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Abstract

In statistical modeling, there is a wide variety of generalized linear models for categor-
ical response variables (nominal or ordinal responses); yet, there is no software embracing
all these models together in a unique and generic framework. We propose and present
GLMcat, an R package to estimate generalized linear models implemented under the
unified specification (r, F, Z) where r represents the ratio of probabilities (reference, cu-
mulative, adjacent, or sequential), F' the cumulative distribution function for the linkage,
and Z the design matrix. All classical models (and their variations) for categorical data
can be written as an (r, F, Z) triplet, thus, they can be fitted with GLMcat. The functions
in the package are intuitive and user-friendly. For each of the three components, there
are multiple alternatives from which the user should thoroughly select those that best
address the objectives of the analysis. The main strengths of the GLMcat package are the
possibility of choosing from a large number of link functions (defined by the composition
of F' and r) and the simplicity for setting constraints in the linear prediction, either on
the intercepts or on the slopes. This paper proposes a methodological and practical guide
for the appropriate selection of a model considering the concordance between the nature
of the data and the properties of the model.

Keywords: generalized linear model, categorical response, link function, cumulative models,
sequential models, adjacent models, reference models.

1. Introduction

Regression models for categorical responses have emerged in various disciplines and under
different names. The underlying structures of such models may be closely related (or even
the same) but they are often perceived as fundamentally different. The intrinsic differences
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among the classical models concern the assumed link function and the specification of the
linear predictor. Once the linear predictor is defined, the question to address concerns the
most appropriate link function. The selected link function should reflect the nature of the
response variable; for categorical responses, a broad distinction is made on the basis of the
scale itself, being either nominal or ordinal.

For ordinal responses, there are three families of generalized linear models (GLMs): the cu-
mulative, the sequential, and the adjacent models. The family of cumulative models (simply
known as ordinal regression models) is the most popular. This family includes the odds
proportional logit model (McCullagh 1980) which has been the most widely used model for
ordinal data. Sequential models have initially been discussed by authors including Fienberg
(1980), Armstrong and Sloan (1989) and Tutz (1991). The most iconic model within this
family is the proportional hazard model which was originally developed by Cox (1972) for
continuous responses. More recently, Fahrmeir and Tutz (2001) briefly proposed an extension
of the adjacent logit model (Goodman 1983; Agresti 1989) that allows substituting the lo-
gistic distribution function by any other CDF. In this light, Peyhardi, Trottier, and Guédon
(2015) detailed the estimation of such models and named them the family of adjacent mod-
els. Adjacent models have been widely adopted in item response theory, a widespread model
within this framework is the polytomous Rasch model (Rasch 1961; Andersen 1995) which is
an adjacent logit model with a specific form for the linear predictor. In contrast to ordinal
responses, for which there exists a variety of GLMs, until recently, the only option for nominal
responses (within the context of GLMs) was the multinomial logit (MNL) model, introduced
by Luce (1959). To fill this gap, Peyhardi et al. (2015) generalized the structure of the MNL
allowing the use of several cumulative distribution functions (CDFs) as alternatives to the
logistic CDF, the resulting set of models is referred to as the family of reference models.

Notwithstanding the wide set of model options, the use of appropriate models for categorical
responses seems to be rather limited in the literature (Ananth and Kleinbaum 1997; Liddell
and Kruschke 2018). Besides, on the rare occasions when they are employed, there is often no
consistency between the response variable characteristics and the model’s assumptions. For
instance, ordinal responses have been frequently treated by researchers as standard nominal
or metric problems. Another usual and inaccurate approach is to dichotomize categorical
responses with the aim of using the standard logistic or probit regression models (Sankey and
Weissfeld 1998). These pitfalls can lead to non-optimal solutions and thus to erroneous statis-
tical inferences (see Liddell and Kruschke 2018; Scott, Goldberg, and Mayo 1997; Gutiérrez,
Pérez-Ortiz, Sanchez-Monedero, Fernandez-Navarro, and Hervas-Martinez 2016, for further
details). Despite the current availability of statistical software to fit models which take full
advantage of the ordinal nature of the response, the described poor practices are still common.
As noted by Mellenbergh (1995), one possible cause may be linked to the fact that the litera~
ture for ordinal responses does not provide much support for preferring one family of models
over another. In addition, we suspect that the lack of homogeneity that characterizes the
literature and the software solutions for this subject may result confusing and overwhelming.
Hence, it is not surprising that, risking a loss of accuracy and interpretability, the user might
opt for the most popularly used models.

In R (R Core Team 2025) there is a variety of packages to fit categorical responses, however,
most of them only cover one or a few of the types of models. For instance, the function
multinom() of the package nnet (Ripley and Venables 2025; Venables and Ripley 2002) fits
the MNL via neural networks. For ordinal responses, the functions polr() of the package
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MASS (Ripley, Venables, Bates, Hornik, Gebhardt, and Firth 2025; Venables and Ripley 2002)
and omr () from the rms (Harrell 2025) package are often used to fit the odds proportional
model. Few packages are aimed to fit a whole family of models for categorical responses,
one of them is the tram (Hothorn, Siegfried, and Kook 2025; Hothorn 2020) package, which
by means of the Polr() function allows for stratification, censoring and truncation in the
response of cumulative models. The ordinal package (Christensen 2024) is another option to
fit the family of cumulative models, it includes a comprehensive implementation of this class
of models offering great flexibility, notably in the specification of the linear predictor. To our
knowledge, only the brms (Biirkner 2017) and the ordinalNet (Wurm, Rathouz, and Hanlon
2025) packages consider the three families of ordinal models: cumulative, sequential, and
adjacent. The VGAM package also consider these families but their adjacent ratio seems to
be valid only for the logistic distribution. It enables however to implement its own cumulative
distribution function. Let us note that categorical regression is just a part of the large VGAM
package’s possibilities (Goodman R x C' association models, Bradley-Terry models, genetic
models, etc.). None of the aforementioned packages encloses the four model families for
categorical responses and most of them have some limitations in terms of adding constraints
to the design, or in the availability of the CDF that one can use as part of the link function.
These gaps also exist in commercial statistical software like SAS (SAS Institute Inc. 2020),
Stata (StataCorp 2015), and SPSS (IBM Corporation 2017). An additional problem of the
commercial packages is that those use different techniques (which are not strictly equivalent)
to fit the models. As a consequence, different estimations might be obtained when using
different software, even though the same theoretical model is specified. For instance, Liu
(2009) reported some differences in the estimation of an odds proportional model using the
functions PROC LOGISTIC in SAS, ologit in Stata, and PLUM in SPSS.

Despite the diverse origins, names, applications, and implementations of the above-mentioned
models, they all share a common structure that was fully described by Peyhardi et al. (2015).
The authors introduced a unified specification of GLMs for categorical responses that en-
compasses the four families of models based on a decomposition of the link function. They
introduced the notation (r, F, Z) for this decomposition where: r is the ratio that character-
izes the ordering type of the response variable, F' is the CDF of the link function, and Z is the
design matrix where the form of the linear predictor is specified. The comprehensive descrip-
tion of the taxonomy of the GLMs for categorical data given by the (r, F, Z) decomposition
exposes the fundamentals, relations, and equivalences of the families of models. Furthermore,
the possible extensions for each model family become evident and can be easily implemented.
These extensions are obtained by structuring the design matrix (for intercepts and slopes), as
well as broadening the spectrum of CDFs. The logistic CDF is usually chosen by default since
other links, such as probit, may appear very similar. Nevertheless, we present in Section 4
an example to highlight how much the use of the Student link improves notably the model
accuracy by detecting noisy variables in this case. Exploring different distribution functions
enables to uncover hidden patterns, detect outliers and improve the overall understanding of
the underlying data.

We implemented the (r, F, Z) methodology in the GLMcat (Le6n, Peyhardi, and Trottier
2025) package developed for R, available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=GLMcat. Our purpose is to provide an alternative
that covers all the classical models for categorical responses and which gives room to extend
them through different components. The package supports a wide range of CDFs and allows
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to adapt the linear predictor at any desired extent. In consideration of all these possibilities,
we intend to guide the user in the identification of the most pertinent combination of the
ratio, the CDF, and the design matrix, highlighting the limitations or advantages of the
resulting (r, F, Z) model. In the GLMcat package there are two main functions: glmcat(),
which covers the four families of models for categorical responses, and discrete_cm(), which
extends the family of reference models to take into account explanatory variables that depend
on response categories (useful for the discrete choice model).

The content of the paper is presented in three main sections. In Section 2, we recall the unified
specification of GLMs through the (r, F,Z) triplet and we illustrate its implementation in
GLMcat. We also describe in detail each of the three components as well as the possible
extensions for them. In Section 3, we aim to characterize the different families of models for
ordinal responses by outlying a series of properties inherent to each of them. We emphasize
the importance of identifying the model that makes the appropriate assumptions in light of the
nature of the response variable and the goals of the analysis. In Section 4, we revisit the family
of reference models in the framework of discrete choice models (Bouscasse, Joly, and Peyhardi
2019; Peyhardi 2020). We motivate the use of this family of models presenting its strengths
in contrast to existing alternatives. The model fitting by means of the GLMcat package is
illustrated in all the sections using different datasets and its computational implementation
is described in Section 2.5.

2. Unified specification of GLMs for categorical data

Consider the regression context where the response Y is a categorical variable (with J > 2
categories). The aim is to model the effect on Y of a given set of ¢ explanatory variables
x = (z1,...,24) defined in a general form of dimension p with p > ¢ (i.e., categorical variables
are represented by indicator vectors). In the following, we will sometimes use the univariate
notation {Y = j} or, equivalently, the indicator vector notation Y = (Y3,...,Y;1) with 1
in position j and 0 elsewhere. Note that {Y = J} would correspond to Y = (0,...,0). For
convenience, models are presented at the individual level, thus, the subscript i € {1,...,n} is
not mentioned. A GLM for categorical response can be decomposed into three parts:

1. the random component which accounts for the conditional distribution of the response
variable given the set of the explanatory variables. In the framework of categorical
response variables, Y follows the multinomial distribution

Y|z~ M(1,7(x))

with 7 = (m1(2),...,mj1(x)) € A where A = {7 € (0,1)77": 231:_11 mj < 1}.  This is
a generalization of the Bernoulli distribution (obtained when J = 2). The probability
mass function written in terms of y is then

J-1 J-1
fly;m) = ( leé’ﬂ)(l— ;Wj

Its natural parameter 0 = (61,...,0;_1)" is defined by

;
1 Tj-1
Bz(log(—_ ),...,log(—_ )) ,
1-yJ m; 1-y7 m;

)1—231511 Yj
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and

J-1
Me):kg(1+§:e%)
j=1
Based on the above decomposition, the probability mass function can be simply written
as

f(y;0) =exp{y'6-0(0)}.

