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Abstract

The nonlinear mixed model is a popular tool for analyzing continuous longitudinal
data. This paper is primarily concerned with gauging the sensitivity of nonlinear mixed
models to influential observations through local influence, which assesses the impact of
small perturbations of the likelihood function. Unlike when case deletion is used, in local
influence the model only needs to be fitted once, making it much more computationally
appealing. The methodology is illustrated with two datasets, establishing that the local
influence diagnostic can easily be applied to nonlinear mixed models through the NLMIXED
procedure in the SAS software as a tool to identify influential individuals.
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1. Introduction
An important step of model building is the application of model diagnostics. This can be
carried out, for example, by an influence analysis for detecting outliers and influential obser-
vations. Cook (1986) suggests that more confidence can be put in a model that is relatively
stable under small perturbations. A well-known perturbation scheme is case-deletion (Cook
1977), where the individual impact of observations on the estimation is measured. This
approach is called global influence analysis.
Another approach is local influence, first introduced by Cook (1986) as a general method for
assessing the influence of minor perturbations of a statistical model. Beckman, Nachtsheim,
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and Cook (1987) used local influence to investigate how the parameters change under small
perturbations of the error variances, the random-effects variances and the response vector
(Verbeke and Molenberghs 2000). An alternative perturbation scheme is case-weight pertur-
bation, where a weight ωi is assigned to each individual in the calculation of the parameter
estimates and it investigates how much the parameter estimates are affected by changes in the
weights of the log-likelihood contributions of specific individuals (Verbeke and Molenberghs
1997, 2000). Cook (1986) compared the results of local influence using the case-weight per-
turbation scheme in normal linear regression with his measure of global influence known as
Cook’s distance, Di. The author concludes that local influence and Di are merely summaries
of different characteristics of the influence graph obtained by modifying a single case-weight:
Local influence measures the influence of local changes in the case weight, while Di measures
its global changes.

Lesaffre and Verbeke (1998) showed that the local influence approach is useful for the de-
tection of influential individuals in longitudinal data analysis. Nonlinear mixed models have
been widely used in longitudinal studies to describe individual response profiles and to take
into account heterogeneity within subjects and between subjects as well as non-linear mean
structures. General formulations of the nonlinear mixed effects model have been described by
Lindstrom and Bates (1990), Pinheiro and Bates (1995), and Davidian and Giltinan (2003),
among other authors.

The aim of this paper is to describe the local influence methodology for nonlinear mixed
models using a case-weight perturbation scheme. Unlike case-deletion, in which the model
needs to be fit N + 1 times, once for the entire dataset, and once for each subject deleted,
in the local influence approach, the model only needs to be fitted once. This is a great ad-
vantage, especially because nonlinear mixed models can pose computational challenges. Also,
the case-weight perturbation scheme has the attractive feature of being able to distinguish
influence in fixed-effects parameters from that in variance components (Rakhmawati, Molen-
berghs, Verbeke, and Faes 2017). The general formulation for this perturbation scheme is
introduced and the implementation in SAS software (SAS Institute Inc. 2023) through the
PROC NLMIXED statement is presented. The PROC NLMIXED statement makes influence diag-
nosis computationally inexpensive once the mixed model is fitted.

This paper is organized as follows. The next section presents an overview of the nonlinear
mixed effects model in the repeated measurements context. In Section 3, the local influence
methodology is reviewed and in Section 4 the SAS implementation is discussed. Sections 5
and 6 illustrate the method and implementation using two different datasets analyzed with a
nonlinear mixed-effects model.

2. Nonlinear mixed-effects model

Let Y i denote the ni-dimensional vector of repeated measurements for the i-th subject, i =
1, ..., N , and Yij be the j-th outcome measured for subject i. In the nonlinear mixed model,
we assume that, conditioned on a q-dimensional vector of random effects bi, Y i is normally
distributed with mean vector µi, which can be a nonlinear function in the parameters, and
with covariance matrix Σi = σ2Ii, where Ii is a ni-dimensional identity matrix which depends
on i only through its dimension ni and bi is assumed to be normally distributed with mean
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vector 0 and covariance matrix D (q × q) with element dij = dji, i.e.,

Y i | bi ∼ N(µi, Σi),

bi ∼ N(0, D).

Let β be the p-dimensional vector of fixed effects parameters and let fi(yi | bi, β, σ2) be the
density function of Y i | bi and f(bi | D) be the density function of bi, then the marginal
density function of Y i is given by

fi(yi | β, D, σ2) =
∫

fi(yi | bi, β, σ2)f(bi | D)dbi. (1)

The log-likelihood for θ = (β, vec (D), σ2)⊤, where vec (D) is the vector of unique elements
in D, is derived as

ℓ(θ) = log
[

N∏
i=1

fi(yi | β, D, σ2)
]

= log
[

N∏
i=1

∫
fi(yi | bi, β, D, σ2)f(bi | D)dbi

]
. (2)

From (2), it follows that the log-likelihood function can be rewritten as

ℓ(θ) =
N∑

i=1
ℓi(θ), (3)

where ℓi(θ) is the contribution of the i-th individual to the log-likelihood.
We proceed by maximum likelihood. In general, it is not possible to find the analytic ex-
pressions for the integrals in ℓ(θ) and numerical approximations are needed (Pinheiro and
Bates 1995; Davidian and Giltinan 2003; Molenberghs and Verbeke 2005). It is also useful
to calculate estimates for the random effects bi as well. This can be done using empirical
Bayes estimates. Such estimates reflect how much the subject-specific profiles deviate from
the overall average profile (Molenberghs and Verbeke 2005).

