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Abstract

The empirical Bayes normal means (EBNM) model is important to many areas of
statistics, including (but not limited to) multiple testing, wavelet denoising, and gene ex-
pression analysis. There are several existing software packages that can fit EBNM models
under different prior assumptions and using different algorithms. However, the differ-
ences across interfaces complicate direct comparisons, and a number of important prior
assumptions do not yet have implementations. Motivated by these issues, we developed
the R package ebnm, which provides a unified interface for efficiently fitting EBNM mod-
els using a variety of prior assumptions, including nonparametric approaches. In some
cases, we incorporated existing implementations into ebnm; in others, we implemented
new fitting procedures, with an emphasis on speed and numerical stability. We illustrate
the use of ebnm in a detailed analysis of baseball statistics. By providing a unified and
easily extensible interface, ebnm can facilitate development of new methods in statistics,
genetics, and other areas; as an example, we briefly discuss the R package flashier, which
harnesses ebnm for flexible and robust matrix factorization.

Keywords: empirical Bayes, normal means, shrinkage estimation, mixture models, NPMLE,
maximum likelihood.

1. Introduction

Given n observations x; € R with known standard deviations s; > 0,7 = 1,...,n, the normal
means model (Robbins 1951; Efron and Morris 1972; Stephens 2017; Bhadra, Datta, Polson,
and Willard 2019; Johnstone 2019; Sun 2020) is

zi N N (B;, 57), (1)
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Figure 1: Illustration of shrinkage estimation using empirical Bayes normal means (EBNM).
The example data set consists of 400 noisy observations x;, with true means 6; simulated from
a “point-normal” prior. The left-hand plot shows the observed means (z;) vs. the true means
(0;). (The observed means are also the maximum-likelihood estimates (MLEs) of the true
means.) The middle plot shows EB estimates of the true means obtained by learning a normal
prior g from the data. These EB estimates “shrink” the observations toward the mode of the
common prior, improving the overall root mean-squared error (RMSE) from 0.360 to 0.287.
But the normal prior also appears to “overshrink” observations distant from the center (which
is located near 2). Fitting an EBNM model with a family of priors that better suits the data
— point-normal priors — results in more accurate EB estimates, improving the RMSE to 0.210
(see the right-hand plot). In particular, the point-normal prior avoids “overshrinking” the
more extreme observations. For an expanded illustration, including the R code that generates
the results shown here, see the ebnm package vignette, “Introduction to the empirical Bayes
normal means model via shrinkage estimation.”

where the unknown (“true”) means 0; € R, ¢ = 1,...,n, are the quantities to be estimated.

Here and throughout, NV'(11, %) denotes the normal distribution with mean i and variance .

The empirical Bayes (EB) approach to inferring ; attempts to improve upon the maximum-
likelihood estimates §; = x; by “borrowing information” across observations, exploiting the
fact that each observation contains information not only about its respective mean, but also
about how the means are collectively distributed (Robbins 1956; Morris 1983; Efron 2010;

Stephens 2017). Specifically, the empirical Bayes normal means (EBNM) approach assumes
ind.
0; ~ geq, (2)

where G is some family of probability distributions that is specified in advance, and g € G is
estimated using the data (typically, via maximum likelihood). Given an estimate of the prior,
g € G, estimates of 6; can be obtained using, for example, posterior means:

Hi = E(Hz ’ xz,g)

We refer to the problem of computing § and 0; as “solving the empirical Bayes normal means
problem.” See Figure 1 for an illustration.

Applications in which the EBNM model plays an important role include wavelet denoising
(Clyde and George 2000; Johnstone and Silverman 2004, 2005b), multiple testing (Efron 2010;
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Stephens 2017), gene expression analysis (Love, Huber, and Anders 2014; Zhu, Ibrahim, and
Love 2019; Smyth 2004), multiple linear regression (Kim, Wang, Carbonetto, and Stephens
2024; Mukherjee, Sen, and Sen 2023), and matrix factorization (Wang and Stephens 2021).
This versatility has motivated the development of a number of software packages using dif-
ferent choices for the prior family G; see Section 2 for a review. Still, important gaps in the
software remain. For example, we are not aware of any software that fits the EBNM model
in the simple case where G is the family of univariate normal distributions. Further, each
existing package has a different interface and outputs, which complicates comparisons across
packages as well as making it difficult to develop software packages that flexibly build on
EBNM methods. Motivated by these issues, we developed ebnm, which provides a unified
interface for efficiently solving the EBNM problem using a wide variety of prior families.

We developed the ebnm package in R (R Core Team 2025), a programming language and
environment that is free, open source, and highly interoperable — for example, with Python
(Van Rossum et al. 2011) via rpy2 (Gautier 2023), with MATLAB (The MathWorks Inc. 2021)
via R-link (Henson 2024), and with Julia (Bezanson, Edelman, Karpinski, and Shah 2017) via
RCall (Bates, Lai, and Byrne 2024). ebnm can be downloaded from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=ebnm. The latest de-
velopment branch is available on GitHub (https://github.com/stephenslab/ebnm). The
website, which includes detailed documentation and vignettes, is at https://stephenslab.
github.io/ebnm/. Code for reproducing results and figures in the text is available on GitHub
at https://github.com/willwerscheid/ebnm-paper and as supplementary materials to
this paper.

The paper is organized as follows. In Section 2, we give a brief history of the EBNM problem
and review existing approaches. Section 3 gives an overview of the ebnm package, including
the unified interface and the newly implemented prior families. In Section 4, we compare dif-
ferent choices of prior family and illustrate how this choice can impact statistical performance.
This section also includes a runtime benchmark for several implemented prior families. Sec-
tion 5 illustrates usage of ebnm in an analysis of baseball statistics. In Section 6, we describe
the matrix factorization framework implemented in the R package flashier (Willwerscheid,
Carbonetto, Wang, and Stephens 2024), which builds on ebnm. In flashier, the EBNM prob-
lem arises as a subproblem that must be solved many times, so that the speed and flexibility
provided by ebnm prove critical. Finally, Section 7 summarizes the key contributions of this
work.

2. Background and existing software

In this section, we review existing approaches to the EBNM problem within a common mod-
eling framework.

2.1. Normal priors

Stein (1956) famously discovered that under quadratic loss, the maximum-likelihood estimate
(MLE) 6; = i, t = 1,...,n, is an inadmissible solution to the homoskedastic normal means
problem,

e iI}\(’i‘N(ei,SQ), izl,...,n,

when n > 3. James and Stein (1961) subsequently gave an explicit formula for a shrinkage
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estimator that dominates the MLE. As Efron and Morris (1973) showed, a lightly modified
version of the James-Stein estimator can be derived via an EB approach that assumes

91' 19\("19 S gu

where G is the family of zero-mean normal distributions,
Guormo = {g: g(z) = N(2;0,0%), 0* > 0}.