Using the weight w = 1, the dispersion parameter ¢ = 1 and the null function ¢(y, ¢) =0,
we see that this distribution function belongs to the exponential family of dimension
K=J-1.

2. The systematic component which is determined by the linear predictor n = (n1,...,1mJ-1)-
For each category j, the linear predictor has the form 7; = o + 74, where a; € R is
the intercept and d; € R? is the vector of slopes. Considering the parameter vector as
B=(a,...,ay-1,01,...,05-1), the linear predictor can be written as the product

n=2p3,

where Z denotes the design matrix composed of repetitions of 1 and ' (see Section 2.3
for some examples of design matrices).

3. The link function g which relates the conditional expectation of the response variable
7 = E[Y|x] and the linear predictor 1. The equality g(7) = n corresponds to the J -1
equations g;(7) = n;.

Peyhardi et al. (2015) showed that all the classical link functions can be decomposed through
the unified specification

gj=F"

or; < Tj(ﬂ'):F(’l]j) j=1,...,J—1, (1)
where F' is a continuous and strictly increasing CDF, and r = (r1,...,7r -1) is a map from
the simplex A to the open hypercube (0,1)7~'. We call = the ratio even if for the cumulative
family it is not defined as a proper ratio of probabilities. Let see in the next section an
expression of the probabilities 7 from the predictors 17 according to each ratio type to facilitate
the interpretation. The authors introduced the notation (r, F,Z) with which any classical
GLM for categorical responses can be fully described. Throughout this paper and in this
framework, we interchangeably use the terms (r, F, Z) and GLM.

The GLMcat package is designed based on the (7, F, Z) decomposition. To facilitate the user
experience, instead of calling a specific function for each family of models (determined by the
ratio), we implemented a single function: glmcat (), with which any (r, F, Z) model can be
fitted. In the following, we will describe more closely the components r, F', and Z and their
modalities.

2.1. Ratio of probabilities r

In models for categorical responses, the linear predictor m is not directly related to the ex-
pectation 7 but to a particular transformation r of the vector .
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Cumulative Sequential Adjacent  Reference
Ty Ty Ty

Tj(ﬂ') T t...+Ty
Tit...t@y T+ 41 T+ Ty

Y ordinal nominal

Table 1: Four ratios r;(m) of GLMs for categorical responses (j =1,...,J - 1).

The ratios for categorical responses are defined in Table 1. The cumulative ratio of category
7 is the result of the cumulated probabilities of the precedent categories:

T+ 4T = F(le) <~ T = F(T]J) —F(njfl)a

with the conventions 7y = —oco, 17y = +o0 and the ordering assumption 79 <71 < -+ < nj_1 < NJ.
For the sequential ratio each category j is compared to its following categories j +1,...,.J
¥

j-1
=F(n;)) <= ;= F(Uj)ﬂ(l - F(nr)),

Tt ...t Ty

with the convention 1'[2:1(1 - F(nx)) = 1. For the adjacent ratio each category j is compared
to its adjacent category

T Hi_'l F(?k))

. =7 1-F(ng

ﬁ =F(nj) < mj= J-17J-1 nkF(le)
j j+1 1+ 21:1 Hk::l 1-F(ng)

The adjacent, cumulative, and sequential ratios rely on an ordering assumption among cate-
gories. On the contrary, the reference ratio relates each category j to a reference category (J
by convention)

F(7(7j))
j 1-F(n;
=F(n;) < m= -
TECEC:

No ordering assumption among categories is needed in this case. The reference ratio is
therefore devoted to nominal responses. For each ratio, the interpretation of an explanatory
effect is different. An increase of the predictor 7; positively impacts the ratio of probabilities
rj(m) since the CDF is strictly increasing. Note that the ratio r;(7) is a probability itself
equal to P(Y <j), P(Y =4]Y >5), P(Y =j[Y € {j,7+1}) and P(Y = j|Y € {4, J}) respectively
for the cumulative, sequential, adjacent and reference ratio. Therefore it is more convenient
to interpret an explanatory effect, using the left part of each equation. The ratios are the
essential units from which a family of models is defined. For this reason, we named the model
families according to their corresponding ratio. In GLMcat we cover the four ratios described
above, whereby all known GLMs for categorical responses are within reach by handling one
single package. The ratio should be specified in the glmcat () function as a string in the
argument ratio. If no ratio is specified, the reference ratio will be used by default.

2.2. Cumulative distribution function F

The link function in the binary regression framework accounts only for the CDFs that link
the expected value of the response to the linear predictor of the model. Based on the decom-
position presented in Equation 1, it is evident that for the (r, F, Z) models the CDF is just
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one part of the link function, which along with the ratio, characterizes the relation between
7 and 7). Remark that the CDF is assumed to be differentiable and strictly increasing. The
differentiability is necessary for the Fisher’s scoring algorithm (or Newton Raphson’s algo-
rithm) computation. The condition of strict increase is necessary for parameter interpretation
since the coefficients ¢; ;, give the signs of the partial effects of the corresponding explanatory
variable z;, on the probability r; (7).

The distinction between symmetric and asymmetric CDFs has an impact on the properties
of the models as it will be demonstrated later. Moreover, the choice of the distribution might
markedly improve the model fit. In literature, there are different recommendations to choose
the CDF of a GLM, although the logistic distribution is the most widely used. The choice
is often related to disciplines or fields. For instance, economists tend to favor the normal
distribution due to its association with the utility notion; the Gumbel distribution is popular
in survival and hazard analysis, since it can appropriately model the occurrence of events.
The aforementioned CDFs are available in many packages. GLMcat proposes, in addition,
some less popular alternatives such as the Cauchy, the Gompertz, the Laplace, the Student,
and the non-central Student CDFs. In particular, the Student CDF has proven to be a robust
alternative for regression models (see Lange, Little, and Taylor 1989; Peyhardi 2020) and can
be considered as a family of functions given that the shape of the CDF varies according to
v, the degrees of freedom. All of the CDFs presented in Table 2 are available in GLMcat
and should be specified by its name as a string in the argument cdf. For the particular
case of Student CDF, as the degrees of freedom are to be specified, the user must enter a
list of the form list(cdf = "student", df = 7). If the CDF is not declared, the logistic
distribution is used by default. In the following, the set of cumulative distribution functions
will be denoted by §.

Normalization of parameter estimates

The parameters of the models with different CDFs are not comparable since they refer to
specific means and variances (Tutz 2011). Often, the parameter estimates will turn out to be
different even if there is not an apparent discrepancy in terms of goodness-of-fit. Tutz (2011)
illustrated an alternative to standardize the parameters of a binary regression model:

]

e GV E(c) §=—— wheree~F.

VVAR(E)’ VVAR(e)’

Note that this approach is not suitable when using a CDF with undefined mean or variance
as it is the case of the Student distribution (whose mean and variance are not defined when
v <1, and v < 2, respectively). A propagated approach in econometrics that solves this
problem is to consider the average partial effect of the variable x; on 7; as the scale factor,
ie., Omj(x)/0x, (Wooldridge 2012). If y, is a continuous variable, its partial effect on m;(x)

is obtained from the partial derivative:

a =

87rj(:c) _ 8F 67@»

=——— 15, 2
a.%'k 817j aT‘j Gk ( )

The average partial effect of z;, on =; is then given by the mean value over the individuals.
The downsides of this method are that the scale factor depends on the input data and that it
is only valid for continuous explanatory variables. Note that Equation 2 results in f(n;)dy, for
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Distribution F(n) Shape
1
Logistic _— Symmetric
1+ exp(-n)
1 z?
N 1 — (" -—)d S tri
orma N J exp( 5 ) x ymmetric
1
—exp(n) if <0,
Laplace 2 Symmetric

1
1- Eexp(—n) itn>0

1 1
Cauchy gt = arctan(n) Symmetric
1 1
Student(v) ot F( vr ) Symmetric
. Left skewed if <0
’ fn>0,0 p=o
Non-central ¢ (v, p) { (1) 1 K Symmetric if p =0,
1=Fy-u(n) ifn<0 Right skewed if p > 0.

Gompertz 1 —exp(—exp(n)) Left skewed

Gumbel exp(—exp(-n)) Right skewed

Table 2: List of the CDFs available in GLMecat to use as part of the link function for GLMs.
(1) Refer to Appendix A for the complete form of F, ..

the binomial regression. In this case, if f is a symmetric probability density function (PDF)
around zero, the largest effect occurs when 7 = 0. For instance, for the normal PDF, this
will be at f(0) ~ 0.4 and for the logistic PDF at f(0) = 0.25. A simple approach to make
the magnitudes of those two CDFs roughly the same is to multiply the probit estimates by
0.4/0.25 = 1.6 or to multiply the logit estimates by 0.25/0.4 = 0.625.

