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Abstract

This article develops a Stata command, ldvqreg, to estimate quantile regression mod-
els for the cases of censored (with lower and/or upper censoring) and binary dependent
variables. The estimator is implemented using a smoothed version of the quantile regres-
sion objective function. Simulation exercises show that it correctly estimates the param-
eters and it should be implemented instead of the available quantile regression methods
when censoring is present. Different empirical applications illustrate these methods.
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1. Introduction
Quantile regression (QR) is an important method for modeling heterogeneous effects. It al-
lows to study generalized regression models by focusing on the quantiles of the conditional
distribution of an outcome variable, controlling for observable covariates. It has been applied
in many empirical settings to provide a model-free (i.e. it does not require to specify the dis-
tribution of the random variables) and semi-parametric alternative to mean-based regression
models (see Koenker (2005) for an extensive review). Let {yi, xi}, i = 1, 2, . . . , n be a random
sample where yi is an outcome variable of interest and xi is a set of covariates. QR studies
linear models of the form

Qτ (yi|xi) = x′
iβ(τ),

for τ ∈ (0, 1), where Qτ (y|x) refers to the τ -th conditional quantile or percentile of the condi-
tional distribution of y conditional on x. The parameters ∂Qτ (y|x)

∂x = β(τ) (assuming contin-
uous covariates, otherwise consider a discrete change) are of interest here as they represent
the conditional effect of covariates on different τ quantiles of the outcome variable.
In a broad sense, a limited variable is understood as a continuous latent variable whose
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range has been modified. Two classic examples are binary and censored dependent variable
regression models. Although the latter is usually treated as separated, both belongs to the
set of general limited dependent variable (LDV) models. Empirical set-ups where this occurs
are very common, see Section IV in Wooldridge (2010). Mean-based regression models are
analyzed in many ways with respect to censoring and truncation of the dependent variable.
Typical examples in applied statistics and econometrics include tobit-type models, as well
as logit and probit models. In those models, the censoring or truncation mechanism makes
inference and point estimation more complex, as the researcher requires an appropriate model
for interpretation of the effects (Gaussian distribution for tobit and probit, logistic for logit).
This issue becomes more interesting in QR models, where the censoring and truncation mech-
anisms interfere with the heterogeneity analysis. This paper provides an integrated package
that allows to estimate LDV regression models for QR models in Stata (StataCorp 2019),
thus allowing the researcher to separately identify the heterogeneity impact analysis from QR
together with different restrictions on the domain of the dependent variable.
First, it considers lower and upper censoring by developing the counterpart of a mean-based
tobit model for QR. Censored QR (CQR) has been studied in several papers, including to
cite a few Powell (1984, 1986), Buchinsky (1991), Buchinsky and Hahn (1998), Chay and
Powell (2001) and Chernozhukov and Hong (2002). See Fitzenberger (1997) for a literature
review. Although most applications in economics involve only one type of censoring, there
are some cases of double censoring. To mention a few, Sun (2006, Chapter 8), Wichert and
Wilke (2008), and Lin, He, and Portnoy (2012) provide examples.
Second, it provides an estimator for semi-parametric binary regression. This has been studied
in the seminal papers of Manski (1985, 1991) and Kordas (2006) among others to develop
the binary QR (BQR) estimator. This allows to apply QR models in a wide variety of
frameworks where the dependent variable is binary. For instance, a binary model to predict
the conditional probability of an event is usually an important input in treatment effects
literature using Propensity-Score estimators (via matching and/or weighting). QR provides
a general framework for studying treatment heterogeneity.
The key characteristic of these estimators with LDV is that quantile models are invariant
to monotone non-decreasing transformations. Thus the conditional effects of covariates can
be recovered from the transformed model. Moreover, one important common feature is that
the usual algorithm for QR involves linear programming (see for instance the qreg package
in Stata). Recent applications of QR emphasize that the estimators are improved in both
asymptotics and numerical accuracy if the objective function is replaced by a smooth coun-
terpart, see e.g., Horowitz (1992), Kordas (2006), Kaplan and Sun (2017) and de Castro,
Galvao, Kaplan, and Liu (2019). The proposed package follows this strategy.
Alternative procedures have been developed to accommodate for censoring in QR in different
softwares. Here we briefly list available codes in Stata and R (R Core Team 2025).
In Stata there are several related options. Jolliffe, Krushelnytskyy, and Semykina (2000)
(clad package) uses Buchinsky (1991) and Buchinsky and Hahn (1998) algorithm to compute
QR with censoring. Baker (2013) uses Monte Carlo integration techniques to accomplish
the same (mcmccqreg package). Another alternative is the cqiv command developed by
Chernozhukov, Fernandez-Val, Han, and Kowalski (2012). Our command contributes to this
list. To our knowledge, there are no available estimators for Manski’s type semi-parametric
binary regression using BQR.
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In R, censored QR estimators can be implemented using the Frumento (2021) CRAN package
ctqr and some features incorporated in the Koenker (2021) QR package quantreg. See Koenker
(2008) and Frumento and Bottai (2017) for a detailed description of the R implementation.
Also within the quantreg there is an option to implement binary QR estimation, rq.bin.
This paper describes software material for Stata. It provides an integrated framework to
implement LDV models in QR, making use of smoothing techniques to optimize the estimation
algorithm. In particular, it develops a package to implement censored QR and binary QR.
The remainder of the paper is organized as follows. Section 2 presents the censored and binary
QR models. Section 3 summarizes the Stata command features. Section 4 present numerical
simulations and an empirical application to women’s labor supply in Uruguay. Section 5
concludes.

2. LDV models in quantile regression
Consider the following conditional τ -quantile model,

Qτ (y∗
i |xi) = x′

iβ(τ),

where y∗
i is a latent unobservable variable and xi corresponds to observable covariates. Assume

that we have another observable variable yi = h(y∗
i ), where h(·) is a non-decreasing monotone

transformation, which is defined as a LDV. The main feature in these models is that we
observe yi but not y∗

i . However, by a common characteristic in quantile models, the so-called
the quantile invariance property implies that Qτ [h(y∗)|x] = h[Qτ (y∗|x)], then Qτ [y|x] =
h[Qτ (y∗|x)] = h[x′β(τ)]. That is, the observable variable quantile is a transformed version
of the original linear model.
This model includes as particular cases of LDV the censored quantile regression (CQR) and
the binary dependent variable regression (BQR) models. We study these two cases in the
following sections.

