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Abstract

stopp is a novel R package specifically designed for the analysis of spatio-temporal
point patterns which might have occurred in a subset of the Euclidean space or on some
specific linear network, such as roads of a city. It represents the first package providing
a comprehensive modeling framework for spatio-temporal Poisson point processes. While
many specialized models exist in the scientific literature for analyzing complex spatio-
temporal point patterns, we address the lack of general software for comparing simpler
alternative models and their goodness of fit. The package’s main functionalities include
modeling and diagnostics, together with exploratory analysis tools and the simulation of
point processes. A particular focus is given to local first-order and second-order character-
istics. The package aggregates existing methods within one coherent framework, including
those we proposed in recent papers, and it aims to welcome many further proposals and
extensions from the R community.

Keywords: point patterns, simulation, model fitting, diagnostics, local analyses, spatial statis-
tics, space-time point processes, R.

1. Introduction

stopp (D’Angelo and Adelfio 2025) is a new package in the R language for analyzing point
patterns in three dimensions. The first two dimensions represent spatial components, while
the third dimension is regarded as temporal. The stopp package has been published on the
Comprehensive R Archive Network (CRAN) and is available from https://CRAN.R-project.
org/package=stopp, version 1.0.0.
The research literature on spatial statistics provides a large body of techniques for analyzing
spatio-temporal point patterns, most of which are summarized in González, Rodríguez-Cortés,
Cronie, and Mateu (2016). Still, only a few of them have been implemented in software for
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Simulations Exploratory analysis Model fitting Diagnostics Linear networks Local analyses
stpp ✓ ✓ ✓

stppSim ✓

splancs ✓ ✓

stlnpp ✓ ✓ ✓

Table 1: List of R packages for spatio-temporal point processes and their main functionalities.

general use. Some packages dealing with spatio-temporal point pattern exploratory analysis
include stpp (Gabriel, Diggle, Rowlingson, and Rodriguez-Cortes 2022; Gabriel, Rowlingson,
and Diggle 2013), stppSim (Adepeju 2022), splancs (Rowlingson and Diggle 2022), and stlnpp
(Moradi, Cronie, and Mateu 2020) whose main functionalities are summarized in Table 1.
These include all the tools also provided by stopp.
While stpp allows for the simulation of Poisson, inhibitive and clustered patterns, the stpp-
Sim package generates artificial spatio-temporal point patterns through the integration of
microsimulation and agent-based models. Moreover, splancs fosters many tools for the anal-
ysis of both spatial and spatio-temporal point patterns, including three-dimensional kernel
estimation, Monte-Carlo tests of space-time clustering, and the estimation of homogeneous
spatial and temporal K functions. Regarding model fitting functions, it is only possible to
fit the Diggle-Rowlingson raised incidence model. Moving to spatio-temporal point patterns
on linear networks, the package stlnpp provides tools to visualize and analyze such patterns,
implementing network-tailored kernel densities and first- and second-order summary statis-
tics. Among those, stpp stands out as the most comprehensive spatio-temporal point process
devoted package, furnishing statistical tools for analyzing the global and local second-order
properties of spatio-temporal point processes, including estimators of the space-time inho-
mogeneous K function and pair correlation function. All in all, none of the spatio-temporal
point process packages allows for the diagnostics of a general fitted model.
Specifically, methods for fitting both separable and non-separable spatio-temporal point pro-
cess models have emerged in many disciplines, including epidemiology (Jalilian and Mateu
2021; Briz-Redón, Iftimi, Mateu, and Romero-García 2023; Schoenberg 2023), seismicity
(Xiong and Zhuang 2023; Adelfio and Chiodi 2015; Siino, Mateu, and Adelfio 2016) and
fire mapping (Raeisi, Bonneu, and Gabriel 2021) in the classical Euclidean space, and GPS
data (D’Angelo, Adelfio, Abbruzzo, and Mateu 2022), crimes (D’Angelo, Payares, Adelfio, and
Mateu 2024a), and traffic accidents (Kalair, Connaughton, and Alaimo Di Loro 2021; Chaud-
huri, Juan, and Mateu 2023; Gilardi, Borgoni, and Mateu 2024; Alaimo Di Loro, Mingione,
and Fantozzi 2024) in the context of linear networks. Some also included variables external
to the point pattern under analysis as spatio-temporal covariates assumed to influence the
occurrence of points (Adelfio and Chiodi 2021). However, most of these methods were very
specific to the chosen model, and there are no software implementations of sufficient gener-
ality to fit realistic models to a real dataset. Packages dealing with spatio-temporal point
process model fitting include etasFLP (Chiodi and Adelfio 2023, 2017; Adelfio and Chiodi
2021), mainly devoted to the estimation of the components of an ETAS (epidemic type af-
tershock sequence) model for earthquake description with the non-parametric background
seismicity estimated through FLP (forward likelihood predictive), ETAS (Jalilian 2024, 2019)
which fits the space-time ETAS model to earthquake catalogs using a stochastic “decluster-
ing” approach, and stelfi (Jones-Todd and Van Helsdingen 2023), which allows for the fitting
of spatio-temporal self-exciting models and LGCPs (log-Gaussian Cox processes). Another
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worth-to-mention package that implements routines to simulate and fit LGCPs include lgcp
(Taylor, Davies, Rowlingson, and Diggle 2015), which allows the fitting using methods of the
moments and Bayesian inference for spatial, spatio-temporal, multivariate and aggregated
point processes. This package, however, does not handle non-separable (and anisotropic) cor-
relation structures of the covariance structure of the GRF (Gaussian random field). Turning
to the context of the most simple spatio-temporal Poisson point processes, only the package
ppgam (Youngman and Economou 2020; Wood, Li, Shaddick, and Augustin 2017) allows for
the fitting of this kind of processes, but restricting the possibility to generalized additive mod-
els (GAMs), excluding more simple models like the homogeneous and inhomogeneous Poisson
process. Finally, playing an important role in the R spatial statistics community outside
the CRAN, the R-INLA package (Rue, Martino, and Chopin 2009) allows LGCP estimation
within the framework of Bayesian inference for latent Gaussian models.
All the aforementioned packages leave no doubt about the widespread usage of spatio-temporal
point process theory and its application by the spatial statistics community working with
spatio-temporal data. However, as noted, none of those packages allows for a complete
analysis of real datasets, including exploratory analysis, model fitting, and diagnostics. In
particular, a considerable lack is the possibility of fitting spatio-temporal models permit-
ting the inclusion of the dependence on external covariates. The main contribution of the
stopp package is the collection of standard tools for a complete analysis of a spatio-temporal
point pattern while also fostering functions for more detailed issues. Among the latter, we
highlight some spatio-temporal local tools, which are becoming more and more used in real
spatio-temporal data analysis. The stopp package further allows for the integration with the
previously mentioned packages by only requesting the estimated intensity to be diagnosed.
One of the main contributions of stopp is embodied in the stppm() function, which provides
the first choice in R to fit general spatio-temporal Poisson point process models. These
models include both homogeneous and inhomogeneous processes, with options for parametric
and non-parametric specifications of coordinates, external covariates, and multitype cases.
This is achieved following a cubature scheme (D’Angelo, Adelfio, and Mateu 2023b; D’Angelo
and Adelfio 2024a), which extends Berman and Turner (1992)’s and Baddeley, Coeurjolly,
Rubak, and Waagepetersen (2014)’s algorithm from the purely spatial to the spatio-temporal
context.
Another important contribution of stopp lies in the second-order based diagnostic techniques,
which only utilize fitted intensities, making them applicable to any fitted model (whether
Euclidean or network-based), even to those beyond the scope of stopp. This versatility is
a significant strength of stopp and enhances the linkage to other point process packages.
As far as we are aware, there is currently no software implementation of any technique for
fitting spatio-temporal point process models at the level of generality and flexibility that we
propose. This is only achieved by spatstat (Baddeley and Turner 2005) in the purely spatial
point process framework.
stopp also provides codes related to methods and models for analyzing complex spatio-
temporal point processes proposed in the papers Siino, Adelfio, and Mateu (2018a); Siino,
Rodríguez-Cortés, Mateu, and Adelfio (2018b); Adelfio, Siino, Mateu, and Rodríguez-Cortés
(2020); D’Angelo, Adelfio, and Mateu (2021, 2023a); D’Angelo et al. (2023b). A particular
focus is given to both first-order and second-order local characteristics. Regarding first-order
estimation, stopp allows for the estimation of both local spatio-temporal Poisson and local
log-Gaussian Cox processes models, that is, with spatio-temporal varying parameters. As
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previously mentioned, an R package that implements routines to fit spatio-temporal LGCPs
is lgcp, where the minimum contrast method is used to estimate parameters assuming a sepa-
rable structure of the covariance of the Gaussian random field. In addition, stopp also handles
non-separable correlation structures of the covariance structure of the GRF by means of the
joint minimum contrast procedure (Siino et al. 2018a), with the further advantage of giving
the possibility of estimating both (or either) first-order and second-order parameters locally
(D’Angelo et al. 2023b).
The level of generality achieved by stopp is due to the integration with other well-established
point processes R packages. The main dependencies of the stopp package are indeed spatstat,
stpp, and stlnpp. We exploit many functions from spatstat when purely spatial tools are
needed while performing spatio-temporal analyses. Furthermore, we rely on stpp’s both
global and local K functions and pair correlation functions (pcfs) estimators, to perform
diagnostics based on second-order summary statistics (Gabriel and Diggle 2009; Adelfio et al.
2020). From stlnpp, we borrow the linear networks estimators counterparts (Moradi and
Mateu 2020).
The ambitious aim of this package is to contribute to the existing literature by gathering
many of the most widespread methods for the analysis of spatio-temporal point processes
into a unique package, which is intended to host many further extensions.
The outline of the paper conceptually follows the package structure, illustrated in Table 1.
First, in Section 2, we introduce the main classes of objects for handling spatio-temporal point
pattern objects. Some available datasets are introduced in Section 3. Then, we present some
novel functions to simulate specific classes of point processes in Section 4. We then move
to Section 5 with exploratory analysis carried out through the local indicators of spatio-
temporal association (LISTA) functions on linear networks, newly available in R. In the
same exploratory context, we illustrate the function to perform a local test for assessing
the presence of local differences in two point patterns. Then, in Section 6, a large body of
functions available for fitting models is presented, including the general Poisson model, which
includes both homogeneous or inhomogeneous specification of the first-order intensity function
that can depend on semiparametric effects of both coordinates or external covariates. The
multitype point process is also available. There is also the possibility of fitting a separable
Poisson process model on either the Euclidean space and networks, and LGCPs. Moreover,
we illustrate some functions to fit local models, including the generic Poisson process and
LGCPs. Finally, methods to perform global and local diagnostics on both models for point
patterns on planar and linear network spaces are presented in Section 7. The paper ends with
some future developments in Section 8.