Bouscasse et al. (2019) proposed a normalization of parameter estimates via the location
parameter m and the scale parameter s of the CDF F. Two real points a and b are chosen
such that all CDFs in § have the same values for F'(a) and F'(b). It is imposed that F'(0) = 1/2
to preserve the interpretability of the intercepts. Note that the reference, the adjacent and
the sequential ratios satisfy this condition. To illustrate this, assume ¢; = 0 so that the
linear predictor only depends on the intercept, i.e., n; = ;. For reference models we obtain
mj/my = F(aj)/(1-F(aj)), hence, if the intercept is null, and setting F(0) = 1/2, it is
evident that the probabilities 7; and 7; are equal and so are all the elements in w. This
equality is also valid for the adjacent ratio but neither for sequential nor cumulative. For
the sequential family, we can find that the probabilities will correspond to 7; = (1/2)7 for
j=1,...,J -1, and 7y = (1/2)771. Conversely, for the cumulative ratio, the intercepts must
be strictly ordered and cannot be all equal to zero. Therefore for this model, the constraint
F(0) = 1/2 is not necessary. Remark that the condition F(0) = 1/2 is already satisfied
for the symmetric distributions and has to be imposed for asymmetric CDFs. The logistic
distribution is proposed as the reference CDF since it is part of the canonical link function.
Thus, the second point is given by F(b) = ¢’/(1 + €?). The authors suggested to use the
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quantile of the logistic distribution such that b = g, for some p > 1/2. The normalized space
is then §,, = {F €& : F(0) =1/2, F(qp) = p}. We have that Fy,, s, € Sq, if

_ FY(1/2) g

T F(p) - FI(1/2)
dp

T F(p) - F(12)

mo

S0

The normalized parameters using the above approach are: o’ = mg + ajso and 0} = J;s0
for y =1,...,J —1. We implemented this normalization since it works for any number of
categories, for any type of explanatory variables, and because it does not depend on the
dataset. In the functions of GLMecat, the normalization using the quantile g 95 (which can be
considered as the standard case, qo.95 ~ 2.94) is obtained with the argument normalization
= 0.95. The summary() function returns the transformed parameters when specifying the
argument normalized = TRUE. An example of the normalization of parameters is illustrated
in Section 4.

2.3. Design matrix 7

In a linear predictor, one can define constraints to model the effect of the explanatory variables
on the categorical response. Commonly, these constraints have been imposed only on the
slopes and not much attention has been given to the intercepts. In GLMcat, we divide the
design matrix into two blocks: I to control the intercepts and S to control the slopes, i.e.,

7=(1]5).

The design matrix can be fully customized using this decomposition. By default for the
reference family of models, the GLMcat package proposes a complete (also known as non-
proportional effects or category-specific effects) design without any constraint on the effects,
ie., Z.=(IS;). This matrix is of dimension (J -1) x (J —1)(1+p), and has the form:

1 z'
e =

Slope design matrix S:

the most common constraint is to impose the effects of the explanatory variables to be constant
across the response categories, thus, it is assumed the existence of a single global effect
for each explanatory variable. This constraint is known as the parallelism or proportional
assumption, and the user should verify its validity before using it (Harrell 2015). The slope
matrix associated with the parallel design is of dimension (J — 1) x p and has the form:

Sp =

93T

A more flexible framework is to consider both kinds of effects, complete and parallel, the
resulting design is known as partial parallel. The following slope matrix of dimension (J -
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1) x ((J = 1)p1 + pa) represents the design for p; explanatory variables ! = (x1,...,2,,) with
complete design effects, and py explanatory variables @? = (Tp, 41, ..., %p,+p,) With parallel
effects:
wlT CC2T
Scp =
xlT wQT

The glmcat() function assumes by default a parallel design for the cumulative, sequential,
and adjacent ratios. If all explanatory variables are to be set with the complete design, one
should simply specify parallel = FALSE. If the user opts for the partial parallel design, the
variables with a parallel effect must be specified in a string vector in the argument parallel.

In Section 4, we further explore the design matrix particularly for nominal response variables
for which the function discrete_cm() allows to specify a particular response category on
which the explanatory variable(s) is expected to have an effect.

Intercept design matrixz I:

if a single intercept is expected in the linear predictor, the intercept matrix I, is simply the
vector 1 of size J—1. The design matrix I, is obtained by specifying the string " (Intercept)"
in the argument parallel. Remark that in most categorical regression models, even for the
minimal model, intercepts are assumed different for each category. Thus the parallel design
is used to designate the design matrix Z, = (1;|Sy). The complete design Z. = (1.|S.) and
the parallel design Z, = (I.|Sy) are sufficient to define all the classical models (see Table 3).
Nevertheless, the constraints on I can be further explored.

Christensen (2024) presented some constraints on the intercept for the cumulative models.
For instance, if the distances between the adjacent intercepts are required to be the same for
all pairs (j,j + 1), we can write the intercepts as aj = aq +(j-1)0 for j=1,...,J - 1. In that
case, a corresponds to the first intercept and 0 to the constant distance between intercepts.
This restriction implies that, regardless of the number of categories, only two parameters
must be estimated. The associated design matrix is of dimension (J—1) x2 and has the form:

1 0
1 1
1 J-2

Another form is given when the intercepts are symmetric around zero, i.e., the categories are
supposed to be equally distant from the central category/categories. For an even and for an
odd number of response categories, the dimension of the intercept matrix is (J -1) x J/2 and
(J-1) x (J +1)/2, respectively, and the intercepts and their design matrices are respectively
written as:

0, ifj<J/2

;=40 if j=J 2,
j JJ2 117 / 6;-; otherwise,

9]/2—9]' ifj<J/2,
and ozjz{
9J/2+9J,j ifj>J/2,
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1 -1 i
-1
0 -« 0 and ‘11
1
1 1 1

The constraints on the intercepts are only available for the cumulative ratio and should be
specified through the argument threshold = "equidistant" or threshold = "symmetric".
The computational instability that is frequently found in the cumulative models can be al-
leviated with the use of this constraint given that the number of parameters is reduced.
An example of the use of the structured intercepts for cumulative models is presented by
Reinhard, Rutrecht, Hengstenberg, Tutulmaz, Geissler, Hecht, and Muttray (2017). In the
following, the set of design matrices will be denoted by 3.

2.4. (r,F,7) genericity

A large number of models for categorical responses have been proposed in the literature.
Depending on the scientific context, some of these models can be differently named despite
having the same formulation. In consequence, the relationships among them are often un-
recognized. Earlier in this paper, we mentioned that any GLM for categorical responses can
be written as the triplet (r, F,Z). In Table 3 we present some of the best-known models
in their original formulation and decomposed into the three components r, F, and Z. For
categorical responses, the (r, F, Z) specification enlarges the number of possible models to
consider. Furthermore, it eases the comparison between them as we are going to demonstrate
in the following.

2.5. Estimation and computational implementation

The GLMcat package can be installed within R (R Core Team 2025) using the line of code:
install.packages("GLMcat"). The standard arguments formula and data are already
known from the 1m() and glm() functions from the stats package. The key difference is
that in the glmcat () function, the link of the model must be specified through the two ar-
guments ratio and cdf. In GLMcat, the response (categorical) variable must be defined as
a factor or an ordered factor. The user can specify/change the order of the factor levels by
means of the ordered() function. Alternatively, and for ease of use, one can indicate the
order as a character vector in the argument categories_order. An example of the syntax
of the glmcat () function for an ordinal response is

R> glmcat(formula = Level ~ Age, data = DisturbedDreanms,
+ categories_order = c("Not.severe", "Severe.1", "Severe.2",
+ "Very.severe"), ratio = "adjacent", cdf = "gompertz")

For non-ordered response variables, the user must use the reference ratio, for which by default,
the reference category is set to be the last level of the response factor variable. The user can
also specify manually the reference category in the argument ref_category. Assuming that
there is no order in the response of the DisturbedDreams dataset, the model would be fitted
as follows:
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The multinomial logit model
P(Y = ) = exp(aj + ')

1+ Zg;ll exp(ay + xtdy)

(reference, logistic, complete)
Uy 1

Tty B 1+exp(—aj —aztéj)

The odds proportional logit model

ln{ P(Y < j)

t
= . 6
Py <j| M7

(cumulative, logistic, parallel)
B 1
"~ 1+exp(-aj - xtd)

7T1+"-+7Tj

The proportional hazard model
In{-In{P(Y >j|Y 2j)} = + ©'8

(sequential, Gompertz, parallel)
" =1 -exp(—exp(a; + x'd))

Tttty

The adjacent logit model

m{ P(Y =)
P(Y=5+1)

(adjacent, logistic, complete)
Ty

t -

=oj+x0; =
J J Ny s — 2ls.
i+ 71 1+exp(—a; —xtdy)

The continuation ratio logit model

P(Y=j) _ ts
ln{P(Y>j+1)}_aj+m 0;

(sequential, logistic, complete)
Ty

T+ + Ty T1s exp(—a; —x'd;)

Table 3: (r, F, Z) specification of some classical GLMs for categorical responses.

R> data("DisturbedDreams", package = "GLMcat")
R> glmcat(formula = Level ~ Age, data = DisturbedDreanms,
+ ref_category = "Very.severe', ratio = "reference", cdf = "gompertz")

The object generated by the glmcat () function is compatible with the usual generic meth-
ods: coef() for the parameter estimates B8 and confint() for their confidence intervals,
logLik() for the log-likelihood, nobs() for the number of observations n, predict() to
obtain 7 (if type = "linear.predictor") or & (if type = "prob"), vcov() to obtain the
variance-covariance matrix of the parameters of the fitted object, plot () to represent graph-
ically the log-likelihood profile over the iterations, and summary() to generate the summary
of the fitted model. The AIC() and the BIC() functions are available to obtain the values
of the Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC),
respectively. As for the regressions tests (available in the function anova() ), we implemented
the Wald test to check Hp:d; ) =0 (where d;, is the effect of the kth explanatory variable on
the jth category). In addition, to investigate the significance of terms in the linear predictor,
one can obtain the likelihood-ratio test that compares nested models by specifying the two
models in the anova() function. We also adapted the step() function of the stats package
to incorporate the classical stepwise variable selection for (r, F,Z) models. Similar to the
original function, our adaptation employs the AIC criterion in the stepwise algorithm for
selecting variables. The resulting function provides forward and backward directions. The
user has to define the chosen design for each explanatory variable. Both directions will then
conserve these constraints on the coefficients.