3. Local influence
Let ℓ(θ | ω) denote a perturbed version of ℓ(θ), depending on a vector ω of weights. For the
detection of influential subjects, the perturbed log-likelihood will be given by

ℓ(θ | ω) =
N∑

i=1
ωiℓi(θ), (4)

where ω is now a (N × 1) vector of weights. When ωi = 1 ∀ i, we have the classical log-
likelihood (3). Also, the log-likelihood with the i-th individual removed corresponds to the
vector ω with ωi = 0 and ωj = 1 ∀ j ̸= i (Verbeke and Molenberghs 2000).
Let θ̂ be the maximum likelihood estimator for θ obtained by maximizing ℓ(θ) and let θ̂ω

be the maximum likelihood estimator for θ under ℓ(θ | ω), the local influence approach
compares θ̂ and θ̂ω based on the likelihood displacement LD(ω) = 2[ℓ(θ̂) − ℓ(θ̂ω)], so that
the variability of θ̂ is taken into consideration. LD(ω) will be large if ℓ(θ) is strongly curved
at θ̂ and small if ℓ(θ) is fairly flat at θ̂ (Verbeke and Molenberghs 2000).
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A graph of LD(ω) versus ω contains essential information on the influence of case-weight
perturbations. Cook (1986) refers to this graph as an influence graph, which represents a ge-
ometric surface formed by the values of the (N +1)-dimensional vector ζ(ω) = (ω⊤, LD(ω))⊤.
Graphically depicting the influence graph is only possible in cases where the number of weights
ω does not exceed two, so alternative methods are needed to extract the most relevant infor-
mation from an influence graph (Verbeke and Molenberghs 2000).
Cook (1986) proposes studying the local behavior LD(ω) around ω0 = (1, 1, ..., 1)⊤ as this
describes how sensitive ℓ(θ̂) is to small perturbations of the case weights. This was done using
the normal curvature Cl of LD(ω) around ω0 = (1, 1, ..., 1)⊤, in the direction of a vector l of
unit length. Let ∆i be the s-dimensional vector defined by

∆i = ∂2ℓi(θ | ωi)
∂ωi∂θ

∣∣∣∣∣
θ=θ̂,ω=ω0

.

where s = p + 1 + q(q + 1)/2. Then, ∆ is the matrix with i-th column equal to ∆i. Also, let
L̈ be the (s × s) matrix of second-order derivatives of ℓ(θ) with respect to θ and evaluated
at θ = θ̂, i.e.,

L̈ = ∂2ℓ(θ)
∂θ∂θ⊤

∣∣∣∣∣
θ=θ̂

,

Cook (1986) showed that, for any unit vector l, Cl is given by Cl = 2|l⊤∆⊤L̈
−1∆l|. Also

note that using the perturbed log-likelihood for the detection of influential subjects in (4), we
have

∆i = ∂2ωiℓi(θ)
∂ωi∂θ

∣∣∣∣∣
θ=θ̂,ω=ω0

= ∂ℓi(θ)
∂θ

∣∣∣∣
θ=θ̂

.

A possible choice for l corresponds to the direction of the i-th individual, that is, the vector li

that contains zeros everywhere except on the i-th position, where there is a one. The resulting
local influence is then given by

Cli = Ci = 2|∆⊤
i L̈

−1∆i|,

where a large Ci indicates a large impact of the i-th individual, in a local sense, on the total
parameter vector. Lesaffre and Verbeke (1998) suggest the use of cut-off values at which
individuals with twice the average value should be considered influential (2

∑N
i=1 Ci/N).

It is possible to extend the approach to measure the local influences of individual i on the
fixed effects and on the variance components, separately. This decomposition of Ci suggests a
practical procedure to find an explanation for the influential nature of an individual (Verbeke
and Molenberghs 2000). Let θ = (θ⊤

1 , θ⊤
2 )⊤, where θ1 contains all the fixed effects parameters

and θ2 contains all variance components of the model, and partitioning L̈ as

L̈ =
[
L̈11 L̈12
L̈21 L̈22

]
,

according to the dimension of θ1 and θ2. Then, the local influence of subject i on the esti-
mation of the fixed effects parameters, denoted by Ci(θ1), and for the variance components,
denoted by Ci(θ2), are given by

Ci(θ1) = 2
∣∣∣∣∣∆⊤

i

(
L̈

−1 −
[
0 0
0 L̈

−1
22

])
∆i

∣∣∣∣∣ ,
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Ci(θ2) = 2
∣∣∣∣∣∆⊤

i

(
L̈

−1 −
[
L̈

−1
11 0
0 0

])
∆i

∣∣∣∣∣ .

4. SAS implementation
Nonlinear mixed models can be fitted using the SAS software (SAS Institute Inc. 2023) through
the PROC NLMIXED statement. Using the HESS and SUBGRADIENT options, the PROC NLMIXED
statement enables the display of the Hessian matrix and the subject-specific gradients of the
integrated, marginal log-likelihood concerning all parameters.
The Hessian matrix corresponds to the second-order derivative of the negative marginal log-
likelihood function, i.e., −L̈, and the subject-specific gradient corresponds to the first-order
derivative of the contribution of the i-th subject to the negative marginal log-likelihood, −∆i.
The calculation of local influence can then be done within the PROC IML statement as a matrix
multiplication.
We have implemented the steps discussed above in SAS version 9.4. and SAS/IML 15.1.

