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Abstract

Geostatistical spatial or spatiotemporal data are common across scientific fields. How-
ever, appropriate models to analyze these data, such as generalized linear mixed effects
models (GLMMs) with Gaussian Markov random fields (GMRFs), are computationally
intensive and challenging for many users to implement. Here, we introduce the R package
sdmTMB, which extends the flexible interface familiar to users of lme4, glmmTMB, and
mgcv to include spatial and spatiotemporal latent GMRFs using the stochastic partial
differential equation (SPDE) approach. SPDE matrices are constructed with fmesher,
and estimation is conducted via maximum marginal likelihood with TMB or via Bayesian
inference with tmbstan and rstan. We describe the model and explore case studies that
illustrate sdmTMB’s flexibility in implementing penalized smoothers, non-stationary pro-
cesses (time-varying and spatially varying coefficients), hurdle models, cross-validation,
and anisotropy (directionally dependent spatial correlation). Finally, we compare the
functionality, speed, and interfaces of related software, demonstrating that sdmTMB can
be an order of magnitude faster than R-INLA. We hope sdmTMB will help open this
useful class of models to more geostatistical analysts.
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1. Introduction

Data are often collected at particular locations in space or at spatial locations over time.
While such data are a rich source of information across many fields, they are challenging
to properly model – data closer in space and time are usually more similar to each other
than data farther apart due to measured and unmeasured variables (Cressie 1993; Diggle
and Ribeiro 2007; Cressie and Wikle 2011). While measured variables can be accounted
for with predictors in a model (e.g., measuring and modeling temperature effects on species
abundance), unmeasured variables can cause residual spatial correlation. Accounting for
this residual correlation is important because doing so allows for valid statistical inference
(Legendre and Fortin 1989; Dormann et al. 2007), can improve predictions (e.g., Shelton et al.
2014), and can provide useful spatial summary statistics (e.g., Thorson 2019b; Barnett et al.
2021).
Geostatistical generalized linear mixed effects models (GLMMs) with spatially correlated ran-
dom effects constitute an appropriate class of models for such data (Rue and Held 2005; Diggle
and Ribeiro 2007; Cressie and Wikle 2011; Thorson and Kristensen 2024). Just as random
intercepts can account for correlation among groups, spatial or spatiotemporal random ef-
fects can account for unmeasured variables that cause observations to be correlated in space
or in both space and time. A common approach to modeling these spatial effects is with
Gaussian random fields (GRFs), where the random effects describing the spatial patterning
are assumed to be drawn from a multivariate normal distribution, constrained by covariance
functions such as the exponential or Matérn (Cressie 1993; Chilés and Delfiner 1999; Diggle
and Ribeiro 2007).
Such models quickly become computationally challenging due to the need to invert large ma-
trices to account for covariation when evaluating the multivariate normal density function.
Many solutions have been proposed, such as predictive processes (Banerjee et al. 2008; La-
timer et al. 2009), the stochastic partial differential equation (SPDE) approximation to GRFs
(Lindgren et al. 2011), and nearest-neighbor Gaussian processes (Datta et al. 2016; Finley
et al. 2022). These approaches aim to minimize the scale of the covariance estimation problem
while providing a means to evaluate the data likelihood, thereby allowing fitting via Bayesian
(Gelfand and Banerjee 2017) or maximum likelihood methods. This can greatly improve
computational efficiency (e.g., Heaton et al. 2019). The SPDE approach has been widely
adopted, especially via the R-INLA package (Rue et al. 2009; Lindgren et al. 2011; Lindgren
and Rue 2015) and an implementation in TMB (Template Model Builder, Kristensen et al.
2016) that relies on R-INLA to create input matrices (Thorson et al. 2015c; Thorson 2019a;
Osgood-Zimmerman and Wakefield 2023; Thorson and Kristensen 2024). This SPDE method
approximates a Matérn correlation function as arising mechanistically from local diffusion in
space and/or time (Lindgren et al. 2011) and results in a sparse precision matrix that permits
efficient computation using existing sparse-matrix libraries (Rue and Held 2005).
Software packages designed for specifying statistical models that incorporate the SPDE, such
as R-INLA and TMB, are flexible and powerful but can be challenging for many applied
researchers. For example, TMB requires the user to program in a C++ template, and it
can be slow to experiment with multiple models when writing bespoke model code. While
packages such as lme4 (Bates et al. 2015) and glmmTMB (Brooks et al. 2017) let users quickly
iterate and explore statistical models – focusing on evaluating fit and comparing models –
they lack built-in SPDE or spatiotemporal functionality. Packages such as R-INLA, inlabru
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(Bachl et al. 2019), and VAST (Thorson 2019a) are powerful user interfaces to fit spatial
models that use the SPDE, but they lack a modular interface familiar to those who have used
lme4 or glmmTMB, lack some functionality, or may be challenging to learn for some users.
Here, we introduce the R package sdmTMB, which implements geostatistical spatial and
spatiotemporal GLMMs using TMB for model fitting and fmesher (Lindgren 2025) or R-
INLA to set up SPDE matrices. Our aim is not to replace the above-mentioned statistical
packages, but to provide a fast, flexible, and user-friendly interface that is familiar to users
of lme4, glmmTMB, or mgcv (Wood 2017) for a specific class of spatial and spatiotemporal
models. Many individual features of sdmTMB may be found in other software (Table 1), but
to date this full suite of useful features has not been integrated into a single package. One
common application in ecology is species distribution models (SDMs), hence the package name
(i.e., species distribution modelling with TMB), although the package is widely applicable to
other fields and any geostatistical data collected continuously in space and discretely indexed
in time.
This paper describes the statistical models underlying sdmTMB (Section 2), explains how
sdmTMB is designed and summarizes its software functionality (Section 3), illustrates its
use through three case studies (Sections 4, 5, and 6), compares sdmTMB to other packages
(Section 7) and concludes with a discussion of links to other packages and future development
directions (Section 8).

