Journal of Statistical Software

September 2025, Volume 114, Issue 4. doi: 10.18637/jss.v114.i04

Exploring Data Subsets with vtree

Nick Barrowman Richard J. Webster
CHEO Research Institute CHEO Research Institute
University of Ottawa

Abstract

Variable trees are a new method for the exploration of discrete multivariate data. They
display nested subsets and corresponding frequencies and percentages. Manual calculation
of these quantities can be laborious, especially when there are many multi-level factors
and missing data. Here we introduce variable trees and their implementation in the vtree
R package, draw comparisons with existing methods (contingency tables, mosaic plots,
Venn/Euler diagrams, and UpSet), and illustrate their utility using two case studies.
Variable trees can be used to (1) reveal patterns in nested subsets, (2) explore missing
data, and (3) generate study flow diagrams (e.g., CONSORT diagrams) directly from data
frames, to support reproducible research and open science.

Keywords: discrete, multivariate, visualization, tree, nested, subsets, R, CONSORT diagram,
PRISMA diagram, study flow diagram.

1. Introduction

Data exploration is a vital step to gain insights into data sets. Raw data needs to be cleaned,
merged, summarized and assessed. This process is resource intensive, accounting for 80%
of time spent on data analysis, by one estimate (Hellerstein, Rattenbury, Heer, Kandel, and
Carreras 2017). Furthermore, decisions made in this stage can impact scientific rigor and
reproducibility. Recently, an appreciation has emerged for systematic and transparent proto-
cols about data inspection steps to be performed prior to formal data analysis (e.g., Huebner,
Vach, and le Cessie 2016). Such protocols are designed to provide structure at this key stage
while preventing statistical fishing for results.

Tools for data exploration, like tables and figures, have been historically important for science.
For instance, in the late 1800s Florence Nightingale used rose plots to discover patterns in
data that matched her clinical intuition—that most soldiers in the Crimean War were dying
from hygiene-related infections rather than on the battlefield—and subsequently used this to

https://doi.org/10.18637/jss.v114.i04
https://orcid.org/0000-0002-4704-9595
https://orcid.org/0000-0002-7682-8993

2 Exploring Data Subsets with vtree

UK and Ireland
1356 (64%)

Other
114 (5%)

Europe
356 (17%)

North America
300 (14%)

Child
13 (4%)

Region

Child
31 (9%)

Child
36 (3%)

Adult
323 (91%)

Adult
287 (96%)

Adult
1320 (97%)

Adult
95 (83%)

Age 19 (17%) |EARCON 10 (12%)

Figure 1: Variable tree for age nested within region of origin for people onboard the Titanic.

influence the British Parliament (Nelson and Rafferty 2012). This and other methods were a
catalyst for the early-1900s revolution of statistical inference in many scientific fields.

Data exploration tools are more important today than ever. Data is more ubiquitous with
greater volume, velocity and variety than any time in history (Katal, Wazid, and Goudar
2013). Further, these data are more accessible to analysis due to cheaper and more powerful
computation (Waldrop 2016). Consequently, data literacy and intuitive data exploration tools
are required for exploring and communicating findings.

In this paper we introduce variable trees as a tool for exploring subsets of data, and their
implementation in the vtree package R (R Core Team 2025), which is available from the Com-
prehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=vtree.
The objectives of this paper are (i) to compare variable trees to several established data ex-
ploration tools, (ii) to review the functionality of the vtree package, and (iii) to demonstrate
the utility of variable trees in two case studies.

1.1. Variable trees

Subsets play an important role in almost any data analysis. Consider the variables relating to
the 2207 passengers and crew members of the Titanic, represented in the the data set titanic
from the stablelearner R package (Philipp, Zeileis, and Strobl 2016). Among other variables,
the data set includes each person’s home country, which we have grouped into regions, and
age, which we have divided into children (under age 13) and adults (see the code to perform
these transformations at the beginning of Section 3). In Figure 1 each person’s home region is
shown, and within each region the number and percentage of children and adults are shown.
Missing values are shown as NA. We call this a variable tree. The vtree package provides a
general solution for drawing variable trees and describing nested subsets.

Even in simple situations like Figure 1, it can be a chore to keep track of nested subsets and
calculate the corresponding percentages. The denominator used to calculate percentages may
also depend on whether the variables have any missing values, as discussed later. Finally, as
the number of variables increases, the magnitude of the task balloons, because the number of
nested subsets grows exponentially.

1.2. The structure of a variable tree

A variable tree consists of nodes connected by arrows. At the top of Figure 1, the root node
of the tree contains all 2207 people on the Titanic. The rest of the nodes are arranged in
successive layers, where each layer corresponds to a specific variable. This highlights one

https://CRAN.R-project.org/package=vtree

Journal of Statistical Software 3

UK and Ireland FEurope North America Other NA
1356 (64%) 356 (17%) 300 (14%) 114 (5%) 81
Child 36 (3%) 31 (9%) 13 (4%) 19 (17%) 10 (12%)
Adult 1320 (97%) 323 (91%) 287 (96%) 95 (83%) 71 (88%)
NA 0 2 0 0 0

Table 1: Contingency table for Region — Age for people on the Titanic. For each combination
of region and age, the frequency and column percentage for age within each region are shown.
Also, directly below the name of each region, the marginal frequency and percentage are
shown.

difference between variable trees and some other kinds of trees: each layer of a variable tree
corresponds to just one variable. This is distinct from decision trees, where a layer may
include splits based on different variables.

The nodes immediately below the root node in Figure 1 represent values of Region and are
referred to as the children' of the root node. Inside each of the nodes, the number of people is
displayed and—except for in a missing value node—the corresponding percentage is also shown.
An example of a missing value node appears in Figure 1, where Region was missing (NA)
for 81 people. Note that, by default, vtree displays “valid” percentages, i.e., the denominator
used to calculate the percentage is the total number of non-missing values, in this case 2126.
By default, vtree displays the full missing-value structure of the specified variables.

The final layer of the tree corresponds to values of Age. Fach of these leaf nodes represents
children and adults nested within a subset defined by a value of Region. Let us use the
notation Region — Age to represent Age nested within Region.

A missing-value node, like any node, can have children. For example, of the 81 people for
whom Region is missing, 10 were children and 71 were adults.

2. Methods of displaying discrete multivariate data

A variety of tools have been developed to display joint distributions of discrete variables, the
most basic being the contingency table, often enhanced with row, column, or table percent-
ages. For example, Table 1 presents the same information as Figure 1. Note that the use of
column percentages encourages the reader to focus on age group nested within region.

While the contingency table above is more compact than the variable tree in Figure 1, we
find the variable tree to be more intuitive. Furthermore, domain experts often respond well
to such visual representations.

Now suppose we would like to examine Region — Age — Survived (i.e., survival within age
within region of origin). Multi-way cross classifications (three or more variables) are typically
displayed using several two-way tables, referred to as layers or slices. Table 2 shows two-way
tables of survival within age group for each of the regions of origin. This is followed by a
variable tree showing the same information (Figure 2).

