statistical
Society D, 24(3), 179–195. doi:10.2307/2987782.

Bolck A, Croon M, Hagenaars J (2004). “Estimating Latent Structure Models with Categor-
ical Variables: One-Step versus Three-Step Estimators.” Political Analysis, 12(1), 3–27.
doi:10.1093/pan/mph001.

Croon M (2002). “Using Predicted Latent Scores in General Latent Structure Models.” In
G Marcoulides, I Moustaki (eds.), Latent Variable and Latent Structure Modeling, pp. 195–
223. Erlbaum.

Dayton CM, Macready GB (1988). “Concomitant-Variable Latent Class Models.” Jour-
nal of the American Statistical Association, 83, 173–178. doi:10.1080/01621459.1988.
10478584.

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood From Incomplete Data
via the EM Algorithm.” Journal of the Royal Statistical Society B, 39(1), 1–22. doi:
10.1111/j.2517-6161.1977.tb01600.x.

Devlieger I, Mayer A, Rosseel Y (2016). “Hypothesis Testing Using Factor Score Regression:
A Comparison of Four Methods.” Educational and Psychological Measurement, 76(5), 741–
770. doi:10.1177/0013164415607618.

Fisher RA (1936). “The Use of Multiple Measurements in Taxonomic Problems.” Annals of
Eugenics, 7(2), 179–188. doi:10.1111/j.1469-1809.1936.tb02137.x.

Flury B (1988). Multivariate Statistics: A Practical Approach. Chapman and Hall.

Fraley C, Raftery AE (2007). “Bayesian Regularization for Normal Mixture Estimation
and Model-Based Clustering.” Journal of Classification, 24, 155–181. doi:10.1007/
s00357-007-0004-5.

https://doi.org/10.1080/10705511.2015.1049698
https://doi.org/10.1080/10705511.2015.1049698
https://doi.org/10.1177/0081175012470644
https://doi.org/10.1080/01621459.1997.10473658
https://doi.org/10.18637/jss.v081.i13
https://doi.org/10.2307/2987782
https://doi.org/10.1093/pan/mph001
https://doi.org/10.1080/01621459.1988.10478584
https://doi.org/10.1080/01621459.1988.10478584
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1177/0013164415607618
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1007/s00357-007-0004-5
https://doi.org/10.1007/s00357-007-0004-5

Journal of Statistical Software 33

Geman S, Geman D (1984). “Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
6, 721–741. doi:10.7551/mitpress/4943.003.0038.

Goldberger AS (1961). “Stepwise Least Squares: Residual Analysis and Specification Er-
ror.” Journal of the American Statistical Association, 56(296), 998–1000. doi:10.1080/
01621459.1961.10482142.

Gong G, Samaniego FJ (1981). “Pseudo Maximum Likelihood Estimation: Theory and
Applications.” The Annals of Statistics, pp. 861–869. doi:10.1214/aos/1176345526.

Grün B, Leisch F (2008). “FlexMix Version 2: Finite Mixtures with Concomitant Variables
and Varying and Constant Parameters.” Journal of Statistical Software, 28(4), 1–35. doi:
10.18637/jss.v028.i04.

Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser
E, Taylor J, Berg S, Smith NJ, et al. (2020). “Array Programming with NumPy.” Nature,
585(7825), 357–362. doi:10.1038/s41586-020-2649-2.

Hartley HO, Hocking RR (1971). “The Analysis of Incomplete Data.” Biometrics, pp. 783–
823. doi:10.2307/2528820.

Healy K (2025). gssr: General Social Survey Data for Use in R. R package version 0.7, URL
https://kjhealy.github.io/gssr.

Kim Y, Jeon S, Chang C, Chung H (2022). “glca: An R Package for Multiple-Group
Latent Class Analysis.” Applied Psychological Measurement, 46(5), 439–441. doi:
10.1177/01466216221084197.

Koller D, Friedman N (2009). Probabilistic Graphical Models: Principles and Techniques.
MIT Press.