2. Model description

2.1. A spatial Gaussian random field GLMM

A GLMM with spatial Gaussian random fields can be written as

E[ys] = µs,

µs = g−1 (ηs) ,

ηs = Xsβ + ωs,

where the expected value E[·] of an observation y at coordinates in space s is defined as
the mean µs. That mean µs is the result of an inverse link function g−1 applied to a linear
predictor ηs. In this case, that linear predictor is the combination of a model matrix Xs

multiplied by a vector of coefficients β and a value from a spatial random field ωs. This
spatial random field represents the effect of latent spatial variables that are not otherwise
accounted for in the model. Alternatively, ωs can be thought of as representing spatially
correlated noise arising from unmodeled processes. More simply, the vector ω represents a
“wiggly” surface with an expected value of zero that is added to the linear predictor in link
space (e.g., Figure 1c). The vector ω is assumed to be drawn from a multivariate normal
distribution with a covariance matrix Σω,

ω ∼ MVNormal (0, Σω) ,

constrained by some function that defines the rate at which spatial covariance decays with
distance.
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Figure 1: Example Gaussian random fields for two range values. The range describes the
distance at which spatial correlation decays to ≈ 0.1 in coordinate units (i.e., the distance
at which two points are effectively independent). Panel (a) shows a shorter range than panel
(b), which results in a “wigglier” surface. Panel (c) shows the Matérn function for these two
range values. The dashed horizontal line shows the correlation threshold of ≈ 0.1.

2.2. The Matérn covariance function

Various covariance functions are possible, but a popular and flexible choice is the Matérn
(Whittle 1954; Matérn 1986); see Figure 1. Let h = sj −sk denote the spatial lag vector, and
let ∥h∥ be its Euclidean norm (the distance between locations). We represent the Matérn
covariance Φ as

Φ (sj , sk) = σ2
m

2ν−1Γ(ν) (κ∥h∥)ν Kν (κ∥h∥) .

The parameter σ2
m is the marginal variance (magnitude of the random field “wiggles”), Γ

represents the Gamma function, Kν represents the modified Bessel function of the second
kind, and κ is a scale parameter. The parameter ν controls the smoothness of the covariance
function. In practice, ν is challenging to estimate and is fixed here at ν = 1 (Lindgren et al.
2011). A more interpretable derived parameter than κ is the spatial range – the distance
at which two points are nearly independent. A common definition is

√
8ν/κ (so if ν = 1,

range =
√

8/κ), which corresponds to the distance at which correlation decays to ≈ 0.1
(Lindgren et al. 2011) (Figure 1c).

2.3. Geometric anisotropy

The assumption that correlation decays equally in all directions can be relaxed to allow for
geometric anisotropy. Replacing ∥h∥ by ∥Hh∥ yields

Φ (sj , sk) = σ2
m

2ν−1Γ(ν) (κ∥Hh∥)ν Kν (κ∥Hh∥) .