Note that the link function g : A - R’! is differentiable if the ratio r: A - (0,1)7~! and the
CDF F:R - (0,1) are both differentiable. All the CDFs available in GLMcat (see Table 2)
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are differentiable (i.e., there exists a density function such that f = F’). The four ratios are
also differentiable, thus, we use the Fisher’s scoring algorithm for the estimation of the model.
In the following, we present the form of the algorithm in the iteration ¢

2 -1
B IB { ( aﬁTaﬂ B=pL 613 B=pl1]

Applying the chain rule to the log-likelihood (given here for one observation) [ = In P(y|x; 8) =
y'0 —b(0) , we obtain the score

oL _omom 90 01
9B 0B M Ow A0
Since the response distribution belongs to the exponential family, it becomes

ol o
— =ZT—COV(Y|x) ' (y - 7).
3 an OV(Yl|z)™ (y-m)

Then, using the decomposition of the link function presented in Equation 1, we obtain

ol OF On
— =772 CoV(Y ) Ny -

and Fisher’s information matrix

2
E —8 l = _ZTa_Fal
oB'oB

o OF
V(Y |z) ' =—
on or COV(Ylz) orT on’

Remark that the Jacobian matrix dF/dn is the diagonal matrix of densities { f(1;)};-1,....7-1;
the Jacobian matrices associated to each ratio Om/dr are detailed in Appendix B. Note that
the above calculations of the score and the Fisher’s information matrices concern only one
observation. To obtain the total expected result, the contributions of the n observations have
to be added.

Computational difficulties for the maximum likelihood are expected when either complete or
quasi complete separation occurs in the dataset, this is due to the fact that the maximum
likelihood estimator (MLE) is not unique in that case. Another situation involving such
difficulties occurs for the cumulative ratio used together with a complete or partially parallel
design; these models are not invertible and the algorithm might fail to converge (more details
are given in Section 3). The standard numerical optimization techniques have no way of
detecting this problem and will keep iterating until the iteration’s bound is reached (Albert
and Anderson 1984). The convergence criteria for the Fisher’s scoring algorithm is set to be
reached in GLMcat when
1) ~ 18

9
> j—
e+l m

where £ = 0.0001 by default. Thus, the algorithm will stop iterating either when the maximum
number of iterations is met, or until the Equation 3 becomes true. In case of convergence prob-
lems, an additional strategy is to initialize the model parameters 8 [0] specifying a numerical
vector in the argument control_glmcat. For the reference, adjacent and sequential ratios,
the algorithm is initiated with B[O] as the null vector. Conversely, the intercepts of cumulative

, 3)
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models are symmetrically and ascendingly defined around 0, thus ago] < ago] <...< aL[,O_]l. In

GLMcat, the user can also modify the number of iterations (which by default is 25), and
the size of the convergence tolerance given by ¢ with the argument control_glmcat, for
example: control_glmcat(iterations = 30, epsilon = 0.0001). In scenarios where a
user aims to employ the Student’s distribution but is uncertain about the degrees of freedom,
they can set the find_nu argument to TRUE within the function. This triggers the use of
the optimize () function, which is a part of the base R package. The optimize() function
combines the golden section search and parabolic interpolation methods (Brent 1973) to lo-
cates the minimum or maximum of a single-variable function within a specified interval. In
our case, we've defined the search interval as [0.25, 8], and the optimization objective as the
log-likelihood.

As Wickham (2015) states, R is a high-level expressive language, and that expressivity comes
at a price: speed. In order to improve the speed of the functions in GLMcat, we incorpo-
rated C++ (Stroustrup 2013) code through the Repp package (Eddelbuettel and Frangois
2011). The algorithms are implemented in a modular manner, meaning that enhancement or
adjustment can be easily extended to all the families of models.

3. Models for ordinal responses

Based on the common foundation exposed by the triplet (r, F), Z), it is possible to describe
some properties of the models for categorical responses (Peyhardi et al. 2015). Such infor-
mation empowers the practitioner to adequately choose (from a wide range of options) the
model that best suits the characteristics of the data. As indicated in the past sections, the
link function is composed of r and F'. By changing either of them, one might obtain improve-
ments in terms of the goodness-of-fit measures. Nevertheless, the performance of a model is
not merely measured through the fit. The foremost consideration for choosing a model should
be the consistency among the nature of the data, the modeling objectives, and the model’s
features. In the following, we introduce and illustrate on real datasets, by means of GLMcat,
the properties of the GLMs for ordinal responses. We intend to guide the practitioner in the
selection process of the link function.

3.1. Reversibility

To announce the reversibility property of the models for ordinal responses, we need to recall
the following definitions introduced by Peyhardi et al. (2015):

o The models (r, F, Z) and (v, F', Z") are said to be equivalent if one is a reparameteriza-
tion of the other, i.e., there exists a bijection h from © to ©’ such that rto F{Z(x)8} =
(r"Y Lo F'{Z'(x)h(B)}, for all x € X, and all B € O.

e The models (r, F,Z) and (r', F’, Z") are said to be equal if the corresponding distribu-
tions of y|x are equal, i.e., if r™1 o F{Z(x)B} = (')t o F'{Z'(x)B}, for all x € X, and
all B € ©. Note that the equality between models implies that they are equivalent.

e An (r,F,Z) model is said to be invariant under a permutation o of {1,...,J}, if it
is equivalent to the (r,F,Z), model which is defined on the permuted vector m, =

(7ra(l)7 s 77r0'(J—1))'
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On the basis of the above definitions, an (r, F, Z) model is said to be reversible if it is in-
variant under the reverse permutation & defined by 6(j)=J -j+1forall je{l,...,J-1}.
The reversibility property was first studied for cumulative models with some specific distri-
butions by McCullagh (1980). Later, Peyhardi et al. (2015) generalized it for all symmetric
distributions as well as for the adjacent ratio.

Proposition 1. The (adjacent, F, Z) and the (cumulative, F, Z) models are reversible for
all symmetric CDFs F and all the design matrices Z proposed in this package.

McCullagh (1980) suggests that depending on the application, the reversibility may be seen
as an appealing property, for example, when the response is given by an ordered scale.

Moreover, for any CDF F € § and Z € 3, we have that:

Proposition 2. The (adjacent, F, Z)s model and the (cumulative, F, Z)s model are re-
spectively equal to the (adjacent, F, —PZ) and the (cumulative, F', —PZ), where F(n) =
1 - F(-n), and P is the restricted reverse permutation matriz of dimension J —1:

1
p-= . (4)
1

Refer to the Appendix C for the demonstration.

Note that if a CDF is symmetric then F' = F; for asymmetric distributions, as the Gumbel
CDF, F corresponds to its symmetric counterpart, in this example, the Gompertz CDF. For a
practical illustration of Proposition 2, consider the observations of the boys’ disturbing dreams
benchmark dataset presented by Maxwell (1961). This study cross-classified boys by their
age x (which corresponds to the mid-point values for each stratum of 2 or 3 years, and it is
treated as a continuous explanatory variable), and the severity of their disturbing dreams Y on
a four-point scale of increasing severity. The data is available as the object DisturbedDreams
in the GLMcat package. The (adjacent, Gumbel, parallel) model is defined as:

R> data("DisturbedDreams", package = "GLMcat")

R> adj_gumbel_p <- glmcat(formula = Level ~ Age, data = DisturbedDreams,

+ ratio = "adjacent", cdf = "gumbel", categories_order = c("Not.severe",
+ "Severe.1", "Severe.2", "Very.severe"))

R> logLik(adj_gumbel_p)

'log Lik.' -279.9612 (df=4)
R> summary (adj_gumbel_p)

Level ~ Age

ratio cdf nobs niter logLik
Model info: adjacent gumbel 223  (7) -279.9612

Estimate Std. Error z value Pr(>|zl|)

(Intercept) Not.severe 0.22676 0.26157 0.867 0.386
(Intercept) Severe.l1  -0.36548 0.24270 -1.506 0.132
(Intercept) Severe.2  -0.33321 0.22899 -1.455 0.146
Age 0.07146 0.01806  3.957 7.59e-05 **x
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Figure 1: Scale ordering in severity of disturbed dreams versus process ordering in the edu-
cational path.

Now, inverting the order of the categories in the argument categories_order, and using
the symmetric counterpart CDF of the Gumbel, we fit the (adjacent, Gompertz, parallel)s
model:

R> adj_gompertz_rev <- glmcat(formula = Level ~ Age, data = DisturbedDreams,
+ ratio = "adjacent", cdf = "gompertz", categories_order = c("Very.severe",
+ "Severe.2", "Severe.l1", "Not.severe"))

R> logLik(adj_gompertz_rev)

'log Lik.' -279.9612 (df=4)
R> summary (adj_gompertz_rev)

Level ~ Age
ratio cdf nobs niter loglik
Model info: adjacent gompertz 223 7 -279.9612
Estimate Std. Error z value Pr(>|zl)
(Intercept) Very.severe 0.33321 0.22899  1.455 0.146

(Intercept) Severe.2 0.36548 0.24270 1.506 0.132
(Intercept) Severe.l -0.22676 0.26157 -0.867 0.386
Age -0.07146 0.01806 -3.957 7.59e-05 x*x*x

Note that the estimated parameters of the last model are reversed and with the opposite
sign, but the log-likelihood is still the same. This would also be true using any symmetric
CDF. Given Proposition 1, the cumulative and the adjacent models are suitable for the
type of responses that have an ordering scale associated with their categories. However, the
reversibility property is not valid for the sequential models since these are non-invariant under
the reverse permutation. The user should consider the sequential ratio if there is a time-related
notion or a time-ordered process (which cannot be reversed) implicit in the response. For
instance, the education level (see Figure 1) is conditioned on the completion of the previous
degrees. The sequential ratio is the only one that takes into account this particularity of the
response variable, for this reason, it is commonly employed in survival analysis.
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3.2. Total invariance

An (r, F, Z) model is said to be totally invariant if it is invariant under all permutations of the
response categories. It is well known that the MNL or equivalently, the (reference, logistic,
complete) model is totally invariant. Agresti (2010) demonstrated that this model is equiv-
alent to the (adjacent, logistic, complete) model. To illustrate this equivalence, consider
the two models: (reference, logistic, complete) and (adjacent, logistic, complete), for the
DisturbedDreams dataset:

R> mod_ref_log_c <- glmcat(formula = Level ~ Age, ratio = '"reference",
+ parallel = FALSE, data = DisturbedDreams, cdf = "logistic")
R> mod_adj_log_c <- glmcat(formula = Level ~ Age, ratio = "adjacent",

+ parallel = FALSE, data = DisturbedDreams, cdf = "logistic")
R> logLik(mod_ref_log_c); logLik(mod_adj_log_c)

'log Lik.' -277.1345 (df=6)
'log Lik.' -277.1345 (df=6)

R> coef (mod_ref_log_c)
(Intercept) Not.severe -2.454

(Intercept) Severe.l1  -0.555
(Intercept) Severe.2 -1.125

Age Not.severe 0.310
Age Severe.1 0.060
Age Severe.2 0.112

R> coef (mod_adj_log_c)

(Intercept) Not.severe -1.8998
(Intercept) Severe.1 0.5700
(Intercept) Severe.2 -1.1246

Age Not.severe 0.2500
Age Severe.l1 -0.0523
Age Severe.2 0.1123

Remark that the log-likelihoods of the last two models are equal but the estimations of the
parameters are different. As demonstrated by Peyhardi et al. (2015), there exists a matrix A
(see Appendix C for details), such that A = @' for the intercepts, and Ad = &’ for the slopes.