5. Analysis of the orange tree dataset
Consider the orange tree data of Draper and Smith (1981), which consists of seven measure-
ments of the trunk circumference (in millimeters) on each of five orange trees. Lindstrom and
Bates (1990) and Pinheiro and Bates (1995) suggested the following nonlinear mixed-effects
model:

Yij = β1 + bi

1 + exp [−(tij − β2)/β3] + εij ,

with bi ∼ N(0, d) and εij ∼ N(0, σ2), where Yij represents the j-th circumference measure-
ment on the i-th tree and tij is the time in days (i = 1, ..., N = 5 and j = 1, ..., ni = n = 7).
Parameters estimates for this model can be found in Pinheiro and Bates (1995). The indi-
vidual growth profiles and the fitted values of the five trees are presented in Figure 1.
The analytical expressions of the individual log-likelihood and of the first-order derivative of
ℓi(θ) with respect to each of the elements of θ are available in Appendices A and B. Using
the NLMIXED procedure, we can obtain the second derivative of the negative log-likelihood
with respect to β1, β2, β3, d and σ2, using the HESS statement and the first-order derivative
of the individual negative log-likelihood with respect to each one of the parameters using the
SUBGRADIENT statement, producing the −L̈ and −∆i matrices, respectively. For the orange
tree dataset, we use the following code to fit the model and simultaneously store the Hessian
matrix into h and subgradient into gradi:

proc nlmixed data = OrangeTree HESS SUBGRADIENT = gradi;
parms beta1 = 190 beta2 = 700 beta3 = 350 d = 1000 sigma2 = 60;
num = b + beta1;
den = 1 + exp(-(Days - beta2) / beta3);
model y ~ normal(num / den, sigma2);
random b ~ normal(0, d) subject = Subject;
ods output Hessian = h;

run;
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Figure 1: Observed (circles) and fitted profiles (lines) for the orange trees dataset.

The local influence is then obtained using the IML procedure and the SAS code to generate
the Ci values for each subject is given below. The names of individuals must be given as
characters in the dataset so that they are read correctly into variable S.
The complete SAS code to generate the Ci on the fixed-effects parameters and on the variance
components is available as supplementary materials. Note that it is necessary to inform the
number of fixed effect parameters (f = 3) and the number of random parameters (r = 2) to
produce the local influence measures of individuals on the subvectors of θ. Part of the results
generated by the function are displayed in Table 1.

proc iml;
use h;
read all var _NUM_ into L;
L = -L[1:nrow(L), 2:ncol(L)];
close h;
use gradi;
read all var _NUM_ into Delta;
Delta = -Delta`;
read all var _CHAR_ into S[colname = Names];
close gradi;
Ci = vecdiag(2 * abs(Delta` * inv(L) * Delta));
create Local var {"S" "Ci"};
append;
close Local;

run;
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Tree Ci Ci(θ1) Ci(θ2)
T1 1.34438 1.33754 0.01007
T2 0.54546 0.50543 0.04019
T3 1.04095 0.79212 0.25279
T4 1.56653 1.39130 0.15089
T5 1.57305 1.29748 0.20742

Table 1: Local influences Ci for each tree and local influence on the fixed effects and on the
variance components, Ci(θ1) and Ci(θ2), respectively, for the orange trees dataset.

(a) (b)

Figure 2: (a) Plot of the local influences Ci for all trees in the orange trees dataset. (b) Plot of
Ci on fixed effects parameters versus Ci on variance components for the orange trees dataset.

Figure 2 displays overall Ci and influences for subvectors of fixed effects and variance com-
ponents under the case-weight perturbation scheme. No individual has a large impact on
the parameter estimates, measured by Ci (Figure 2(a)), falling all below the cut-off value of
2
∑N

i=1 Ci/N ≈ 2.43. Similarly, the cut-off values for Ci(θ1) and Ci(θ2) are 2.13 and 0.26,
respectively (Figure 2(b)). These cut-off values are indicated in Figure 2 by the dashed lines.
These results show that the model fit is not excessively influenced by a specific tree.

6. Analysis of the songbird dataset

Van der Linden et al. (2002) and Van Meir et al. (2004) presented a morphological study in
songbirds where they analyzed by magnetic resonance imaging (MRI) the effect of testosterone
on the dynamics of manganese accumulation in the nucleus robustus arcopallii (RA) and a
less studied area X of 10 female European starlings that had been injected with manganese
in their high vocal center. A schematic representation of the song control system in the bird
brain was given by the authors.
All birds were studied by MRI before and after the implementation of a subcutaneous capsule
in the neck region. The five treated birds (birds 6 to 10) received a capsule of crystalline
testosterone and the capsule was left empty for the five control birds (birds 1 to 5).
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6.1. MRI signal intensities at nucleus RA
Van der Linden et al. (2002) employed the following parametric shape for a bird’s profile:

SIij(RA) =
(ϕ0 + ϕ1Gi)T η0+η1Gi

ij

(τ0 + τ1Gi)η0+η1Gi + T η0+η1Gi
ij

+ γ0 + γ1Gi + εij , (5)

where SIij(RA) is the measurement of the MRI signal intensity for a region of interest RA
at occasion j for bird i, Gi is an indicator for group membership (1 for testosterone treated
birds and 0 otherwise), and Tij is the measurement time, referring to the before versus after
treatment epoch. Under this model, the maximal signal intensity equals ϕ0 + ϕ1Gi, the time
required to reach 50% of this maximum (T50) is given by τ0 +τ1Gi, and the shape of the curve
is η0 + η1Gi. In (5), ϕ0, ϕ1, τ0, τ1, η0, and η1 are fixed-effects parameters.
Based on (5), but taking into account the correlation between the repeated measurements
in the same bird and after inferences about the fixed and the bird-specific random effects
included in the model, Serroyen et al. (2005) suggest to fit the MRI signal intensities (SI) at
RA at the first period using the following model

SIij(RA) =
(ϕ0 + fi)T η0+ni

ij

(τ0 + ti)η0+ni + T η0+ni
ij

+ εij . (6)

As expected, no treatment effect is seen in (6) as it fits the period before subcutaneous capsule
implementation. So, in this model, ϕ0, η0, and τ0 are fixed effects parameters and the fi,
ti and ni are bird-specific random effects, where (fi, ti, ni)⊤ ∼ N(0, D) with cov(fi, ni) =
(ti, ni) = 0. Parameters estimates for this model can be found in Serroyen et al. (2005). The
observed and fitted profiles of MRI signal intensities at RA for the first (before the treatment)
and second period (after the treatment), whose model is defined later, for each bird separately
are presented in Figure 3.
Figure 4 displays overall Ci and influences for subvectors of θ under the case-weight per-
turbation scheme. Individuals with Ci larger than twice the average value (dashed line) are
considered as influential and the most influential subjects are indicated by their identification
number. The SAS code to obtain these results is available as supplementary material.
Bird 5 has a large impact on the parameter estimates, measured by Ci, falling above the
cut-off value of approximately 7.77 in Figure 4(a), indicated by the dashed line. For the
fixed-effects parameters, the cut-off value is 1.16 and for the variance components it equals
6.60. Figure 4(b) reveals that both fixed and random effects parameters of the fitted model
are affected by the influential bird. Notably, Bird 5 has the highest MRI signal intensities
at RA before the treatment implementation (Figure 3). Also, even considering that Bird
5 is influential for both the fixed effects and the random components, the impact is more
pronounced in the random effects parameters (Figure 4(b)).
For the second period, after the treatment, the proposed model by Serroyen et al. (2005) was

SIij(RA) =
(ϕ0 + fi)T η0+η1Gi

ij

(τ0 + ti)η0+η1Gi + T η0+η1Gi
ij

+ εij . (7)

Now, ϕ0, η0, η1, and τ0 are fixed effects parameters and fi and ti are bird-specific random
effects, where (fi, ti)⊤ ∼ N(0, D) with cov(fi, ti) = 0, and a group effect appears in (7). The
observed values and the fitted profiles can be seen in Figure 3.
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Figure 3: Observed (circles and squares) and fitted (lines) profiles for MRI signal intensities
at RA for the first and second periods for the songbird dataset.

(a) (b)

Figure 4: (a) Plot of the local influences Ci for all birds in the songbird dataset before
treatment. (b) Plot of Ci on fixed effects parameters versus Ci on variance components for the
songbird dataset before treatment. The most influential bird is indicated by its identification
number.

Birds 6 and 7, both treated, have a large impact on the parameter estimates, measured by
Ci, falling above the cut-off value of approximately 6.75 (Figure 5(a)). For the fixed effects
parameters, the cut-off value is 1.85 and for the variance components it equals 4.88. These
cut-off values are represented in Figure 5 by the dashed lines. Bird 6 is only influential for the
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(a) (b)

Figure 5: (a) Plot of the local influences Ci for all birds in the songbird dataset after treat-
ment. (b) Plot of Ci on fixed effects parameters versus Ci on variance components for the
songbird dataset after treatment. The most influential birds are indicated by their identifica-
tion number.

estimation of the variance components in the model while Bird 7 was considered influential in
both parts of the model (Figure 5(b)). Although Bird 8 is not considered influential overall,
it appears to be influential on the fixed effects parameters only.
Another nonlinear mixed model was fitted to the data in order to compare the results of the
local influence diagnostic. This model is inspired by a pharmacokinetic two-compartment
model. For numerical purposes, the response variable SI at RA was multiplied by 100 and
the random effects were considered uncorrelated. The initial model was given by

SIij(RA) = eβ0+β1Gi+bi exp
[
−eϕ0+fiTij

]
− eτ0+τ1Gi+ti exp

[
−eγ0+giTij

]
+ εij . (8)

Backward selection was conducted using likelihood ratio tests, resulting in the following model
for the first period:

SIij(RA) = eβ0+bi − eτ0+ti exp
[
−eγ0+giTij

]
+ εij

and, for the second period,

SIij(RA) = eβ0+bi exp
[
−eϕ0Tij

]
− eτ0+ti exp

[
−eγ0+giTij

]
+ εij .