!Since the Titanic example involves actual children, we need to be careful here with this technical use of
the term “children”.

4 Exploring Data Subsets with vtree

UK and Ireland 1356 (64%)

Child Adult NA

36 (3%) 1320 (97%) 0
Survived 17 (47%) 347 (26%) 0
Did not survive 19 (53%) 973 (74%) 0

North America 300 (14%)

Child Adult NA

13 (4%) 287 (96%) 0
Survived 7 (54%) 160 (56%) 0
Did not survive 6 (46%) 127 (44%) 0

Europe 356 (17%)

Child Adult NA

31(9%) 323 (91%) 2
Survived 13 (42%) 91 (28%) 0(0%)
Did not survive 18 (58%) 232 (72%) 2 (100%)

Other 114 (5%)

Child Adult NA

19 (17%) 95 (83%) 0
Survived 16 (84%) 32 (34%) 0
Did not survive 3 (16%) 63 (66%) 0

NA 81

Child Adult NA

10 (12%) 71 (88%) 0
Survived 5(50%) 23 (32%) 0
Did not survive 5 (50%) 48 (68%) 0

Table 2: Contingency table layers for Region — Age — Survived. The name of each region
is shown along with the marginal frequency and percentage, and underneath, the two-way
contingency table for Age — Survived within that region. Along the top row of each table,
the marginal frequency and percentage for age within that region is shown. In each table,
frequency and column percentage for survival within each age and region are shown.

Note that by default, vtree shows percentages in each node except for the root. For example,
of the 2207 people on board the Titanic, 300 (14%) were from North America, of whom 287
(96%) were adults, of whom 160 (56%) survived. In its simplest form, a contingency table only
shows crosstabulated frequencies, corresponding to the frequencies shown in the leaf nodes
of a variable tree. However contingency tables are often shown with additional marginal and
conditional percentages.

As the number of variables increases, contingency tables for multi-way classifications become
increasingly difficult to interpret. In such situations, large variable trees can also become
unwieldy, however this can be mitigated by pruning branches of lesser interest.

Journal of Statistical Software

no, 232 (72%)
/V
Adult, 323 (91%) yes, 91 (28%)

no, 18 (58%)
g

Child, 31 (9%) yes, 13 (42%)

no, 2 (100%)

no, 127 (44%)

Europe, 356 (17%)

\
i

Adult, 287 (96%) yes, 160 (56%)

/

(North America, 300 (14%)

no, 6 (46%)

Child, 13 (4%)

yes, 7 (54%)

no, 973 (74%)

__
Adult, 1320 (97%) yes, 347 (26%)
UK and Ireland, 1356 (64%)
Child, 36 (3%)
\

yes, 17 (47%)

no, 63 (66%)

Other, 114 (5%) Adult, 95 (83%)

yes, 32 (34%)

\

Child, 19 (17%) no, 3 (16%)

\
yes, 16 (84%)

no, 48 (68%)
a7 o

yes, 23 (32%)

Child, 10 (12%) no, 5 (50%)
\
yes, 5 (50%)
Region Age Survived

Figure 2: Variable tree for Region — Age — Survived with number and percent survival
shown in each node. Table 2 shows the same information.

Contingency tables are not always more compact than variable trees. When most cells of
a large contingency table are empty (in which case the table is said to be sparse), the cor-
responding variable tree may be much more compact since empty nodes are not shown. In
the Titanic data set, there are two missing values of Age, and both are for individuals from

Europe. This appears as a single node in Figure 2, but in Table 2 in addition to the cell
showing these 2 missing values, there are 9 cells containing zero.

6 Exploring Data Subsets with vtree

Like contingency tables, variable trees show numerical values (frequencies and percentages)
rather than using graphical elements such as area to encode such quantities. In contrast to
contingency tables, which use a tabular layout to represent subsets, variable trees use the
graphical arrangement of nodes and arrows to represent the nesting structure. Put another
way, vtree visualizes relationships, not quantities.

2.1. Visualization of discrete multivariate data

Several visualization methods have been proposed for discrete multivariate data. Here we
focus on displaying raw data and descriptive statistics. Beyond the scope of this paper are
various visualizations for fitted models and their residuals (Zeileis, Meyer, and Hornik 2007).

Contingency tables can be represented graphically by encoding the quantity in each cell into
the size or color of an element. For example, each cell of a balloon plot contains a circle
with area proportional to frequency (Moon 2016). Balloon plots can be produced in R using
the function ggballoonplot() in the ggpubr package (Kassambara 2020). Concordance of
ordinal categorical data may be visualized using agreement charts (Bangdiwala and Shankar
2013); these can be produced in R using the agreementplot function from the ved package
(Hornik, Zeileis, and Meyer 2006).

Barplots are another common discrete multivariate data visualization tool. They can also be
produced for subsets, defined by values of another variable. A more compact representation
is the stacked barplot and grouped stacked barplot. A limitation with stacked barplots is the
difficulty of between-category comparisons, since there is no common baseline, except for the
bottom category in a stack.

An elegant extension of the stacked barplot is the mosaic plot (Hartigan and Kleiner 1981).
In a mosaic plot, the area of each rectangle represents the number of observations in the
corresponding subset of the data. Mosaic plots are available in R through several pack-
ages e.g., ved, ggmosaic (Jeppson, Hofmann, Cook, and Wickham 2020), iplots (Urbanek
and Wichtrey 2018), as well as in the base R function mosaicplot (). The strucplot frame-
work implemented in the ved package provides flexibility for hierarchical conditional plots
(e.g., conditional mosaic plots, association plots, double decker plots, sieve plots and more).
Mosaic plots can provide an intuitive visual representation of the number of observations in
subsets of the data, however they tend to become visually complicated when there are more
than three variables. Figure 3 is a mosaic plot for Region — Age — Survived for the people
onboard the Titanic, as in Table 2 and Figure 2.

Visualizations like Figure 3 have advantages and disadvantages compared to text and tabular
summaries. On the one hand, they represent quantitative and qualitative information in a way
that is quickly decoded by our visual perceptual systems. On the other, visualizations can be
unfamiliar and even perplexing compared to numerical and tabular representations. A prac-
tical advantage of tabular summaries is that they are more easily formatted and manipulated
using current software. Variable trees share characteristics with both tabular representations
and visualizations. To put it succinctly, variable trees visualize relationships not quantities.