Here, we introduce a linear transformation matrix H applied to the spatial lag h = sj − sk,
with two estimated parameters: the direction of the major axis of anisotropy and the ratio of
the major to minor axes (Haskard 2007; Lindgren et al. 2011; Thorson et al. 2015b).
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2.4. The SPDE approach

In practice, working with the dense covariance matrix Σ is computationally expensive and
methods for working directly with its inverse, the precision matrix Q, are more efficient
(Q = Σ−1) (Rue and Held 2005; Simpson et al. 2012). One such approach is the SPDE
approach, which approximates a mechanistic process of local diffusion using methods drawn
from finite-element analysis. A full description of the SPDE approach is beyond the scope of
this paper. Instead, we refer to the following literature: Lindgren et al. (2011) develop the
approach. Lindgren and Rue (2015) and Bakka et al. (2018) summarize the SPDE approach
for spatial modeling in the context of R-INLA. The second chapter of Krainski et al. (2018)
provides an overview of the SPDE approach to spatial modeling with a focus on linking
theory to code. Miller et al. (2020) summarize the approach and illustrate its equivalence
to penalized smoothing approaches. Lindgren et al. (2022) provide a recent review of the
approach and its applications over the last decade.
For a user of sdmTMB, the following are the important elements to understand. First,
the SPDE approach links Gaussian random fields (GRFs) that have a Matérn covariance
function to Gaussian Markov random fields (GMRFs) in such a way that a GMRF can be a
good approximation to a GRF (Lindgren et al. 2011). This means that GRF models can be
computationally approximated as GMRFs. By working with GMRFs, one can take advantage
of theory developed to estimate their sparse precision matrix efficiently (Rue and Held 2005;
Lindgren et al. 2011) and avoid inverting large dense matrices. Second, the SPDE approach
involves piecewise linear basis functions that are defined by a triangulation over the spatial
area of interest (Lindgren et al. 2011). Commonly, this is referred to as a “mesh” (a finite-
element mesh). The properties of this mesh (e.g., its resolution and how far it extends beyond
the data) affect the accuracy and computational efficiency of the SPDE approach (Lindgren
et al. 2011). Third, working with the SPDE approach involves a precision matrix Q for the
GMRF and introduces an alternative parameter τ that scales it. The precision matrix is
constructed from three sparse matrices associated with the mesh (C, G1, and G2) (Lindgren
et al. 2011),

Q = τ2
(
κ4C + 2κ2G1 + G2

)
,

where κ is a scale parameter as before. For ν = 1, the marginal variance of the Matérn
random field is σ2

m =
(
4πτ2κ2)−1.

2.5. Adding spatiotemporal random fields

We can extend our spatial model to accommodate spatiotemporal data by adding Gaussian
random fields for each time step t (denoted ϵt).

E[ys,t] = µs,t,

µs,t = g−1 (Xs,tβ + ωs + ϵs,t) ,

ω ∼ MVNormal (0, Σω) ,

ϵt ∼ MVNormal (0, Σϵ) .

In this case, we assume the spatiotemporal random fields are independent at each time step,
but we could alternatively assume they are structured as a random walk or autoregressive
process (demonstrated in Section 5.4). The spatiotemporal random fields represent latent
variables causing spatial correlation that changes with each time step.
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Main effects

Spatial random effects

Spatiotemporal random effects

Time-varying effects

Spatially varying effects

IID random intercepts

Model component Illustration Description

Linear, smoother, or 
breakpoint effects

All spatially correlated effects 
from variables that are 
constant in time but are 
omitted from the model
(or a model without a time 
element)

All spatially correlated effects 
from variables that change 
through time but are omitted 
from the model

Effects that vary through time

Effects (‘slopes’) that vary in 
space

Example

Linear temperature, spline of 
depth, or breakpoint effect of 
oxygen on abundance

Depth, latitude, or substrate 
effects if omitted from model

Temperature, oxygen, prey 
abundance effects if omitted 
from the model

Relationship between depth 
and fish abundance changes 
through time

(1) Local trends in 
abundance over time;
(2) spatial distribution 
depends on a climate index

Group-level effects that are 
constrained by normal 
distributions

Transect ID, vessel ID

Notation

Observation error

Example code

formula = y ~ x
formula = y ~ s(x)
formula = y ~ breakpt(x)

spatial = ‘on’
spatial = ‘off’

spatiotemporal = ‘iid’
spatiotemporal = ‘ar1’
spatiotemporal = ‘rw’
spatiotemporal = ‘off’

time_varying = ~ 0 + x
time_varying = ~ 1

spatial_varying = ~ x

formula = y ~ (1|g)