Parameter estimates and standard errors for the final model for both periods are provided in
Table 2 and the observed and fitted profiles for each bird separately are presented in Figure 6.
The same bird (Bird 5) was influential for the parameter estimates of the two different models
fitted for the SI at RA for the first period (Figure 4 and Figures 7(a) and 7(b)). For the second
period, after treatment, birds 6 and 7 show the same behavior in Figures 5(b) and 7(d), with
bird 6 being influential on the estimates of the variance components of the model and bird 7
on the fixed effect parameters. Bird 8 was not considered influential in the first fitted model,
but appeared as influential for the estimation of the fixed effect parameters (Figure 5(b)).
In the two-compartment model, this bird was found influential for the complete parameter
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Effect Parameter Estimate
First period Second period

β0 4.1314 (0.1177) 4.2216 (0.1950)
ϕ0 -4.1759 (0.7608)
τ0 4.2835 (0.1158) 4.3201 (0.1894)
γ0 -1.6841 (0.1162) -1.6647 (0.1496)

var(bi) d11 0.1190 (0.0620) 0.0837 (0.0385)
var(ti) d33 0.1214 (0.0614) 0.1169 (0.0667)
var(gi) d44 0.0871 (0.0544) 0.1073 (0.1167)
var(εij) σ2 4.8995 (0.4600) 4.6653 (0.4400)

Table 2: Parameter estimates and standard errors (values in parentheses) for the two-
compartment model fitted to MRI signal intensities at RA for the first and second periods
for the songbird dataset. The SI at RA values were multiplied by 100.

Figure 6: Observed (circles and squares) and fitted (lines) profiles using the two-compartment
model for MRI signal intensities at RA for the first and second periods for the songbird dataset.
The SI at RA values were multiplied by 100.

vector as well as for the estimation of the fixed effects, but not for the estimation of the
variance components (Figures 7(c) and 7(d)). This shows that for the songbird dataset, even
with different models, the same animals were identified by the local influence diagnosis.
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(a) (b)

(c) (d)

Figure 7: (a) Plot of the local influences Ci using the two-compartment model for the songbird
dataset before treatment. (b) Plot of Ci on fixed effects parameters versus Ci on variance
components using the two-compartment model for the songbird dataset before treatment.
(c) Plot of the local influences Ci using the two-compartment model for the songbird dataset
after treatment. (d) Plot of Ci on fixed effects parameters versus Ci on variance components
using the two-compartment model for the songbird dataset after treatment. The most influ-
ential birds are indicated by their identification number.

6.2. MRI signal intensities at area X

To fit the MRI signal intensities at area X, Van der Linden et al. (2002) employed the same
nonlinear model presented in (5). After model simplification, we obtained the final model for
the first period as

SIij(area X) =
(ϕ0 + fi)T η0+η1Gi

ij

τη0+η1Gi
0 + T η0+η1Gi

ij

+ εij . (9)

Now, we have that the model for the first period has a treatment effect at the shape of
the curve, which was not expected, since the first period is before the implementation of a
subcutaneous capsule at the treated birds. This indicates a significant difference between the
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Figure 8: Observed (circle and squares) and fitted (lines) profiles for MRI signal intensities
at area X for the first and second periods for the songbird dataset.

Effect Parameter Estimate
First period Second period

ϕ0 0.1864 ( 0.0346) 0.1032 ( 0.0260)
ϕ1 0.1330 ( 0.0310)
η0 2.2168 ( 0.2579) 2.3492 ( 0.1497)
η1 -0.2925 ( 0.1566)
τ0 5.5324 ( 0.8421) 3.7190 ( 0.3222)

var(fi) d11 0.0039 ( 0.0021) 0.0042 ( 0.0022)
var(ti) d22 0.4923 ( 0.2780)

cov(fi, ti) d12 0.0339 ( 0.0225)
var(εij) σ2 0.0002 (0.00002) 0.0002 (0.00002)

Table 3: Parameter estimates and standard errors (values in parentheses) for the model fitted
to MRI signal intensities at area X for the first and second periods for the songbird dataset.

treated and control groups before the treatment was administered. Such a difference should
be interpreted with caution and is likely be due to chance. The observed and fitted profiles
for MRI signal intensities at area X in each bird are presented in Figure 8 and the parameter
estimates were presented in Table 3.
Through the Ci value of local influence, birds 4 and 9 were considered influential subjects in
the first period, falling above the cut-off value of 6.27 in Figure 9(a). Bird 4 was a control
bird and bird 9, a treated one, but both had the highest observed values of SI at area X in the
first period (Figure 8). The two influential birds were considered influential for the estimation
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(a) (b)

Figure 9: (a) Plot of the local influences Ci for all birds in the songbird dataset before
treatment. (b) Plot of Ci on fixed effects parameters versus Ci on random effects parameters
for the songbird dataset before treatment. The most influential birds are indicated by their
identification number.

(a) (b)

Figure 10: (a) Plot of the local influences Ci for all birds in the songbird dataset after
treatment. (b) Plot of Ci on fixed effects parameters versus Ci on random effects parameters
for the songbird dataset after treatment. The most influential birds are indicated by their
identification number.

of the variance components in the model (Figure 9(b)), considering the cut-off value of 4.60.
In (9), only two parameters correspond to the variance component elements, which are σ2

and the variance of the bird-specific random effect fi, which is related to the maximal signal
intensity at area X.
To fit the MRI signal intensities at area X for the second period, we use the following model

SIij(area X) =
(ϕ0 + ϕ1Gi + fi)T η0

ij

(τ0 + ti)η0 + T η0
ij

+ εij ,



Journal of Statistical Software – Code Snippets 15

Effect Parameter Estimate
First period Second period

β0 3.2895 (0.2109) 2.8826 (0.1805)
β1 0.7353 (0.1882)
τ0 3.3772 (0.1922) 2.9768 (0.1700)
τ1 0.7117 (0.1865)
γ0 -2.4537 (0.2238) -2.2021 (0.1558)

var(bi) d11 0.1140 (0.0552) 0.0847 (0.0407)
var(ti) d33 0.1092 (0.0544) 0.0808 (0.0399)
var(εij) σ2 2.0841 (0.1927) 1.9228 (0.1767)

Table 4: Parameter estimates and standard errors (values in parentheses) for the two-
compartment model fitted to MRI signal intensities at area X for the first and second periods
for the songbird dataset.