2. Data types

2.1. Spatio-temporal point patterns

The stp() function creates a ‘stp’ object as a dataframe with three columns: x, y, and t.
If the linear network L, of class ‘linnet’ of the spatstat package, is also provided, a ‘stlp’
object is created instead. This class of objects are equipped with the print, summary, and
plot methods. The creation of these two types of objects comes as follows,
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Data types
stcov() Create and interpolate spatio-temporal covariates on a regular grid
stp() Create ‘stp’ and ‘stlp’ objects for point patterns storage*
stpm() Create ‘stpm’ and ‘stlpm’ objects for marked point patterns storage*

Datasets
chicagonet Rescaled roads of Chicago (Illinois, USA)
greececatalog Catalog of Greek earthquakes
valenciacrimes Crimes in Valencia in 2019
valencianet Roads of Valencia, Spain

Simulations
rETASlp() Simulate a spatio-temporal ETAS process on a linear network
rETASp() Simulate a spatio-temporal ETAS process
rstlpp() Simulate spatio-temporal Poisson point patterns on a linear network
rstpp() Simulate spatio-temporal Poisson point patterns

Eploratory analysis
localSTLginhom() Estimate the local inhomogeneous spatio-temporal pcfs on a linear network
localSTLKinhom() Estimate the local inhomogeneous spatio-temporal K functions on a linear network
localtest() Perform the test of local structure for spatio-temporal point processes*

Model fitting
locstppm() Fit a local spatio-temporal Poisson process
sepstlppm() Fit a separable spatio-temporal Poisson process on a linear network
sepstppm() Fit a separable spatio-temporal Poisson process
stlgcppm() Fit global or local spatio-temporal log-Gaussian Cox processes
stppm() Fit a spatio-temporal Poisson process

Diagnostics
globaldiag() Perform global diagnostics of a spatio-temporal point process models*
infl() Display outlying LISTA functions*
localdiag() Perform local diagnostics of spatio-temporal point process models*

Table 2: List of functions in stopp, excluding S3 methods. The symbol * indicates the func-
tions implemented to work both on point patterns in Euclidean spaces and linear networks.

R> install.packages("stopp")
R> library("stopp")
R> set.seed(2)
R> df <- data.frame(runif(100), runif(100), runif(100))
R> stp1 <- stp(df)
R> stp1

Spatio-temporal point pattern
100 points
Enclosing window: rectangle = [0.007109, 0.9889022] x [0.0136249, 0.9806] units
Time period: [0.013, 0.991]

The following command produces Figure 1.