Error from observing or 
sampling the process

Counting birds or fish in a 
survey; recording presence/
absence in a quadrat

family = binomial(link = "logit")
family = nbinom2(link = "log")
family = tweedie(link = "log")

Figure 2: Components of an sdmTMB model with illustrations, descriptions, examples,
notation, and example code. An sdmTMB model can be built from any combination of the
process components (first six rows) plus an observation component (last row). The examples
are from an ecology context, but the model can be fit to any spatially referenced point data.
Notation: We refer to design matrices as X. The indices s, t, and g index spatial coordinates,
time, and group, respectively. The σ and Σ symbols represent standard deviations and covari-
ance matrices, respectively. All other symbols refer to the described model components (e.g.,
β and ω refer to a vector of main effects and spatial random field deviations, respectively).
Note that s() denotes a smoother as in mgcv (Wood 2017), breakpt() denotes a breakpoint
“hockey-stick” shape (e.g., Barrowman and Myers 2000), (1|g) denotes a random intercept
by group g, and ~0 is used in an R formula to omit the intercept.

2.6. Additional model components

In practice, the above models can become considerably more complex by, for example, allowing
coefficients to vary through time, allowing coefficients to vary through space (Hastie and
Tibshirani 1993), or adding random intercepts or slopes by grouping factors (Figure 2). All
these components enter additively on the linear predictor (link) scale. Adopting the notation
“main” for main effects, “tvc” for time-varying coefficients, and “svc” for spatially varying
coefficients, a more complex model could be written as

µs,t = g−1
(
Xmain

s,t β + Xtvc
s,t γt + Xsvc

s,t ζs + αg + Os,t + ωs + ϵs,t

)
.

where each X represents a model matrix, γt represents a vector of coefficients that are
constrained to vary through time as random walks or AR(1) processes, ζs represents a vector
of spatially varying coefficients that follow a random field, αg represents IID random intercepts
by group g (αg ∼ Normal

(
0, σ2

α

)
), Os,t represents an offset variable (McCullagh and Nelder

1989, p. 206) (e.g., log sampling effort), and ωs and ϵs,t represent spatial and spatiotemporal
intercept random fields as before (Figure 2). We demonstrate these model components in
Sections 4, 5, and 6.
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2.7. Delta models
So far, we have described models with one linear predictor and one family (common termi-
nology in R packages for the combination of an observation likelihood and link). Frequently,
data are better represented with two-part “delta” or “hurdle” models, which include linear
predictors and observation distributions for two processes: whether observations are non-zero,
and the magnitude of positive observations (Aitchison 1955). Here, we describe two types of
delta models, dropping the space and time subscripts for simplicity.

Standard delta models
Using p to denote the probability of a non-zero observation and r to represent the expected
rate for positive data, we can construct two linear predictors (η1 and η2) in link space

logit(p) = η1,

log(r) = η2.

We can relate p and r to the data via a Bernoulli distribution and a positive-valued distribution
(e.g., lognormal or gamma with ϕ representing a generic dispersion parameter). We use I(·)
to denote an indicator function, which is 1 if y > 0 and 0 if y = 0.

I(y > 0) ∼ Bernoulli (p) ,

y|y > 0 ∼ Positive-distribution (r, ϕ) .

The expectation for a new data point is then the probability of a non-zero event multiplied
by the positive rate: p · r.

Poisson-link delta models
An additional delta model is possible that has several advantages over the logit-log delta
model (Thorson 2018). The primary advantage is that both linear predictors use a log link,
so they can be added in link space and the partial effect of a coefficient from both can be
combined. In these models, the linear predictors represent a theoretical group number n and
a theoretical weight (e.g., mass) per group w (Thorson 2018),

log(n) = η1,

log(w) = η2.

Note that the first linear predictor has a log link, not a logit link, and the linear predictor
predicts group number n, not positive observation probability p. These are transformed
(Thorson 2018) via

p = 1 − exp(− exp(log n)),

r = nw

p
.