Figure 11: Observed (circles and squares) and fitted (lines) profiles using the two-
compartment model for MRI signal intensities at area X for the first and second periods
for each bird separately for the songbird dataset. The SI at area X values were multiplied by
100.

in which a treatment effect is included only for the maximal signal intensity (ϕ1), and random
effects parameters related to the maximal signal intensity and the time required to reach 50%
of this maximum. The model estimates are presented in Table 3 and the fitted profiles can
be seen in Figure 8.
Now, for the second period (after treatment), two treated birds were considered influential
(birds 6 and 7), falling above the cut-off value of 10.98 (Figure 10(a)). Also, both of them
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(a) (b)

(c) (d)

Figure 12: (a) Plot of the local influences Ci using the two-compartment model for the
songbird dataset before treatment. (b) Plot of Ci on fixed effects parameters versus Ci on
variance components using the two-compartment model for the songbird dataset before treat-
ment. (c) Plot of the local influences Ci using the two-compartment model for the songbird
dataset after treatment. (d) Plot of Ci on fixed effects parameters versus Ci on variance
components using the two-compartment model for the songbird dataset after treatment. The
most influential birds are indicated by their identification number.

were considered influential for the estimation of the variance components in the model (Fig-
ure 10(b)). Bird 9 was not considered influential overall but it was shown to be influential for
the estimation of the fixed-effect parameters. This bird is the only treated bird that shows
a lower SI at area X value after the testosterone treatment was administered. The SAS code
for obtaining local influence for both periods can be found in the supplementary material.
As was done for the fit of the SI at RA, another nonlinear mixed model was fitted to the
data. Again, the response variable was multiplied by 100 and the initial model was given by
(8) and after the inferences about the fixed and the bird-specific random effects included in
the model, we fitted the following model:

SIij(area X) = eβ0+bi − eτ0+ti exp [−eγ0Tij ] + εij
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for the first period and

SIij(area X) = eβ0+β1Gi+bi − eτ0+τ1Gi+ti exp [−eγ0Tij ] + εij

for the second period. Parameter estimates and standard errors for the final two-compartment
model for both periods are provided in Table 4 and the observed and fitted profiles for each
bird separately are presented in Figure 11.
The same birds were considered influential for the parameter estimates of the two fitted
models. Birds 4 and 9 are considered influential in Figures 9(a) and 12(a) and birds 6 and 7
are influential in Figures 10(a) and 12(c). Some small differences were observed in the plots
of the Ci on the fixed effects parameters versus Ci on variance components, in which different
birds appear above the cut-off values. Also, while in Figures 9(b) and 12(b) the two influential
birds appear to be influential on the estimates of the variance components, in Figures 10(b)
and 12(d), bird 7 appears to be influential in different parts of the model.

7. Concluding remarks
In this paper, we have considered the local influence methodology for the nonlinear mixed
models under the case-weight perturbation scheme and we have presented a set of analyses in
order to illustrate the methodology in two different datasets. The illustrative analysis aimed
to show how the local influence diagnostic can easily be applied to nonlinear mixed models
through the PROC NLMIXED statement in SAS software as a means of identifying influential
individuals.
For the case-deletion approach, the model needs to be fitted N + 1 times, once for the entire
dataset, and once for each subject deleted. Knowing how computationally demanding non-
linear mixed models are, this is a major disadvantage. For the local influence approach,
instead, obtaining the values of the influence measure is computationally inexpensive once
the mixed model is fitted, as the model only needs to be fitted once. Also, this influence
measure makes it possible to distinguish between the influence on the model’s fixed-effects
parameters and on the variance components.
After identifying influential individuals, each case should be carefully considered. We do
not recommend simply removing these cases without further investigation, as they may well
represent legitimate draws from the population under investigation and hence should remain
in the dataset. However, once the influential cases have been identified, several strategies can
be applied, including collecting additional data or additional measurements on existing cases,
checking data consistency, adapting model specification or ultimately deleting the influential
cases from the analysis if they represent inappropriate data (Verbeke and Molenberghs 2000;
Van der Meer, Te Grotenhuis, and Pelzer 2010; Nieuwenhuis, Te Grotenhuis, and Pelzer 2012).
For the orange tree dataset, in which no trees were found influential on the parameter esti-
mates of the model, we described in detail the entire process for obtaining the local influence
diagnostic for the case-weight perturbation scheme, describing the derivatives analytically
(see Appendix B). Also, the SAS code to generate the same results was described.
For the songbird dataset, the results of the local influence diagnostic were compared for two
different nonlinear mixed models, showing that the method was very stable when changing
the model. Another advantage is that using the PROC NLMIXED statement, the process of
obtaining the results does not change for different models.
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The methodology described here has been implemented in the SAS software system. The repli-
cation codes to generate the results presented in the paper are available in the supplementary
materials.
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A. Individual log-likelihood ℓi(θ) for orange tree dataset
The given model is nonlinear in the fixed-effect parameters, but linear in the random effect
bi, simplifying the calculation of the marginal mean over the random-effects distribution, so
the conditional mean is

E(Yij | bi) = β1 + bi

1 + exp [−(tij − β2)/β3] .