Lacourse E, Baillargeon R, Dupéré V, Vitaro F, Romano E, Tremblay R (2010). “Two-Year
Predictive Validity of Conduct Disorder Subtypes in Early Adolescence: A Latent Class
Analysis of a Canadian Longitudinal Sample.” Journal of Child Psychology and Psychiatry,
51(12), 1386–1394. doi:10.1111/j.1469-7610.2010.02291.x.

Lebret R, Iovleff S, Langrognet F, Biernacki C, Celeux G, Govaert G (2015). “Rmix-
mod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised
Classification Mixmod Library.” Journal of Statistical Software, 67(6), 1–29. doi:
10.18637/jss.v067.i06.

Linzer DA, Lewis JB (2011). “poLCA: An R Package for Polytomous Variable Latent Class
Analysis.” Journal of Statistical Software, 42(10), 1–29. doi:10.18637/jss.v042.i10.

Lyrvall J, Mari RD, Bakk Z, Oser J, Kuha J (2023). “multilevLCA: An R Package for Single-
Level and Multilevel Latent Class Analysis with Covariates.” arXiv 2305.07276, arXiv.org
E-Print Archive. doi:10.48550/arXiv.2305.07276.

Marbac M, Sedki M (2019). “VarSelLCM: An R/C++ Package for Variable Selection in
Model-Based Clustering of Mixed-Data with Missing Values.” Bioinformatics, 35(7), 1255–
1257. doi:10.1093/bioinformatics/bty786.

https://doi.org/10.7551/mitpress/4943.003.0038
https://doi.org/10.1080/01621459.1961.10482142
https://doi.org/10.1080/01621459.1961.10482142
https://doi.org/10.1214/aos/1176345526
https://doi.org/10.18637/jss.v028.i04
https://doi.org/10.18637/jss.v028.i04
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.2307/2528820
https://kjhealy.github.io/gssr
https://doi.org/10.1177/01466216221084197
https://doi.org/10.1177/01466216221084197
https://doi.org/10.1111/j.1469-7610.2010.02291.x
https://doi.org/10.18637/jss.v067.i06
https://doi.org/10.18637/jss.v067.i06
https://doi.org/10.18637/jss.v042.i10
https://doi.org/10.48550/arXiv.2305.07276
https://doi.org/10.1093/bioinformatics/bty786

34 StepMix: Generalized Mixture Models with External Variables in Python

McKinney W (2010). “Data Structures for Statistical Computing in Python.” In S Van der
Walt, J Millman (eds.), Proceedings of the 9th Python in Science Conference, pp. 56–61.

McLachlan GJ, Krishnan T (2007). The EM Algorithm and Extensions. John Wiley & Sons.

McLachlan GJ, Lee SX, Rathnayake SI (2019). “Finite Mixture Models.” An-
nual Review of Statistics and Its Application, 6(1), 355–378. doi:10.1146/
annurev-statistics-031017-100325.

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2024). e1071: Misc Functions
of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien.
doi:10.32614/CRAN.package.e1071. R package version 1.7-16.

Mulder E, Vermunt J, Brand E, Bullens R, Van Merle H (2012). “Recidivism in Subgroups of
Serious Juvenile Offenders: Different Profiles, Different Risks?” Criminal Behaviour and
Mental Health, 22, 122?135. doi:10.1002/cbm.1819.

Murphy K, Murphy TB (2020). “Gaussian Parsimonious Clustering Models with Covariates
and a Noise Component.” Advances in Data Analysis and Classification, 14(2), 293–325.
doi:10.1007/s11634-019-00373-8.

Muthén LK, Muthén B (2017). Mplus User’s Guide: Statistical Analysis with Latent Vari-
ables.

Nagin DS (1999). “Analyzing Developmental Trajectories: A Semiparametric, Group-Based
Approach.” Psychological Methods, 4(2), 139. doi:10.1037//1082-989x.4.2.139.

Oberski D (2016). “Mixture Models: Latent Profile and Latent Class Analysis.” In Mod-
ern Statistical Methods for HCI, pp. 275–287. Springer-Verlag, Cham. doi:10.1007/
978-3-319-26633-6_12.