The first part is the complementary-log-log inverse link (McCullagh and Nelder 1989, p. 31)
(which has its roots in a Poisson process), but the group number n also enters into the expected
positive rate r. These probabilities p and positive rates r are then used in a Bernoulli and a
positive-valued distribution as before

I(y > 0) ∼ Bernoulli (p) ,

y|y > 0 ∼ Positive-distribution (r, ϕ) .
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3. Software design and user interface
The design goal of sdmTMB was to develop a flexible, modular, and intuitive interface for
fast maximum likelihood inference (or full Bayesian inference) with the SPDE approach to
spatial and spatiotemporal GLMMs with random fields. The package gathers functionality not
found combined in other packages that is particularly useful to species distribution modeling,
but is applicable beyond ecology to any field that encounters geostatistical data that are
continuously referenced in space and (optionally) discretely indexed by time. sdmTMB relies
on several well-established R packages to construct and fit models (Figure 3).
The sdmTMB package is designed to be both modular and familiar to users of widely used
R packages (e.g., glmmTMB, lme4, mgcv). The user starts by constructing a triangulation
mesh for the SPDE approach with make_mesh() (Figure 3). make_mesh() is a wrapper for
fmesher (Lindgren 2025) triangulation mesh functions, and users can also construct any mesh
with fmesher or R-INLA and pass it to make_mesh().
Fitting is accomplished with sdmTMB(), which has arguments similar to glmmTMB’s glmmTMB()
but with additional arguments for how any spatial and spatiotemporal random fields are
structured, what column defines time, any time-varying formulas, and any spatially varying
formulas. Observation distributions and links are specified with standard R family functions
(e.g., binomial()) plus several sdmTMB-specific families not available in the R stats package
(e.g., nbinom2(), delta_lognormal(), see ?sdmTMB::Families).

The user constructs a mesh for the 
SPDE; R-INLA and fmesher are 

used in the backend

The user passes the mesh and all 
model information to sdmTMB()

Model inputs are generated; if 
needed, smoother matrices are 

constructed with mgcv

A TMB objective function is built 
that returns the negative marginal 

log likelihood and its gradient

TMB calculates standard errors 
using the generalized delta method

Results can be inspected with 
various R methods

[Maximum likelihood] 
The objective function is 

minimized with R optimizers

[Bayesian] The user passes the 
objective function to tmbstan, 
which fits the model with rstan