Defining µi = ηi + λibi, where

ηi =


β1

1+exp [−(ti1−β2)/β3]
· · ·
β1

1+exp [−(tini
−β2)/β3]

 and λi =


1

1+exp [−(ti1−β2)/β3]
· · ·
1

1+exp [−(tini
−β2)/β3]

 ,

and using (1), the marginal density of Y i is given by

fi(yi | β1, β2, β3, d, σ2) =
∫ ∞

−∞

e− 1
2 [(Y i−µi)⊤Σ−1(Y i−µi)]

(2π)ni/2|Σ|1/2
e− 1

2
b2
i
d

√
2πd

dbi

=
∫ ∞

−∞

e− 1
2 [(Y i−µi)⊤Σ−1(Y i−µi)+d−1b2

i ]

(2π)(ni+1)/2|Σ|1/2d1/2 dbi. (10)

The exponent of (10) can be rewritten as

(Y i − ηi − λibi)⊤Σ−1(Y i − ηi − λibi) + d−1b2
i . (11)

Let γi = Y i − ηi, then (11) became

= (γi − λibi)⊤Σ−1(γi − λibi) + d−1b2
i

= γ⊤
i Σ−1γi − 2λ⊤

i Σ−1γibi + λ⊤
i Σ−1λib

2
i + d−1b2

i

= (λ⊤
i Σ−1λi + d−1)b2

i − 2λ⊤
i Σ−1γibi + γ⊤

i Σ−1γi. (12)

Let V −1
i = λ⊤

i Σ−1λi + d−1, we can now write (12) as

V −1
i b2

i − 2λ⊤
i Σ−1γibi + γ⊤

i Σ−1γi = (θi − bi)⊤V −1
i (θi − bi) + ζ

V −1
i b2

i − 2λ⊤
i Σ−1γibi + γ⊤

i Σ−1γi = θ2
i V −1

i − 2θiV
−1

i bi + V −1
i b2

i + ζ.

Then

2λ⊤
i Σ−1γibi = 2θiV

−1
i bi

λ⊤
i Σ−1γi(Vi) = θiV

−1
i (Vi)

λ⊤
i Σ−1γiVi = θi

and

γ⊤
i Σ−1γi = θ2

i V −1
i + ζ

γ⊤
i Σ−1γi = (λ⊤

i Σ−1γi)2(Vi)2V −1
i + ζ

γ⊤
i Σ−1γi − (λ⊤

i Σ−1γi)2Vi = ζ.
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Using this results, we can rewrite the exponent of (10) as (θi − bi)⊤V −1
i (θi − bi) + ζ, resulting

in

fi(yi | β1, β2, β3, d, σ2) =
∫ ∞

−∞

e− 1
2 [(θi−bi)⊤V −1

i (θi−bi)+ζ]

(2π)(ni+1)/2|Σ|1/2d1/2 dbi

= e− 1
2 ζ

(2π)(ni+1)/2|Σ|1/2d1/2

∫ ∞

−∞
e− 1

2 [(θi−bi)⊤V −1
i (θi−bi)] dbi (13)

because ζ does not depend on bi. Multiplying and dividing (13) by (2π)1/2V
1/2

i , we obtain
the density function of a normal distribution

fi(yi | β, d, σ2) = e− 1
2 ζV

1/2
i

(2π)ni/2|Σ|1/2d1/2

∫ ∞

−∞

1√
2πVi

e− 1
2 [(θi−bi)⊤V −1

i (θi−bi)] dbi

= V
1/2

i

(2π)ni/2|Σ|1/2d1/2 e− 1
2 [γ⊤

i Σ−1γi−(λ⊤
i Σ−1γi)2Vi].

And the individual log-likelihood is given by

ℓi(θ) = log
{

V
1/2

i

(2π)ni/2|Σ|1/2d1/2 e− 1
2 [γ⊤

i Σ−1γi−(λ⊤
i Σ−1γi)2Vi]

}
,

where Vi = [λ⊤
i Σ−1λi + d−1]−1 and γi = Y i − ηi.

B. Derivatives of ℓi(θ) for the orange tree dataset

B.1. Derivative with respect to β1

∂ℓi(θ)
∂β1

= ∂

∂β1
log

{
V

1/2
i

(2π)ni/2|Σ|1/2d1/2 e− 1
2 [γ⊤

i Σ−1γi−(λ⊤
i Σ−1γi)2Vi]

}
.

For convenience, let us call c = V
1/2

i

(2π)ni/2|Σ|1/2d1/2 , and knowing that γi = Y i − β1λi, we now
have

∂ℓi(θ)
∂β1

= ∂

∂β1
log

(
c e− 1

2 {(Y i−β1λi)⊤Σ−1(Y i−β1λi)−[λ⊤
i Σ−1(Y i−β1λi)]2Vi}

)

=
∂

∂β1

(
c e− 1

2 {(Y i−β1λi)⊤Σ−1(Y i−β1λi)−[λ⊤
i Σ−1(Y i−β1λi)]2Vi}

)
c e− 1

2 {(Y i−β1λi)⊤Σ−1(Y i−β1λi)−[λ⊤
i Σ−1(Y i−β1λi)]2Vi}

= ∂

∂β1

{
−1

2
[
Y ⊤

i Σ−1Y i − 2λ⊤
i Σ−1Y iβ1 + λ⊤

i Σ−1λiβ
2
1

−(λ⊤
i Σ−1Y i − λ⊤

i Σ−1λiβ1)2Vi

]}
= ∂

∂β1

[
λ⊤

i Σ−1Y iβ1
]