Okazaki S, Campo S, Andreu L, Romero J (2015). “A Latent Class Analysis of Spanish
Travelers’ Mobile Internet Usage in Travel Planning and Execution.” Cornell Hospitality
Quarterly, 56(2), 191–201. doi:10.1177/1938965514540206.

Ormerod JT, Wand MP (2010). “Explaining Variational Approximations.” The American
Statistician, 64(2), 140–153. doi:10.1198/tast.2010.09058.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pret-
tenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay E (2011). “scikit-learn: Machine Learning in Python.” Journal of
Machine Learning Research, 12, 2825–2830. URL https://www.jmlr.org/papers/v12/
pedregosa11a.html.

Ram N, Grimm KJ (2009). “Methods and Measures: Growth Mixture Modeling: A
Method for Identifying Differences in Longitudinal Change among Unobserved Groups.”
International Journal of Behavioral Development, 33(6), 565–576. doi:10.1177/
0165025409343765.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. doi:10.32614/R.manuals. URL
https://www.R-project.org/.

https://doi.org/10.1146/annurev-statistics-031017-100325
https://doi.org/10.1146/annurev-statistics-031017-100325
https://doi.org/10.32614/CRAN.package.e1071
https://doi.org/10.1002/cbm.1819
https://doi.org/10.1007/s11634-019-00373-8
https://doi.org/10.1037//1082-989x.4.2.139
https://doi.org/10.1007/978-3-319-26633-6_12
https://doi.org/10.1007/978-3-319-26633-6_12
https://doi.org/10.1177/1938965514540206
https://doi.org/10.1198/tast.2010.09058
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1177/0165025409343765
https://doi.org/10.1177/0165025409343765
https://doi.org/10.32614/R.manuals
https://www.R-project.org/

Journal of Statistical Software 35

Reaven GM, Miller RG (1979). “An Attempt to Define the Nature of Chemical Diabetes
Using a Multidimensional Analysis.” Diabetologia, 16, 17–24. doi:10.1007/bf00423145.

Robitzsch A (2020). “Regularized Latent Class Analysis for Polytomous Item Responses:
An Application to SPM-LS Data.” Journal of Intelligence, 8(3), 30. doi:10.3390/
jintelligence8030030.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, pp.
461–464. doi:10.1214/aos/1176344136.

Scrucca L, Fop M, Murphy TB, Raftery AE (2016). “mclust 5: Clustering, Classification
and Density Estimation Using Gaussian Finite Mixture Models.” The R Journal, 8(1), 289.
doi:10.32614/rj-2016-021.

Sterba SK (2013). “Understanding Linkages among Mixture Models.” Multivariate Behavioral
Research, 48(6), 775–815. doi:10.1080/00273171.2013.827564.

Stroustrup B (2013). The C++ Programming Language. 4th edition. Addison-Wesley.

The pandas Development Team (2020). “pandas-dev/pandas: pandas.” doi:10.5281/
zenodo.3509134.

Van de Pol F, Langeheine R (1990). “Mixed Markov Latent Class Models.” Sociological
Methodology, pp. 213–247. doi:10.2307/271087.

Van Rossum G, Drake FL (2009). Python 3 Reference Manual. CreateSpace, Scotts Valley.

Vermunt JK (2010). “Latent Class Modeling with Covariates: Two Improved Three-Step
Approaches.” Political Analysis, 18(4), 450–469. doi:10.1093/pan/mpq025.

Vermunt JK, Magidson J (2013). Technical Guide for Latent GOLD 5.0: Basic, Advanced,
and Syntax. Statistical Innovations, Belmont.

Visser I, Speekenbrink M (2010). “depmixS4: An R Package for Hidden Markov Models.”
Journal of Statistical Software, 36(7), 1–21. doi:10.18637/jss.v036.i07.

Waskom ML (2021). “seaborn: Statistical Data Visualization.” Journal of Open Source
Software, 6(60), 3021. doi:10.21105/joss.03021.