2.1. Censored quantile regression

Consider the case where there is an upper censoring (at value cH) and lower censoring (at
value cL, for cH > cL) of the dependent variable such that

yi =


cL if y∗

i < cL

y∗
i if cH ≥ y∗

i ≥ cL

cH if y∗
i > cH

For this case y = h(y∗) = min[max(y∗, cL), cH ], which is a non-decreasing monotone trans-
formation. This model supports the case of no or partial censoring if we consider cL = −∞
and/or cH = +∞.
Powell (1984, 1986) proposes to estimate β(τ) by

β̂(τ) = arg min
b∈RK

n−1
n∑

i=1
ρτ {yi − min[max(x′

ib, cL), cH ]}

where ρτ (u) is the check function as in Koenker and Bassett (1978). This is defined as the
censored quantile regression (CQR) model.
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2.2. Binary quantile regression

Consider now the case of a binary dependent variable model with

yi =
{

0 if y∗
i ≤ 0

1 if y∗
i > 0

Note that this is also a non-decreasing monotone transformation of the dependent variable,
y = h(y∗) = 1(y∗ > 0). With this idea Manski (1975, 1985) proposes a maximum score
estimator based on:

β̂(τ) = arg min
b:∥b∥=1

n−1
n∑

i=1
ρτ [yi − I{x′

ib ≥ 0}].

which can be written as

β̂(τ) = arg max
b:∥b∥=1

n−1
n∑

i=1
[yi − (1 − τ)]I{x′

ib ≥ 0}.

This is defined as the binary quantile regression (BQR) model.

2.3. Smoothed quantile regression

Both, the censored and the binary cases, share a common feature. The theoretical formulation
provides estimators with a proper characterization, identification and consistent estimation
(asymptotically normal only for the former, BQR requires further assumptions). However,
its numerical performance in applied cases is very poor. In particular, the maximization
problem does not provide satisfactory numerical solutions in general. This is a common
feature in some variants of QR models, and the consensus in the literature is to provide
smooth objective functions alternatives.
For our purposes, Horowitz (1992) and Kordas (2006) propose to smooth the objective func-
tion by using

K(x′
ib/hn),

the integral of a kernel function with hn bandwidth instead of I{x′
ib ≥ 0}. This provides

remarkable improvements in applied cases. Our proposed estimator follows this strategy. The
smoothing function we use is the cumulative distribution of a Gaussian kernel. We also allow
for logit, Epanechnikov and bi-weight as additional options in the command. One important
issue is that for the binary choice model, Manski’s estimator is not asymptotically normal,
but the smoother version as proposed by Kordas (2006) is.
Both in the case of censored and binary regression models we use the same heuristic rule for
the choice of bandwidth: the same formula used by Stata to estimate densities with kernel
functions. This is,

hn = 0.9 · σ̂u

n1/5

where σ̂u is an estimate of the standard deviation of the latent variable conditional distribu-
tion. In the case of censored data we use the σ̂u estimated by the tobit model, while in the
case of the binary data we set σ̂u = 1 (the usual normalization of this parameter in the probit
model).
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2.4. Prediction of censored quantiles and probabilities

An important issue in censored models is the appropriate prediction exercise.
For the CQR model we can compute the prediction for a given censured quantile τ as

Q̂τ (y|xi) = min{max[x′
iβ̂(τ); cL]; cH},

where β̂(τ) are the CQR estimates.
Following Kordas (2006), for the BQR model, we consider the probability of y = 1, which
corresponds to y∗ > 0. This can be estimated by computing x′β(U) > 0 where U ∼ U(0, 1).
Given that for the binary case P (y = 1|x) = E(y|x), then P (y = 1|x) = E[1(x′β(U) > 0)|].
Therefore,

P (y = 1|x) =
∫ 1

0
I{x′β(τ) > 0}dτ.

Then, this can be estimated by a grid of quantile indexes {τ1, τ2, . . . , τm} by computing

P̂ (y = 1|xi) = m−1
m∑

j=1
I{x′

iβ̂(τj) > 0}, (1)

where β̂(τ) is the corresponding BQR estimator. An smoothed version of Equation 1 replaces
the indicator function by the integral of the kernel K(·):

P̂ (y = 1|xi) = m−1
m∑

j=1
K[x′

iβ̂(τj)/hn]. (2)

Equations 1 and 2 are used to compute the probability of censoring for the CQR model with
cL ≤ y ≤ cH . Similar to the previous example we get

P̂ (y = cL|xi) = P̂ (y∗ < cL|xi) = m−1
m∑

j=1
I{x′

iβ̂(τj) < cL}

and
P̂ (y = cH |xi) = P̂ (y∗ > cH |xi) = m−1

m∑
j=1

I{x′
iβ̂(τj) > cH},

where β̂(τ) is the CQR coefficient estimate. The smoothed versions replace I(·) by K(·).

2.5. Partial effects on the probability

Partial effects on the probability can be obtained from Equation 2. Assume that the set
of regressors is formed of S continuous variables X and R dummy variables in D. Then,
Equation 2 becomes

P̂ (y = 1|x, d) = m−1
m∑

j=1
K

(
x′β̂(τj) + d′γ̂(τj)

hn

)
.

Thus partial effects can be calculated as follows:

∂P̂ (y = 1|x, d)
∂xs

= m−1
m∑

j=1

1
hn

K ′
(

x′β̂(τj) + d′γ̂(τj)
hn

)
β̂s(τj) (3)
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for s = 1, . . . , S continuous covariates and

∆rP̂ (y = 1|x, d) = m−1
m∑

j=1
K

(
x′β̂(τj) + d′

−rγ̂−r(τj) + γ̂r(τj)
hn

)

− m−1
m∑

j=1
K

(
x′β̂(τj) + d′

−rγ̂−r(τj)
hn

)
(4)

for binary dummy covariates r = 1, . . . , R, and where the subindex −r indicates that the
binary regressor r has been excluded.
Then, following the literature we can define the average partial effect (APE)

APExs = n−1
n∑

i=1

∂P̂ (y = 1|xi, di)
∂xs

,

APEzr = n−1
n∑

i=1
∆rP̂ (y = 1|xi, di),

and the partial effect at means (PEAM)

PEAMxs = ∂P̂ (y = 1|x̄, 0)
∂xs

,

PEAMzr = ∆rP̂ (y = 1|x̄, 0),

where x̄ = n−1
n∑

i=1
xi and all binary variables are evaluated (by default) at their base value.