R> A <- matrix(c(1, 0, 0, -1, 1, 0, 0, -1, 1), nrow = 3)
R> A 7%}, coef (mod_ref_log c)[1:3]

[1,] -1.8998
[2,] 0.5700
[3,] -1.1246

R> A 7%}, coef(mod_ref_log_c)[4:6]
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Figure 2: The cumulative model represented through a latent continuous variable.

[1,] 0.2500
[2,] -0.0523
[3,] 0.1123

As well as the (reference, logistic, complete), the (adjacent, logistic, complete) model is totally
invariant and therefore, it is inappropriate for ordinal responses. Apart from this model, any
other model in the adjacent family preserves the order assumption, yet, this family has usually
been ignored when dealing with ordinal responses.

3.3. Latent variable interpretation

As considered by McCullagh (1980) and Biirkner and Vuorre (2019), the (cumulative, logistic,
proportional) model can be seen as if the observed Y was originated from the categorization
of a latent continuous variable Y. This latent variable follows a linear regression model
Y = a+x"6+¢ where ¢ is a noise variable with CDF F. To model this categorization process,
the cumulative ratio assumes that there exists J —1 strictly ordered cut-points —oo = ¢y < ¢1 <
...<@&j_1 <&y = oo that partition Y into J observable ordered categories of Y, i.e.,

{YZj}<:>éj_1<}~/Séj,
for j=1,...,J. The cumulative probabilities are

P(Y <jle) =P(Y <¢&)
=P(e<é-a-x'd)
= F(aj + $T5)

with a; = ¢ — &, and 6 = -8. We represent this structure (for J = 4) in Figure 2, where we
can see that
T = P(éj,l < }7 < Ej).

The order structure is more easily interpretable using the notion of the latent continuous
variable where the categories are considered as successive intervals (¢;-1,¢;]. Remark that
this only holds when the constraint of proportionality is assumed for all explanatory variables.
In the other cases (complete or partial parallel design) the interpretation in terms of the latent
variable is no longer accurate.

The sequential ratio assumes that the successive choices between category j and the cate-
gories over j is determined by the latent variables f’j =a+ acTSj +ej, for j=1,...,J -1,
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Figure 3: The sequential model represented as latent continuous variables.

where the residuals €; are independent and identically distributed according to the CDF F.
This sequential mechanism can be viewed as a binary process at each transition, thus, it is
appropriate when the assumption of a single underlying latent variable does not hold. We
can write then

-1 ~
{Y=j}=N{Ve>a Y <6},
k=1
so the conditional probabilities of the event {Y = JIY >4} for j=1,...,J can also be written
as {Y =j|Y > j} ={Y; <¢;}, then, we have
P(Y = jIV 2 ;@) i= Flaj +76;),

where o = ¢j — &, and §; = —Sj. In Figure 3, we illustrated the sequential model with a
process that starts from category 1. If Y; < ¢; the process stops and we have Y = 1, otherwise,
i.e., Y1 > ¢1, the process continues and we know that it will at least reach category 2. The
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Given Y ¢ {172} Given Y € {2,3} Given YV € {374}

Figure 4: The adjacent model partially represented as a latent continuous variables.

process continues in this way until the last category is reached. In this context, we can
represent the probabilities of each category as

. =1
Ty = P(Y} < Ej) H P(Yk > ékz)~
k=1
The transition can be interpreted in terms of the difficulty of reaching the next category.
Upper levels can only be achieved if previous levels were visited earlier and not kept. Therefore
the model is built around the conditionality principle.

The adjacent ratio describes the probability that category j rather than category j + 1 is
achieved:

{(Y=jlYe{jj+1}}={Y;<¢}
for j =1,...,J —1. In Figure 4, we represent the adjacent ratio using latent continuous
variables. Note that each category j is present in two different latent variables Y; and Yj4.
In contrast to the cumulative and the sequential ratio, m; cannot be written only in terms of
the latent variables:
T = P(Y] < Ej)(?Tj +7Tj+1).

As a result, this ratio lacks of interpretability since there is not a natural process that leads
to its formulation.

3.4. Invertibility

An (r, F, Z) model is said to be invertible if its link function is invertible, i.e.,
w=rtoF(n)eA, YneR/L

For the cumulative ratio we have

mj = F(n;) = F(nj-1),

and thus, n;_1 > n; implies 7; < 0. Therefore, the family of cumulative models is not invertible.
To illustrate the case of a non-invertible model, consider the effect on road accident severity
caused by the speed limit (speed_limit), the road type (road and urban_or_rural_area),
the light (light_conditions), the weather conditions (weather) of the road where the acci-
dent occurred, and the number of casualties (number_of _casualties). For this analysis, we
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used the data from 2019 openly available in https://data.gov.uk/ and accessible using the
stats19 package (Lovelace, Morgan, Hama, Padgham, Ranzolin, and Sparks 2019). This data
set is also available in GLMcat. In the presence of the ordered response variable (accident
severity with levels: slight, serious, and fatal), the ratio candidates to consider are cumulative,
sequential, and adjacent. We first tried to fit the (cumulative, Cauchy, complete) triplet but
due to the strong restriction of the cumulative ratio, this attempt failed to converge:

R> data("accidents", package = "GLMcat")

R> glmcat(accident_severity ~ road + urban_or_rural_area +
+ day_of_week + number_of_casualties + weather +

+ light_conditions + speed_limit, data = accidents,

+ parallel = FALSE, ratio = "cumulative", cdf = "cauchy")

Warning messages:
1: In .GLMcat(formula = formula, data = data, ratio = ratio, cdf = cdf,
Fisher matrix is not invertible. Check for convergence problems

One of the simplest ways of tackling this problem is to impose the constraint n;_; < n; through
the use of the parallel design. Evidently, the parallel constraint reduces the complexity of
the Fisher’s scoring algorithm since the condition to preserve the order in the successive
iterations is only linked to the intercepts, i.e., a1 < ;. However, to our knowledge, no
previous research has investigated the validity of this constraint in iteration t after having
imposed it in iteration 0. A widely used model with the parallel constraint is the odds
proportional logit model. Its widespread popularity is due to the fact that it is ideal in terms
of interpretation ease and of model parsimony (Abreu, Siqueira, Cardoso, and Caiaffa 2008).
However, in practice, the parallel assumption does not usually hold when considering more
than one explanatory variable (Lall, Campbell, Walters, Morgan, and MRC CFAS Team
2002), thus, this restrictive assumption is often violated. Continuing with the example, the
(cumulative, Cauchy, parallel) model is successfully fitted through:

R> cum_cau <- glmcat(accident_severity ~ road + urban_or_rural_area +
+ day_of_week + number_of_casualties + weather +

+ light_conditions + speed_limit, data = accidents,

+ parallel = TRUE, ratio = "cumulative", cdf = "cauchy")

R> summary (cum_cau)

accident_severity ~ road + urban_or_rural_area + day_of_week +
number_of_casualties + weather + light_conditions + speed_limit
ratio cdf nobs niter logLik
Model info: cumulative cauchy 109577 (10) -62593
Estimate Std. Error z value Pr(>|zl)

(Intercept) Slight 1.819854  0.103695  17.55 < 2e-16 **x*
(Intercept) Serious 22.134261  0.544747 40.63 < 2e-16 **x
roadOne way street -0.082418 0.096072 -0.86 0.39096

roadRoundabout 0.247637  0.066977 3.70 0.00022 *xx
roadSingle carriageway -0.502254 0.030708 -16.36 < 2e-16 *x*x
roadSlip road 0.431389  0.115313 3.74 0.00018 *x*x*
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urban_or_rural_areaUrban 0.265489 0.026713 9.94 < 2e-16 **x
day_of_weekMonday 0.033254 0.035015 0.95 0.34226
day_of_weekSaturday -0.096729 0.033531 -2.88 0.00392 *x*
day_of_weekSunday -0.196414 0.033577 -5.85 4.9e-09 *x*x
day_of_weekThursday -0.036032 0.033538 -1.07 0.28266
day_of_weekTuesday 0.045625  0.034784 1.31 0.18963
day_of_weekWednesday -0.007348 0.034093 -0.22 0.82935
number_of_casualties -0.155693 0.009172 -16.98 < 2e-16 *x*x
weatherFine no high winds 0.106271  0.077432 1.37 0.16993
weatherFog or mist 0.370257  0.169997 2.18 0.02940 *
weatherRaining + high winds 0.081563 0.105066 0.78 0.43757
weatherRaining no high winds 0.226007 0.081171 2.78 0.00536 *x*
weatherSnowing 0.549765  0.207627 2.65 0.00810 *x*
light_conditionsDaylight 0.209250 0.019735 10.60 < 2e-16 *xx
speed_limit -0.010764 0.000921 -11.69 < 2e-16 **x