White A, Murphy TB (2014). “BayesLCA: An R Package for Bayesian Latent Class Analysis.”
Journal of Statistical Software, 61(13), 1–28. doi:10.18637/jss.v061.i13.

Wu CFJ (1983). “On the Convergence Properties of the EM Algorithm.” The Annals of
Statistics, 11(1), 95–103. ISSN 00905364. doi:10.1214/aos/1176346060.

Xue QL, Bandeen-Roche K (2002). “Combining Complete Multivariate Outcomes with In-
complete Covariate Information: A Latent Class Approach.” Biometrics, 58(1), 110–120.
doi:10.1111/j.0006-341x.2002.00110.x.

https://doi.org/10.1007/bf00423145
https://doi.org/10.3390/jintelligence8030030
https://doi.org/10.3390/jintelligence8030030
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.32614/rj-2016-021
https://doi.org/10.1080/00273171.2013.827564
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.2307/271087
https://doi.org/10.1093/pan/mpq025
https://doi.org/10.18637/jss.v036.i07
https://doi.org/10.21105/joss.03021
https://doi.org/10.18637/jss.v061.i13
https://doi.org/10.1214/aos/1176346060
https://doi.org/10.1111/j.0006-341x.2002.00110.x

36 StepMix: Generalized Mixture Models with External Variables in Python

A. StepMix output

A.1. Distal outcome simulation study
By setting verbose=1, StepMix outputs a full model report, including parameter estimates
and fit statistics. The output for the code example in Section 6.1 is as follows.

Fitting StepMix...
==
MODEL REPORT
==

==
Measurement model parameters
==

model_name binary
class_no 0 1 2
param variable
pis feature_0 0.9028 0.0928 0.9024

feature_1 0.8996 0.1044 0.9108
feature_2 0.8978 0.1024 0.9039
feature_3 0.1156 0.0832 0.8992
feature_4 0.0756 0.0885 0.9034
feature_5 0.1004 0.0962 0.9080

==
Structural model parameters
==

model_name gaussian_unit
class_no 0 1 2
param variable
means feature_0 0.9599 -0.0379 -1.0153

==
Class weights
==

Class 1 : 0.34
Class 2 : 0.34
Class 3 : 0.32

==
Fit for 3 latent classes
==
Estimation method : 1-step
Number of observations : 2000
Number of latent classes : 3
Number of estimated parameters: 23
Log-likelihood (LL) : -8600.7930
-2LL : 17201.5860
Average LL : -4.3004
AIC : 17247.59

Journal of Statistical Software 37

BIC : 17376.41
CAIC : 17399.41
Sample-Size Adjusted BIC : 17478.16
Entropy : 183.3425
Scaled Relative Entropy : 0.9166

A.2. Application example

StepMix output for the ML estimator on the GSS data presented in Section 6.4.

Fitting StepMix...
==
MODEL REPORT
==

==
Measurement model parameters
==

model_name categorical_nan
class_no 0 1 2
param variable
pis Father's education_0 0.9452 0.0553 0.0000

Father's education_1 0.0533 0.8863 0.1137
Father's education_2 0.0015 0.0050 0.0530
Father's education_3 0.0000 0.0534 0.3899
Father's education_4 0.0000 0.0000 0.4434
Father's job prestige_0 0.4667 0.3056 0.0497
Father's job prestige_1 0.5304 0.6735 0.4616
Father's job prestige_2 0.0029 0.0209 0.4887
Mother's education_0 0.8215 0.1376 0.1523
Mother's education_1 0.1658 0.7857 0.4352
Mother's education_2 0.0039 0.0295 0.0107
Mother's education_3 0.0076 0.0399 0.3012
Mother's education_4 0.0012 0.0073 0.1006

==
Structural model parameters
==

model_name gaussian_diag_nan
class_no 0 1 2
param variable
covariances Income (1000) 144.7759 607.0978 2633.7187
means Income (1000) 20.7196 45.2885 66.0730