2.2. Data representing set membership

A special type of discrete multivariate data is when all of the variables are binary, in which
case they can be interpreted as representing set membership. Venn and Euler diagrams have

Journal of Statistical Software 7

Age

Adult Child
o
@ c
Q
o
<]
35
[in]
12
o
>
I
S o
= c
[}
£
<<
£ »
T 1]
o} >
b4
°

c <}

2 eg
S 2
@ 2
o 3

(2]
°
c
©
©
=
°
c —
©
X
]
»
19
>
5 =M
[}
12
< 19
e} >

Figure 3: Mosaic plot for Region — Age — Survived for people on the Titanic. Each
rectangle corresponds to a subset of the data and the area of the rectangle represents the
relative frequency. Table 2 and Figure 2 show the same information.

long been used to represent the intersection of sets. Venn diagrams use overlapping closed
curves such that all intersections between sets are represented by overlapping areas. Euler
diagrams are like Venn diagrams but empty intersections need not be shown. For data sets,
software is available to calculate the number of observations in each of the intersections, for
example in R, the VennDiagram (Chen 2018) and venneuler (Wilkinson 2011) packages. A
further elaboration of these diagrams is to make the areas of the sets and their intersections
approximately proportional to the number of observations in each subset. The package eulerr
(Larsson 2020) provides this functionality. For example, in Figure 4 a dataset of Wilkinson
(2012) is represented using an approximately area-proportional Euler diagram. As the number
of sets grows, Venn and Euler diagrams can become unwieldy.

Exploring Data Subsets with vtree

s

Q% vﬁvﬁ

Figure 4: Euler plot for the dataset of Wilkinson (2012).

8 4

(&}
N
n
c
o
S
[}
2
15
1=
I - °
I - o I
I - ° I
I ° °
T T T T
15 10 5 0
Set Size

Figure 5: An UpSet plot.

Journal of Statistical Software 9

A B C D E F

(No, 30) (No, 24) (No, 32) (No, 33) (No, 30) (No, 30)

Figure 6: A variable tree for the dataset of Wilkinson (2012). Note that legend nodes below
the tree show the marginal frequencies for each variable.

An innovative way to represent the intersections of a large number of sets is the UpSet plot
(Lex, Gehlenborg, Strobelt, Vuillemot, and Pfister 2014). The R package UpSetR (Conway,
Lex, and Gehlenborg 2017) was used to produce Figure 5 for the dataset of Wilkinson (2012).
UpSet uses a grid layout to represent the intersections (see the dots at the bottom of Figure 5),
together with bar graphs on each side to represent the size of sets and intersections.

Variable trees can also represent the intersection of sets, however unlike UpSet and area-
proportional Euler diagrams, they do not use graphical elements to encode quantity. Like
non-proportional Venn Diagrams, variable trees graphically depict the relationships between
subsets of the data, but represent quantities numerically (Figure 6). Unlike Venn, Euler, and
UpSet diagrams, variable trees require a prespecified ordering. For example, Figure 6 uses
the ordering A 4 B —->C —>D —- E — F.

An alternative diagram that vtree can produce is the pattern tree, which depicts every in-
tersection. Each row in Figure 7 corresponds to the combination of values represented by
a terminal node in Figure 6. Since the intermediate nodes in Figure 6 are not represented,

10 Exploring Data Subsets with vtree

o

0000000000000000
408 Q0 [060 QRERE
40 0006 6 [0 | 680
¥000 OR0 800 0 B0
400000R000 8 | | 6

il ©Q00R00EA0ARE [
yj0000 0 0 10 Q00

o

(

(0, 30 (77%)) (0, 24 (62%)) (0, 32 (82%)) (0, 33 (85%)) (

Figure 7: A pattern tree for the dataset of Wilkinson (2012). Each row represents a “pattern”
(here a particular intersection), corresponding to a terminal node in Figure 6.

=/
=}
@
S
<
S
o~

=/

—
—

» 9 (237

N
W
&

1,9 (28%

~—

information is lost. The pattern tree is much easier to read, however. Pattern trees have
some of the same structure as an UpSet plot, except that sizes of subsets are not represented
graphically as in the bar graphs on the sides of an UpSet plot.

3. Package functionality

This section provides an overview of the features of the vtree package. Additional resources
are available in the package vignette, a cheatsheet, and video tutorials on YouTube.

To illustrate the functionality of the vtree package, we use the titanic data set from the
stablelearner package.

R> library("vtree")

R> library("stablelearner")

R> library("dplyr")

R> library("forcats")

R> data("titanic", package = "stablelearner")

https://cran.r-project.org/web/packages/vtree/vignettes/vtree.html
https://nbarrowman.github.io/cheatsheets/vtree_cheatsheet_5.0.0.pdf
https://www.youtube.com/playlist?list=PLB_c7T0wmWrotNHViouASt1VO_DOH9J5J

Journal of Statistical Software 11

1st
324 (15%)

/ 2nd
284 (13%)
—
- 3d
709 (32%)

Crew
890 (40%)

Class

Figure 8: A simple variable tree.

R> td <- titanic)>)

+ rename (Survived = survived) 7>/

+ mutate(

+ Age = ifelse(age < 13, "Child", "Adult"),

+ Gender = gender,

+ Class = fct_collapse(class,

+ Crew = c("deck crew", "engineering crew", "restaurant staff",

+ "victualling crew")),

+ Region = fct_collapse(country,

+ "UK and Ireland" = c("England", "Scotland", "Wales", "Ireland",

+ "Northern Ireland", "Channel Islands"),

+ "Europe" = c("Norway", "France", "Finland", "Sweden", "Latvia',

+ "Denmark", "Bulgaria", "Greece", "Hungary", "France", "Spain",
+ "Italy", "Belgium", "Germany", "Austria", "Poland",

+ "Switzerland", "Bosnia'", "Croatia", "Croatia (Modern)',

+ "Yugoslavia", "Slovakia (Modern day)", "Slovenia", "Netherlands",
+ "Russia"),

+ "North America" = c("United States", "Canada'", "Mexico'", "Cuba'),
+ other level = "Other"))

3.1. Calling vtree

Suppose the Titanic data are in a data frame called td. To display a variable tree for a single
variable, say Class, use the following command:

R> vtree(td, "Class")

The output can be seen in Figure 8.

To produce a variable tree for Class — Age, specify "Class Age" (see Figure 9):

R> vtree(td, "Class Age", horiz = FALSE)

12 Exploring Data Subsets with vtree

1st

Class 324 (15%)

2nd 3rd Crew
284 (13%) 709 (32%) 890 (40%)

Adult Child NA Adult
627 (89%) | LNCEEA) 2 || 890 (100%)

Figure 9: A two-layer vertical variable tree.

Adult
260 (92%)

Child
24 (8%)

Age

1st
144 (29%)

2nd
106 (22%)

3rd
216 (44%)

Crew

Class 23 (5%)

Adult
143 (99%)

Adult
179 (83%)

Child
37 (17%)

Adult
23 (100%)

Age

Figure 10: Class of female passengers and crew onboard the Titanic.

By default, vtree produces horizontal trees. The tree in Figure 9 is vertical because of the
specification horiz = FALSE.

Note that vtree can also be called at the end of a dplyr (Wickham, Frangois, Henry, Miiller,
and Vaughan 2023) pipeline. This allows variables and data to be modified for use in a
variable tree. For example, the following commands produce a tree like the one in Figure 9,
but only including female passengers and crew:

R> library(dplyr)

R> td 7%>%

+ filter(Gender == "female") 7>

+ vtree(~ Class + Age, horiz = FALSE)

The output is presented in Figure 10.

The example above includes the call vtree(~ Class + Age, horiz = FALSE), which uses a
formula to specify variables rather than a character string. (This notation is convenient, how-
ever it precludes the use of vtree’s built-in variable specifications as discussed in Section 3.4.)