(Here, N (z; i, 0%) denotes the normal probability density function at z with mean u and
variance o2.)

In many applications, the mean of the 6;’s may be non-zero, and so a natural generalization
is the family of all normal distributions,

gnorm = {g : g(:E) :N($;M,02), 0'2 > O,M S R}

Estimating g € Gnorm reduces to estimating o2 and p. For the “homoskedastic” case — that

is, when s? =s2fori=1,...,n — the MLEs have simple, closed-form solutions:
N
M= ﬁ Z L,
=1
1 n
62 = max {O, - Z(a:z — ) - 32}. (3)

When p is fixed at zero, the solution in Equation 3 is similar to the one implied by the
“positive-part James-Stein estimator,” with the sole difference that it divides Y1 ; 27 by n
rather than by n — 2 (Efron and Morris 1973). For the “heteroskedastic” case, when the
02-2 are not all identical, the likelihood for s, c? has a closed form but must be maximized
numerically.

In both the homoskedastic and heteroskedastic cases, the posterior distributions
p(0i | i, 8i,9) o< p(i | 0:,8:) §(0:) (4)

are normal distributions with closed-form expressions.

2.2. Sparse priors

Although the normal prior family has the advantage of simplicity, in practice more flexible
priors are often preferred. In particular, one would often like the prior to be able to capture
sparsity in @ := {61,...,6,}. One approach is to use a “spike-and-slab” prior; that is,
a mixture consisting of two components, a point-mass at zero (the “spike”) and a “slab”
belonging to a family of continuous distributions, usually symmetric and centered at zero. A
common choice is the “point-normal” family,

Gpn = {g: 9(2) = modo(z) + (1 — mo)N(2;0,0%), 0 < 1 < 1, 02 > 0},

where d,(z) denotes the density function of the delta-Dirac mass centered at y. With this
choice, estimating g reduces to estimating two parameters, my and 2. Similar to the family of
normal distributions, the likelihood for the point-normal prior family has a closed form, and
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standard numerical optimization methods can be used to efficiently find the MLE § € Gyn.
Given g, posterior distributions of 6; are mixtures of a point-mass at zero and a normal
distribution, and have closed-form expressions.

As Johnstone and Silverman (2005b) showed, replacing the normal slab with a “heavy-tailed”
distribution generally improves accuracy. Their EbayesThresh software, available in R and
S-PLUS (Johnstone and Silverman 2005a), implements two such priors: the point-Laplace
prior,

Go1 :={g: g(x) = modp(x) + (1 — mp)Laplace(z; 0,a), 0 < 1 < 1, a > 0}, (5)

and a family of priors in which the slab has “Cauchy-like” tails. For both priors, MLEs
g € G can be found using numerical methods. In Equation 5, Laplace(z; i, a) denotes the
probability density of the Laplace distribution at  with mean u and scale a (Gelman, Carlin,
Stern, Dunson, Vehtari, and Rubin 2014).

Another parametric prior that is well suited for capturing sparse signals is the horseshoe
prior, which models sparsity by having appreciable mass near zero rather than exactly at
zero (Carvalho, Polson, and Scott 2010). The R package horseshoe (Van der Pas, Scott,
Chakraborty, and Bhattacharya 2019) solves the homoskedastic EBNM problem with G the
family of horseshoe distributions. See Bhadra et al. (2019) for a review of this and other
software implementations of the horseshoe prior.

2.3. Nonparametric approaches

When G is the unconstrained family of all distributions, § € G is called the nonparametric
maximum-likelihood estimate (NPMLE) (Kiefer and Wolfowitz 1956; Laird 1978; Lindsay
1983; Jiang and Zhang 2009; Koenker and Mizera 2014; Dicker and Zhao 2016). In practice,
most nonparametric methods approximate this family, which we denote as Gpmie, by a finite
mixture of point masses,

K K
gnpmle = {gg(l'):Zﬂ'k(SMk(x) 7T1,...,7TKZO, Zﬂ_kzl}a
k=1

k=1
where 1, ..., is a fixed, dense grid of values spanning the range of the observations.

Estimating g € anmle involves solving a convex optimization problem,

maximize L

subject to 0 X7 < 1g (6)
w1l =1,
where 7 := (my,...,7x)", 1k is a column vector of ones of length K, and L € R™*X is

the matrix with elements ¢;, = N (x;; g, 02) (Koenker and Mizera 2014). The R package
REBayes (Koenker and Gu 2017) implements an efficient solver for Equation 6 using interior
point methods (MOSEK ApS 2019). See Kim, Carbonetto, Stephens, and Anitescu (2020)
and Zhang, Cui, Sen, and Toh (2024) for other approaches.

Although the fully nonparametric approach is the most flexible, the NPMLE is a discrete
distribution (Laird 1978), so posterior distributions in Equation 4 are discrete as well. For
point estimation, the posterior mean from a discrete prior is usually adequate; however,
interval estimates can behave poorly. To address this issue, the R package deconvolveR
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(Narasimhan and Efron 2020) uses a natural spline basis to obtain a smoothed nonparametric
estimate of g. This approach provides sensible interval estimates and can in certain respects
outperform the NPMLE when the true prior is smooth (Koenker 2017).

2.4. Constrained nonparametric approaches

Constrained nonparametric approaches offer a middle ground, retaining some of the flexibility
of a fully nonparametric approach while avoiding “overfitting” (Hastie, Tibshirani, and Fried-
man 2009). Stephens (2017) argued that the set of all distributions that are unimodal at zero
can be a particularly good choice of G in the context of multiple testing. If it is reasonable to
assume that the prior is symmetric, one can instead take G to be the family of scale mixtures
of normals,

Gsmn = {g: g(x) = [;° N(x;0,0%) dh(c?) for some h}.

A slightly more flexible option is the family of all symmetric distributions that are unimodal
at zero, which can be represented by scale mixtures of uniform distributions:

Gsymm-u := {9 : g(x) = [;° Unif(x; —a,a) dh (a) for some h}.

(Here, Unif(x;a,b) denotes the probability density function of the uniform distribution on
(a,0).)

When these families are approximated by finite mixtures, estimating g reduces to the same
convex optimization problem that arises for the NPMLE (Equation 6), and can again be
solved using fast algorithms for convex optimization. This approach is implemented in the
R package ashr (Stephens et al. 2023), which, by default, uses mixsqp (Kim et al. 2020) to
solve the problem in Equation 6.