Note that by the law of iterated expectations, the APE measures the unconditional effect
on the probability of y = 1 because we are averaging all the partial effects for each value of
the covariates, while in the case of the PEAM it is the change in the conditional probability
for a subject with “average characteristics”. These are the two most popular ways to report
marginal effects for probability models.

2.6. Inference for the estimators

Inference for QR models depends on the estimation of the density of the conditional errors.
A common implementation is based on bootstrap resampling, which is an available option for
the qreg command in Stata, more importantly for the generalizations such as sqreg.
Bootstrap resampling for quantile regression is analyzed in Hahn (1995). Buchinsky (1995)
study favors bootstrap over other estimation alternatives.

3. The ldvqreg syntax
In this section we present the software contribution of the paper. We will use the statistical
package Stata, in particular the command-driven mode. Unlike other statistical packages
whose routines are programmed by the users in the form of functions, Stata assigns these types
of operations in commands. We have programmed the ldvqreg command whose functionality
is described throughout this section.
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3.1. Syntax

The command syntax is:

ldvqreg depvar indepvars [if ] [in], [ quantile(#[#[#...]]) ll(real) ul(real) reps(string)
qcen(string) pcen(string) p1(string) pbc margins(type) xbinary(varlist) bwidth(real)
kernel(string) pbwidth(real)]

where square brackets distinguish optional qualifiers and options from required ones. In this
syntax, depvar denote the name of the DPV in the data set and indepvars denotes a list of
covariable names. The if and in qualifiers are useful to restrict the execution of the command
to a subset of rows in the data set.

3.2. Options

ldvqreg supports the following options:

• General:

quantile(#) estimates # quantile; default is quantile(50).
reps(#) performs # bootstrap replications; default is reps(50).

• Censoring:

ll(#) left-censoring limit.
ul(#) right-censoring limit.
qcen(newvar) stores predicted censored quantiles in newvar q#.
pcen(newvar) stores censorship probability in newvar and newvar s (smoothed).

• Binary data:

p1(newvar) stores probability of depvar = 1 in newvar and newvar s (smoothed).
pbc indicates that the predicted probability in p1(newvar) should be computed with

the bias-corrected coefficients.
margins(string) indicates that the partial effects indicated in type should be dis-

played. The options are: ape (average partial effect), peam (partial effect at means)
or both (display APE and PEAM).

xbinary(varlist) indicates that the covariates listed in varlist are binary. This is
necessary to correctly compute the partial effects requested in the option
margins(string).

• Smoothing:

bwidth(real) specifies the bandwidth to smooth the target function (the default is
described in Section 2.3).

kernel(string) specify kernel function; the options are: gaussian (the default),
logit, epanechnikov or biweight.

pbwidth(real) specifies the bandwidth to smooth the predicted probabilities.
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If ll(#) and ul(#) are not specified and the dependent variable is a dummy variable (which
is automatically checked), then the command runs a binary QR. If ll(#) and ul(#) are not
specified but the dependent variable is not a dummy, then the command runs a smoothed
QR model.

3.3. Saved results

ldvqreg stores the following results in e().

• Scalars:

e(N) number of observations.
e(reps) number of replications.
e(bwidth) bandwidth.

• Macros:

e(title) Censored or Binary model.
e(vcetype) title used to label Std. Err.
e(kernel) name of kernel.
e(properties) b V.
e(depvar) name of dependent variable.

• Matrices:

e(b) coefficient vector.
e(V) bootstrap variance matrix.
e(b bs) bias-corrected coefficient vector (only for binary model).

• Functions:

e(sample) marks estimation sample.

4. Examples

4.1. Simulations

The simulations are based on the so-called location-scale models. Consider the following data
generating process (DGP):

yi = β0 + β1xi + (γ0 + γ1xi)ϵi, ϵi ∼ iid (0, 1),

where x > 0 is a scalar random variable. Here (β0, β1) is said to control the location and
(γ0, γ1) the scale. For these models, the conditional mean model is E(y|x) = β0 + β1x, but
for QR models, Qτ (y|x) = (β0 + γ0Qτ (ϵ)) + (β1 + γ1Qτ (ϵ))x. Thus, ∂E(y|x)

∂x = β1 but quantile
heterogeneity is obtained by evaluating ∂Qτ (y|x)

∂x = β1 + γ1Qτ (ϵ).
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Figure 1: A comparison of tobit and censored quantile regression models. Plot format (colors,
font, etc.) depends on the version of Stata.

Censoring
We start with a simple simulation to show that the tobit model can be biased if the homo-
geneity of the conditional distribution is not satisfied.

. set seed 321

. set obs 1000
* number of observations (_N) was 0, now 1,000

. gen x = runiform()

. gen y = -1/3 + x + x * rnormal() / 3

. gen y_c = max(y, 0)

In this example the error term is standard Gaussian, but its interaction with x determines
that it has conditional heteroskedasticity. Figure 1 shows a scatter plot with the latent
(unobserved variable) y (using points with an x) and the censored variable y c (with grey
circles). The graph also has the OLS estimation of the relation between y and x (which is
not feasible as we cannot observe the latent variable), the tobit estimation that controls for
lower censoring at 0, which assumes homoskedasticity, and the median regression estimate
using the CQR estimate with ldvqreg of y c on x, which is distribution free (i.e., it does not
require to assume homoskedastic Gaussian errors as in the tobit model).
Note that the tobit estimator is clearly different from the true OLS estimate. Nevertheless,
the line that corresponds to the CQR estimation is indeed close to the true line. Then, the
CQR appears as a useful alternative to the tobit model when the distributional requirements
are not satisfied.
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Consider now a DGP with two cases (Stata codes omitted). Half the sample has a ho-
moskedastic error structure (y = x + rnormal()/3) and the other half has heteroskedastic
error structure (y = x + ( 1 + x )* rnormal()/3). The former model has that all the
QR coefficients are the same across quantiles, i.e., β(τ) = β, ∀τ , while the second allows
for heterogeneity across quantiles. The generated variable y has no censoring, and y c =
min(max(y,0),1) has lower (0) and upper (1) censoring.
We will first compare the available command sqreg with the proposed command ldvqreg
in the case where there is no censoring, i.e., without specifying ll(#) and ul(#) (thus the
command assumes no censoring). This is done to evaluate if the smoothed implementation
works. The results below show that the results are very similar, and thus ldvqreg works for
the general case.