On the other hand, we observe that the adjacent and the sequential models are both invertible
using any form of the linear predictor. We can write the probabilities of the (adjacent, F,Z)

models as: I
_ Hk:_j F(nk)/(l - F(nk))
1+ S F(pe) /(1= F ()
and the probabilities of (sequential, F, Z) models in the form:

T

j-1
mj = F(1;) ]H(l = F(nr))-

In both cases, one can readily identify that 0 < 7; < 1 for all j € {1,...,J -1} such that
Z}]:1 mj = 1. If the slope effect is expected to be different for each category and the cumulative
ratio fails to fit the model, the practitioner should consider the adjacent or sequential ratios
instead. For our example, since the order of the response categories is not time-dependent,
we fit the (adjacent, Cauchy, complete) model obtaining:

R> adj_cau <- glmcat(accident_severity ~ road + urban_or_rural_area +
+ day_of_week + number_of_casualties + weather +

+ light_conditions + speed_limit, data = accidents,

+ parallel = FALSE, ratio = "adjacent", cdf = "cauchy")

R> summary(adj_cau)

accident_severity ~ road + urban_or_rural_area + day_of_week +
number_of_casualties + weather + light_conditions + speed_limit
ratio cdf nobs niter loglik
Model info: adjacent cauchy 109577 (14) -62060
Estimate Std. Error z value Pr(>|z])

(Intercept) Slight 1.97092 0.11264 17.50 < 2e-16 **x*
(Intercept) Serious 9.89386 0.95812 10.33 < 2e-16 **x
roadOne way street Slight -0.09133 0.10924 -0.84 0.40312

roadOne way street Serious 3.46606  3.39346 1.02 0.30707
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roadRoundabout Slight 0.
roadRoundabout Serious 6.
roadSingle carriageway Slight -0.
roadSingle carriageway Serious -1.
roadSlip road Slight 0.
roadSlip road Serious -0.
urban_or_rural_areaUrban Slight 0.
urban_or_rural_areaUrban Serious 0.
day_of_weekMonday Slight 0.
day_of_weekMonday Serious -0.
day_of_weekSaturday Slight -0.
day_of_weekSaturday Serious -0.
day_of_weekSunday Slight -0.
day_of_weekSunday Serious -0.
day_of_weekThursday Slight -0.
day_of_weekThursday Serious -0.
day_of_weekTuesday Slight 0.
day_of_weekTuesday Serious -0.
day_of_weekWednesday Slight -0.
day_of_weekWednesday Serious -0.
number_of_casualties Slight -0.
number_of casualties Serious -0.
weatherFine no high winds Slight 0.
weatherFine no high winds Serious 0.
weatherFog or mist Slight 0.
weatherFog or mist Serious -0.

weatherRaining + high winds Slight O
weatherRaining + high winds Serious O
weatherRaining no high winds Slight O
weatherRaining no high winds Serious 1

weatherSnowing Slight 0
weatherSnowing Serious 2
light_conditionsDaylight Slight 0
light_conditionsDaylight Serious 0
speed_limit Slight -0
speed_limit Serious -0
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In the analysis of the road accidents, the complete design could not be fitted using the cu-
mulative model. For this reason, we considered the (cumulative, Cauchy, parallel) model for
which the AIC results to be 125227. Then, we used the adjacent ratio aiming to investigate
the complete design. From the reported output of the (adjacent, Cauchy, complete) model
and based on the p-values, one can observe that many of the explanatory variables are sig-
nificant with the complete design, thus for each category. Although the number of model
parameters was increased, we observed an improvement in terms of the AIC which for the

adjacent model was 124199.
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Reversibility Latent variable Invertibility Not totally

interpretation invariant
Sequential v v v
Cumulative v v v
Adjacent v v v (i)

Table 4: Properties of the ratios for ordinal responses; shaded cells indicate that the property
is valid. (i) true only with the parallel design Z,. (ii) true only if F is different from Logistic
or if Z # Z,.

3.5. Choice of an ordinal model

Several authors have suggested that the choice of the model to fit ordinal responses should
correspond to the underlying nature of the response variable (Ananth and Kleinbaum 1997;
O’Connell 2006; Agresti 2010). On the basis of the above-mentioned properties, we can define
some general guidelines for this choice. Firstly, it is important to differentiate whether the
ordinal variable has a temporal foundation associated with the occurrence of the categories
(time-ordered process); or if it was drawn from an ordered scale which would still be inter-
pretable, even if the order of the categories is reversed (Figure 1 illustrates an example of this
differentiation). In the time-ordered process scenario, it is assumed that to reach category j
it was necessary to have visited the previous categories 1,...,j5 — 1. Consider the example of
the level of education attained by different people. Following a traditional academic path,
it is possible to attend high school only after the completion of both elementary and middle
school. In this case, the sequential ratio would be the best option to work with, since it is
the one that best captures this dynamic process.

For the ordered scale response variables, either the cumulative or adjacent ratio can be used
since they are reversible. However, the adjacent ratio is invertible but there is no interpre-
tation in terms of a latent variable. By contrast, the cumulative ratio relies on the latent
variable formulation, but, it is not invertible (see Table 4). In practice, this means that when
the practitioner wants to specify either a complete or a partial parallel design, some compu-
tation problems may occur when using the cumulative ratio. Moreover, the interpretation
via a latent variable does not hold for the cumulative ratio with a design different from the
parallel. Therefore, as the adjacent ratio is invertible, the adjacent family of models should
be preferred. Still, the cumulative models are the most widely used in the literature. Per-
haps, the unpopularity of the adjacent ratio is due to the fact that only the logistic CDF is
proposed in most softwares. Moreover, note that the (adjacent, logistic, complete) model is
not appropriate for ordered responses due to its total invariance property.

As for the matrix design, multiple alternatives can be considered. Some researchers prefer
to start by using the parallel design for all the explanatory variables. If the model fits
poorly they might include separate effects by considering the complete design for some or
all of the explanatory variables. Other options to address the concern of an inadequate
parallel assumption are using different CDFs or adding additional terms to the linear predictor.
Furthermore, models with different designs can be compared using the AIC and/or the BIC
as measures for parsimony. A conventional technique that aims to minimize some of these
criteria is the stepwise variable selection, also available in GLMcat. Likewise, several options
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Scale ordering
(reversibility)

Time-ordered
process

(sequential, F, Z)

Parallel assumption No parallel assumption
(latent variable interpretation) (invertibility)
(cumulative, F, Z,) (adjacent, F, Z,)

with F' # logistic (total invariance)

Figure 5: Schematic guide for choosing the appropriate ratio according to the characteristics
of the response.

can be used for the CDF component. As mentioned above, the comparison of parameter
estimates requires special attention if different distributions are specified. Furthermore, the
assumptions of the model on the response are strongly shaped by the choice of the CDF. This
is the case of the interaction between the adjacent ratio and the logistic CDF.

Figure 5 compiles the key points we have presented in this section. In summary, we recommend
to use a sequential model if there is a time-ordered process among categories. If there is a
scale ordering, use a cumulative or adjacent model since they are both reversible. Given that
the interpretability through latent variables can be advantageous, we suggest favoring the use
of a cumulative model whenever the assumption of parallelism is valid. Otherwise, opt for an
adjacent model since it is invertible, and we urge to not use the logistic CDF to avoid the total
invariance. We intended to give some general recommendations, however, each analysis has
its own particularities which should be addressed from each of the three angles specified by
the ratio r, the CDF F', and the design matrix Z. We encourage the user to fit and compare a
set of models under different criteria in order to find the (r, F, Z) triplet that best approaches
their research questions.

4. Models for nominal responses

The MNL is the most popular regression model for categorical responses. In the case of
a nominal response, it is often the only model available; except in discrete choice (DC)
theory where some extensions have been proposed. In this specific DC framework, the MNL
can be interpreted in terms of an underlying behavioral model, the so-called random utility
maximization (RUM) model, i.e., P(Y = j) = P(U; = maxy, Uy), where U; = nj + ¢; and €;’s
are independently Gumbel distributed. The U; associated with each alternative j (category
j) is called random utility. Two classical extensions are frequently used as RUM models: the
multinomial probit (MNP) model, for which € = (e1,...,e7) follows a multivariate normal
distribution, and the nested logit (NL) model, for which the residuals €; are independent and
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follow a generalized Gumbel distribution. There are some difficulties with the interpretation
and the inference of these models. Since the MLE of the NL model cannot be directly obtained,
the model estimation is computed either simultaneously (best alternative when there are less
than four nested levels) or sequentially (which might lead to a suboptimal log-likelihood
at convergence); more details about this are given by Forinash and Koppelman (1993) and
Louviere, Hensher, Swait, and Adamowicz (2000). On the other hand, the estimation of
MNP models can be complex (specially when J > 3) due to the underlying multidimensional
integrals of the multivariate normal density function (Geweke, Keane, and Runkle 1994).

We propose to use an extension of the MNL in the DC framework based on the reference
model’s family: (reference, F, Z), where Z can take into account variables specific to the
alternatives {w;};-1,. s. The linear predictor takes the general form: n; = oj + "0 + (w; -

wy)'y, for j=1,...,J -1, thus, the design matrix, where @; = w; —w, has the form:
1 z' @7
1 ' @),

Note that these models are invariant only under the permutation that fixes the reference
alternative (see Peyhardi et al. 2015, for details). In other words, contrary to the MNL,
changing the reference alternative leads to a different model (except if F' = logistic). The
advantages of the reference models (versus MNP or NL) are:

o they include MNL as a special case (F = logistic),
o their simple inference procedure (Fisher’s scoring algorithm),

o their simple interpretation since each alternative is compared to a reference alternative
g
7I'j+J7TJ = F(le)

Another good property is the invertibility which is evident from writing the probabilities of
the model in the form:
F(n;)/(1 - F(n;))

1+ 302 Fm) /(1= F ()
It should be remarked that the reference models are DC models but not RUM models. More-
over, the (reference, normal, Z) model is different from the MNP model.