3. The ebnm package: implementation and usage

The ebnm package provides a unified interface for solving the EBNM problem using a wide
variety of prior assumptions, including all of the choices of prior family discussed in Section 2.
In addition to making existing implementations available via a shared interface, the pack-
age provides new implementations for several simple but useful prior families that, to our
knowledge, have not previously been implemented; important examples include the normal
and point-normal prior families (Gporm and Qpn). The available prior families are summarized
in Table 1. Note, also, that ebnm was designed to be easily extensible to other prior fami-
lies. To facilitate such extensions, we have written a vignette, “Extending ebnm with custom
ebnm-style functions,” which is available on the ebnm package website.

3.1. The ebnm() function

The ebnm() function is the main interface to the EBNM methods. It has the following input
arguments:

o x: The vector of observations, € = {x1,...,2,}.

o s: The vector of standard errors, s = {s1,...,s,}. (s may be a scalar for the ho-
moskedastic case.)
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prior_family: The prior family, G (see Table 1).

mode: For unimodal prior families, this argument specifies the mode. The mode may
also be estimated with mode = "estimate".

scale: Either the scale parameter (for parametric priors), or the grid of parameters
used to approximate the nonparametric prior. By default it is scale = "estimate",
which directs ebnm either to estimate the scale or to select the grid following the grid
selection strategies described in Willwerscheid (2021).

g_init: An optional initial estimate of g. A good estimate can speed up the search for
an MLE.

fix_g: A logical argument. When fix_g = TRUE, the prior is fixed to g_init so that
the posterior distributions are computed using this fixed value of g.

output: A character vector indicating which quantities should be returned.
optmethod: The name of the optimization method to use. See Section 3.2.

control: A list of parameters controlling the optimization.
ebnm() outputs include:

fitted_g: The estimated prior, §.

log_likelihood: The log-likelihood at g, which can be used to compare the quality of
the fit to the data across different priors or prior families:

log (w1, @n | 81,80, 9) = 2ily log [ plwi | 0, 5:) 9(6:) dbi. (7)

posterior: Summaries of the posterior distributions p(6; | x;, s;, §), including posterior
means, posterior standard deviations, and local false sign rates (Stephens 2017), defined
as

Ifsr(i) == min {p(6; <0 | xi,5,9), p(6i >0 | xi,8,9)}

posterior_sampler: A function that can be used to generate random samples from
the posterior distributions in Equation 4.

return value is an object of class ‘ebnm’. Many of the S3 methods that are typically

associated with model fits in R also work for objects of class ‘ebnm’, including:

summary (): Gives an overview of the fitted model.

plot(): Produces a scatterplot comparing the observations x; against posterior es-
timates of the true means #; and, optionally, a visualization of the prior cumulative
density function.

nobs (): Returns the number of observations used to fit the model.

coef ): Returns the posterior means, 0; := E(6; | zi, s, ).
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o vcov(): Returns the posterior variances, VAR(6; | x;, si, §).

e fitted(): Returns a data frame containing multiple posterior summary statistics
(e.g., posterior means and variances).

e residuals(): Returns the residuals, defined as the differences z; — él

e logLik(): Returns the log-likelihood in Equation 7 at g.

o simulate(): Generates random draws of each 6; from their posterior distributions.
e quantile(): Uses the sampler to compute posterior quantiles for each 6;.

e confint(): Uses the sampler to compute posterior “credible intervals” for each ;. We
define the (1 — «)% credible interval for #; as the narrowest continuous interval [a;, b;]
such that 6; € [a;, b;] with posterior probability at least 1 — a;, o € (0,1). The credible
intervals are estimated using Monte Carlo methods. The proportion 1 — « is determined
by the level argument.

e predict(): Uses the fitted prior § to compute posterior mean estimates é?ew for a

different set of observations x;°" with standard deviations sj*V. This could be used,

for example, to provide a more robust assessment of fit by evaluating the accuracy of
the predictions on a test set.

We illustrate several of these methods in Section 5 and in the package vignettes.

3.2. Optimization methods

The ebnm() function involves two key computations:

1. Estimate the prior. Compute § := argmax,¢ ¢ L(g), where L(g) denotes the marginal

likelihood,
L(g) :==p(x | g,s) = [[ [ p(xi | 6:,5:) g(6;) db;,
i=1
where x := (21,...,2y,) and s 1= (s1,...,5p).

2. Compute posterior quantities. Compute summaries (means, variances, etc.) from the
posterior distributions

p(0; | 24, 8:,G) o< p(z; | 0;,5:) §(0;).

The complexity of each step depends on the prior family G. In most cases, estimating the
prior (Step 1) is the most difficult and computationally intensive step; for all but the simplest
prior families this step requires the use of numerical optimization methods.

Parametric priors

Parametric priors available in ebnm include the normal, point-normal, point-Laplace, point-
exponential, and horseshoe prior families. For the horseshoe, we used the implementation
from the horseshoe package (Van der Pas et al. 2019), which requires the prior mode to be
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prior_family Prior Source Support Sym?
Parametric

"normal" N (z; i, 0?) ebnm + Yes
"point_mass" du(z) ebnm Yes
"point_normal" 700, (x) + (1 — mo)N (x5 p, 02) ebnm + Yes
"point_laplace" modu(x) + (1 — mp)Laplace(x; v, a) ebnm + Yes
"point_exponential" modo(x) + (1 — mo)Exp(x; a) ebnm + No
"horseshoe" Horseshoe(z; 7) horseshoe + Yes
Constrained nonparametric

"normal_scale_mixture" [°N(z;0,02)dh(c?) ebnm + Yes
"unimodal_symmetric" [ Unif(x; —a,a)dh(a) ashr + Yes
"unimodal" S0, Unif(z;0, a) dh(a) ashr + No
"unimodal_nonnegative" [ Unif(z;0,a)dh(a) ashr + No
Nonparametric

"npmle" J20, 0¢(z) dh(t) ebnm + No
"deconvolver" See Narasimhan and Efron (2020) deconvolveR + No
Other

"flat" Unif (z; —o00, 0) ebnm + Yes

Table 1: Prior families implemented in ebnm. The “prior_family” column gives the corre-
sponding prior_family argument to ebnm(). The “source” column gives the name of the R
package that implements the core model-fitting routines. “Support” says whether the prior
has support for only positive realizations of 6; (4) or for all real numbers (£). A “yes” in
the “sym?” column means that the prior is symmetric about its mode. Note that the “flat”
prior is mainly intended for use as a point of comparison with other prior families; it always
only returns 0; = x;. Also note that some specialized priors such as the “generalized binary
prior” (Liu et al. 2025) are not included in this table; run help("ebnm") to obtain a full list
of supported prior families.

fixed at zero. For all other prior families, we developed special implementations, and we allow
the prior mode to be estimated or fixed at a specified value (commonly, zero).