. sqreg y x if heter==0 , q(20 50 80) reps(100)

(fitting base model)

[-OUTPUT OMITTED-]

. estimates store sqr0

. test [q20=q50=q80]: x

( 1) [q20]x - [q50]x = 0
( 2) [q20]x - [q80]x = 0

F( 2, 1998) = 1.70
Prob > F = 0.1837

. ldvqreg y x if heter==0 , q(20 50 80) reps(100)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

. estimates store ldv0

. test [q20=q50=q80]: x

( 1) [q20]x - [q50]x = 0
( 2) [q20]x - [q80]x = 0

chi2( 2) = 3.23
Prob > chi2 = 0.1992

. sqreg y x if heter==1 , q(20 50 80) reps(100)

(fitting base model)

[-OUTPUT OMITTED-]
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. estimates store sqr1

. test [q20=q50=q80]: x

( 1) [q20]x - [q50]x = 0
( 2) [q20]x - [q80]x = 0

F( 2, 1998) = 20.09
Prob > F = 0.0000

. ldvqreg y x if heter==1 , q(20 50 80) reps(100)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

. estimates store ldv1

. test [q20=q50=q80]: x

( 1) [q20]x - [q50]x = 0
( 2) [q20]x - [q80]x = 0

chi2( 2) = 84.47
Prob > chi2 = 0.0000

. estimates table sqr0 sqr1 ldv0 ldv1

-------------------------------------------------------------------
Variable | sqr0 sqr1 ldv0 ldv1
-------------+-----------------------------------------------------
q20 |
x | 1.0174711 .77491151 1.0090585 .74898022
_cons | -.28811283 -.30173431 -.28007639 -.28191605
-------------+-----------------------------------------------------
q50 |
x | 1.0302213 1.01513 1.0412487 1.0192041
_cons | -.01484978 .00341644 -.01825961 .00398835
-------------+-----------------------------------------------------
q80 |
x | 1.0922721 1.3096443 1.0884 1.3203196
_cons | .24420286 .28846714 .24572663 .26465872
-------------------------------------------------------------------

Second, we show how to estimate the quantiles with the censored variable using the ldvqreg
command. For this we must use the options ll(0) and ul(1) to indicate the lower (0) and
upper (1) censoring points that correspond to this case. Note that both results are similar to
the sqreg command with y as dependent variable (i.e., no censoring). Therefore, the ldvqreg
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command allows us to retrieve some of the information about the latent variable distribution.
An interesting computational aspect is that the command takes around 60 seconds to run for
the homoskedastic case and about 83 seconds in the heterosckdastic case, therefore it has a
good performance in terms of its computing speed.1

. ldvqreg y_c x if heter==0 , q(20 50 80) reps(100) ll(0) ul(1)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

. estimates store ldv0c

. test [q20=q50=q80]: x

( 1) [q20]x - [q50]x = 0
( 2) [q20]x - [q80]x = 0

chi2( 2) = 2.10
Prob > chi2 = 0.3501

. ldvqreg y_c x if heter==1 , q(20 50 80) reps(100) ll(0) ul(1)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

. estimates store ldv1c

. test [q20=q50=q80]: x

( 1) [q20]x - [q50]x = 0
( 2) [q20]x - [q80]x = 0

chi2( 2) = 32.67
Prob > chi2 = 0.0000

. estimates table ldv0c ldv1c

----------------------------------------
Variable | ldv0c ldv1c
-------------+--------------------------
q20 |
x | .95401311 .56308125
_cons | -.23851249 -.15169441
-------------+--------------------------

1This calculation includes all 100 bootstrap samples and was measured using Stata 16 MP (64-bit) and
Windows 7 operating system (8 GB of RAM and Intel Core i7-3770 processor @ 3.40GHz).
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q50 |
x | 1.002916 .97882127
_cons | .00109231 .01848998
-------------+--------------------------
q80 |
x | 1.0908209 1.3702204
_cons | .24546395 .25605242
----------------------------------------

Third, we show that ignoring censoring in the estimation of conditional quantiles introduces
a bias by comparing the results of the sqreg and ldvqreg commands using the censored
dependent variable.2 Since we only compare point estimates, we run only a few replicates of
the bootstrap.

. sqreg y_c x , reps(5) q(20 50 80)

(fitting base model)

[-OUTPUT OMITTED-]

. estimates store sqr_c

. ldvqreg y_c x , reps(5) q(20 50 80) ll(0) ul(1)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

. estimates store ldv_c

. estimates table sqr_c ldv_c

----------------------------------------
Variable | sqr_c ldv_c
-------------+--------------------------
q20 |
x | .56201746 .8210617
_cons | -.06556587 -.22783645
-------------+--------------------------
q50 |
x | 1.003579 1.0001938
_cons | .00202664 .00577996
-------------+--------------------------
q80 |
x | .72443049 1.1329151
_cons | .39864097 .26838409
----------------------------------------

2This is a generalization of the bias that occurs for censoring in the mean-based model, which can be studied
by the tobit estimator and its comparison to standard OLS.
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Figure 2: Comparing quantile commands under censorship. Plot formats (colors, font, etc.)
depend on the version of Stata.

Note that the coefficients computed by both commands are different. The gap between the
two represents the bias for ignoring the censorship process. Figure 2 shows the three lines
estimated by both commands. The green line correspond to the τ = 0.9 case, the blue line to
the τ = 0.5 one, and finally the red one to τ = 0.2. The points with the symbol “x” represent
the realizations of the latent (uncensored) variable while the gray circles are those of the
observed variable (censored). Clearly, the sqreg command underestimates the coefficients of
the extreme quantiles as a consequence of the simulated upper and lower censoring while those
estimated by the ldvqreg command are consistent with the scatter of the latent variable.
The command ldvqreg can be used to predict censored quantiles and also to compute the
probability of censorship by the options qcen() and pcen(), respectively. Quantile prediction
can be done in an individual way for each τ , but the probability of censorship requires many
τs (at least 2). We show now an example code and a graph in Figure 3 with the predicted
censured quantiles (left panel) and probability of censoring (right panel).

. ldvqreg y_c x , reps(2) q(10 20 30 40 50 60 70 80 90) ///
ll(0) ul(1) qcen(myqcen) pcen(mypcen)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

. summarize
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Figure 3: Prediction of quantiles and censorship probability.
Note: plot formats (colors, font, etc.) depends on the version of Stata.

Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
heter | 4,000 .5 .5000625 0 1
x | 4,000 .4973596 .2883611 .000018 .9997839
y | 4,000 .5076568 .5295976 -1.163579 2.778667
y_c | 4,000 .4922552 .3645911 0 1
mypcen | 4,000 .25675 .125413 .1111111 .5555556
-------------+---------------------------------------------------------
mypcen_s | 4,000 .2706427 .1154597 .1384926 .5122733
myqcen_q10 | 4,000 .0946118 .1214869 0 .3766204
myqcen_q20 | 4,000 .2127563 .1962473 0 .5930477
myqcen_q30 | 4,000 .3135726 .2376881 0 .7425613
myqcen_q40 | 4,000 .4120319 .2696362 0 .8849297
-------------+---------------------------------------------------------
myqcen_q50 | 4,000 .5032121 .2883758 .005798 1
myqcen_q60 | 4,000 .5963741 .3047473 .0502407 1
myqcen_q70 | 4,000 .6813506 .2779192 .1597887 1
myqcen_q80 | 4,000 .7620734 .2443681 .2682098 1
myqcen_q90 | 4,000 .8610955 .2007863 .3594372 1

It should be noted that in the summarize output there are new variables that were gen-
erated with the names used in the ldvqreg run. On one hand, the variables mypcen and
mypcen s have the probability with the naïve and the smoothed formulas, respectively. On
the other hand, the varlist myqcen q10, myqcen q20,. . ., myqcen q90 are the predicted
censored quantiles for τ ∈ {0.10, 0.20, . . . , 0.90}.
Finally, we show here the effect of changing the bandwidth and the kernel function to smooth
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the objective function. This corresponds to the options ker() and bw(), respectively. Given
that the main objective is to compare the point estimate we only use a few bootstrap repli-
cations.

** Kernel changes
. ldvqreg y_c x , q(20 50 80) reps(10) ll(0) ul(1)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

* Kernel: Gaussian
. estimates store cqr_k1
. ldvqreg y_c x , q(20 50 80) reps(10) ll(0) ul(1) ker(logit)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

* Kernel: Logistic
. estimates store cqr_k2
. ldvqreg y_c x , q(20 50 80) reps(10) ll(0) ul(1) ker(epane)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

* Kernel: Epanechnikov
. estimates store cqr_k3
. ldvqreg y_c x , q(20 50 80) reps(10) ll(0) ul(1) ker(biwei)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

* Kernel: Biweight
. estimates store cqr_k4
. estimates table cqr_k*

------------------------------------------------------------------
Variable | cqr_k1 cqr_k2 cqr_k3 cqr_k4
-------------+----------------------------------------------------
q20 |
x | .82106138 .80669786 .82038709 .83939056
_cons | -.22783621 -.20616172 -.22430489 -.25006252
-------------+----------------------------------------------------
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q50 |
x | 1.0001938 .96858031 1.000034 1.0128315
_cons | .00577996 .02043529 .00583736 -.00032702
-------------+----------------------------------------------------
q80 |
x | 1.1336573 1.1612341 1.1327198 1.1577665
_cons | .26818938 .24645125 .26883745 .26697925
------------------------------------------------------------------

** Bandwidth changes
. ldvqreg y_c x , q(20 50 80) reps(10) ll(0) ul(1)

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

. estimates store cqr_h0

. loc h1 = e(bwidth)/2

. loc h2 = e(bwidth)*2

. ldvqreg y_c x , q(20 50 80) reps(10) ll(0) ul(1) bw(`h1')

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

. estimates store cqr_h1

. ldvqreg y_c x , q(20 50 80) reps(10) ll(0) ul(1) bw(`h2')

(running cqr_est on estimation sample)

[-OUTPUT OMITTED-]

. estimates store cqr_h2

. estimates table cqr_h*

-----------------------------------------------------
Variable | cqr_h0 cqr_h1 cqr_h2
-------------+---------------------------------------
q20 |
x | .82106138 .83486195 .79619464
_cons | -.22783621 -.24567505 -.19608774
-------------+---------------------------------------
q50 |
x | 1.0001938 1.0119603 .95743738
_cons | .00577996 .00044421 .02622289
-------------+---------------------------------------
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q80 |
x | 1.1336573 1.1419295 1.1844295
_cons | .26818938 .26947256 .23250225
-----------------------------------------------------

. drop _est*

Binary dependent variable

Consider now a binary dependent variable case. The DGP for this case is the following.

. drop _all

. set seed 321

. set obs 2000
* number of observations (_N) was 0, now 2,000

. gen x = runiform()*10

. gen y = -2.5 + x + x*(rchi2(1)-1)/sqrt(2)

. gen y_b = (y>0)

. ta y_b

y_b | Freq. Percent Cum.
------------+-----------------------------------
0 | 883 44.15 44.15
1 | 1,117 55.85 100.00
------------+-----------------------------------
Total | 2,000 100.00

We first compute a probit model, then a QR model with the (unobserved) latent variable,
and finally the proposed BQR using the developed command. For the last two we consider the
median estimate, i.e., τ = 0.5. In order to compare these two we normalize the coefficients
of the median QR regression to ∥b∥ = 1. The binary regression model already has this
normalization.

. quietly probit y_b x

. nlcom (_b[x]/sqrt(_b[x]^2+_b[_cons]^2)) ///
(_b[_cons]/sqrt(_b[x]^2+_b[_cons]^2)), post

[-OUTPUT OMITTED-]

. estimates store mle_n

. quietly bsqreg y x

. nlcom (_b[x]/sqrt(_b[x]^2+_b[_cons]^2)) ///
(_b[_cons]/sqrt(_b[x]^2+_b[_cons]^2)), post

[-OUTPUT OMITTED-]
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. estimates store qr_n

. quietly ldvqreg y_b x

. nlcom (_b[x]) (_b[_cons]), post

[-OUTPUT OMITTED-]

. estimates store ldv_b

. estimates table mle_n qr_n ldv_b

-----------------------------------------------------
Variable | mle_n qr_n ldv_b
-------------+---------------------------------------
_nl_1 | .2230184 .23005033 .23819335
_nl_2 | -.97481424 -.97317873 -.97122184
-----------------------------------------------------

. drop _est*

Note that in this case the BQR model (column ldv_b) show similar results to the QR model
with the latent variable (column qr_n), but not to the probit model (column mle_n). In
fact, the probit model should differ from the median estimates given that we are using an
asymmetric DGP.
Consider now the comparison of the ldvqreg with the standard QR alternatives in Stata.
In this case we compare it with bsqreg (QR with standard errors computed by bootstrap),
separately for different quantiles.