3.2. Pruning

When a variable tree gets too big, or you are only interested in certain parts of the tree, it
may be useful to remove some nodes along with their descendants. This is known as pruning.
For convenience, there are several different ways to prune a tree, described below.

Journal of Statistical Software 13

North America UK and Ireland

Region 300 (14%) 1356 (64%)

Adult
287 (96%)

Child
13 (4%)

Adult
1320 (97%) | BElREFAN | 71 (88%)

Age

10 (12%)

Figure 11: Using the prune parameter to remove “Europe” and “Other” regions.

Suppose you do not wish to show the “Europe” node or the “Other” node (which repre-
sents people from other parts of the world such as India, the Middle East, etc.). Specifying
prune=list(Region = c("Europe", "Other")) removes those nodes, and all of their de-
scendants:

R> vtree(td, "Region Age", prune = list(Region = c("Europe", "Other")),
+ horiz = FALSE)

The output can be visualized in Figure 11.

In general, the argument of the prune parameter is a list with an element named for each
variable you wish to prune. In the example above, the list has a single element, named Region.
In turn, that element is a vector c("Europe", "Other") indicating the values of Region to
prune.

Note that once a variable tree has been pruned, it is no longer complete. This can sometimes
be confusing since not all observations are represented at certain layers of the tree. For
example in the tree above, only 1737 observations are shown in the Region nodes and their
children.

Sometimes it is more convenient to specify which nodes should be retained rather than which
ones should be discarded. The keep parameter is used for this purpose, and can thus be
considered the complement of the prune parameter. Suppose we wish to create a variable
tree for Region — Class — Gender — Age. This tree has four layers, and without any
pruning it would be quite large. But suppose we are only interested in certain branches of
the tree, say the “Europe” node of Region, the “3rd” node of Class, and the “male” node of
Gender. Using the keep parameter, the compact tree in Figure 12 can be produced:

R> vtree(td, "Region Class Gender Age",
+ keep = list(Region = "Europe", Class = "3rd", Gender = "male"))

In the Region layer of Figure 12, note that along with the “Europe” node, the missing value
node has also been retained. In general, whenever valid percentages are used (which is the
default), missing value nodes are retained when keep is used. This is because valid percent-
ages are difficult to interpret without knowing the denominator, which requires knowing the
number of missing values. On the other hand, here is what happens when vp = FALSE (see
output in Figure 13):

14 Exploring Data Subsets with vtree

Adult
184 (94%)

/V

Europe 3rd male Child
356 (17%) 273 (77%) 197 (72%) 11 (6%)
NA
2
Region Class Gender Age

Figure 12: Using the keep parameter.

Adult
184 (93%)

/V

Europe 3rd male Child
356 (16%) 273 (77%) 197 (72%) 11 (6%)

A
2 (1%)

N
(
Region Class Gender Age

Figure 13: Same as Figure 12 but not using “valid” percentages.

R> vtree(td, "Region Class Gender Age",
+ keep = list(Region = "Europe", Class = "3rd", Gender = "male"),
+ vp = FALSE)

Note that the missing value node for Region is no longer present, since the percentage for the
“Europe” node can be interpreted without knowing the number of missing values. Also, note
that the missing value node for Age includes a percentage, and the percentages for the other
nodes of Age are slightly different. (With only two missing values, the difference is slight, but
as the proportion of missing data increases, the percentages become substantially different.)

An alternative is to prune below the specified nodes (i.e., to prune their descendants), so that
the counts always add up. In the present example, this means that the other nodes will be
shown, but not their descendants. The prunebelow parameter is used to do this (see output
in Figure 14):

R> vtree(td, "Region Age",
+ prunebelow = list(Region = c("UK and Ireland", "North America",
+ "Other")))

The complement of the prunebelow parameter is the follow parameter. Instead of specifying
which nodes should be pruned below, this allows you to specify which nodes should be followed
(that is, not pruned below).

As a variable trees grow, it can become difficult to see the forest for the tree, as it were.
For example, the following variable tree is very wide, which makes it difficult to read. (One

Journal of Statistical Software 15

Adult
323 (91%)

Europe
356 (7%

North America
300 (14%)

UK and Ireland
1356 (64%)

Other
114 (5%)

Adult
71 (88%)

Child
10 (12%)

Region Age

Figure 14: Using the prunebelow parameter.

Class

Region

North \
America
6(1%) | EICRA)

Europe North North North
29 (95/) | [R&meteal America America
219 (71%) | |00 L) 35 (13%) | (LAC2) 40 (6%) | (LU0

Figure 15: A variable tree that is too wide to read easily.

small modification to make it a little narrower is the use of the splitwidth parameter, which
specifies the number of characters of text before it gets split onto another line.)

R> vtree(td, "Class Region", horiz = FALSE, splitwidth = 5)

The output can be visualized in Figure 15. One solution is to prune nodes that contain
small numbers of observations. For example if you want to only see nodes with at least 50
observations, you can specify prunesmaller = 50, as in this example (see Figure 16):

R> vtree(td, "Class Region", horiz = FALSE, prunesmaller = 50,
+ splitwidth = 5)

Similar to the keep parameter, when valid percentages are used (vp = TRUE, which is the
default), nodes represent missing values will not be pruned. As noted previously, this is
because percentages are confusing when missing values are not shown. On the other hand,
when vp = FALSE, missing nodes can be pruned.

3.3. Labels for variables and nodes

Readability of a variable tree can be improved by customizing the variable and node names
using the labelvar and labelnode parameters. By default, vtree labels variables and nodes
exactly as they appear in the data frame.

16 Exploring Data Subsets with vtree

1st
324 (15%)

2nd 3rd Crew

Class 284 (13%) 709 (32%) 890 (40%)

i North
Reg 10N | America
219 (71%)

UK and
Ireland
53 (17%)

UK and
Ireland
183 (66%)

UK and
Ireland
260 (40%)

UK and
Ireland
860 (97%)

Europe
273 (42%)

Other
83 (13%)

Figure 16: Using the prunesmaller parameter.

/

1st, 324 (15%)

Q, 3 (1%)

\

S, 175 (54%)

B, 6 (2%)
2nd, 284 (13%) Q, 7 (2%)

\

S, 245 (86%)

C, 102 (14%)

3rd, 709 (32%)

Q, 113 (16%)

S, 494 (70%)

B, 188 (21%)

\
S, 702 (79%)

Crew, 890 (40%)

Class Port

Figure 17: Using the labelvar parameter.

For example, the embarked variable indicates the port where a passenger or crew member
boarded the Titanic. Suppose we wish this variable to appear as Port in the variable tree.
The labelvar parameter specifies this.

R> vtree(td, "Class embarked", labelvar = c("embarked" = "Port"),
+ sameline = TRUE)

The output in presented in Figure 17 By default, vtree labels nodes (except for the root

Journal of Statistical Software 17

Class First Class || Second Class | [1fallfele =5 Crew
324 (15%) || 284 (13%) 709 (32%) |} 890 (40%)

Figure 18: Using the labelnode parameter.