Results can be inspected with 
various R methods

Figure 3: Description of the model fitting procedure in sdmTMB.
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The sdmTMB formula syntax (formula argument) follows a standard format that is similar
to glmmTMB, lme4, and mgcv. In addition to standard main effects, the user can include
random intercepts and slopes (e.g., + (1 + x | group)), threshold-shaped hockey-stick mod-
els breakpt() (Barrowman and Myers 2000), logistic functions logistic(), and penalized
smoothers s() for generalized additive models, GAMs (Wood 2017). Penalized smoothers
use the same s() and t2() syntax as in mgcv (Wood 2017). Supported functionality in-
cludes bivariate smoothers s(x, y), smoothers varying by continuous or categorical variables
s(x1, by = x2), cyclical smoothers s(x, bs = "cc"), and smoothers with specified basis
dimensions s(x, k = 4) (Wood 2017). Beyond the main formula, sdmTMB() accepts one-
sided formulas for coefficients that should vary through time (time_varying) according to a
random walk or AR(1) process (time_varying_type) or vary through space as random fields
(spatial_varying).
Once the user makes a call to sdmTMB(), input data structures for a TMB model are con-
structed internally (Figure 3). If needed, data structures required to implement penalized
smoothers are constructed using smooth2random() from mgcv (Wood 2017), as in gamm4
(Wood and Scheipl 2025) and brms (Bürkner 2017). sdmTMB() formats data, establishes
parameter starting values, and constructs an objective function with derivatives based on a
compiled C++ template written for TMB. The objective function returns the marginal log
likelihood and its gradient, integrating over random effects with the Laplace approximation
(Kristensen et al. 2016) and efficiently using sparse-matrix computation provided by Matrix
(Bates et al. 2025) as an interface to the Eigen library in C++. The negative marginal log
likelihood is minimized via the non-linear optimization routine stats::nlminb() (Gay 1990)
in R, with optional additional Newton-Raphson iterations (one by default) using the Hessian
computed via stats::optimHess() (R Core Team 2025); updated parameters are accepted
only if they improve the marginal log likelihood. Random effects are returned at values that
maximize the likelihood conditional on the fixed effects at their maximum marginal likelihood
(i.e., plug-in or empirical Bayes estimates); however, it is also possible to apply an “epsilon”
estimator (Thorson and Kristensen 2016), which corrects for bias arising from the variance
and skewness of random effects when calculating an estimator as a non-linear transformation
of random effects (see Section 5.7 for an example). Standard errors on all parameters and
derived quantities – including those involving random effects – are calculated using the gen-
eralized delta method (Kristensen et al. 2016; Zheng and Cadigan 2021). After rapid model
exploration with maximum likelihood, one can optionally pass an sdmTMB model to the R
package rstan (Carpenter et al. 2017; Stan Development Team 2025) via tmbstan (Monnahan
and Kristensen 2018) to sample from the joint posterior distribution for Bayesian inference.
A fitted model summary can be viewed with print() or summary() and a set of basic “sanity”
checks can be run with sanity(). tidy() returns parameter estimates in standard data frame
formats similar to broom (Robinson et al. 2025). Other standard methods are also available
such as fixef(), confint(), and vcov().
Prediction on fitted or new data is accomplished with predict() (?predict.sdmTMB). In this
paragraph, we include relevant predict() arguments in parentheses. The predict method is
flexible and includes the option to specify a new data frame (newdata), whether to return
predictions on the link or response scale (type), whether to return standard errors (se_fit,
which can be slow if conditioned on random fields), whether to condition on the random
fields (re_form), whether to condition on the random intercepts and slopes (re_form_iid),
which delta model linear predictor to use (model), whether to take draws from the joint
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parameter precision matrix (nsim), and whether to use MCMC samples from a tmbstan
model fit (mcmc_samples).
A variety of model evaluation tools are available. A residuals() method calculates various
types of residuals (?residuals.sdmTMB). The default is a form of randomized quantile (Dunn
and Smyth 1996) or probability integral transform (Smith 1985) residuals. New observations
can be simulated from a fitted model with simulate() (?simulate.sdmTMB) or data can
be simulated from scratch (without fitting a model) with simulate_new(). sdmTMB_cv()
facilitates cross-validation.
sdmTMB models can include penalized likelihoods by assigning priors (penalties) to model
parameters through the sdmTMB() prior argument (?sdmTMBpriors). These priors may be
useful in cases where estimation is difficult because of identifiability issues or relatively flat
likelihood surfaces, or to impart prior information or to achieve regularization. Following
other recent SPDE implementations in TMB (Breivik et al. 2021; Osgood-Zimmerman and
Wakefield 2023), penalized complexity (PC) priors (Simpson et al. 2017; Fuglstad et al. 2019)
(?pc_matern) can constrain the spatial range and variance parameters. These priors or
penalties are available both with maximum likelihood estimation and with MCMC sampling.
If a model will be passed to tmbstan with priors, the bayesian logical argument should be set
to TRUE to enable Jacobian adjustments for change of variables (priors applied to parameters
that are internally constrained or transformed, Carpenter et al. 2017).

3.1. Installation

sdmTMB can be installed from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=sdmTMB

R> install.packages("sdmTMB")

Users who wish to automatically install suggested packages as well may wish to use

R> install.packages("sdmTMB", dependencies = TRUE)

As an alternative to the CRAN version, the development version can be installed with

R> install.packages("pak")
R> pak::pak("sdmTMB/sdmTMB", dependencies = TRUE)

Development code is hosted at https://github.com/sdmTMB/sdmTMB.
Additional utilities, which require heavier package dependencies (such as R-INLA and rstan)
and are used by only a subset of users, are maintained in the sdmTMBextra package at
https://github.com/sdmTMB/sdmTMBextra
Users willing to replace the default R BLAS (Basic Linear Algebra Subprograms, Blackford
et al. 2002) library with an optimized version (e.g., openBLAS, Xianyi et al. 2012) can expect
up to an order of magnitude increase in model fitting speed for complex models. Suggestions
are included in the package README file.

https://CRAN.R-project.org/package=sdmTMB
https://CRAN.R-project.org/package=sdmTMB
https://github.com/sdmTMB/sdmTMB
https://github.com/sdmTMB/sdmTMBextra
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4. Example: Spatial species distribution modeling
We begin with a simple species distribution model of encounter probability of Pacific Cod
(Gadus macrocephalus) from a trawl survey conducted in Queen Charlotte Sound, British
Columbia, Canada. The purpose of our example is to illustrate the need for spatial ran-
dom fields. This survey is conducted by Fisheries and Oceans Canada and follows a depth-
stratified random sampling design, resulting in a georeferenced dataset. The data frame pcod
is available as package data in sdmTMB. Relevant columns include latitude, longitude, Uni-
versal Transverse Mercator (UTM) coordinates, bottom depth, and encounter (present = 1)
vs. non-encounter (present = 0) of Pacific Cod for a given survey sample.