. * Compare with sqreg

. quietly bsqreg y_b x, q(20)

. nlcom (_b[x]/sqrt(_b[x]^2+_b[_cons]^2)) ///
(_b[_cons]/sqrt(_b[x]^2+_b[_cons]^2)), post

[-OUTPUT OMITTED-]

. estimates store qr20_b

. quietly ldvqreg y_b x, q(20)

. nlcom (_b[x]) (_b[_cons]), post

[-OUTPUT OMITTED-]

. estimates store ldv20_b

. quietly bsqreg y_b x, q(50)

. nlcom (_b[x]/sqrt(_b[x]^2+_b[_cons]^2)) ///
(_b[_cons]/sqrt(_b[x]^2+_b[_cons]^2)), post

[-OUTPUT OMITTED-]
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. estimates store qr50_b

. quietly ldvqreg y_b x, q(50)

. nlcom (_b[x]) (_b[_cons]), post

[-OUTPUT OMITTED-]

. estimates store ldv50_b

. estimates table qr20_b qr50_b ldv20_b ldv50_b

------------------------------------------------------------------
Variable | qr20_b qr50_b ldv20_b ldv50_b
-------------+----------------------------------------------------
_nl_1 | .33113567 .80311667 .14108016 .23819335
_nl_2 | -.94358315 -.5958218 -.99000605 -.97122184
------------------------------------------------------------------

. bsqreg y_b x , q(80)

(fitting base model)
convergence not achieved.
convergence not achieved
r(430);

Note that the results are very different across estimators. This applies even if we normalize
the bsqreg coefficients to ∥b∥ = 1. In fact, the QR estimates show convergence problems
in several bootstrap simulations (denoted by an x in the output), while the ldvqreg runs
smoothly. Overall this shows that BQR should be implemented with the proposed smoothed
version.
Finally, we implement tests of homogeneity and symmetry, comparing the (true) latent vari-
able model with the binary regression case. To evaluate the symmetry of the conditional
distribution we use the procedure suggested by Koenker (2005) evaluating the following lin-
ear null hypothesis:

H0 : 1
2 · β

(1
2 − δ

)
+ 1

2 · β

(1
2 + δ

)
− β

(1
2

)
= 0

for some δ ∈ (0, 1
2). This can be easily implemented by a Wald test using the test command.

* With unobservable data (uncensored)
. sqreg y x , q(10 25 50 75 90) reps(300)

(fitting base model)

[-OUTPUT OMITTED-]

. * Homogeneity

. test [q10=q25=q50=q75=q90]: x
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( 1) [q10]x - [q25]x = 0
( 2) [q10]x - [q50]x = 0
( 3) [q10]x - [q75]x = 0
( 4) [q10]x - [q90]x = 0

F( 4, 1998) = 118.08
Prob > F = 0.0000

* Symmetry
. test (([q10]x+[q25]x+[q75]x+[q90]x)/4-[q50]x=0) ///

(([q10]_cons+[q25]_cons+[q75]_cons+[q90]_cons)/4-[q50]_cons = 0)

( 1) .25*[q10]x + .25*[q25]x - [q50]x + .25*[q75]x + .25*[q90]x = 0
( 2) .25*[q10]_cons + .25*[q25]_cons - [q50]_cons + .25*[q75]_cons +
> .25*[q90]_cons = 0

F( 2, 1998) = 176.51
Prob > F = 0.0000

* With observable data (censored)
. ldvqreg y_b x , q(10 25 50 75 90) reps(300)

(running bqr_est on estimation sample)

[-OUTPUT OMITTED-]

* Homogeneity
. test [q10=q25=q50=q75=q90]: x

( 1) [q10]x - [q25]x = 0
( 2) [q10]x - [q50]x = 0
( 3) [q10]x - [q75]x = 0
( 4) [q10]x - [q90]x = 0

chi2( 4) = 365.80
Prob > chi2 = 0.0000

* Symmetry
. test (([q10]x+[q25]x+[q75]x+[q90]x)/4-[q50]x=0) ///

(([q10]_cons+[q25]_cons+[q75]_cons+[q90]_cons)/4-[q50]_cons = 0)

( 1) .25*[q10]x + .25*[q25]x - [q50]x + .25*[q75]x + .25*[q90]x = 0
( 2) .25*[q10]_cons + .25*[q25]_cons - [q50]_cons + .25*[q75]_cons +
> .25*[q90]_cons = 0

chi2( 2) = 47.46
Prob > chi2 = 0.0000
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The results are as expected. We reject the hypotheses of both homoskedasticity and symmetry
of the latent variable. Both features should indicate that the assumptions of the probit
and logit models are not valid ad we should consider the semi-parametric approach given
by ldvqreg. Since this example uses boostrap sampling, it is interesting to evaluate the
computation time: the ldvqreg command takes around 107 seconds to obtain the point
estimate and the standard errors, which is quite reasonable compared to the 35 seconds it
takes to do the same inference exercises but with the true latent variable (something that is
impossible in practice).3

Finally, the ldvqreg also computes the conditional probabilities of y = 1 using the estimated
coefficients for a grid of τs by the option p1(). We show here an example coding:

. probit y_b x

[-OUTPUT OMITTED-]

. predict p_pro

(option pr assumed; Pr(y_b))

. ldvqreg y_b x , reps(2) q(10 20 30 40 50 60 70 80 90) ll(0) ul(1) p1(p_bqr)

(running bqr_est on estimation sample)

[-OUTPUT OMITTED-]

. summarize

Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
x | 2,000 4.9855 2.852372 .0001804 9.99784
y | 2,000 2.408413 6.126037 -2.499892 60.79322
y_b | 2,000 .5585 .4966901 0 1
y_n | 2,000 .9553311 2.42998 -.9916178 24.11449
p_pro | 2,000 .5578556 .3137343 .0558153 .9797236
-------------+---------------------------------------------------------
p_bqr | 2,000 .5653889 .3212985 0 1
p_bqr_s | 2,000 .5661044 .3177954 2.72e-13 .9842031

Note that new variables appear, that is, p bqr and p bqr s generated by ldvqreg and the
variable p pro generated by probit. Figure 4 shows these three predicted probabilities of
y = 1|x. It should be noted that the probit model underestimates the probabilities for the
center values and overestimates in the extremes, in particular for low x. This is an expected
result because of the heterogeneity and asymmetries in the DGP.