R> plot(stp1)

The left and central panels produced by plot.stp and plot.stlp show the spatio-temporal
and the purely spatial locations of the points. The right panel displays the cumulative sum
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Figure 1: Output of the plot.stp() function applied to a simulated spatio-temporal point
pattern.

of the temporal locations ordered in time. For this reason, the temporal cumulative plot of
a homogeneous point pattern will be quadratic, and not linear as the intensity trend would
be instead. By setting the argument tcum equal to FALSE, the temporal pattern is displayed
instead (Figure 2), only advisable when dealing with few points.

R> set.seed(2)
R> df_net <- data.frame(runif(100, 0, 0.85), runif(100, 0, 0.85),
+ runif(1000.85), runif(100))
R> stlp1 <- stp(df_net, L = chicagonet)
R> stlp1

Spatio-temporal point pattern on a linear network
100 points
Linear network with 338 vertices and 503 lines
Enclosing window: rectangle = [0, 0.9996963] x [0, 0.8763407] units
(one unit = 1281.98625717162 feet)
Time period: [0.013, 0.991]

The following command produces Figure 2.

R> plot(stlp1, tcum = FALSE)

2.2. Marked point processes

If additional variables are attached to the points of the pattern, it is possible to build a
spatio-temporal marked point pattern as a ‘stpm’ object (or ‘stlpm’, if occurred on a linear
network). For the multitype point process, we choose the same approach of continuous marks,
that is, collecting all the points together in one point pattern and labeling each point by the
type to which they belong. An advantage of this approach is that it is easy to deal with
multitype point patterns with more than two types.
Below is an example of a point pattern characterized by both a continuous mark and a
categorical mark, rendering it a multitype point pattern, as shown in Figure 3.
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Figure 2: Output of the plot.stlp() function applied to a simulated spatio-temporal point
pattern on a linear network.
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Figure 3: Output of the plot.stpm() function applied to a simulated spatio-temporal point
pattern marked by a continuous and a categorical mark.

R> set.seed(2)
R> dfA <- data.frame(x = runif(100), y = runif(100), t = runif(100),
+ m1 = rnorm(100), m2 = rep(c("C"), times = 100))
R> dfB <- data.frame(x = runif(50), y = runif(50), t = runif(50),
+ m1 = rnorm(25), m2 = rep(c("D"), times = 50))
R> stpm2 <- stpm(rbind(dfA, dfB), names = c("continuous", "dichotomous"))
R> plot(stpm2)

2.3. Spatio-temporal covariates

The class ‘stcov’ is reserved to be used for creating and interpolating potential spatio-
temporal covariates, intended to be included in the formula of the main function of stopp:
stppm().
Figure 4 displays an example of a simulated spatio-temporal covariate (on the left panel)
and the interpolated covariate resulting from the application of the stcov() function (right
panel).
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Figure 4: Simulated and interpolated covariate with the stcov() function.

This preliminary procedure is a device to speed estimation in stppm(). Indeed, since the
covariate values must be known at every data and dummy point, an advisable approach is
to use interpolation (Tarantino, D’Angelo, and Adelfio 2024; D’Angelo and Adelfio 2024a).
We employ a spatial smoothing of the numeric values observed at the covariate locations
Ẑ(x, y, t) =

∑J
j=1 wj(x, y, t)Z(xj , yj , tj)/

∑J
j=1 wj(x, y, t), where Ẑ(x, y, t) is the interpolated

value at new location (x, y, t), J is the number of covariate locations, and Z(xj , yj , tj) is
the covariate value at the observed location (xj , yj , tj). Particularly, we set wj(x, y, t) =(√

(x − xj)2 − (y − yj)2 − (t − tj)2
)−p

, meaning that we employ inverse-distance weighting
(Shepard 1968), where p is the power of the Euclidean distance between (x, y, t) and (xj , yj , tj).
To avoid a different interpolation at each model fit, we, therefore, interpolate only once when
employing the stcov() function, making a very fine regular grid, and then just attribute to
the data or dummy point the covariate value of the closest grid point in stppm().

R> set.seed(2)
R> df <- data.frame(runif(100), runif(100), runif(100), rpois(100, 15))
R> sim_cov <- stcov(df, interp = FALSE, names = "SimulatedCovariate")
R> interp_cov <- stcov(df, mult = 20, names = "InterpolatedCovariate")
R> plot(sim_cov)
R> plot(interp_cov)

3. Datasets
The package is furnished with the greececatalog dataset from the Hellenic Unified Seis-
mic Network (HUSN). in the ‘stp’ format containing the catalog of Greek earthquakes of
magnitude at least 4.0 from 2005 to 2014 (Figure 5).

R> data("greececatalog", package = "stopp")
R> plot(greececatalog)

A dataset of crimes that occurred in Valencia, Spain, in 2019 is also available as a ‘stpm’
object, together with the linear network of class ‘linnet’ of the Valencian roads, named
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Figure 5: Plots of greececatalog data provided in ‘stp’ format in the stopp package.

valenciacrimes (Figure 6), and valencianet (right panel of Figure 7), respectively. The
marks of this dataset include the month, week, day, and hour of crime occurrences, and
many distances to the closest points of interest, which can be assumed to have influenced the
occurrence of crimes.

R> data("valenciacrimes", package = "stopp")
R> plot(valenciacrimes)
R> data("chicagonet", package = "stopp")
R> data("valencianet", package = "stopp")
R> plot(chicagonet)
R> plot(valencianet)

Finally, the linear network of class ‘linnet’ of the roads of Chicago (Illinois, USA) close to
the University of Chicago is also available (left panel of Figure 7). It represents the linear
network of the Chicago dataset published and analyzed in Ang, Baddeley, and Nair (2012).
The window has been rescaled to be enclosed in a unit square.

4. Simulations
Stochastic simulation of spatio-temporal point process models is another area where the rich-
ness of the theoretical literature contrasts with the scarcity of stable public domain software.
We contribute to the framework of simulating spatio-temporal point process models with novel
designed functions. The first contribution is given by the possibility of simulating Poisson
patterns as ‘stp’ objects, with inhomogeneous intensity by means of the rstpp() function,
as follows.

R> rstpp(lambda = 500)
R> rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2] * x)}, par = c(2, 6))

The above code simulates two spatio-temporal point patterns. The first one follows the homo-
geneous intensity λ(x, y, t) = 500, while the second one is generated from the inhomogeneous
intensity λ(x, y, t) = exp(2+6x). In the former case, the simulated pattern will be completely
random, while the second one will show a trend increasing along the x coordinate.
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Figure 6: Plot of valenciacrimes data provided in ‘stpm’ format in the stopp package.
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Figure 7: Plot of valencianet and chicagonet linear networks provided in the stopp package.