A closed-form solution is available only for the normal prior with homoskedastic errors. In
all other cases, we use numerical methods to search for an MLE. This search involves at most
three parameters: the scale of the slab component, the mixture weight for the spike, and the
mode (when mode = "estimate").

We found that several off-the-shelf optimizers worked well for fitting parametric priors, al-
though care was needed in implementing the underlying objective and gradient computations
in order to avoid numerical issues. In particular, we found that the quasi-Newton method
nlm() from the stats package worked reliably in our tests across a range of parametric prior
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families. Therefore, this method is the default for estimating the prior in all cases except the
horseshoe, which uses optimize().

Since other optimization methods might be preferred in some circumstances — say, when deal-
ing with large or complex data sets, or to refine the estimation of the prior — we have designed
the package to allow use of other optimization methods. Further, the user can choose whether
to use analytical gradients and Hessians, or whether to estimate them numerically (which can
be faster when the analytical calculations are complex). These options are controlled by the
optmethod argument to ebnm (). The default for most parametric priors, "nohess_nlm", uses
nlm() with gradients calculated analytically and Hessians estimated numerically. Alterna-
tives include "nlm" (both gradients and Hessians are calculated analytically); "nograd_nlm"
(both gradients and Hessians are estimated numerically); "1bfgsb" and "nograd_lbfgsb",
which use the L-BFGS-B algorithm from optim() (L-BFGS-B always estimates Hessians nu-
merically, so the two options use, respectively, analytical and numerical gradients); and the
trust region method from the trust package (Geyer 2020), which requires analytical gradients
and Hessians (optmethod = "trust").

In our benchmarking experiments (Appendix A.1), "nohess_nlm" was always either the
fastest method or took no more than twice as long as the fastest method. Both the other
nlm() methods and the trust () method reliably converged to a solution, but they tended to
be slower. L-BFGS-B did not reliably find a solution.

Constrained nonparametric priors

The constrained nonparametric families (Table 1) are implemented in package ashr (Stephens
et al. 2023). ashr uses the mix-SQP algorithm (Kim et al. 2020) by default. Different op-
timization methods can again be chosen via the optmethod argument; for details on these
different methods, see the ashr documentation. The only constrained nonparametric family
that does not rely on ashr is the family of scale mixtures of normals. For this family, we
re-implemented the ashr algorithm with the aim of improving speed. Our implementation
improved the average runtime over ashr by a full order of magnitude for smaller data sets
(n = 1000) (Appendix A.2).

Nonparametric priors

The NPMLE can, in principle, be computed using ashr, but this computation is cumbersome
since ashr requires the user to specify the grid of point masses in advance. Further, we have
found that, as with scale mixtures of normals, ashr can be slow in some scenarios. The
REBayes package (Koenker and Gu 2017) was developed specifically for the NPMLE, and
is typically very fast, but it relies on the commercial interior-point solver MOSEK (MOSEK
ApS 2019). Therefore, in order to provide a fully open-source toolkit that does not require
installation of commercial software, we re-implemented the NPMLE in ebnm using the open-
source package mixsqp (Kim et al. 2020). As with the constrained nonparametric prior
families, optmethod = "mixsqp" is the default setting. If desired, however, the REBayes
algorithm can be used by setting optmethod = "REBayes". In our tests, mixsqp was typically
faster than REBayes when the number of mixture components K was small, whereas REBayes
was usually faster than mixsqp when K was 80 or more (Appendix A.2).
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Relative log-likelihood RMSE Cl coverage
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unimodal_symmetric -198.2 0.966 0.861 0.875 _
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horseshoe -161.0 -171 -931.8 0.987 1.10 0.812 [MeEc<IN 0.826

Figure 2: Results of fitting EBNM models with different prior families. For each prior family,
the table reports evaluation metrics averaged over 10 simulated data sets with n = 1000
observations per data set. Three metrics are reported: the log-likelihood at § relative to
the log-likelihood attained by the NPMLE (higher log-likelihoods are better); the root mean-
squared error (lower RMSEs are better); and the proportion of 90% posterior credible intervals
containing the true mean (values closer to 0.9 are better).

4. Numerical comparisons of prior families

To test our implementations and to compare the performance of different prior families, we
simulated data sets from three data-generating distributions:

1. Normal. The simplest scenario. We simulated the means 6; from a normal prior,
0; S N(0,22).

2. Point-t. A more challenging scenario. The prior was both sparse and heavy-tailed,

yet still symmetric: 6; ind. 0.800 + 0.2t5(0,1.5), where t,(u, o) denotes the Student ¢
distribution with location u, scale o, and v degrees of freedom.

3. Asymmetric Tophat. The most challenging scenario. Means were uniformly dis-
tributed, 6; - Unif (—5,10). Although this scenario is perhaps less realistic than the
other simulations, it yields data sets that are best modeled with nonparametric or con-
strained nonparametric priors.

In all simulations, we generated the observed means as z; Y (0,1).

Figure 2 summarizes results from running EBNM analyses on 10 data sets in each of the three
simulation scenarios, with n = 1000 observations in each data set. We used the following
three measures to evaluate the EBNM model fits:
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a. The log-likelihood, which, for ease of interpretation, is shown relative to the log-likelihood
attained at the NPMLE estimate. (In principle, the NPMLE estimate should always
give the highest likelihood because it includes all other prior families as proper subsets.)

b. The root mean-squared error, RMSE := \/ S (0; — 0;)% /n, where 0; denotes the pos-

terior mean estimate, ; 1= E(0; | i, 5i,0)-
c¢. The proportion of true means 6; contained within the 90% posterior credible intervals.

As expected, the model fit returned by ebnm() with prior_family = "npmle" always at-
tained the largest log-likelihood. More generally, log-likelihoods usually (though not always)
aligned with the orderings implied by nestings of prior families, such as, for example,

gnormO C gpn C gsmn - gsymm—u - gnpmle-

Prior families that were a poor match with the distribution used to simulate the data typically
had worse log-likelihoods.

The RMSE evaluated the quality of the posterior estimates 0, generated by an EBNM anal-
ysis. Reassuringly, nearly all prior families improved upon the 0; = x; estimates returned
by the “flat” prior, which we included as a baseline. However, the improvement was some-
times small, particularly when the prior family was a poor match with the true distribution
(e.g., symmetric prior families in the Asymmetric Tophat setting). In general, higher log-
likelihoods were indicative of better accuracy of the estimates 0;. Results that did not follow
this trend suggested overfitting; for example, the RMSE for the NPMLE was typically worse
than for prior families that better matched the true distribution.