C | ass 1st 2nd 3rd Crew
324 (15%) 284 (13%) | (el ki) 890 (40%)
: . not N/A not N/A not N/A N/A
Is.nafare | 317 ogo) | & 270 (95%) 704 (99%) 890 (100%)

Figure 19: Using the is.na: variable specification.

node) using the values of the variable in question. (If the variable is a factor, the levels of the
factor are used). Sometimes it is convenient to instead specify custom labels for nodes. The
labelnode argument can be used to relabel the values. For example, to relabel the classes as
“First Class”, “Second Class”, and “Third Class” we can specify (see output in Figure 18):

R> vtree(td, "Class", horiz = FALSE, labelnode = list(Class = c(
+ "First Class" = "1st", "Second Class" = "2nd", "Third Class" = "3rd")))

3.4. Specification of variables

For convenience, in the call to the vtree function, you can specify variable names (sepa-
rated by whitespace) in a single character string. (If, however, any of the variable names
have internal spaces, the variable names must be specified as a vector of character strings.)
Additionally, several modifiers can be used, as detailed below.

If an individual variable name is preceded by is.na:, that variable will be replaced by a
missing value indicator in the variable tree. This facilitates exploration of missing data, for
example:

R> vtree(td, '"Class is.na:fare", horiz = FALSE)

The output is presented in Figure 19.

A variety of other specifications are available. For example <, = and > can be used to
dichotomize numeric variables. While this is a powerful tool for data exploration, a word
of caution is needed. To ensure scientific rigor, it is essential that this functionality not be
used to explore a variety of dichotomizations of a predictor variable in relation to the outcome
variable. There is a large literature on the misuse of dichotomization and its detrimental effect

18 Exploring Data Subsets with vtree

<=50 >50 NA
1051 (81%) 240 (19%) 916

1st 2nd 1st 2nd 1st 2nd Crew
CIaSS [108(10%) [258 (25%)}[] 209 (87%) [12(5%)}[] 7(1%J [14(2%)}[] 890 (97%)

Figure 20: Using the > variable specification.

fare

2207
fare
missing 916
mean 33.4 SD 52.2
med 14.1 IQR 7.2, 31.1
range 3.0, 512.1

Figure 21: Summary information over the entire data frame.

on statistical inference (Altman 1994). It is therefore recommended that any dichotomization
using vtree be conducted according to a pre-specified protocol (Huebner et al. 2016).

For example, consider the fares paid by passengers (in pounds sterling). To examine the class
of passengers split according to whether they paid more than £50 or not:

R> vtree(td, "fare>50 Class'", horiz = FALSE)

The output is presented in Figure 20.

3.5. Displaying summary statistics in nodes

It is often useful to display information about other variables (apart from those that define
the tree) in the nodes of a variable tree. This is particularly useful for numeric variables,
which generally would not be used to build the tree since they have too many distinct values.
The summary parameter allows you to show information (for example, the mean of a numeric
variable) within each subset of the data frame.

To obtain summary information about fares paid by all of the passengers on board the Titanic
(i.e., in the root node), you do not need to specify any variables for the tree itself (see
Figure 21):

R> vtree(td, summary = "fare", horiz = FALSE)

Using a summary code, %mean%, the mean of this variable can be displayed within, for example,
levels of Region and Class, as shown in Figure 22. (To reduce the size of this tree we’ll hide
the crew and the “Other” region.)

R> vtree(td, "Region Class", summary = "fare \nmean J/meanj,", horiz = FALSE,
+ prune = list(Region = "Other", Class = "Crew"), splitwidth = 5)

Journal of Statistical Software 19

2207
mean 33.4
mv=916

North
America

Europe NA

H 356 (17% 81
Reglon mear(1 160; 300 (14%) mean 51.0
. mean 72.0 .
mv=17 " mv=5
1st 2nd = ond 1st 2nd _— 2nd
29 (8%) || 40 (11%) 53 (4%) || 183 (13%) 8 (10%)
ClaSS mean 64.1 || mean 21.7 B S7H) o ({lz7) mean 69.2 || mean 21.6 Lol{200:) mean 20.0
mean 91.0 | | mean 17.5 mean 178.6
mv=1 mv=1 mv=6 mv=12 mv=1

Figure 22: Using the summary parameter to produce customized summaries.

Summary code Variant Result

%mean, f%meanx’%* Mean

%SD% %SDx%,* Standard deviation

%sum, %sumx%* Sum

%min %minx%* Minimum

%max, fmaxxx%® Maximum

Jrange’, Jrangex’* Range

Jmedian, Jmedian’* Median

%IQR% %IQRx%* Interquartile range

hfreqh hfreq_%** Frequency of values of a variable
%npct’, Frequency and percentage

hpcth Same as %npct% but percentage only
%listd %list_%** List of individual values, separated by commas

Table 3: Summary codes.

*

= Missing values are suppressed. Caution is recommended.

** = Shows each value on a separate line.

Code Summary information restricted to
%noroot? All nodes except the root
%leafonly’, Leaf nodes

Y%var=v%
%node=nY

Nodes of variable v
Nodes named n

Table 4: Control codes.

Summary codes always start and end with %. A list is shown in Table 3. Sometimes, you
might want to only show summary information in particular nodes. Table 4 lists codes to
control where summary information is shown.

3.6. Pattern trees

Each node in a variable tree provides the frequency of a particular combination of values of the
variables. The leaf nodes represent the observed combinations of values of all of the variables.

20 Exploring Data Subsets with vtree

) CDEDEDEDED

G2 G2 €
Class i i ©HE®EE
Gender (femate) @D (erae) (omae) (fomae)
Figure 23: A pattern tree.

G QD @0 €O @
(o) @D Reson| (O) @@
() @ cercer () () ()
e @D > () O OO

not N/A, 1291 (58%) | (NESEREEZAN fare . .

Figure 24: Using the check.is.na parameter.

For example, in a variable tree of Gender nested within Class, the leaf nodes correspond to
Male and Female. These combinations, or patterns, can be treated as an additional variable.
And if this new pattern variable is used as the first variable in a tree, then the branches of the
tree will be simplified: each branch will represent a unique pattern, with no sub-branches. A
pattern tree can be easily produced by specifying pattern = TRUE. For example Figure 23 is
produced by:

R> vtree(td, "Class Gender", horiz = FALSE, pattern = TRUE)

A special pattern tree with missing values shown as darker nodes can be produced using
the check.is.na parameter. Additionally the showlegend parameter produces marginal
frequencies for each variable (see Figure 24).