J

We propose to use the family of (reference, Student(v), Z) models, which is an alternative
that grants robustness and flexibility through the Student CDF. Indeed, Peyhardi (2020)
showed that the influence function is bounded with the Student CDF (contrary to the logistic
or normal CDFs). Consequently, these models are less sensitive to outliers than the MNL, in
addition, they seem to be less sensitive to noisy explanatory variables. The Student CDF itself
generates a family of models as different fits are expected when changing v. The flexibility we
previously mentioned, lies in the increase of the range of possible CDFs to consider as part of
the link function. For instance, the three most popular link functions can be obtained with

e Vv=1> FV = Cauchy,
e v=8= F, ~ logistic, and

e v — 0o = F},, = normal.
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The Student distribution has been further extended by using a non-centrality parameter pu.
This generalization is known as the non-central ¢ distribution. The resulting CDF is also avail-
able in GLMcat and can be used by specifying its parameters: cdf = list("noncentralt",
df = 5, mu = 2). Note that the non-central ¢ distribution is asymmetric unless p = 0 (in
which case it is equivalent to the Student CDF). A detailed description of this distribution can
be found in Johnson, Kotz, and Balakrishnan (1995) and its PDF is recalled in Appendix A.

To estimate these models in GLMcat, we create the function discrete_cm() which requires
data in a long format (an example is given in the following). Thus, for each individual (or
decision-maker), there are multiple observations (rows), one for each of the alternatives the
individual could choose. We call the group of observations for an individual a case. Each
case represents a single statistical observation (although it comprises multiple observations),
and the identification column of the n cases should be specified in the argument case_id.
The user must be aware that the discrete_cm() function has been built for the particular
case of explanatory variables specific to the alternatives. If not required, the user can call the
glmcat () function using the reference ratio.

4.1. Application

Consider the dataset studied by Louviere et al. (2000) in which 210 passengers choose one
travel mode among the J = 4 options: air, train, bus, and car (available in GLMcat as the
TravelChoice object). In this analysis, the individual’s attributes are the household income
(hinc) and the traveling group size (psize). The alternative specific attributes for each travel
mode are the generalized cost (gc) and the terminal waiting time (ttme). The dataset has
a long format, i.e., the variables concerning the n individuals are detailed in n x J lines; an
example for the first two individuals is:

R> head(TravelChoice, 8)

indv mode choice ttme invc invt gc hinc psize
1 air FALSE 69 59 100 70 35
1 train FALSE 34 31 372 71 35
1 bus FALSE 35 25 417 70 35
1 car TRUE 0 10 180 30 35
2 air FALSE 64 58 68 68 30
2 train FALSE 44 31 354 84 30
2 bus FALSE 53 25 399 85 30
2 car TRUE 0 11 255 50 30

0O N oW
N NNNDE = ==

In the following, we estimate and compare a set of models with different CDFs and with
different specifications of the reference category.

Logistic CDF

We first estimate the (reference, logistic, Zc(;,z) model (which corresponds to the MNL) con-
sidering car as the reference category, the associated design matrix where h represents hinc,
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c for gc, t for ttme, and p for psize, is:

1 00 A 0O 0 p 0 0 cur—Cear tair — tear
Zc(;v)* =01 0 0 A O 0 p O Chus—Cear thus — tear
001 00 A OP O D Ctrain — Ccar btrain — tear

R> logistic_car <- discrete_cm(formula = choice ~ hinc +

+ psize + gc + ttme, case_id = "indv", alternatives = '"mode",
+ reference = "car", data = TravelChoice, alternative_specific = c("gc",
+ "ttme"), cdf = "logistic")

R> summary (logistic_car)

"choice ~ hinc + psize + gc + ttme + indv + mode"
ratio cdf nobs niter loglik
Model info: reference logistic 210  (5) -177.4541
Estimate Std. Error z value Pr(>|z|)

X.Intercept. air 7.873608  0.986848  7.979 1.48e-15 **x*
X.Intercept. bus 4.433192 0.778334 5.696 1.23e-08 ***
X.Intercept. train 5.559205 0.699139 7.952 1.84e-15 *x*x
hinc air 0.004071  0.012725 0.320 0.749020
hinc bus -0.023324 0.016297 -1.431 0.152391
hinc train -0.055185 0.014482 -3.810 0.000139 **x*
psize air -1.027423 0.265657 -3.867 0.000110 **x*
psize bus -0.030010  0.333977 -0.090 0.928402
psize train 0.302395 0.225616  1.340 0.180144
gc -0.019685 0.005401 -3.644 0.000268 ***
ttme -0.101566  0.011231 -9.044 < 2e-16 **x*

R> logLik(logistic_car)
'log Lik.' -177.4541 (df=11)

A more specific design was studied by Louviere et al. (2000, p. 157) and Greene (2003, p. 730).
These analyses set the effect of the variables hinc and psize exclusively for the category air,
ie.,
nj = o5+ mTaairlj:air + (wj - wcar‘)T7 (5)

for j € {air, bus, train}. Hence, the associated design matrix is:

1 00 h p cur—Cear tair — tear

01 0 0 0 cpus—Cear thus — Lear

00100 Ctrain — Ccar  ttrain — tear

As far as we know, there is no other package in R to fit this particular design. In GLMcat,
we can fit this model with the lines of code:

R> logistic_car_alt <- discrete_cm(formula = choice ~

+ hinc[air] + psizelair] + gc + ttme, case_id = "indv",
+ alternatives = "mode", reference = "car", data = TravelChoice,
+ alternative_specific = c("gc", "ttme"), cdf = "logistic")

R> summary(logistic_car_alt)
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"choice ~ hinclair] + psizelair] + gc + ttme + indv + mode"
ratio cdf nobs niter loglik
Model info: reference logistic 210  (5) -185.9149
Estimate Std. Error z value Pr(>|z|)

X.Intercept. air 7.334807 0.946436  7.750 9.19e-15 *xx*x
X.Intercept. bus 3.591702  0.475771  7.549 4.38e-14 **x
X.Intercept. train 4.371913 0.478124 9.144 < 2e-16 **x
hinc air 0.023815 0.011189 2.128 0.0333 *

psize air -1.173817  0.258133 -4.547 5.43e-06 **x*
gc -0.023507 0.005084 -4.624 3.76e-06 ***
ttme -0.100213 0.010543 -9.505 < 2e-16 **x*

R> logLik(logistic_car_alt)
'log Lik.' -185.9149 (df=7)

By applying the AIC-based stepwise algorithm to the model with the logistic CDF, all four
explanatory variables were found to have discriminative properties. This highlights the suit-
ability of the full model with an AIC value of 385.83. Refer to the detailed experimentation
in the package’s vignette: An example of variable selection in GLMcat.

Student CDF

We now employ the Student CDF. The design specified by the linear predictor in Equation 5
depends on the reference alternative jg. Since reference models are sensitive to changes in
the reference alternative, it is necessary to select jo appropriately.

To this end, we set the parameter find_nu = TRUE in the discrete_cm() function, as v is
not known a priori and can be determined using the method outlined in Section 2.5. Through
this approach, we found that the highest log-likelihood —146.7092 was achieved when using
car as the reference alternative, with a degree of freedom of v = 0.490052.

R> mod_car <- discrete_cm(formula = choice ~ hinc +

+ psize + gc + ttme, case_id = "indv", alternatives = '"mode",
+ reference = "car", alternative_specific = c("gc", "ttme"),
+ normalization = 0.95, data = TravelChoice, cdf = "student",

+ find_nu = TRUE)
R> mod_car$cdf

$cdf
[1] "student"

$freedom_degrees
[1] 0.490052

$mu
[1] ©
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Figure 6: Log-likelihood curves for models with reference category: car (green), bus (yellow),
train (red) and air (blue), and with v with a 0.05-step from 0.2 to 2 and an integer-step from
2 to 20.

R> summary(mod_car, normalized = TRUE)

Normalized coefficients with sO = 0.06599551
[1] "choice ~ hinc + psize + gc + ttme + indv + mode"
ratio cdf nobs niter loglik
Model info: reference student 210 12 -146.7092
Estimate Std. Error z value Pr(>|z]|)

X.Intercept. air 5.422391  1.944758 2.788 0.00530 *x*
X.Intercept. bus 2.495377 0.872363 2.860 0.00423 *x*
X.Intercept. train 2.737738 0.947959 2.888 0.00388 x*x
hinc air 0.007033  0.007077 0.994 0.32035
hinc bus -0.002872 0.010188 -0.282 0.77805
hinc train -0.006442 0.007005 -0.920 0.35773
psize air -0.238991 0.222474 -1.074 0.28271
psize bus 0.364196 0.331718 1.098 0.27224
psize train 0.265797  0.128758 2.064 0.03899 *
gc -0.004722 0.001835 -2.574 0.01006 *
ttme -0.087668  0.029787 -2.943 0.00325 **

Additionally, we plotted the curves to visualize how the log-likelihood varies with changes in
v across different alternatives. As shown in Figure 6, when v = 8, the log-likelihoods for the
four models (one for each alternative) converge to similar values around —177. This result is
expected, as the logistic CDF, which approximates the fit of Student(8), is the only model
that offers invariance under all permutations of alternatives.

Based on the previous results and a significance level of 0.01, only terminal waiting time sig-
nificantly impacts the choice of travel mode. Notably, the model with this single explanatory

variable has a log-likelihood of —148.7015, which is close to the log-likelihood of —146.709 for
the model with all other explanatory variables.
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R> dis_stu_2 <- discrete_cm(formula = choice ~ ttme, case_id = "indv",
+ alternatives = "mode", reference = "car", data = TravelChoice,

+ alternative_specific = "ttme", cdf = list("student",

+ df = 0.490052))

R> logLik(dis_stu_2)
'log Lik.' -148.7015 (df=4)

Note that not all Wald tests exhibit significance, unlike the case with the logistic CDF. It is
may be due to a numerical problem since it is known that the CDF and especially the PDF
evaluation is unstable when the v is near to zero. Indeed Fisher’s information matrix could
be poorly estimated and thus the Wald tests could not reflect the reality. To determine the
discriminative nature of explanatory variables, a variable selection algorithm based on AIC is
employed, encompassing both backward and forward approaches. Strikingly, both algorithms
converge to the same model, with only the ttme variable serving as the explanatory factor. A
direct comparison of AIC values between this Student model and the conventional multinomial
logit (MNL) model provides a conclusive insight: solely the ttme variable holds discriminative
significance in the context of travel mode choice.