3This calculation was measured using Stata 16 MP (64-bit) and Windows 7 operating system (8 GB of
RAM and Intel Core i7-3770 processor @ 3.40GHz).
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Figure 4: Comparison of predicted probabilities. Plot formats (colors, font, etc.) depend on
the version of Stata.

4.2. Real data

Double-censored example

We provide here an empirical illustration of a double-censoring example. Wichert and Wilke
(2008) offer an empirical application where the wages are double censored (because of non-
zero and a social security ceiling). They use a sample extracted from the IAB-Employment
Sample 1975-2001 of the Institute for Employment Research (IAB). For this example the
dependent variable is wage and the censoring values are 0 and 200 for the lower and upper
censoring, respectively. In this case, the censorship is generated by the type of information
available in the administrative data.
We thus implement a simple wage regression model for τ = 0.20, 0.50, 0.80, and we compare
their results with the double-censored tobit command. Table 1 reports the results of es-
timating the salary equation in the mean (tobit) and in the different quantiles (CQR). For
the particular case of censored QR we implement inference of the symmetry across quantiles
using the same testing procedure as in the simulations section.

. test [q20=q50=q80]

( 1) [q20]age - [q50]age = 0
( 2) [q20]female - [q50]female = 0
( 3) [q20]age - [q80]age = 0
( 4) [q20]female - [q80]female = 0
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Censored QR
Tobit q20 q50 q80

Age 0.568** 0.414** 0.333** 0.846**
(0.0364) (0.0488) (0.0340) (0.0470)

Female −24.85** −31.94** −20.06** −19.43**
(0.510) (0.905) (0.466) (0.582)

Constant 48.78** 36.11** 56.38** 60.53**
(1.334) (1.732) (1.178) (1.631)

Observations 21,685 21,685 21,685 21,685

Table 1: Wage equations (standard errors in parentheses); * indicates significance at 5% and
** at 1%.

chi2( 4) = 341.55
Prob > chi2 = 0.0000

. test (0.5*_b[q20:age]+0.5*_b[q80:age]=_b[q50:age]) ///
> (0.5*_b[q20:female]+0.5*_b[q80:female]=_b[q50:female]) ///
> (0.5*_b[q20:_co]+0.5*_b[q80:_co]=_b[q50:_co])

( 1) .5*[q20]age - [q50]age + .5*[q80]age = 0
( 2) .5*[q20]female - [q50]female + .5*[q80]female = 0
( 3) .5*[q20]_cons - [q50]_cons + .5*[q80]_cons = 0

chi2( 3) = 238.99
Prob > chi2 = 0.0000

For both cases, we reject the null of symmetry across quantiles.
In general, both the tobit and CQR model coefficients correspond to the effect of a covariate on
the latent variable and therefore not always has an intuitive interpretation. In this particular
case, given that the censorship occurs on the salary for administrative reasons, the coefficients
measure the wage premium of age and the gender wage gap. For example, women who are
in the 20th quantile earn 32 dollars/hour less than men in the same ranking position of the
wages and the same age. This gap but for the 80th quantile is just over 19 dollars/hour.
Thus, in this example, the greatest gender discrimination on wages occurs among the most
disadvantaged workers.

Labor supply models

In this section we show an example of the ldvqreg command applied to the study of the
probability of having a job in Uruguay, 2015. The data comes from the 2015 Continuous
Household Survey (ECH for its acronym in Spanish) prepared by the National Institute of
Statistics (INE) and the sample consists of women between 18 and 45 years old who are in the
labor force and living in urban areas of Montevideo. Binary probit/logit models are widely
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Figure 5: Doubly censored dependent variable (Wichert and Wilke 2008). Plot format (colors,
font, etc.) depends on the version of Stata.

used to study the probability of having a job. The ldvqreg command is a flexible alternative
that allows evaluating some key assumptions of the mentioned maximum likelihood models
such as homoskedasticity and symmetry of the conditional distribution.
We analyze the binary regression model using the variable work as a dependent variable,
which is a dummy variable that indicates with 1 if the woman is working and 0 otherwise. As
in the previous example with simulated data, we start by showing the results of the probit
model where we normalize the coefficients in such a way that ∥b∥ = 1 and therefore they
are comparable with those of the output of the ldvqreg command. Again, we estimate
the parameters of the conditional quantiles 0.20, 0.50 and 0.80 of the latent variable. For
simplicity in exposition, we omit some parts of the code. The main results are in Table 2.

. use labordatauy, clear

. describe

Contains data from labordatauy.dta
obs: 9,601
vars: 8 19 Sep 2021 10:01
size: 307,232
---------------------------------------------------------------------------------------------
storage display value
variable name type format label variable label
---------------------------------------------------------------------------------------------
work float %9.0g = 1 if it works, = 0 otherwise.
hours float %9.0g weekly working hours
age float %9.0g age
educ float %9.0g years of education
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married float %9.0g = 1 if married, = 0 otherwise
children float %9.0g number of children under 6 years of age
couplewrk float %9.0g = 1 if the couple works, = 0 otherwise
head float %9.0g = 1 if head of household, = 0 otherwise.
---------------------------------------------------------------------------------------------

In this case it is not possible to reject the hypotheses of symmetry at 1% significance level,
however, the model does not seem to support the homoskedasticity hypothesis. Thus, a
standard model like the probit should not work well.

. test [q20=q50=q80]

[-OUTPUT OMITTED-]

chi2( 12) = 41.77
Prob > chi2 = 0.0000

. test (0.5*_b[q20:age]+0.5*_b[q80:age]=_b[q50:age]) ///
> (0.5*_b[q20:edu]+0.5*_b[q80:edu]=_b[q50:edu]) ///
> (0.5*_b[q20:mar]+0.5*_b[q80:mar]=_b[q50:mar]) ///
> (0.5*_b[q20:chi]+0.5*_b[q80:chi]=_b[q50:chi]) ///
> (0.5*_b[q20:cou]+0.5*_b[q80:cou]=_b[q50:cou]) ///
> (0.5*_b[q20:hea]+0.5*_b[q80:hea]=_b[q50:hea]) ///
> (0.5*_b[q20:_co]+0.5*_b[q80:_co]=_b[q50:_co])