R> vtree(td, "Region Gender age fare", check.is.na = TRUE,
+ horiz = FALSE, showlegend = TRUE)

4. Case study: A study flow diagram

Study flow diagrams provide a visual representation of how participants (or study units) meet
or do not meet a sequence of inclusion criteria. These diagrams provide critical information

Journal of Statistical Software 21

to the reader of published study. Medical research in particular has embraced these data
visualizations as part of recommended reporting guidelines. Randomized clinical trials use
CONSORT diagrams to show the flow of participants through a single study (Schulz, Altman,
and Moher 2010). Systematic reviews use PRISMA flow diagrams to depict study screening
(Page et al. 2020; Stovold, Beecher, Foxlee, and Noel-Storr 2014). While presenting study flow
diagrams is widely considered to be best practice, preparing these diagrams has traditionally
been a slow, resource intensive, manual process, which has to be repeated when small changes
are made to the data.

vtree uses an R data frame to make a data-driven study flow diagram. This automates the
production of study flow diagrams. As more data arrives, data cleaning changes the existing
data and the analysis plan is modified after initial assessment of the data (Huebner et al.
2016), the study flow diagram is easily kept up to date. Not only does this increase efficiency,
it minimizes the risk of introducing human error.

Consider, for example, the Remdesivir trial of Spinner et al. (2020), in which 612 patients
with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and
moderate COVID-19 pneumonia were screened for inclusion. Although, in this case, the
full data set is not publicly available, the variables required for the flow diagram can be
reconstructed from Figure 1 of the published paper. The build.data.frame function built
into the vtree package makes it easy to construct a data frame indicating which participants
were screened, included (and of these, who was eligible, and who consented), the group
participants were randomized to, and who started the intervention. (Additional details have
been omitted for the sake of brevity.)

R> rem <- build.data.frame(

+ c("included", "elig", "consent", "randgrp", "started"),
+ 1list(0, 0, 1, 0, 0, 13),

+ list(0, 1, 0, 0, 0, 3),

+ list(1, 1, 1, 1, 1, 193),

+ 1ist(1, 1, 1, 1, 0, 4),

+ 1ist(1, 1, 1, 2, 1, 191),

+ list(1, 1, 1, 2, 0, 8),

+ list(1, 1, 1, 3, 1, 200))

Next, let us define node labels:

R> nodelabels <- 1list(

+ included = c("Randomized" = "1", "Excluded" = "0"),
+ randgrp = c(

+ "Randomized to receive 10 d of remdesivir" = "1",
+ "Randomized to receive 5 d of remdesivir" = "2",
+ "Randomized to continue standard care'" = "3"),

+ started = c(

+ "Did not start remdesivir" = "0",

+ "Started remdesivir" = "1"))

Having set up these objects, the code to produce a CONSORT-style diagram is fairly straight-
forward. In particular, the follow parameter makes it easy to specify which branches of the
tree should be retained. The following code produces Figure 25.

22

Exploring Data Subsets with vtree

patients screened
612

Excluded
16 Randomized
(Withdrew consent 3) 596
(Ineligible 13)

Randomized to continue
standard care
200

Randomized to receive
5 d of remdesivir
199

Randomized to receive
10 d of remdesivir
197

l

y
[Did not start remdesivir | [Started remdesivij [Did not start remdesivij Started remdesivij
8

4 193 191

Figure 25: A variable tree providing a CONSORT-style diagram for the Remdesivir trial.

R> vtree(rem, "included randgrp started",

+
+
+
+
+
+
+

labelnode = nodelabels,
follow = list(included = "1", randgrp = c("1", "2")),
summary = c(
"consent=0 \n(Withdrew consent Jsumj,/ijvar=included},/inode=07)",
"elig=0 \n(Ineligible jsumjjvar=includedynode=07)"),
cdigits = 0, showvarnames = FALSE, title = "patients screened",
horiz = FALSE, fillcolor = "lightsteelbluel", showpct = FALSE)

5. Case Study: Ottawa Police Service Traffic Stops Data

Following a 2005 racial profiling complaint to the Ontario Human Rights Commission, the
Ottawa Police Service agreed to collect race data in traffic stops, known as the Traffic Stop
Race Data Collection Project (TSRDCP). The TSRDCP required police officers to record
their perception of the driver’s race, for traffic stops from 2013 to 2023. A data set representing
these traffic stops was made public? (licensed under the Open Government Licence — Ottawa
Police Service®). After downloading the file from the Ottawa Police Service website, we read
it into R (note that the file is also available in the replication files accompanying this paper):

R> data <- readr::read_csv("TSRDCP_TrafficStops_v1_164883526439542163.csv",

+
+
+

col_select = c("How Cleared”, Driver Gender, Driver Race~,
“Driver Age’),
col_types = cols())

’https://data.ottawapolice.ca/datasets/76a54b7f7ef44ab1b78dd96£3061c7cb_0/explore
3https://data.ottawapolice.ca/pages/open-data-licence

https://data.ottawapolice.ca/datasets/76a54b7f7ef44ab1b78dd96f3061c7cb_0/explore
https://data.ottawapolice.ca/pages/open-data-licence

Journal of Statistical Software 23

F, 5131 (16%)
No action 20%

16-24, 31491 (25%)
No action 24%

M, 26360 (84%)
No action 25%

F, 19819 (24%)
No action 15%

25-54, 81563 (64%)
No action 20%

M, 61744 (76%)
No action 21%

Not White, 127251 (35%)
No action 21%

55+, 14197 (11%)
No action 18%

F, 2854 (20%)
No action 17%

M, 11343 (80%)

No action 19%
Total stops, 367365

No action 17%

F, 13061 (31%)
No action 15%

16-24, 41886 (17%)
No action 17%

M, 28825 (69%)
No action 17%

White, 240114 (65%)
No action 16%

25-54, 148608 (62%)
No action 15%

F, 50994 (34%)
No action 13%

T~
M, 97614 (66%)
No action 16%

55+, 49620 (21%)
No action 17%

F, 15586 (31%)
No action 15%

M, 34034 (69%)
No action 17%

race age gender
Not White, 127251 (35%) 16-24, 73377 (20%) F, 107445 (29%)
No action 21% No action 20% No action 15%

White, 240114 (65%) 25-54, 230171 (63%) M, 259920 (71%)
No action 16% No action 17% No action 19%

55+, 63817 (17%)
No action 17%

Figure 26: Variable tree for {race=White} — age — gender. Each node also shows the
percentage of traffic stops with “final/no action” outcome.

Important questions concern whether some racialized or ethnic groups are stopped at a rate
disproportionate to overall makeup of the population. This would require external data,
not presented here. See the report by researchers at York University, dated October 2016,
for a comprehensive analysis of data from 2013 to 2016: https://www.researchgate.net/
publication/344906617_Final_ OPS_OTTAWA_REPORT_-_2016EN. In the York University re-
port, some records from the raw data were removed due to errors. Additionally, since some
drivers were stopped more than once, only a single report per driver was included. It was not
possible to replicate this last step because driver identifiers were not included in the publicly
available data set. We remove missing data and anomalous values by:

https://www.researchgate.net/publication/344906617_Final_OPS_OTTAWA_REPORT_-_2016EN
https://www.researchgate.net/publication/344906617_Final_OPS_OTTAWA_REPORT_-_2016EN

24 Exploring Data Subsets with vtree

R> z <- data [>

+ rename(race = “Driver Race, age = “Driver Age~,

+ gender = “Driver Gender”, how_cleared = “How Cleared”) |[>
+ filter(!is.na(race) & !is.na(age) & !is.na(gender)) [>

+ filter(gender != "D", age != "-15")

The data set includes a number of variables including age group and gender of the driver.
One important variable is the outcome (renamed how_cleared) of the traffic stop: charged,
warning, or final (no action). This last outcome is of particular interest, because it means
that the driver was neither charged nor given a warning, which may raise the question of
whether the stop was actually necessary. Figure 26 shows the percentage of stops with this
outcome (via the summary parameter) in each node of a tree for {race=White} — age —
gender. Here race has been dichotomized as white or non-white, denoted {race=White}
(where the braces are for clarity in the arrow notation). Legend nodes are shown for each
variable. Additionally the percentage of stops for which no action was taken is also shown in
the legend nodes because showlegendsum = TRUE has been specified.