The rstlpp() function creates a ‘stlp’ object instead, simulating a spatio-temporal Poisson
point pattern on a linear network.

Then, rETASp() simulates a spatio-temporal point pattern following an ETAS process as in
Adelfio and Chiodi (2021). Figure 8 shows an example.
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Figure 8: Plot of a spatio-temporal ETAS point pattern simulated by the rETASp() function.

R> set.seed(95)
R> X <- rETASp(c(0.1293688525, 0.003696, 0.013362, 1.2, 0.424466, 1.164793),
+ betacov = 0.5, xmin = 600, xmax = 2200, ymin = 4000, ymax = 5300)
R> plot(X)

Finally, rETAStlp() function creates a ‘stlp’ object, simulating a spatio-temporal ETAS
process on a linear network. The simulation scheme in this case is adapted for the space
location of events to be constrained on a linear network, being firstly introduced and employed
for simulation studies by D’Angelo et al. (2021).
All the simulation functions are equipped with a seed argument, allowing to specify the seed
for reproducing the same simulation. Note that we have set specific seeds throughout the
paper to ensure the reproducibility of the codes.

5. Exploratory analysis
The exploratory analysis tools of stopp build upon the local indicators of spatio-temporal
association (LISTA) functions, which are defined as a set of functions that are individually
associated with each one of the points of the point pattern, and can provide information about
the local behavior of the pattern (Anselin 1995; Siino et al. 2018b).
In particular, the package implements the local spatio-temporal K functions and pair cor-
relation functions on linear networks, introduced in D’Angelo et al. (2021). These are es-
timated by means of the function localSTLKinhom() and localSTLginhom(), respectively,
and can be displayed through the plot() function. Since any of localSTLKinhom() and
localSTLginhom() will produce a list of K (or pcf) functions, one for each point in the ob-
served point pattern, it is not possible to display them all together. Therefore, the argument
id is reserved for a vector for identifying which points to display the LISTA function of.
Below is an example to display the local K functions of the first three points stored in the
‘stp’ object passed to the localSTLKinhom() function, as shown in Figure 9.

R> set.seed(2)
R> df_net <- data.frame(runif(25, 0, 0.85), runif(25, 0, 0.85), runif(25))
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Figure 9: Output of the plot.lista() function.

R> stlp1 <- stp(df_net, L = chicagonet)
R> lambda <- rep(diff(range(stlp1$df$x)) * diff(range(stlp1$df$y)) *
+ diff(range(stlp1$df$t)) / spatstat.geom::volume(stlp1$L),
+ nrow(stlp1$df))
R> k <- localSTLKinhom(stlp1, lambda = lambda, normalize = TRUE)
R> plot(k, id = 1:3)

5.1. Local test
The function localtest() performs the permutation test of the local structure of spatio-
temporal point pattern data proposed in Siino et al. (2018b). The network counterpart is
also implemented, following D’Angelo et al. (2021). This test detects local differences in
the second-order structure of two observed point patterns x and z occurring in the same
space-time region. The test is performed for spatio-temporal point patterns, as in Siino et al.
(2018b), on two objects of class ‘stp’. The employed LISTA functions L̂(i) are the local
K functions introduced in Adelfio et al. (2020) and computed by the function KLISTAhat()
of the stpp package (Gabriel et al. 2013). If localtest() is applied to ‘stlp’ objects, that
is, on two spatio-temporal point patterns observed on the same linear network L, the lo-
cal K functions used are the ones proposed in D’Angelo et al. (2021), implemented in the
localSTLKinhom() function of stopp. Details on the performance of the test are found in
Siino et al. (2018b) and D’Angelo et al. (2021) for Euclidean and network spaces, respec-
tively. Alternative LISTA functions that can be employed to run the test are LISTAhat() of
stpp and localSTLginhom() of stopp, that is, the pcfs on Euclidean space and linear net-
works, respectively, fixing the argument method = "g". The class of these objects is called
‘localtest’, and it is equipped with the methods print, summary, and plot, working as
follows. In Figure 10, an output example of the function plot.localtest() is reported. A
background and an alternative patterns can be obtained, and the local test can be run as
follows:

R> set.seed(2)
R> X <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2] * x)},
+ par = c(.005, 5))
R> set.seed(2)
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Figure 10: Output of the plot.localtest() function.

R> Z <- rstpp(lambda = 30)
R> test <- localtest(X, Z, method = "K", k = 3)
R> test

Test for local differences between two
spatio-temporal point patterns
--------------------------------------
Background pattern X: 30
Alternative pattern Z: 25

11 significant points at alpha = 0.05

R> plot(test)

6. Model fitting
In this section, we outline the main functions to fit different specifications of inhomogeneous
spatio-temporal Poisson process models.

6.1. Inhomogeneous spatio-temporal Poisson point processes

The primary fitting function of stopp is the function stppm(). It fits a Poisson process model
(Diggle 2013) to an observed spatio-temporal point pattern stored in a ‘stp’ object, assuming
the template Poisson process model with a parametric first-order intensity function

λ(x, y, t; θ), (x, y) ∈ W, t ∈ T, θ ∈ Θ,

where (x, y) and t are the spatial and temporal coordinates in the spatial and temporal regions
W and T , and θ are the parameters to be estimated.
For the homogeneous case, we can fit

λ(x, y, t) = λ = exp(θ0)

as follows:



14 stopp: Spatio-Temporal Point Pattern Analysis in R

R> set.seed(2)
R> ph <- rstpp(lambda = 200)
R> hom1 <- stppm(ph, formula = ~ 1, seed = 2)
R> hom1

Homogeneous Poisson process
with Intensity: 202.093

Estimated coefficients:
(Intercept)

5.309

Therefore, the only mandatory arguments are the spatio-temporal point pattern ‘stp’, and
the formula specifying the linear predictor to consider. Note that the function stppm() is
also equipped with the argument seed since the generation of the dummy points depends on
the rstpp() function in turn. To make the code results reproducible, we set the seed in the
examples illustrated with stppm(), and in all the functions based on the generation of some
dummy points.
In point process theory, it is common not to have available auxiliary covariates, so many point
process models only resort to the Cartesian coordinates.
For the inhomogeneous case, we can simulate:

R> set.seed(2)
R> pin <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2] * x)},
+ par = c(2, 6))

The following code fits a model with the following intensity specification

λ(x, y, t) = exp(θ0 + θ1x)

estimating θ̂0 = 2.18 and θ̂1 = 5.783.