R> library("sdmTMB")
R> library("dplyr")
R> library("ggplot2")
R> select(pcod, lat, lon, X, Y, depth, present)

# A tibble: 2,143 x 6
lat lon X Y depth present

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 52.3 -130. 446. 5793. 201 1
2 52.3 -130. 446. 5800. 212 1
3 52.4 -130. 449. 5802. 220 0
# i 2,140 more rows

4.1. Adding UTM columns

An sdmTMB model requires a data frame that contains a response column, columns for any
predictors, and columns for spatial coordinates. Usually it makes sense to convert the spatial
coordinates to a projected coordinate system such as UTM so distances are approximately
preserved within the study region (e.g., using sf::st_transform(), Pebesma 2018). Here
we use the helper function add_utm_columns() to add UTM coordinates with km units (so
our estimated spatial range parameter is not too big or small). By default, the function will
guess the UTM zone and create new columns X and Y. Since our example data already has
these UTM columns, we can skip running this code.

R> pcod <- add_utm_columns(pcod, c("lon", "lat"), units = "km")

4.2. SPDE mesh creation

We then create a mesh object that contains triangulation and projection matrices needed to
apply the SPDE approach using make_mesh(). The argument cutoff defines the minimum
allowed distance between mesh vertices in the units of X and Y (km). We could create a basic
mesh specifying this:

R> mesh_pcod <- make_mesh(pcod, xy_cols = c("X", "Y"), cutoff = 8)



12 sdmTMB: GLMMs with Spatial and Spatiotemporal Random Fields in R

Figure 4: SPDE mesh (lines) combined with the trawl survey observations (points). The
locations where lines intersect are referred to as “vertices” or “knots”. Finer meshes will be
slower to fit but generally increase the accuracy of the SPDE approximation, to a point. A
greater degree of control over the mesh construction can be achieved by using fmesher or
R-INLA directly and supplying the object to make_mesh().

We can also specify additional arguments, in this case passed to
fmesher::fm_mesh_2d_inla(): maximum triangle edge (max.edge) lengths of 10 km
and 40 km for the inner and outer mesh, respectively, and an offset width of 10 km and
40 km for the inner and outer mesh borders. For more irregularly shaped areas, we could
have specified a non-convex hull with convex and concave arguments. The triangle edge
length should be several times smaller than the range and the outer boundary should extend
at least as far as the range to avoid edge effects. See Krainski et al. (2018, Chapters 2.6
and 2.7) for guidance on mesh construction.
We can visualize the mesh object with the associated plotting method (Figure 4). Our
mesh has 563 (mesh_pcod2$mesh$n) vertices. Mesh complexity has a large influence on the
speed of fitting these models. Meshes generated with fmesher may differ slightly across CPU
architectures and compiler settings due to platform-specific floating-point arithmetic, which
can lead to minor differences in parameter estimates. Results shown here were produced with
R 4.5.2 on Ubuntu 22.04.5 LTS (x86_64-pc-linux-gnu).

R> mesh_pcod2 <- make_mesh(pcod, xy_cols = c("X", "Y"),
+ fmesher_func = fmesher::fm_mesh_2d_inla,
+ cutoff = 8, max.edge = c(10, 40), offset = c(10, 40))
R> plot(mesh_pcod2)

4.3. Fitting the model

We will fit a logistic regression of encounter probability with and without spatial random fields
to illustrate the importance of accounting for spatial correlation. In addition to the spatial
random field, we include an intercept and a quadratic effect of depth on the probability of
encounter. Our model can be written as

ys ∼ Bernoulli (µs) ,

µs = logit−1
(
Xmain

s β + ωs

)
,

ω ∼ MVNormal (0, Σω) ,
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where Xmain
s represents a matrix of main effect covariates (intercept and quadratic effects

of depth), β represents a vector of estimated main effect coefficients, and ωs represents the
estimated spatial random field at location s.
We can implement this model with sdmTMB():

R> fit_bin_rf <- sdmTMB(present ~ poly(log(depth), 2), data = pcod,
+ mesh = mesh_pcod2, spatial = "on", family = binomial(link = "logit"))

We can also fit a version that omits the spatial random field by setting spatial = "off".
We will use the update() method to refit the model while updating any specified arguments:

R> fit_bin <- update(fit_bin_rf, spatial = "off")