A number of interesting patterns emerge when looking at Figure 26, produced by the code
below. The following drivers were more likely to receive neither a charge nor a warning: (1)
male drivers, within all combinations of race and age; (2) younger drivers, within each race;
and (3) non-white drivers.

R> vtree(z, "race=White age gender", splitwidth = Inf, sameline = TRUE,
+ summary = "how_cleared=Final \nNo action Jpctj",
+ title = "Total stops", showlegend = TRUE, showlegendsum = TRUE)

6. Concluding remarks

Variable trees are an intuitive way to represent discrete multivariate data. The vtree pack-
age in R provides an implementation of variable trees along with a number of convenient
extensions. There are a variety of other methods for displaying discrete multivariate data,
and depending on the context, one of these methods may be preferable. However, the sim-
ple structure of variable trees provides not only ease of interpretation but also considerable
generality. We have found that variable trees facilitate iterative data exploration when a
statistician is working together with a domain expert.

A key characteristic of variable trees is that the order of variables is important. Sometimes
the ordering of variables is natural (e.g., school board — school — teacher), in other cases
it is dictated by the research question, and in still other cases the choice of ordering is up to
the analyst. Depending on the situation, the variable-order dependence may be a strength or
a weakness.

While vtree can be used to explore data, it can also be used to generate study flow diagrams.
In recent years there has been growing concern about the “reproducibility crisis” in science
(Baker 2016). In order to produce study flow diagrams using vtree, all of the variables and
the corresponding set of inclusion/exclusion steps must be in a single data frame, which
encourages a reproducible workflow. The design of vtree was influenced by the tidyverse
philosophy (Wickham et al. 2019), with its emphasis on reproducible workflows, and vtree

Journal of Statistical Software 25

works well with tidyverse tools. A key barrier to the wider adoption of study flow diagrams
has been the difficulty required to produce them. vtree facilitates reproducible research by
making it easy to produce accurate study flow diagrams directly from the study data.

To conclude, variable trees are an intuitive new data exploration tool for visualizing nested

subsets. Applications of variable trees include revealing patterns in data, understanding
missingness and producing study flow diagrams for reproducible research.

Acknowledgments

The vtree package builds on the DiagrammeR package (Iannone 2020), which in turn is
based on the Graphviz graph visualization software (Gansner and North 2000). Sebastian
Gatscha also contributed code to vtree. Development of vtree was partially supported by
the Clinical Research Unit (CRU) at the Children’s Hospital of Eastern Ontario Research
Institute. Members of the CRU contributed helpful suggestions and endless patience.

References

Altman DG (1994). “Problems in Dichotomizing Continuous Variables.” American Journal
of Epidemiology, 139(4), 442-442. doi:10.1093/oxfordjournals.aje.al117020.

Baker M (2016). “1,500 Scientists Lift the Lid on Reproducibility.” Nature, 533(7604), 452—
454. doi:10.1038/533452a.

Bangdiwala SI, Shankar V (2013). “The Agreement Chart.” BMC Medical Research Method-
ology, 13(1), 1-7. doi:10.1186/1471-2288-13-97.

Chen H (2018). VennDiagram: Generate High-Resolution Venn and FEuler Plots. doi:10.
32614/CRAN.package.venndiagram. R package version 1.6.20.

Conway J, Lex A, Gehlenborg N (2017). “UpSetR: An R Package for the Visualization
of Intersecting Sets and Their Properties.” Bioinformatics (Ozford, England), 33. doi:
10.1093/bioinformatics/btx364.

Gansner ER, North SC (2000). “An Open Graph Visualization System and Its Applications
to Software Engineering.” Software: Practice and Experience, 30(11), 1203-1233. doi:
10.1002/1097-024X(200009)30:11<1203: : AID-SPE338>3.0.C0;2-N.

Hartigan J, Kleiner B (1981). “Mosaics for Contingency Tables.” Computer Science
and Statistics: Proceedings of the 13th Symposium on the Interface. doi:10.1007/
978-1-4613-9464-8_37.

Hellerstein JM, Rattenbury T, Heer J, Kandel S, Carreras C (2017). Principles of Data
Wrangling: Practical Techniques for Data Preparation. O’Reilly Media, Inc., Sebastopol.

Hornik K, Zeileis A, Meyer D (2006). “The Strucplot Framework: Visualizing Multi-Way
Contingency Tables with ved.” Journal of Statistical Software, 17(3), 1-48. doi:10.18637/
jss.v017.103.

https://doi.org/10.1093/oxfordjournals.aje.a117020
https://doi.org/10.1038/533452a
https://doi.org/10.1186/1471-2288-13-97
https://doi.org/10.32614/CRAN.package.venndiagram
https://doi.org/10.32614/CRAN.package.venndiagram
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1007/978-1-4613-9464-8_37
https://doi.org/10.1007/978-1-4613-9464-8_37
https://doi.org/10.18637/jss.v017.i03
https://doi.org/10.18637/jss.v017.i03

26 Exploring Data Subsets with vtree

Huebner M, Vach W, le Cessie S (2016). “A Systematic Approach to Initial Data Analysis
Is Good Research Practice.” The Journal of Thoracic and Cardiovascular Surgery, 151(1),
25-27. doi:10.1016/j.jtcvs.2015.09.085.

Iannone R (2020). DiagrammeR: Graph/Network Visualization. doi:10.32614/CRAN.
package.diagrammer. R package version 1.0.6.1.

Jeppson H, Hofmann H, Cook D, Wickham H (2020). ggmosaic: Mosaic Plots in the ggplot2
Framework. doi:10.32614/CRAN.package.ggmosaic. R package version 0.3.3.

Kassambara A (2020). ggpubr: ggplot2 Based Publication Ready Plots. doi:10.32614/CRAN.
package.ggpubr. R package version 0.4.0.

Katal A, Wazid M, Goudar RH (2013). “Big Data: Issues, Challenges, Tools and Good
Practices.” In 2018 Sixzth International Conference on Contemporary Computing (IC3), pp.
404-409. doi:10.1109/ic3.2013.6612229.

Larsson J (2020). eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. doi:
10.32614/CRAN.package.eulerr. R package version 6.1.0.

Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014). “UpSet: Visualization
of Intersecting Sets.” IEEE Transactions on Visualization and Computer Graphics, 20,
1983-1992. doi:10.1109/tvcg.2014.2346248.

Moon KW (2016). Learn ggplot2 Using Shiny App, chapter Balloon Plot, pp. 85-90. Springer-
Verlag, Cham. doi:10.1007/978-3-319-53019-2_10.

Nelson S, Rafferty AM (2012). Notes on Nightingale: The Influence and Legacy of a Nursing
Icon. Cornell University Press, Ithaca. doi:10.7591/9780801460241.

Page MJ, McKenzie J, Bossuyt P, Boutron I, Hoffmann T, Mulrow C, Shamseer L, Tetzlaff J,
Akl E, Brennan SE, Chou R, Glanville J, Grimshaw J, Hrébjartsson A, Lalu M, Li T, Loder
E, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart L, Thomas J, Tricco A, Welch
V, Whiting P, Moher D (2020). “The PRISMA 2020 Statement: An Updated Guideline
for Reporting Systematic Reviews.” doi:10.31222/0sf.i0/v7gm2.

Philipp M, Zeileis A, Strobl C (2016). “A Toolkit for Stability Assessment of Tree-Based
Learners” In A Colubi, A Blanco, C Gatu (eds.), Proceedings of COMPSTAT 2016 —
22nd International Conference on Computational Statistics, pp. 315-325. The International
Statistical Institute/International Association for Statistical Computing. Preprint available
at http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-11.

R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. doi:10.32614/R.manuals. URL
https://www.R-project.org/.

Schulz KF, Altman DG, Moher D (2010). “CONSORT 2010 Statement: Updated Guidelines
for Reporting Parallel Group Randomised Trials.” BM.J, 340. doi:10.1136/bmj.c332.

Spinner CD, Gottlieb RL, Criner GJ, Lopez JRA, Cattelan AM, Viladomiu AS, Ogbuagu O,
Malhotra P, Mullane KM, Castagna A, Chai LYA, Roestenberg M, Tsang OTY, Bernasconi

https://doi.org/10.1016/j.jtcvs.2015.09.085
https://doi.org/10.32614/CRAN.package.diagrammer
https://doi.org/10.32614/CRAN.package.diagrammer
https://doi.org/10.32614/CRAN.package.ggmosaic
https://doi.org/10.32614/CRAN.package.ggpubr
https://doi.org/10.32614/CRAN.package.ggpubr
https://doi.org/10.1109/ic3.2013.6612229
https://doi.org/10.32614/CRAN.package.eulerr
https://doi.org/10.32614/CRAN.package.eulerr
https://doi.org/10.1109/tvcg.2014.2346248
https://doi.org/10.1007/978-3-319-53019-2_10
https://doi.org/10.7591/9780801460241
https://doi.org/10.31222/osf.io/v7gm2
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-11
https://doi.org/10.32614/R.manuals
https://www.R-project.org/
https://doi.org/10.1136/bmj.c332

Journal of Statistical Software 27

E, Le Turnier P, Chang SC, SenGupta D, Hyland RH, Osinusi AO, Cao H, Blair C, Wang H,
Gaggar A, Brainard DM, McPhail MJ, Bhagani S, Ahn MY, Sanyal AJ, Huhn G, Marty FM
(2020). “Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients
with Moderate COVID-19: A Randomized Clinical Trial” JAMA, 324(11), 1048-1057.
d0i:10.1001/jama.2020.16349.

Stovold E, Beecher D, Foxlee R, Noel-Storr A (2014). “Study Flow Diagrams in Cochrane
Systematic Review Updates: An Adapted Prisma Flow Diagram.” Systematic Reviews,
3(54) doi:10.1186/2046-4053-3-54.

Urbanek S, Wichtrey T (2018). iplots: Interactive Graphics for R. doi:10.32614/CRAN.
package.iplots. R package version 1.1-7.1.

Waldrop MM (2016). “The Chips Are Down for Moore’s Law.” Nature News, 530(7589), 144.
doi:10.1038/530144a.

Wickham H, Averick M, Bryan J, Chang W, D’Agostino McGowan L, Francois R, Grolemund
G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Miiller K,
Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K,
Yutani H (2019). “Welcome to the Tidyverse.” Journal of Open Source Software, 4(43),
1686. doi:10.21105/joss.01686.

Wickham H, Francois R, Henry L, Miiller K, Vaughan D (2023). dplyr: A Grammar of Data
Manipulation. doi:10.32614/CRAN.package.dplyr. R package version 1.1.4.

Wilkinson L (2011). venneuler: Venn and Euler Diagrams. doi:10.32614/CRAN.package.
venneuler. R package version 1.1-0.

Wilkinson L (2012). “Exact and Approximate Area-Proportional Circular Venn and Euler
Diagrams.” IEEE Transactions on Visualization and Computer Graphics, 18(2), 321-331.
doi:10.1109/tvcg.2011.56.

Zeileis A, Meyer D, Hornik K (2007). “Residual-Based Shadings for Visualizing (Conditional)
Independence.” Journal of Computational and Graphical Statistics, 16(3), 507-525. doi:
10.1198/106186007x237856.

Affiliation:

Nick Barrowman

CHEO Research Institute

401 Smyth Road

Ottawa, Ontario, K1H 8L1, Canada
and

Department of Pediatrics

Faculty of Medicine

University of Ottawa

Ottawa, Ontario, KIN 6N5, Canada
E-mail: nick.barrowman@gmail.com
URL: https://nbarrowman.github.io/vtree

https://doi.org/10.1001/jama.2020.16349
https://doi.org/10.1186/2046-4053-3-54
https://doi.org/10.32614/CRAN.package.iplots
https://doi.org/10.32614/CRAN.package.iplots
https://doi.org/10.1038/530144a
https://doi.org/10.21105/joss.01686
https://doi.org/10.32614/CRAN.package.dplyr
https://doi.org/10.32614/CRAN.package.venneuler
https://doi.org/10.32614/CRAN.package.venneuler
https://doi.org/10.1109/tvcg.2011.56
https://doi.org/10.1198/106186007x237856
https://doi.org/10.1198/106186007x237856
mailto:nick.barrowman@gmail.com
https://nbarrowman.github.io/vtree

28 Exploring Data Subsets with vtree

Richard J. Webster

CHEO Research Institute

401 Smyth Road

Ottawa, Ontario, K1H 8L1, Canada

Journal of Statistical Software https://www. jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
September 2025, Volume 114, Issue 4 Submitted: 2020-10-07

doi:10.18637/jss.v114.104 Accepted: 2024-07-24

https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v114.i04

	Introduction
	Variable trees
	The structure of a variable tree

	Methods of displaying discrete multivariate data
	Visualization of discrete multivariate data
	Data representing set membership

	Package functionality
	Calling vtree
	Pruning
	Labels for variables and nodes
	Specification of variables
	Displaying summary statistics in nodes
	Pattern trees

	Case study: A study flow diagram
	Case Study: Ottawa Police Service Traffic Stops Data
	Concluding remarks