R> inh1 <- stppm(pin, formula = ~ x, seed = 2)
R> inh1

Inhomogeneous Poisson process
with Trend: ~x

Estimated coefficients:
(Intercept) x

2.180 5.783

Estimation is performed by fitting a generalized linear mixed model (Breslow and Clayton
1993), in which the linear predictor can contain random effects in addition to the usual fixed
effects, employing a spatio-temporal cubature scheme (D’Angelo et al. 2023b; D’Angelo and
Adelfio 2024a). The stppm() function has an argument method which selects the parameter
estimation technique. Another option is method = "lsr" representing the spatio-temporal
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Figure 11: Output of the plot.stppm() function applied to a fitted non-parametric model.

extension of logistic spatial regression (Baddeley et al. 2014). The choice of the gam() function
of the mgcv package (Wood et al. 2017) is due to the possibility of including both smooth
terms of the covariates (typical in point process theory for the spatio-temporal coordinates)
and random effects. The latter comes in aid when wishing to fit a multitype point pattern,
where basically each type of the categorical mark believed to represent the type will have its
own set of fitted parameters (D’Angelo and Adelfio 2024a).
For instance, the following code fits an inhomogeneous Poisson point process of the form

λ(x, y, t) = exp(f(x, y))

with f(·) a non-parametric function for the spatial coordinates estimated through thin plate
regression splines (Wood 2003) with 30 knots.
Figure 11 shows the estimated intensity in space (left panel) and in space and time (right
panel).

R> inh2 <- stppm(pin, formula = ~ s(x, y, bs = "tp", k = 30), seed = 2)
R> plot(inh2)

6.2. Spatio-temporal Poisson point processes with external covariates

Another peculiar capability in stopp is the possibility of fitting Poisson point process models
with a first-order intensity function depending on external spatio-temporal covariates as

λ(x, y, t; θ) = exp(θ⊤Z(x, y, t)),

where Z(x, y, t) = {Z1(x, y, t), . . . , Zp(x, y, t)} are p known spatio-temporal covariate func-
tions, and θ their associated unknown parameters to estimate.
It is very uncommon to have the covariate values observed at the point pattern locations.
Nevertheless, their values must be known at points and some other locations in the analyzed
region for inferential purposes. This is achieved by preliminary interpolating the covariate
values through the stcov() function, as shown in the example below.
Let’s first simulate some covariates.
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R> set.seed(2)
R> df1 <- data.frame(runif(100), runif(100), runif(100), rpois(100, 15))
R> df2 <- data.frame(runif(100), runif(100), runif(100), rpois(100, 15))

Next, it is advisable to interpolate them along a finer and more regular grid with stcov(),
which will return a ‘stcov’ object.

R> obj1 <- stcov(df1, names = "cov1")
R> obj2 <- stcov(df2, names = "cov2")

Then, we have to store all of the covariates into a unique list.

R> covariates <- list(cov1 = obj1, cov2 = obj2)

Note that this is necessary because, often, the covariate’s sites are not the same among
different covariates. To then fit a spatio-temporal Poisson point process model depending on
a spatial coordinate and a spatio-temporal covariate, such as

λ(x, y, t) = exp(θ0 + θ1x + θ2cov2(x, y, t)),

we have to input the list of ‘stcov’ objects into the covs argument of stppm() and specify
spatial.cov = TRUE, as the following code illustrates.

R> inh3 <- stppm(pin, formula = ~ x + cov2, covs = covariates,
+ spatial.cov = TRUE, seed = 2)
R> inh3

Inhomogeneous Poisson process
with Trend: ~x + cov2

Estimated coefficients:
(Intercept) x cov2

2.116 5.791 0.004

6.3. Multitype spatio-temporal Poisson point processes

Finally, stppm() offers the capability to fit multitype Poisson point process models.
If the multitype point process has m = 1, 2, . . . , M types, the (marginal) intensity is

λ(x, y, t) =
M∑

m=1
λ(x, y, t, m)

where λ(x, y, t, m) is the intensity function for locations (x, y, t) and mark type m.
As an example, the following codes simulate a multitype point pattern with points belonging
to two different types, named A and B, with 100 and 50 points each (Figure 12).
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Figure 12: Plot of a simulated multitype point pattern with only two types of points.

R> set.seed(2)
R> dfA <- data.frame(x = runif(100), y = runif(100), t = runif(100),
+ m1 = rep(c("A"), times = 100))
R> dfB <- data.frame(x = runif(50), y = runif(50), t = runif(50),
+ m1 = rep(c("B"), each = 50))
R> stpm1 <- stpm(rbind(dfA, dfB))
R> plot(stpm1)

To fit a multitype Poisson point process model, therefore, an object of ‘stpm’, with a categor-
ical mark, must be provided to stppm(). The multitype model is fitted by setting marked =
TRUE, and by calling the mark with a formula like s(mark, bs = "re"), exactly following the
random effects specifications of the gam() function. In brief, this is because multitype point
process fitting is based on a cubature scheme replicated for each mark type. For instance, the
following code fits a multitype Poisson process model with inhomogeneous intensity depending
on the x coordinate and a random intercept θ0m, as follows

λ(x, y, t) = exp(θ0 + θ0m + θ1x).

R> inh4 <- stppm(stpm1, formula = ~ x + s(m1, bs = "re"), marked = TRUE,
+ seed = 2)

In point process terms, this means that the average number of points will differ between the
two types, but the x coordinate is believed to have a common effect on the intensities of
the two subpatterns. The right panel of Figure 13 clearly illustrates these results, showing a
consistently low intensity for the points belonging to the subpattern with fewer points.

R> plot(inh4)

Note that any combination of the presented model specifications is allowed. For instance,
multitypes point processes can be fitted, with semi-parametric specifications of the first-order
intensity, depending on both coordinates and external spatio-temporal covariates.
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Figure 13: Output of the plot.stppm() function applied to a fitted multitype model.

6.4. Spatio-temporal Poisson point processes with separable intensity
The function sepstppm() fits a separable parametric spatio-temporal Poisson process model
(Diggle 2013) to point patterns observed on a subset of the Euclidean space, according to the
following generic form

λ(x, y, t) = λ(x, y)λ(t),
where λ(x, y) and λ(t) are non-negative functions on W and T , respectively. This formulation
can include a combination of a parametric spatial point pattern model, potentially depending
on the spatial coordinates and/or spatial covariates, and a parametric log-linear model for
the temporal component. The spatio-temporal intensity is therefore obtained by multiplying
the spatial and temporal intensities fitted separately. This has the advantage of giving the
possibility to include purely spatial and purely temporal covariates, denoted by ZS(x, y) and
ZT (t), with the following general formulation

λ(x, y, t) = λ(x, y)λ(t) = exp(θ0 + θ⊤
S ZS(x, y) + θ⊤

T ZT (t)).