The “CI coverage” measured how well posterior credible intervals are calibrated. A known
limitation of empirical Bayes methods is that they often underestimate uncertainty in the
posteriors, since uncertainty in the estimate of g is not taken into account (Ignatiadis and
Wager 2022). Indeed, the credible intervals tended to be too small (less than 90%) for most
prior families and simulation scenarios. Still, the intervals were usually not far from the target
coverage of 90%. The exception was the NPMLE, which tended to have much poorer coverage
because it resulted in a discrete prior that often greatly underestimated uncertainty.

Finally, to assess the ability of our implementation to handle large data sets, we simulated
additional (point-t) data sets ranging in size from n = 100 to n = 1000000. These analyses
were performed in R 4.3.2 on a desktop running Windows 11 Pro with an Intel Core i9-
13900KF multicore processor and 96 GB of memory. As expected, the less flexible priors
with the fewest parameters tended to also be the fastest, whereas the more complex methods
(e.g., unimodal prior, NPMLE) were slower than the fastest methods by several orders of
magnitude (see Figure 3). Importantly, all prior families scaled well to large data sets; for
each, the computational effort grew linearly or close to linearly in n.

5. An analysis of weighted on-base averages with ebnm

In this section, we illustrate the key features of ebnm in an analysis of baseball statistics. See
the package vignette for an expanded version of this example.
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Figure 3: Runtimes for fitting EBNM models to data sets of varying sizes. For each combi-
nation of sample size (n) and prior family, an EBNM model was fit to 20 data sets simulated
using the “Point-t” distribution. Each point gives the average of the 20 simulations; error
bars show 10% and 90% quantiles.

5.1. The wOBA data set

We begin by loading and inspecting the wOBA data set, which consists of weighted on-base
averages (WOBAs) and standard errors for the 2022 MLB regular season:

R> library("ebnm")
R> data("wOBA")
R> nrow(wOBA)

[1] 688

R> head (wOBA)

FanGraphsID Name Team PA X s
1 19952 Khalil Lee NYM 2 1.036 0.733
2 16953 Chadwick Tromp ATL 4 0.852 0.258
3 19608 Otto Lopez TOR 10 0.599 0.162
4 24770  James Outman LAD 16 0.584 0.151
5 8090 Matt Carpenter NYY 154 0.472 0.054
6 15640 Aaron Judge NYY 696 0.458 0.024

Column x contains the (observed) wOBAs, which we interpret as estimates of a player’s true
hitting ability. Column s gives standard errors. See Appendix B for background on the wOBA
statistic and an explanation of how standard errors were calculated.

Most players finished the season with a wOBA between 0.200 and 0.400. A few had very
high wOBAs (>.500) while others had wOBAs at or near zero. A casual inspection of the
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data suggests that players with these extreme wOBAs were very lucky (or very unlucky). For
example, the 4 players with the highest wOBAs (included in the code output above) each had
fewer than 20 plate appearances. (The number of plate appearances, or PAs, is the sample
size, so smaller PAs generally lead to larger standard errors.)

In contrast, Aaron Judge’s production — which included a record-breaking number of home
runs — appears to be “real,” since it was sustained over nearly 700 PAs. Other cases are more
ambiguous; for example, Matt Carpenter had several exceptional seasons between 2013 and
2018, but then his performance declined in the 2019-2021 seasons. So what should we make
of his remarkable improvement in 20227 An empirical Bayes analysis can help resolve some
of these ambiguities.

5.2. The ebnm() function

Function ebnm() is the main interface for fitting the empirical Bayes normal means model
given in Equations 1-2; it is a “Swiss army knife” that allows for various choices of prior
family G as well as many other options for fitting and tuning models. For example, we might
take G to be the family of normal distributions:

R> x <- wOBA$x

R> s <- wOBA$s

R> names(x) <- wOBA$Name

R> names(s) <- wOBA$Name

R> fit_normal <- ebnm(x, s, prior_family = "normal", mode = "estimate")

(Since the distribution of true hitting ability should not be centered at zero, we set mode =
"estimate".)

The ebnm package has an additional, alternative interface in which each prior family has its
own function. The following call produces the same result as the previous call to ebnm():

R> fit_normal <- ebnm_normal(x, s, mode = "estimate')

Overviews of results can be obtained using the summary () and plot() methods. The plot ()
method returns a ‘ggplot’ object (Wickham 2016), so that the plot can be conveniently
customized using ggplot2:

R> plot(fit_normal) +
+ geom_point (aes(color = sqrt(wOBA$PA))) +

+ labs(x = "wOBA", y = "EB estimate of true wOBA skill",
+ color = expression(sqrt(PA))) +
+ scale_color_gradient (low = "blue", high = "red")

The resulting plot, shown in Figure 4, compares the observed wOBAs against the posterior
estimates of hitting ability returned by ebnm(). We customized the plot to vary the color of
points by the number of plate appearances. The plot shows the expected shrinkage behavior
of the EBNM model: wOBAs associated with fewer plate appearances (the blue points) were
shrunk toward the league average (near 0.300) much more strongly than wOBAs for hitters
with many plate appearances (the red points).

Let us now revisit the first 6 hitters in the data set. The fitted () method returns a posterior
summary for each hitter (by default, the posterior mean and standard deviation):



Journal of Statistical Software 15

Log likelihood for model: 989.64

0.40
= e
ﬁ 1
g JPA
(@,
< 0.35 25
S o 20
E
b 15
) ® °
= 10
T 0.30 l e
E ° 5
Z °
(]
m
w

0.00 0.50 0.75 1.00

wOBA

Figure 4: Initial wOBA estimates vs. posterior mean wOBA obtained by fitting a prior from
the family of normal distributions. The color of the points is varied by the number of plate
appearances. The dashed line shows the diagonal (z = y) line.

> print (head(fitted(fit_normal)), digits = 3)

mean sd
Khalil Lee 0.303 0.0287
Chadwick Tromp 0.308 0.0286
Otto Lopez 0.310 0.0283
James Outman  0.311 0.0282
Matt Carpenter 0.339 0.0254
Aaron Judge 0.394 0.0184

Estimates for the first four ballplayers are shrunk strongly toward the league average, reflect-
ing the fact that these players had very few plate appearances. Carpenter had more plate
appearances, but according to this model we should remain skeptical about his strong perfor-
mance; after factoring in the prior, we judge his “true” talent to be much closer to the league
average, downgrading an observed wOBA of 0.472 to a posterior mean estimate of 0.339.