Back to the dataset
This raises the question of whether the choice of transport mode can be completely determined
by the ttme variable.

Let see the raw dataset, with only the choice (first column) and the ttme variable (four
columns respectively for air, train, bus and car). Here one row correponds to one observation
and all the rows have been ordered according to the ttme values in order to ease the reading.

R> wide_data <- TravelChoice >}

+ select(individual = indv, mode, travel_time = ttme) }>/
+ spread(key = mode, value = travel_time)

R> sorted_data <- joined_data }>)

+ arrange (desc(air), desc(train), desc(bus), desc(car))

R> head(sorted_datal,-1], 20)

air bus car train mode

1 99 3 O 34  air
2 90 63 O 44  air
3 90 63 O 44  air
4 90 53 O 44  air
5 90 35 O 34  air
6 90 35 O 34 air
7 8 53 0 44  air
8 80 35 O 34 air
9 75 63 O 44  air
10 75 35 O 34 air
11 75 35 O 34 air
12 75 35 O 34 air
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Figure 7: Three-dimensional representation of observed terminal time values. The sizes of
the points are proportional to the number of individuals who chose the travel option among:
air (blue), bus (yellow), car (green), train (red).

13 69 35 0 75 train
14 69 35 0 45 train
15 69 35 0 45 train
16 69 35 0 45 train
17 69 35 0 40 train
18 69 35 0 40 train
19 69 35 0 40 train
20 69 60 0 34 bus

Remark that if two observations (two rows) share identical terminal waiting times across all
modes of transportation (air, bus, car, and train) then the travel mode choice is the same.
This pattern is not limited to the 20 cases displayed; it extends to the entire dataset of 210
observations. As demonstrated in the following code snippet, a single mode of transport is
consistently chosen based on the distinct ttme combinations for air, bus, car, and train:

R> mode_summary <- sorted_data 7>}

+ group_by(air, train, bus, car) 7>
+ summarise (modes_count = n_distinct (mode)) %>}
+ ungroup

R> summary (mode_summary$modes_count)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1
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It means that, the ttme column alone can conclusively predict the selected mode of travel,
establishing a completely deterministic relationship. If the reader is not convinced, let’s
visualize the dataset in three dimensions. Since the terminal waiting time for the alternative
car is null, it is possible to represent the different values of this variable by points in three
dimensions (air, bus, and train) with a color indicating the observed travel mode.

The reader can visualize in Figure 7 that the ttme values are completely artificial. Note that
there are only two triplets (ttmeg,, ttmepy,s, ttmes qin) for which users choose car, these are:
(69,35,34) and (64,53,44). These points are the intersection of the lines formed by the other
observations. Random observations should not be align like this, they should be more chaotic.
Even if these lines of ttme values corresponds to an experiment and not to real observations,
they should be mixed by different colors. Concretely it is impossible to observe such a dataset.

In contrast to the logistic CDF, the Student CDF allows us to discover the completely artificial
nature of this classical dataset. This was possible because the Student CDF seems to be more
robust to outliers and noise variables (for more details see Peyhardi (2020)).

5. Discussion

Liu and Agresti (2005) presented an overview of developments in the analysis of ordinal re-
sponses. In their final comments, they highlighted that the current main challenge is to make
these methods better known to researchers who commonly encounter this kind of data. Up
to now, the models for categorical responses have been popularized in different disciplines
separately. We consider that once all the models are assembled, their specific characteristics
can be better understood and, thus, users can readily compare and choose a solution tai-
lored to the objectives of their analysis. In the present article, we illustrated a generalized
modeling framework for categorical responses, while introducing an R package that encom-
passes all these models. The contributions presented in this paper have wide applicability
given that several fields of research and industry deal extensively with categorical responses.
We discussed the properties of the different families of models, as well as the relevance of
the choice of both the CDF and the linear predictor’s form. With the GLMecat package, it
is now computationally possible to test a variety of categorical regression models using one
single function. We consider that this tool allows to popularize the area of categorical data
regression which has not been yet widespread on a large scale through non-logistic models.

Although the most popular CDFs often result in “similar” fits, this does not imply that all
CDFs are essentially equivalent when fixing the ratio. In distributions such as the Pregibon
(based on the generalized Tukey family) or the non-central ¢, some parameters control the
symmetry, the heaviness of the tails, and/or the skewness of the distribution. Hence, one
extension would be to consider an algorithm to estimate such parameters. The vast set of
new possible CDFs enlarges the toolkit for modeling categorical responses, and with their use,
subtle details might be uncovered as illustrated in the example of Section 4. An advantage
of the modularized architecture of the package is that it facilitates the inclusion of additional
CDFs which will be immediately available for all four model families.

The hierarchical structure of nominal, ordinal, or partially ordinal responses has been already
studied among others by Zhang and Ip (2012) and Peyhardi, Trottier, and Guédon (2016).
Based on the presented methodology, we can consider the (r, F, Z) triplets as basic units of
a hierarchically structured model. This general and flexible model allows taking into account
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possible relations among response categories. The hierarchical model is then defined by a
partition tree where, for each non-terminal node, an (r, F, Z) model is specified. Remark that
in this case, the link function would be composed of the tree partition, the set of ratios, and
the CDFs specified for the non-terminal nodes.

The GLM presented in Section 2 can be extended to include random effects. Some authors
have already made this extension for particular models in the context of categorical responses
(see Hartzel, Agresti, and Caffo 2001; Coull and Agresti 2000; Tutz and Hennevogl 1996). The
implementation of generalized linear mixed models is envisaged for the (r, F, Z) in GLMcat.
The mgev (Wood 2011) package provides a unified framework for modeling categorical re-
sponses and allows for the incorporation of non-linear effects and random effects using smooth
functions and penalized splines. However, its primary emphasis on generalized additive mod-
els restricts its suitability for other specialized models, limiting the range of link function
combinations available.

In the regression framework, model regularization and variable selection are also essential
tasks. These techniques aim to reduce the space of explanatory variables while improving
the model estimation and the prediction accuracy. We propose within the functionalities of
the GLMcat package the conventional stepwise approach. In high-dimensional problems, it
is also important to consider regularization methods. For categorical variables, the elastic
net penalty can be applied to categorical variables with the ordinalNet package, however, it
is only designed for three ratios. As future work, we will attempt to define regularization
and variable selection methods that are valid for any (r, F, Z) triplet. We expect, with this
extension, more detailed and accurate results, for instance, by means of the Student CDF
which is less sensitive to noise variables and thus will improve the variable selection task.
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A. CDF of the non-central ¢ distribution

1& 1w . 1
Fu,u(n) =®(—p) + 53‘:0 (ijy (J + > 5) +q;ly (J +1, 5)) )

where:

e & is the CDF of the standard normal distribution,

I, (a,b) is the regularized incomplete beta function,

2 2\J
pj = exp (—%) (%) , and
R BTV ITAY
TG 32) p( 2)(2)'

B. Jacobian matrices

The Jacobian matrices O /0r used as part of the Fisher’s scoring algorithm are presented for
each ratio.

Cumulative:

8_7r
or

In the following, we present the form of the element corresponding to row ¢ and column j of
the Jacobian Matrix.

Adjacent:
onj 1 mi(1-v) ifixj,
or;  F(n)[1-F(n)] —T%i otherwise,
where 7, =P(Y <) = 22:1 Th.
Sequential:
j-1
[T{1 - F ()} if i =,
or  |#1
o_ j-1
o |-Fp) 1 (1-F)} ifi<y
k=1,k+1
0 otherwise.
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Reference:
om; _ COV(Y;,Yj)

oy F(n)[1-F(m)]'
Refer to the Supplementary Material of Peyhardi et al. (2015) for further details.

C. Proofs

C.1. Proof of Proposition 1

Consider the distribution of Y defined by the (adjacent, F, Z) model. The adjacent ratio for
category J — j can be written as

-5
T(j_\W\T )= —7"7""""7"77 6
(7-5) () T (6)

for all j € {1,...,J — 1}. Simultaneously, consider the distribution of Y defined by the
(adjacent, F, Z)s model (equivalent to r(m,) = F(Z[3)), where & is the reverse permutation,
ie,d(j)=J—-j+1forall je{l,...,J -1}, we can prove the next equality

ri(ms) =1-15G.)(m) (G=1,....,J-1) (7)
through the ratio expressed for element 6(j + 1) = J — j in Equation 6 where

_ TJ-j+1

1=7r5(j1)(m) = P —

_ Te(h)
To(j+1) + To ()

= (7).

Given that r;(m5) = F(n;) and using Equation 7, we obtain that r;_;(m) = F(-n;). If we
denote i = J — j the last equality becomes

ri(m) = F(=15-)

for all j € {1,...,J —1}. Hence Y follows the (adjacent, F, —PZ) model, where P is the
restricted reverse permutation matrix of dimension J — 1 defined in Equation 4. Since P
has full rank, the design matrices Z and —PZ are equivalent, meaning the (adjacent, F, Z)
model is equal to the (adjacent, F, -PZ ) model. The above can be similarly demonstrated
for the cumulative ratio, but not for the sequential ratio given that Equation 7 is invalid for
these models. To prove it by contradiction, the reader can assume that the statement is false,
proceed from there, and at some point, a contradiction will result.

C.2. Proof of equality of (reference, logistic, AZ) and (adjacent, logistic, Z)

Assume that the distribution of Y is defined by the (reference, logistic, Z) model. For
j=1,...,J we obtain
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The adjacent ratio can be rewritten in terms of the reference ratio since

() () (),

Tj+1 Tj+1

therefore, using the reparametrization

_ 77}:773'—77]41, for j=1,...,J-2,
N1 =ns-1

represented by the matrix

of dimension J - 1, we obtain the equality (reference, logistic, AZ) = (adjacent, logistic, Z),
and, given that A is invertible, we obtain (reference, logistic, Z) = (adjacent, logistic, A1 7).
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