− ∂

∂β1

[
λ⊤

i Σ−1λiβ
2
1

2

]

+ Vi(λ⊤
i Σ−1Y i − λ⊤

i Σ−1λiβ1)
[

∂

∂β1

(
λ⊤

i Σ−1Y i − λ⊤
i Σ−1λiβ1

)]
= λ⊤

i Σ−1Y i − λ⊤
i Σ−1λiβ1 − Vi(λ⊤

i Σ−1Y i − λ⊤
i Σ−1λiβ1)(λ⊤

i Σ−1λi)
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which can be simplified as

∂ℓi(θ)
∂β1

= [(λ⊤
i Σ−1λi)Vi − 1]

[
(λ⊤

i Σ−1λi)β1 − λ⊤
i Σ−1Y i

]
.

B.2. Derivative with respect to β2

∂ℓi(θ)
∂β2

= ∂

∂β2
log

{
V

1/2
i

(2π)ni/2|Σ|1/2d1/2 e− 1
2 [γ⊤

i Σ−1γi−(λ⊤
i Σ−1γi)2Vi]

}
.

For convenience, let us call c = (2π)ni/2|Σ|1/2d1/2 and Σ−1 = σ−2I = s−1I, and knowing
that Vi = (λ⊤

i Σ−1λi + d−1)−1, then

∂ℓi(θ)
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log
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(14)
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Solving each one of the derivatives in (14), first we have

∂

∂β2

[
γ⊤

i γi

s

]
= 1

s

∂

∂β2

[
γ⊤

i γi

]
,

but γi = Y i − β1λi, so

1
s

∂

∂β2
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i γi
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= 1

s

∂
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Also, in (14), we have
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The last part in (14) is
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So, returning to (14), we have that

∂ℓi(θ)
∂β2

= −1
2

 ∂

∂β2

[
γ⊤

i γi

s

]
− ∂

∂β2

 (λ⊤
i γi)2

s2
(
λ⊤

i λis−1 + d−1
)
+

∂
∂β2

[(
λ⊤

i λis
−1 + d−1

)]
(
λ⊤

i λis−1 + d−1
)


= −1

2

−2β1
s

∂

∂β2

[
λ⊤

i Y i

]
+ β2

1
s

∂

∂β2

[
λ⊤

i λi

]
−

2(λ⊤
i Y i − β1λ⊤

i λi) ∂
∂β2

[
λ⊤

i Y i

]
s2(λ⊤

i λis−1 + d−1)

+
2β1(λ⊤

i Y i − β1λ⊤
i λi) ∂

∂β2

[
λ⊤

i λi

]
s2(λ⊤
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+

(λ⊤
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∂β2

[
λ⊤
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]
s3
(
λ⊤

i λis−1 + d−1
)2 +

∂
∂β2

[
λ⊤

i λi

]
s
(
λ⊤

i λis−1 + d−1
)


= ∂

∂β2

(
λ⊤

i Y i

)β1
s

+ (λ⊤
i Y i − β1λ⊤

i λi)
s2
(
λ⊤

i λis−1 + d−1
)
− ∂

∂β2

(
λ⊤

i λi

)

×

β2
1

2s
+ β1(λ⊤

i Y i − β1λ⊤
i λi)
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(
λ⊤
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i γi)2

2s3
(
λ⊤

i λis−1 + d−1
)2 + 1

2s
(
λ⊤

i λis−1 + d−1
)
 ,

or, knowing that s−1 = σ−2,

∂ℓi(θ)
∂β2

= ∂

∂β2

(
λ⊤

i Y i

)β1
σ2 + (λ⊤

i Y i − β1λ⊤
i λi)

σ4
(
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)
− ∂

∂β2

(
λ⊤
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)
×

 β2
1

2σ2 + β1(λ⊤
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λ⊤
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(
λ⊤

i λiσ−2 + d−1
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 (15)

where
∂

∂β2

[
λ⊤

i Y i

]
= ∂

∂β2

 ni∑
j=1

Yij

1 + e
−(tij −β2)

β3

 =
ni∑

j=1

−Yije
−(tij −β2)

β3

β3

[
1 + e

−(tij −β2)
β3

]2 (16)
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∂β2

[
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= ∂
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
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j=1

1[
1 + e
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β3

]2

 =
ni∑

j=1

−2e
−(tij −β2)

β3

β3

[
1 + e

−(tij −β2)
β3

]3 . (17)

B.3. Derivative with respect to β3

The calculation of the derivative of the individual log-likelihood with respect to β3 follows
the same logic as Section B.2, with the exception of the results in (16) and (17), where:

∂

∂β3

[
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i Y i

]
= ∂

∂β3

 ni∑
j=1

Yij

1 + e
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β3

 =
ni∑

j=1
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3

[
1 + e
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]2 .
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∂
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3
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B.4. Derivative with respect to σ2

∂ℓi(θ)
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{

V
1/2

i
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}
.

For convenience, let us call c = (2π)ni/2d1/2 and σ2 = s. We know that Vi = (λ⊤
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d−1)−1 and Σ = sI, so |Σ| = sni and Σ−1 = s−1I. Then
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= γ⊤
i γi

2s2 − (λ⊤
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2
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,

or, considering that s = σ2,
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B.5. Derivative with respect to d
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which can be simplified as
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