The function sepstlppm() implements the network counterpart of the spatio-temporal Pois-
son point process with separable intensity and fully parametric specification. Concerning
linear network point patterns, only non-parametric estimators of the intensity function have
been suggested in the literature (Mateu, Moradi, and Cronie 2020; Moradi and Mateu 2020).
The functions plot.sepstppm() and plot.sepstlppm() show the fitted intensities, displayed
both in space and in space and time. Next, we perform an example on a subset of the Valencia
dataset, including the linear network in the inferential procedure. See Figure 14 for the plot
of the carried-out example.

R> crimesub <- stpm(valenciacrimes$df[101:200, ],
+ names = colnames(valenciacrimes$df)[-c(1:3)], L = valencianet)
R> mod1 <- sepstlppm(crimesub, spaceformula = ~x , timeformula = ~ day)
R> plot(mod1)

6.5. Spatio-temporal Poisson point processes with non-separable intensity
When separability of the spatial and temporal component is not plausible for the data, a non-
separable specification of the intensity function is more advisable. This is obtained through
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Figure 14: Plot of the separable model fitted produced by the plot.sepstlppm() function.

the stppm() function when including proper spatio-temporal covariates or specifying any kind
of interaction between spatial and temporal variables.
As an example, the following code fits an inhomogeneous non-separable spatio-temporal Pois-
son model with dependence on the spatio-temporal coordinates and some of their polynomials
and interactions specified as follows

λ(x, y, t) = exp(θ0 + θ1x + θ2y + θ3t + θ4xy + θ5yt + θ6x2 + θ7y2 + θ8t2 + θ9x2y2).

R> nonsepmod <- stppm(greececatalog, formula = ~ x + y + t + x:y + y:t +
+ I(x^2) + I(y^2) + I(t^2) + I(x^2):I(y^2), seed = 2)

As any other model fitted through stppm(), both the print() and summary() functions will
return the estimated coefficients, and the plot() function will display the estimated intensity
in space and in space and time.

R> summary(nonsepmod)

Inhomogeneous Poisson process
with Trend: ~x + y + t + x:y + y:t + I(x^2) + I(y^2) + I(t^2) + I(x^2):I(y^2)

Estimated coefficients:
(Intercept) x y t I(x^2)

-967.872 54.323 41.785 -0.007 -0.528
I(y^2) I(t^2) x:y y:t I(x^2):I(y^2)
-0.343 0.000 -1.481 0.000 0.000

Figure 15 is produced by the following command:

R> plot(nonsepmod)

Furthermore, since the model is fitted altogether employing a GLM, the significance of the
parameters can be inspected by checking the summary() of the mod_global element of the
object returned by the stppm() function.
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Figure 15: Plot of the non-separable model fitted produced by the plot.stppm() function.

R> summary(nonsepmod$mod_global)

Family: poisson
Link function: log

Formula:
y_resp ~ x + y + t + x:y + y:t + I(x^2) + I(y^2) + I(t^2) + I(x^2):I(y^2)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.679e+02 1.344e+02 -7.202 5.93e-13 ***
x 5.432e+01 6.687e+00 8.124 4.50e-16 ***
y 4.179e+01 4.597e+00 9.090 < 2e-16 ***
t -7.294e-03 2.326e-03 -3.136 0.001712 **
I(x^2) -5.282e-01 6.989e-02 -7.557 4.12e-14 ***
I(y^2) -3.432e-01 3.328e-02 -10.311 < 2e-16 ***
I(t^2) 6.193e-08 2.869e-08 2.159 0.030867 *
x:y -1.481e+00 1.782e-01 -8.313 < 2e-16 ***
y:t 5.823e-05 1.622e-05 3.590 0.000331 ***
I(x^2):I(y^2) 3.920e-04 4.953e-05 7.914 2.49e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that even though mod_global is of class ‘glm’, it is not advisable to rely on standard
classical GLM tools, such as the AIC or the R2, since they depend on the chosen structure
of the cubature scheme, not explored here in detail.

6.6. Log-Gaussian Cox processes

The stlgcppm() function estimates the covariance parameters of a spatio-temporal log-
Gaussian Cox process (LGCP, Diggle, Moraga, Rowlingson, and Taylor 2013) with random
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intensity
Λ(x, y, t) = λ(x, y, t) exp(S(x, y, t)),

following the joint minimum contrast procedure introduced in Siino et al. (2018a). LGCPs are
hierarchical Poisson processes, where the dependence in the point pattern is modeled through
the common latent Gaussian variable S (Rue et al. 2009). Here S is a Gaussian process with
E(S(x, y, t)) = µ = −0.5σ2 and so E(exp(S(x, y, t))) = 1 and with variance and covariance
matrix σ2γ(r, h) under the stationary assumption, with γ(·) the correlation function of the
Gaussian random field, and r and h some spatial and temporal distances.
The covariances available are separable exponential, Gneiting (Gneiting, Genton, and Gut-
torp 2006; Schlather, Malinowski, Menck, Oesting, and Strokorb 2015), and Iaco-Cesare (De
Cesare, Myers, and Posa 2002; De Iaco, Myers, and Posa 2002). The function works by as-
suming a homogeneous first-order intensity as default. Different inhomogeneous specifications
of the first-order intensity function are implemented as well.

R> catsub <- stp(greececatalog$df[1:200, ])
R> lgcp1 <- stlgcppm(catsub, seed = 2)

As a default, the package fits a LGCP model with a separable structure for the covariance
function of the GRF (Brix and Diggle 2001) that has exponential form for both the spatial
and the temporal components,

C(r, h) = σ2 exp
(−r

α

)
exp

(−h

β

)
,

where σ2 is the variance parameter, α is the scale parameter for the spatial distance and β is
the scale parameter for the temporal one.
The print() and summary() functions give the main information on the fitted model.

R> lgcp1

Joint minimum contrast fit
for a log-Gaussian Cox process with
global first-order intensity and
global second-order intensity
--------------------------------------------------
Homogeneous Poisson process
with Intensity: 0.00849

Estimated coefficients of the first-order intensity:

(Intercept)
-4.769

--------------------------------------------------
Covariance function: separable

Estimated coefficients of the second-order intensity:
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sigma alpha beta
15.389 0.239 15.275
--------------------------------------------------
Model fitted in 0.014 minutes

The plot.sepstlppm() function shows the fitted intensity displayed both in space (by means
of a density kernel smoothing) and in space and time, similar to what we have seen so far
with the other classes of models.