==
Class weights
==

Class 1 : 0.70
Class 2 : 0.23

38 StepMix: Generalized Mixture Models with External Variables in Python

Class 3 : 0.07
==
Fit for 3 latent classes
==
Estimation method : 3-step
Correction method : ML
Assignment method : modal
Number of observations : 3029
Number of latent classes : 3
Number of estimated parameters: 38
Log-likelihood (LL) : -18754.7237
-2LL : 37509.4475
Average LL : -6.1917
AIC : 37585.45
BIC : 37814.05
CAIC : 37852.05
Sample-Size Adjusted BIC : 37997.92
Entropy : 624.9492
Scaled Relative Entropy : 0.8122

B. R code

B.1. Distal outcome simulation

This section replicates the Python example from section 6.1 using the R interface stepmixr.

R> library("stepmixr")
R> datasim <- data_bakk_response(n_samples = 2000, sep_level = 0.9,
+ random_state = 42)
R> Y = datasim[[1]]
R> Z_o = datasim[[2]]
R> model = stepmix(n_components = 3, measurement = "binary",
+ structural = "gaussian_unit", n_steps = 1, random_state = 42,
+ verbose = 1)
R> fit1 = fit(model, Y, Z_o)
R> mus = fit1$get_sm_df()

B.2. Covariate simulation

This section replicates the Python example from section 6.2 using the R interface stepmixr.

R> library("stepmixr")
R> datasim <- data_bakk_covariate(n_samples = 2000, sep_level = 0.9,
+ random_state = 42)

Journal of Statistical Software 39

R> Y <- datasim[[1]]
R> Z_p <- datasim[[2]]
R> covariate_params <- list(method = "newton-raphson", max_iter = as.integer(1),
+ intercept = TRUE)
R> model <- stepmix(n_components = 3, measurement = "binary",
+ structural = "covariate", n_steps = 1, random_state = 42,
+ structural_params = covariate_params)
R> fit1 <- fit(model, Y, Z_p)
R> betas <- fit1$get_parameters()
R> betas <- betas$structural$beta
R> betas <- betas - c(1, 1, 1) %o% betas[2,]

B.3. Complete simulation study

This section replicates the Python example from section 6.3 using the R interface stepmixr.

R> library("stepmixr")
R> datasim = data_bakk_complete(n_samples = 2000, sep_level = 0.8,
+ nan_ratio = 0.25, random_state = 42)
R> Y <- datasim[[1]]
R> Z <- datasim[[2]]
R> structural_descriptor <- list(
+ covariate = list(model = "covariate", n_columns = as.integer(1),
+ method = "newton-raphson", max_iter = as.integer(1)),
+ response = list(model = "gaussian_unit_nan", n_columns = as.integer(1)))
R> model <- stepmix(n_components = 3, measurement = "binary_nan",
+ structural = structural_descriptor, n_steps = 1, random_state = 42)
R> fit1 <- fit(model, Y, Z)
R> mus <- fit1$get_parameters()
R> mus <- mus$structural$response

Affiliation:
Éric Lacourse
Département de sociologie
Faculté des arts et des sciences
Université de Montréal
C.P. 6128, succursale Centre-ville
Montréal, Quebec, Canada
H3C 3J7
E-mail: eric.lacourse@umontreal.ca

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
July 2025, Volume 113, Issue 8 Submitted: 2023-08-25
doi:10.18637/jss.v113.i08 Accepted: 2024-06-30

mailto:eric.lacourse@umontreal.ca
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v113.i08

	Introduction
	Models
	Related packages
	Pseudo-likelihood estimation methods
	Likelihood functions
	EM algorithm
	One-step method
	Two-step method
	Three-step method

	The StepMix package
	Software and documentation
	Estimators
	Nonparametric bootstrapping
	Additional features

	Computational examples
	Distal outcome simulation study
	Covariate simulation study
	Complete simulation study
	Using parents' social status to predict respondents' family income
	Comparison with other packages

	Conclusion
	StepMix output
	Distal outcome simulation study
	Application example

	R code
	Distal outcome simulation
	Covariate simulation
	Complete simulation study