5.3. Reanalyzing the wOBA data with a different prior

Judge’s “true” talent was also estimated to be much lower (.394) than his observed wOBA
(.458) despite sustaining this high level of production over a full season (696 PAs). One
might ask whether a prior that is more flexible than the normal prior — in particular, a prior
that can better adapt to “outliers” like Judge — might produce a different result. The ebnm
package is well suited to answering this question. For example, to analyze the data using the
family of all unimodal priors rather than a normal prior, we need only update the argument
to prior_family:

R> fit_unimodal <- ebnm(x, s, prior_family = "unimodal", mode = "estimate")
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Using this prior, estimates for players with many plate appearances and outlying performances
(very high or very low wOBAs) are not adjusted quite so strongly toward the league average.
In particular, Judge’s estimated “true” talent is now much closer to his observed wOBA:

R> dat <- cbind(wOBA[, c("PA","x")], fitted(fit_normal),

+ fitted(fit_unimodal))

R> names(dat) <- c("PA", "x", "mean n", "sd_n", "mean u", "sd_u")
R> print(head(dat), digits = 3)

PA X mean_n sd_n mean_u sd_u
Khalil Lee 2 1.036 0.303 0.0287 0.302 0.0277
Chadwick Tromp 4 0.852 0.308 0.0286 0.307 0.0306
Otto Lopez 10 0.599 0.310 0.0283 0.310 0.0315
James Outman 16 0.584 0.311 0.0282 0.311 0.0318
Matt Carpenter 154 0.472 0.339 0.0254 0.355 0.0430
Aaron Judge 696 0.458 0.394 0.0184 0.439 0.0155

Carpenter’s estimated “true” talent is also higher, but is appropriately adjusted much more
strongly toward the league average than Judge’s in light of Carpenter’s smaller number of
PAs. Interestingly, the unimodal prior also assigns greater uncertainty to Carpenter’s estimate
than the normal prior (compare the “sd_u” to the “sd_n” column).

5.4. A reanalysis using a nonparametric prior

An alternative to prior families that require specific assumptions about the data is to use
the prior family that contains all distributions, Gnpmie, Which is in a sense “assumption free.”
Although nonparametric priors require specialized computational techniques, switching to a
nonparametric prior is seamless in ebnm as these implementation details are hidden. As
before, we need only make a single change to the prior_family argument:

R> fit_npmle <- ebnm(x, s, prior_family = "npmle")

ote that because Gppmie is not unimodal, the mode = "estimate" option is not neede
Note that b Onpmle is not unimodal, the mod "esti " option is not needed
here.)

We compare the three fits (normal, unimodal, and NPMLE) using plot(). To focus on
results for Judge and other players with large numbers of PAs, we use the subset argument.
Additionally, we set incl_cdf = TRUE to show the cumulative distribution functions (CDFs)
of the fitted priors:

R> top50 <- order (wOBA$PA, decreasing = TRUE)
R> top50 <- top50[1:50]
R> plot(fit_normal, fit_unimodal, fit_npmle, incl_cdf = TRUE, subset = top50)

The plots generated by this call are shown in Figures 5 and 6. The estimates across the three
analyses largely agree, differing mainly at the tails. Observe that the unimodal prior family
and the NPMLE avoid the strong shrinkage behavior of the normal prior family at the tails.

Fits can be compared quantitatively using the logLik () method, which, in addition to the
log-likelihood, reports the number of free parameters or “degrees of freedom” (note however
that Wilks’ theorem does not apply to these nonparametric comparisons):
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Figure 5: The CDFs for priors fitted to the 2022 MLB wOBA data: the normal prior
(prior_family = "normal"), the unimodal prior (prior_family = "unimodal"), and the
NPMLE (prior_family = "npmle").
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Figure 6: Initial wOBA estimates vs. posterior mean wOBA estimates for priors fitted to the
2022 MLB wOBA data: the normal prior (prior_family = "normal"), the unimodal prior
(prior_family = "unimodal"), and the NPMLE (prior_family = "npmle"). Results are
shown only for the top 50 ballplayers by number of PAs.

R> logLik(fit_unimodal)

'log Lik.' 992.6578 (df=40)
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R> logLik(fit_npmle)
'log Lik.' 994.193 (df=94)

A nonparametric prior is approximated by K mixture components on a fixed grid (see Sec-
tions 2.3-2.4). We infer from the above output that the family of unimodal priors has been
approximated by a family of mixtures with K = 41 fixed components, while G,pmie has been
approximated as a family of mixtures with a grid of K = 95 point masses spanning the range
of the data. (The number of degrees of freedom is one fewer than K because the mixture
proportions 7 must always sum to 1.)

One potential issue with the NPMLE is that, since it is discrete (as Figure 5 makes apparent),
observations are variously shrunk toward one of the support points, which can result in
poor interval estimates. For illustration, we calculate 80% posterior credible intervals (since
credible intervals are obtained using Monte Carlo methods, we set a seed for reproducibility):

R> fit_npmle <- ebnm_add_sampler (fit_npmle)

R> set.seed(123)
R> print(head(confint (fit_npmle, level = 0.8)), digits = 3)

CI.lower CI.upper

Khalil Lee 0.265 0.309
Chadwick Tromp 0.276 0.342
Otto Lopez 0.276 0.342
James Outman 0.276 0.342
Matt Carpenter 0.309 0.419
Aaron Judge 0.430 0.430

Each credible interval endpoint is constrained to lie at one of the support points of the NPMLE
g. Note in particular that the NPMLE yields a degenerate interval estimate for Judge. To
address this and other issues, the deconvolveR package (Narasimhan and Efron 2020) uses
a penalized likelihood that encourages “smooth” priors — that is, priors for which few of the
mixture proportions are zero:

R> fit_deconv <- ebnm_deconvolver(x / s, output = ebnm_output_all())

Note however that since package deconvolveR fits a model to z scores rather than observations
and standard errors, the “true” means 6; being estimated are z scores rather than raw wOBA
talent. While this may be reasonable in many settings, it does not seem appropriate for the
wOBA data set:

R> set.seed(123)
R> print(head(confint (fit_deconv, level = 0.8) * s), digits = 3)

CI.lower CI.upper
Khalil Lee 0.000 1.600
Chadwick Tromp 0.563 1.127
Otto Lopez 0.442 0.796
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James Outman 0.412 0.742
Matt Carpenter 0.413 0.531
Aaron Judge 0.406 0.459

These interval estimates do not match our expectations; for example, no player has ever
sustained a wOBA of 0.600 over a full season.