6.7. Local models

Local spatio-temporal Poisson point processes
The locstppm() function fits a spatio-temporal local Poisson process model (D’Angelo et al.
2023b) to an observed spatio-temporal point pattern stored in a ‘stp’ object, that is, a
Poisson model with a vector of parameters θi ∈ Θ for each point (xi, yi, ti). In local likelihood
estimation of Poisson processes (Loader 1999) the estimated intensity at (x, y, t) is taken to
be the plug-in value

λ̂(x, y, t) = λ(x, y, t; θ̂(x, y, t))

associated with the fitted parameter vector at (x, y, t).
The print() and summary() functions will provide information of the estimated local pa-
rameters by means of the summary of their distributions.

R> set.seed(2)
R> inh <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2] * x)},
+ par = c(0.005, 5))
R> inh_local <- locstppm(inh, formula = ~ x, seed = 2)
R> inh_local

Inhomogeneous Poisson process
with Trend: ~x

Summary of estimated coefficients
(Intercept) x
Min. :0.3075 Min. :2.803
1st Qu.:0.9073 1st Qu.:3.652
Median :1.4415 Median :4.264
Mean :1.4360 Mean :4.291
3rd Qu.:2.0157 3rd Qu.:4.975
Max. :2.7504 Max. :5.637

Inference is performed through the fitting of a GLM using a localized version of the cuba-
ture scheme, firstly introduced in the spatio-temporal framework by D’Angelo et al. (2023b).
Moreover, the localplot() function displays the local coefficients overlapped to the observed
points in some three-dimensional plots (Figure 16).

R> localplot(inh_local)
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Figure 16: Output of the localplot() function applied on a ‘locstppm’ object.
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Figure 17: Output of the localsummary() function applied on a ‘locstppm’ object.

Finally, we also implemented the localsummary() function, to break up the contribution of
the local estimates to the fitted intensity by plotting the overall intensity and the density
kernel smoothing of some artificial intensities obtained by imputing the quartiles of the local
parameters’ distributions (Figure 17).

R> localsummary(inh_local)

Local spatio-temporal log-Gaussian Cox processes

If the second argument of the stlgcppm() function is set to "local", it allows to estimate
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local second-order parameters of a spatio-temporal LGCP, following the locally weighted min-
imum contrast procedure introduced in D’Angelo et al. (2023b). In particular, we employ
the minimum contrast procedure based on the local spatio-temporal pair correlation function
(Gabriel et al. 2013) documented in LISTAhat() of stpp. If also first is set to "local",
also the first-order intensity parameters will be fitted locally, obtaining the same achieved by
locstppm(). In the case of local parameters (either first, second-order, or both), the print()
and summary() functions contain information on their distributions.

R> lgcp2 <- stlgcppm(catsub, second = "local", seed = 2)
R> lgcp2

Joint minimum contrast fit
for a log-Gaussian Cox process with
global first-order intensity and
local second-order intensity
--------------------------------------------------
Homogeneous Poisson process
with Intensity: 0.00849

Estimated coefficients of the first-order intensity:
(Intercept)

-4.769
--------------------------------------------------
Covariance function: separable

Summary of estimated coefficients of the second-order intensity
sigma alpha beta
Min. : 4.867 Min. :0.1212 Min. : 7.174
1st Qu.: 6.740 1st Qu.:0.1776 1st Qu.: 8.528
Median :13.178 Median :0.3546 Median :12.861
Mean :15.638 Mean :1.0904 Mean :14.229
3rd Qu.:18.946 3rd Qu.:1.3206 3rd Qu.:16.433
Max. :40.859 Max. :6.1096 Max. :31.786
--------------------------------------------------
Model fitted in 0.88 minutes

In the even more specific case of local covariance parameters, the plot() function returns the
mean of the random intensity, instead of the first-order intensity, displayed both in space (by
means of a density kernel smoothing) and in space and time (Figure 18).

R> plot(lgcp2)

Finally, the localplot() and localsummary() functions also work on ‘stlgcppm’ objects, if
the LGCP has local first- or second-order fitted parameters. In the particular case of local
covariance parameters, localplot() applied on a ‘stlgcppm’ object further displays the local
estimates of the chosen covariance function (Figure 19).

R> localplot(lgcp2)
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Figure 18: Output of the plot() function applied to an estimated LGCP with local covariance
parameters.
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Figure 19: Output of the localplot() function applied on a ‘stlgcppm’ object in the case
of local covariance parameters.

7. Diagnostics
This section is devoted to the presentation of general diagnostic tools based on second-order
summary statistics, both globally and locally.

7.1. Global diagnostics

The globaldiag() function performs global diagnostics of a model fitted for the first-order in-
tensity of a spatio-temporal point pattern, using the spatio-temporal inhomogeneous K func-
tion (Gabriel and Diggle 2009) documented by the function STIKhat() of the stpp pack-
age (Gabriel et al. 2022). It can also perform global diagnostics of a model fitted for the
first-order intensity of a spatio-temporal point pattern on a linear network by means of the
spatio-temporal inhomogeneous K function on a linear network (Moradi and Mateu 2020)
documented by the function STLKinhom() of the stlnpp package (Moradi et al. 2020). Both
versions return the plots of the inhomogeneous K function weighted by the provided inten-
sity to diagnose, its theoretical value, and their difference (Figure 20). Next, an example of
a simulated point pattern on the unit cube.
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Figure 20: Output of the globaldiag() function: K functions weighted by the constant
and therefore wrong intensity function (top panels), and K functions weighted by the true
intensity function (bottom panels).

R> set.seed(2)
R> inh <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2] * x)},
+ par = c(.3, 6))
R> mod1 <- stppm(inh, formula = ~ 1, seed = 2)
R> mod2 <- stppm(inh, formula = ~ x, seed = 2)
R> (g1 <- globaldiag(mod1))

Sum of squared differences : 2.036

R> (g2 <- globaldiag(mod2))

Sum of squared differences : 0.486

R> plot(g1)
R> plot(g2)

Figure 20 displays the result of globaldiag() applied to two different fitted intensities: the
constant and wrong intensity, and the true one, on the top and bottom panels, respectively.
It is evident that the difference between the estimated inhomogeneous K function and its
theoretical value is considerably smaller when weighted by the true intensity function.
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Figure 21: Output of the plot.localdiag() function.