[-OUTPUT OMITTED-]

chi2( 7) = 4.02
Prob > chi2 = 0.7771

In the case of not rejecting any null hypothesis this might seem that the ldvqreg command
is somewhat innocuous. However, it should be noted that it serves either as an empirical way
of validating or refuting (and possibly replacing) the estimates of a probit/logit model.
In practice, the regression coefficients from models with binary dependent variables do not
have a direct quantitative interpretation because they are a normalized version of a latent
variable model. However, a qualitative interpretation can be made for probit model coeffi-
cients: a positive (negative) sign indicates that the partial effect of the covariate is to increase
(decrease) the probability of working. For BQR, the sign indicates the direction of the partial
effect on the quantile of the latent variable, but it is not clear how this affects the conditional
probability given that the covariate also affects the rest of the conditional quantiles.
It is common in this literature to estimate the partial effects on the probability to make
quantitative interpretations. For this purpose we compute the APE and PEAM of the probit
and the BQR estimators. Table 3 summarizes the main results. Note that for this exercise we
estimated a grid with a finer mesh to achieve better accuracy in the estimation by computing
nine quantiles (0.10, 0.20, . . ., 0.90), unlike for the homoskedasticity and symmetry hypothesis
tests where we used only three quantiles (0.25, 0.50, 0.75). To get an idea of the trade-off
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Smoothed binary QR
Probit Q20 Q50 Q80

Age 0.0370** 0.0292** 0.0257 0.0713**
(0.00247) (0.00353) (0.0218) (0.0221)

Years of education 0.0763** 0.0323** 0.172 0.0735
(0.00504) (0.00790) (0.119) (0.0850)

Children under 6 yrs −0.0736* −0.0749* 0.117 −0.0568
(0.0295) (0.0406) (0.160) (0.108)

Married 0.213** 0.205** 0.478* 0.187
(0.0454) (0.0486) (0.209) (0.128)

Couple working −0.0473 −0.122** −0.199 −0.0403
(0.0430) (0.0460) (0.288) (0.211)

Household head 0.190** 0.149** 0.262 0.171**
(0.0404) (0.0550) (0.164) (0.0614)

Constant −0.951** −0.956** −0.787** −0.959**
(0.0921) (0.0210) (0.164) (0.122)

Observations 9,601 9,601 9,601 9,601

Table 2: Probability of having a job (standard errors in parentheses); * indicates significance
at 5% and ** at 1%; all coefficients are normalized such that ∥b∥ = 1.

Probit Smoothed binary QR
APE PEAM APE PEAM

Age 0.00669** 0.00766** 0.00569** 0.00456**
(0.000447) (0.000498) (0.000485) (0.000361)

Years of education 0.0138** 0.0158** 0.00853** 0.00919**
(0.000910) (0.00116) (0.00120) (0.00111)

Children under 6 yrs −0.0133* −0.0153* −0.0250** −0.0326**
(0.00534) (0.00635) (0.00544) (0.00565)

Married 0.0388** 0.0382** 0.0557** 0.0582**
(0.00830) (0.00765) (0.00753) (0.00777)

Couple working −0.00852 −0.0101 −0.0217** −0.0212*
(0.00770) (0.00927) (0.00833) (0.00871)

Household head 0.0331** 0.0346** 0.0303** 0.0274**
(0.00678) (0.00750) (0.00694) (0.00717)

Observations 9,601 9,601 9,601 9,601

Table 3: Partial effects on probability of having a job (standard errors in parentheses); * in-
dicates significance at 5% and ** at 1%.
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between accuracy and computation speed, the first exercise took about 33 minutes while the
second only 12 minutes.4

* Probit (APE)
. probit work c.age c.educ c.children i.married i.couplewrk i.head

[-OUTPUT OMITTED-]

. margins, dydx(_all) post

[-OUTPUT OMITTED-, see Table 3]

* Probit (PEAM)
. probit work c.age c.educ c.children i.married i.couplewrk i.head

[-OUTPUT OMITTED-]

. margins, dydx(_all) ///
at((mean)age educ children married=0 couplewrk=0 head=0) post

[-OUTPUT OMITTED-, see Table 3]

* Smoothed Binary QR
. ldvqreg work age educ children married couplewrk head , reps(100) ///
q(10 20 30 40 50 60 70 80 90) margins(both) xbin(married children head)

(running bqr_est on estimation sample)

[-OUTPUT OMITTED-, see Table 3]

As an example, let us analyze the results in Table 3 for the education covariate. On the
one hand, the APE measures how much the unconditional probability of working increases
with one additional year of education, keeping everything else constant. Therefore, according
to the probit model this change is 1.38 percentage points while BQR estimates almost 0.9
percentage points. On the other hand, the PEAM measures the same partial effects but
conditional on an individual who has average characteristics (age, education, etc.). Then,
education increases its conditional probability of working by 1.58 percentage points according
to probit and just over 0.9 percentage points estimated with BQR.
Finally, we compare the conditional probabilities predicted by both methods. Figure 6 shows
a plot of the probability of working as a function of age for an individual with 12 years of
education, who is single, has no children and is not the head of the household. Note that the
probability predicted by a more flexible methodology such as BQR yields higher probabilities
compared to a fully parametric model such as probit. Therefore, using one or the other

4Calculations includes all 100 bootstrap samples and was measured using Stata 16 MP (64-bit) and Windows
7 operating system (8 GB of RAM and Intel Core i7-3770 processor @ 3.40GHz).
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Figure 6: Conditional probability of having a job (Uruguay, ECH, 2015). Plot formats (colors,
font, etc.) depend on the version of Stata.

methodology may lead to different predicted probabilities when the latent variable presents
heteroskedasticity and/or asymmetries, among others non standard characteristics.

5. Conclusions
This paper proposes a new Stata command ldvqreg to estimate censored quantile regression
and binary regression models. A key feature of the proposed command is that it implements
a smoothed version of the quantile regression model. Thus, it works very well for the case of
censored and binary dependent variable.
We illustrate the potential pitfalls of ignoring the censoring mechanisms. In the simulation
exercises we compare the standard quantile regression estimates with our corrected procedure.
The results highlight that the former may be biased in the usual way. In fact this is the same
issue that may appear if we compare the tobit model with standard OLS. The same applies
to the binary regression model. In this case, we show that the probit model may be biased
in the underlying data generating process is not homoskedastic, asymmetric and/or non-
gaussian, while the implementation using standard quantile regression estimates may suffer
from convergence problems. In all cases the command ldvqreg clearly solves this issues.
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