6. Building on ebnm for new matrix factorization methods

As outlined in our Introduction, the EBNM model underlies many other well-studied statis-
tical problems. One example is matriz factorization: as Wang and Stephens (2021) showed,
fitting an empirical Bayes matrix factorization (EBMF) model can be reduced to solving a
sequence of EBNM problems (typically very many of them). Therefore, the aspects that
we have emphasized in developing ebnm — the unified interface, the variety of prior fami-
lies and fitting options, and the speed and robustness of the numerical optimization — have
greatly facilitated the creation of a flexible software framework for EBMF in the R pack-
age flashier (Willwerscheid et al. 2024), which is available on CRAN and GitHub (https:
//github.com/willwerscheid/flashier/).

Matrix factorization attempts to approximate a data matrix X by a low-rank matrix product,
X ~ LF'. The EBMF approach introduces priors on the low-rank matrices L and F:

X=LF' +E
eij ~ N(0,0?)
Lig ~ gé'“) € G
fik ~ gsck) € Gy,

where X, L, F', and E are, respectively, matrices of dimension n x p, n x K, px K, and n X p
storing real-valued elements x;;, l;, fjx, and e;;, and Gy, G are specified prior families. In
brief, each iteration of the EBMF model-fitting algorithm involves solving an EBNM problem
separately for each column of L (using the prior family Gy) and each column of F (using the
prior family Gy). The solutions to these EBNM problems yield fitted priors f]ék), g](f) and
posterior estimates of £;, and f;,. See Wang and Stephens (2021) for details.

The EBMF framework is highly flexible in that different choices of prior families G, and Gy
can give very different factorizations. For example, the use of normal priors yields factoriza-
tions similar to the truncated singular value decomposition (SVD) (Nakajima and Sugiyama
2011). The use of sparse priors (e.g., the point-normal prior family) can yield sparse matrix
factorizations which in many settings are more interpretable than an SVD (Engelhardt and
Stephens 2010; Yang, Ma, and Buja 2014; Witten, Tibshirani, and Hastie 2009). By choosing
priors with nonnegative support (e.g., the point-exponential family), one can obtain nonneg-
ative factorizations (Lee and Seung 1999). More novel combinations are also possible; for
example, one can obtain a semi-nonnegative matrix factorization (Ding, Li, and Jordan 2010;
Wang, Fischer, and Song 2019; He et al. 2020) by choosing a prior family with nonnegative
support for Gy and a prior family without sign constraints for G;. In yet another example,
Liu et al. (2025) recently proposed the family of “generalized binary” priors to encourage
binary-valued [;.
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By building on the fast and reliable methods in ebnm, the flashier package makes it
straightforward to generate any of these matrix factorizations. For example, a sparse
factorization can be obtained by calling the flashier function flash() with argument
ebnm_fn = ebnm_point_normal, which specifies point-normal distributions for all priors
gék) and g}k). To obtain a sparse, semi-nonnegative factorization, one can set ebnm_fn =
c(ebnm_point_exponential, ebnm_point_normal), which specifies point-normal priors for
all g](ck) and point-exponential priors for all gék). In general, any of the prior families dis-
cussed above (Table 1) can be used, and if some other option is desired, it is not difficult to

implement a new “ebnm-style” function (see the ebnm package vignette for details).

We provide a detailed illustration of these ideas in the flashier package vignette, “Introduction
to flashier”, which is available on the package’s website (https://willwerscheid.github.
io/flashier/).

7. Summary

The ebnm package provides a comprehensive toolkit for solving the empirical Bayes normal
means (EBNM) problem under a variety of prior assumptions. In many situations — as in our
analysis of baseball statistics in Section 5 — the “best” choice of prior family is not known in
advance. The ebnm package is especially well suited to handling such situations by providing;:
(i) a large set of prior families to choose from (Table 1); and (ii) an interface that allows for
convenient comparison of prior families. When deciding which prior family to use, our general
recommendation is to weigh prior assumptions about the data against empirical measures of
fit. The best prior will often depend on the context, and for this reason we have designed
ebnm to be easily extensible so that researchers are not limited by the existing options. Our
ultimate hope is that experts in other research areas will consider contributing to our package
and help expand the use of EBNM methods to other domains.
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A. Supplementary benchmarking results

A.1. Optimization methods for parametric families

We compared the performance of 6 optimization methods implemented in ebnm and controlled
via the optmethod argument: two methods that use both gradients and Hessians ("nlm" and
"trust"); two that use only gradients ("nohess_nlm" and "1bfgsb"); and two that estimate
all derivatives numerically ("nograd_nlm" and "nograd_lbfgsb"). In detail, the 6 methods
compared were as follows.

e Three of the methods call nlm(), a Newton-type algorithm. Gradient and Hessian
functions can be provided; if they are not, nlm() estimates them numerically. Op-
tion optmethod = "nlm" provides both the gradient and Hessian, while the option
optmethod = "nohess_nlm" provides the gradient but not the Hessian; optmethod =
"nograd_nlm" provides neither.

e optmethod = "lbfgsb" and optmethod = "nograd_lbfgsb" call optim() with method
= "L-BFGS-B". The former provides the gradient function and the latter does not. L-
BFGS-B does not accept a Hessian.

e optmethod = "trust" calls function trust(), a trust-region method implemented by
the trust package (Geyer 2020). trust() requires both a gradient and Hessian.

For all methods, the parameters being optimized were transformed so that the optimization
problem was unconstrained. (We used a log transformation for scale parameters, which are
nonnegatively constrained, and a logit transformation for proportions, which are constrained
to lie between zero and one.)

We ran ebnm () on simulated data sets in 2 x 2 x 3 x 2 x 3 = 72 combinations of the following
settings:

e The prior family was point_normal or point_laplace.
o The mode was either fixed at zero via (mode = 0) or estimated (mode = "estimate").

o The prior distribution used to simulate the true means 6; was: (i) a true member of
the prior family — i.e., point-normal, mod, + (1 — 7o) N (u, a*), or point-Laplace, mod,, +
(1 — mo)Laplace(u, a), with my ~ Beta(10,2), a ~ Gamma(4, 1), and ¢ = 0 (when the
mode was fixed) or p ~ Unif(—10,10) (when the mode was estimated); (ii) the “null”
distribution, dp; or (iii) a prior from outside the specified prior family — when mode = 0,
we used a point-normal or point-Laplace prior but with p ~ Unif(—10, 10); when mode
= "estimate", we used a point-t5 distribution, mydy + (1 — 79)t5(0,a), with 7y and a
randomly generated as above.

o Either homoskedastic or heteroskedastic noise was added to the true means 6;: x; ~
N(6;,1) or z; ~ N(0;,52), s? — 1 ~ Exp(1), respectively.

e The number of observations, n, was 1000, 10000, or 100 000.