7.2. Local diagnostics

The localdiag() function performs local diagnostics of a model fitted for the first-order
intensity of a spatio-temporal point pattern by means of the local spatio-temporal inhomo-
geneous K functions (Adelfio et al. 2020) documented by function KLISTAhat() of stpp. It
returns the points identified as outlying following the diagnostics procedure on individual
points of an observed point pattern, as introduced in Adelfio et al. (2020) and then extended
by D’Angelo et al. (2023a) to the linear network case. localdiag() is indeed also able to
perform local diagnostics of a model fitted for the first-order intensity of a spatio-temporal
point pattern on a linear network by the local spatio-temporal inhomogeneous K functions on
linear networks D’Angelo et al. (2021) documented by the function localSTLKinhom() of this
package. The points resulting from the local diagnostic procedure provided by this function
can be inspected via the plot() (Figure 21), print(), summary(), and infl() (Figure 22)
functions, as illustrated in the following.

R> res <- localdiag(inh, mod1$l, p = .9)
R> res

Points outlying from the 0.9 percentile
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Figure 22: Output of the infl() function.

of the analysed spatio-temporal point pattern
--------------------------------------
Analysed pattern X: 97 points
9 outlying points

R> plot(res)

In particular, the infl() function plots the K functions of all those points identified as
outlying by localdiag(). Alternatively, one can show only some specific K functions by
imputing a vector to the argument id.

R> infl(res)

8. Future developments
The stopp package represents the creation of a toolbox for different spatio-temporal analyses
to be performed on observed point patterns, following the growing stream of literature on
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point process theory. We contribute to the existing literature by framing many of the most
widespread methods for the analysis of spatio-temporal point processes into a unique package,
which is intended to foster many further extensions.
The stopp package tools are not exhaustive. Some current developments that will be available
in future include the possibility of handling irregular spatial windows for purely spatial com-
ponents and three-dimensional spatial point patterns, fundamental in geology (Li, Zhuang,
Chen, Guo, and Xiong 2024) and astronomy (Babu and Feigelson 1996; Stoica, Martínez, and
Saar 2007). It would be useful to be able to simulate multitype point patterns as well as pat-
terns with intensity depending on external covariates. Also, the next versions of the package
could generalize the function stppm(), allowing for the inclusion of non-continuous covariates.
Alternatives to the inverse-distance weighting for the continuous covariate interpolation could
be implemented, including some spatio-temporal smoothing using a Gaussian kernel weight-
ing, which would lead to the Nadaraya-Watson smoother (Nadaraya 1964, 1989; Watson 1964),
in addition to the most used kriging (Matheron 1963) and nearest neighbors interpolation.
In addition, the very general Poisson point process model implementation currently avail-
able could serve as the basis for the estimation of the first-order intensity function, like the
LGCPs. Also, other Cox process models relying on the minimum contrast procedure could
be implemented, providing the possibility of fitting global and local parameter estimation.
Moreover, already published research on local characteristics of point processes needing a gen-
eral software implementation includes: Siino, Rodríguez-Cortés, Mateu, and Adelfio (2020);
D’Angelo, Adelfio, Mateu, and Cronie (2023c); D’Angelo (2024). Regarding alternative fitting
methods, it is our intention to give the possibility to use that provided in the recent paper
D’Angelo and Adelfio (2024b).
Currently, the cubature scheme (D’Angelo et al. 2023b; D’Angelo and Adelfio 2024a) is being
numerically explored. Indeed, the number of dummy points should be enough for accurate
likelihood estimation and experimental results are expected to give guidelines on the number
of dummy points to generate. Note that the cubature scheme is already being applied in
some work-in-progress analyses of real data in D’Angelo, Sharma, Tarantino, and Adelfio
(2024b), for the spatio-temporal analysis of lightning point process data in severe storms, and
in Tarantino et al. (2024), for the study of a real three-dimensional purely spatial observed
point pattern of young stars of the Gaia Archive.
Other interesting implementations which still need some underlying methodological develop-
ment include the fitting of some general marked point processes with continuous marks, in
addition to the already established fitting of general multitype point processes.
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A, pp. 359–372. doi:10.1002/9781119432036.ch8.

Wood SN (2003). “Thin Plate Regression Splines.” Journal of the Royal Statistical Society
B, 65(1), 95–114. doi:10.1111/1467-9868.00374.

Wood SN, Li Z, Shaddick G, Augustin NH (2017). “Generalized Additive Models for Gigadata:
Modeling the UK Black Smoke Network Daily Data.” Journal of the American Statistical
Association, 112(519), 1199–1210. doi:10.1080/01621459.2016.1195744.

Xiong Z, Zhuang J (2023). “SETAS: A Spherical Version of the Space-Time ETAS Model.”
Seismological Research Letters, 94(3), 1676–1688. doi:10.1785/0220220198.

Youngman B, Economou T (2020). ppgam: Generalised Additive Point Process Models. doi:
10.32614/CRAN.package.ppgam. R package version 1.0.1.

https://doi.org/10.1214/23-aoas1765
https://doi.org/10.1145/800186.810616
https://doi.org/10.1145/800186.810616
https://doi.org/10.1007/s00477-018-1579-0
https://hdl.handle.net/10447/244356
https://doi.org/10.1002/env.2463
https://doi.org/10.1002/env.2463
https://doi.org/10.1002/env.2599
https://doi.org/10.1002/env.2599
https://doi.org/10.1111/j.1467-9876.2007.00587.x
https://doi.org/10.1007/978-3-031-64447-4_100
https://doi.org/10.1007/978-3-031-64447-4_100
https://doi.org/10.18637/jss.v063.i07
https://doi.org/10.1002/9781119432036.ch8
https://doi.org/10.1111/1467-9868.00374
https://doi.org/10.1080/01621459.2016.1195744
https://doi.org/10.1785/0220220198
https://doi.org/10.32614/CRAN.package.ppgam
https://doi.org/10.32614/CRAN.package.ppgam


Journal of Statistical Software 35

Affiliation:
Nicoletta D’Angelo, Giada Adelfio
University of Palermo
Department of Economics, Business, and Statistics
Palermo, Italy
E-mail: nicoletta.dangelo@unipa.it

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

July 2025, Volume 113, Issue 10 Submitted: 2024-04-18
doi:10.18637/jss.v113.i10 Accepted: 2024-08-27

mailto:nicoletta.dangelo@unipa.it
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v113.i10

	Introduction
	Data types
	Spatio-temporal point patterns
	Marked point processes
	Spatio-temporal covariates

	Datasets
	Simulations
	Exploratory analysis
	Local test

	Model fitting
	Inhomogeneous spatio-temporal Poisson point processes
	Spatio-temporal Poisson point processes with external covariates
	Multitype spatio-temporal Poisson point processes
	Spatio-temporal Poisson point processes with separable intensity
	Spatio-temporal Poisson point processes with non-separable intensity
	Log-Gaussian Cox processes
	Local models
	Local spatio-temporal Poisson point processes
	Local spatio-temporal log-Gaussian Cox processes


	Diagnostics
	Global diagnostics
	Local diagnostics

	Future developments