For each scenario, we ran 10°/n simulations and recorded runtimes using the microbenchmark
R package (Mersmann 2019). All experiments were performed on a 2021 MacBook Pro with
an Apple M1 Max processor and 64 GB memory. Results are shown in Figures 7 and 8.
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Figure 7: Runtimes for EBNM analyses with prior_family = "point_normal". The three
panels left-to-right correspond to different ways of simulating the true means 6;: using a prior
from the specified family (here, point-normal); the null distribution 6; ~ dg; or a prior from
outside the specified prior family (see text for details). For each plot, the two panels top-to-
bottom give results for homoskedastic and heteroskedastic noise. Shown is the runtime as a
multiple of the fastest runtime for a given simulation setting (i.e., a single column). Shades
of red indicate optimization methods that are at least 50% slower than the fastest method;
shades of blue indicate faster methods.
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Figure 8: Runtimes for EBNM analyses with prior_family = "point_laplace". See Fig-
ure 7 caption and the text for details.

Broadly, methods that supplied gradients outperformed methods that estimated all deriva-
tives numerically. Therefore, our general recommendation is to provide gradient calculations
whenever possible. (While automatic differentiation methods would facilitate this, as of this
writing automatic differentiation methods are not as well supported in R as they are in other
programming languages such as Python and Julia.)
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Figure 9: ebnm_point_laplace() vs. ebayesthresh() runtimes. See Figure 7 caption and
the text for details.

The runtimes were similar among the four methods that supplied gradients. However,
"1lbfgsb" failed to converge in several of the simulations where the true prior was the “null”
distribution dp. (In some settings, up to 7% of the simulations resulted in an error.) The
methods that supplied Hessians ("nlm", "trust") also occasionally struggled to find solutions
in “null” settings. Based on these results, we set the default to optmethod = "nohess_nlm".

A.2. Comparisons with existing packages

We also compared ebnm with three packages that have similar functions:
ebnm_point_laplace() is closely related to ebayesthresh() from the EbayesThresh
package (Silverman, Evers, Xu, Carbonetto, and Stephens 2017); the function
ebnm_normal_scale_mixture() is modeled after ash() in ashr, with mixcompdist =
"normal"; and ebnm_npmle() is similar to GLmix () in the REBayes package (Koenker and
Gu 2017). We considered the same combinations of settings as before, with the following
changes: (i) the mode was always fixed at zero; (ii) we always simulated the true means from
the point-Laplace distribution; and (iii) the number of grid points (mixture components)
ranged from 10 to 300. We set the arguments to each of the functions to make outputs as
similar as possible: for EbayesThresh, we set threshrule = "mean" and universalthresh
= FALSE; and for ash(), we set prior = "uniform". Results are shown in Figures 9-11.

In some scenarios, EbayesThresh was nearly as fast as ebnm_point_laplace(), but in others
ebnm was an order of magnitude faster than EbayesThresh (Figure 9). Further, ebnm usually
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Figure 10: ebnm_normal_scale_mixture() vs. ash() runtimes. See Figure 7 caption and
the text for details.
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numbers of NPMLE grid points. See Figure 7 caption and the text for details.
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found substantially better solutions than EbayesThresh (in terms of the log-likelihood) except
in the null setting, in which case the methods found solutions of similar quality.

For smaller data sets, ebnm was 2 to 4 times faster than ashr, but ashr had comparable speed
to the ebnm function ebnm_normal_scale_mixture() for larger data sets (Figure 10).

The comparisons of ebnm_npmle() and REBayes were more mixed. ebnm was often faster
when the number of mixture components was small (less than 80), while REBayes was con-
sistently faster when a denser grid was used (80 or more components). From the theoretical
results contained in Willwerscheid (2021), 80 components should be “good enough” for ho-
moskedastic observations when

nl/4 (range(m)) < 80V/3.

s
For example, if n = 10000, 80 components should suffice as long as

max(x) — min(x)

< 8V8 ~ 22.6,

S

max(x)—min(x)

where is the “studentized range” of the data.

B. Background on weighted on-base averages

A longstanding tradition in empirical Bayes research is to analyze Major League Baseball
batting averages (Brown 2008; Jiang and Zhang 2010; Gu and Koenker 2017). Until recently,
batting averages were the most important measure of a hitter’s performance, with the pres-
tigious yearly “batting title” going to the hitter with the highest average. However, with
the rise of baseball analytics, metrics that better correlate to teams’ overall run production
have become increasingly preferred. One such metric is wOBA (“weighted on-base average”),
which, unlike competing metrics such as xwOBA (Sharpe 2019) and DRC+ (Judge 2019),
can be calculated using publicly available data and methods.

Proposed by Tango, Lichtman, and Dolphin (2006), wOBA assigns values (“weights”) to
hitting outcomes according to how much the outcome contributes to average run production.
For example, while batting average treats singles identically to home runs, wOBA assigns
more than twice as much value to a home run. Although the weights are updated from year
to year, the weight for singles has remained near 0.9 for the last several decades, and the
weight for home runs has consistently been near 2.0 (FanGraphs 2023).

Given a vector of wOBA weights w, hitter i’s wOBA is the weighted average
T; = sz(i)/ni,

where z() = (zy), el zgi)) tallies outcomes (singles, doubles, triples, home runs, walks, hit-
by-pitches, and outs) over the hitter’s n; plate appearances (PAs). Modeling hitting outcomes
as N ‘

PR Multinomial(n;, 7)), (8)
where () = (wﬁi), - 77#)) is the vector of “true” outcome probabilities for hitter i, we
interpret x; as a point estimate for the hitter’s “true hitting ability,”

0; :=w'x.



32 ebnm: Empirical Bayes Normal Means in R

Standard errors for the x;’s are estimated as

s?=w' SOw/n,,

where 3 is the estimate of the covariance matrix for the multinomial model in Equation 8
with 7 = #(®, where #(® is the vector of observed proportions, #(® := z(i)/ni. To deal with
small sample sizes, we (conservatively) lower bound each standard error by the standard error
that would be obtained by plugging in league-average probabilities, 7ty,a := Z?;l ALY / Zi]\il g,

where NV is the total number of players.

The relative complexity of wOBA makes it well suited for ebnm. With batting averages,
a common approach is to obtain empirical Bayes estimates using a Beta-binomial model
(Robinson 2017). With wOBAs, one can estimate hitting outcome probabilities using a
Dirichlet-multinomial model; alternatively, one can approximate the likelihood as normal and
fit an EBNM model directly to the observed wOBAs. We take the latter approach.
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