4.4. Inspecting the model

We can run some basic checks on our model with the sanity() function:

R> sanity(fit_bin_rf)

✓ Non-linear minimizer suggests successful convergence
✓ Hessian matrix is positive definite
✓ No extreme or very small eigenvalues detected
✓ No gradients with respect to fixed effects are >= 0.001
✓ No fixed-effect standard errors are NA
✓ No fixed-effect standard errors look unreasonably large
✓ No sigma parameters are < 0.01
✓ No sigma parameters are > 100
✓ Range parameter doesn't look unreasonably large

This does not flag any issues. sanity() is checking that the nlminb() optimizer reported
successful convergence, that the Hessian matrix is positive definite, that no extreme or small
eigenvalues are detected, that absolute values of log-likelihood gradients with respect to fixed
effects are all < 0.001, that no fixed-effect standard errors are unreasonably large (< 100 by
default), that random field marginal standard deviations are not unexpectedly small (< 0.01)
or large (> 100), and that the random field Matérn range parameter does not look unreason-
ably large (≥ 1.5 times the largest distance from a bounding box around the observations).
We can get a summary of our model fit:

R> summary(fit_bin_rf)

Spatial model fit by ML ['sdmTMB']
Formula: present ~ poly(log(depth), 2)
Mesh: mesh_pcod2 (isotropic covariance)
Data: pcod
Family: binomial(link = 'logit')
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Conditional model:
coef.est coef.se

(Intercept) -0.44 0.42
poly(log(depth), 2)1 -75.72 9.30
poly(log(depth), 2)2 -109.79 9.27

Matérn range: 41.43
Spatial SD: 1.69
ML criterion at convergence: 1034.744

See ?tidy.sdmTMB to extract these values as a data frame.

The output indicates our model was fit by maximum (marginal) likelihood (ML). We also see
the formula, mesh, fitted data, and family. Next, we see any estimated main effects, the
Matérn range distance, the spatial random field standard deviation, and the negative log
likelihood at convergence.
We can use the tidy() function to obtain a data frame with parameter estimates (standard
methods such as fixef(), confint(), and vcov() are also available). The standard errors
on our fixed effects have increased with the spatial random field:

R> tidy(fit_bin_rf, conf.int = TRUE)

# A tibble: 3 x 5
term estimate std.error conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -0.439 0.424 -1.27 0.393
2 poly(log(depth), 2)1 -75.7 9.30 -94.0 -57.5
3 poly(log(depth), 2)2 -110. 9.27 -128. -91.6

R> tidy(fit_bin, conf.int = TRUE)

# A tibble: 3 x 5
term estimate std.error conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -0.426 0.0573 -0.538 -0.314
2 poly(log(depth), 2)1 -31.7 3.03 -37.6 -25.8
3 poly(log(depth), 2)2 -66.9 4.09 -74.9 -58.9

By setting effects = "ran_pars", tidy() will return random field parameters, where
sigma_O is the marginal standard deviation of the spatial random field ω (“O” for “Omega”).

R> tidy(fit_bin_rf, effects = "ran_pars", conf.int = TRUE)

# A tibble: 2 x 5
term estimate std.error conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl>

1 range 41.4 9.38 26.6 64.6
2 sigma_O 1.69 0.233 1.29 2.22
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4.5. Checking the effect of including a random field

We can test for spatial autocorrelation with a visual inspection or a statistical test of the
residuals. Here, we demonstrate an approach using an implementation of Moran’s I from the
ape package (Gittleman and Kot 1990; Paradis and Schliep 2019). We set type = "mle-mvn"
to denote setting fixed effects at their maximum likelihood estimate (MLE) but taking a
single draw from the approximate (multivariate normal) distribution of the random effects
(Waagepetersen 2006; Thygesen et al. 2017).

R> inv_dist_matrix <- 1 / as.matrix(dist(pcod[, c("X", "Y")]))
R> diag(inv_dist_matrix) <- 0
R> set.seed(1)
R> r_bin <- residuals(fit_bin, type = "mle-mvn")
R> set.seed(1)
R> r_bin_rf <- residuals(fit_bin_rf, type = "mle-mvn")
R> ape::Moran.I(r_bin, weight = inv_dist_matrix)$p.value

[1] 0

R> ape::Moran.I(r_bin_rf, weight = inv_dist_matrix)$p.value

[1] 0.8817066

We see strong evidence for spatial autocorrelation for the model without a random field (p <
0.01) but a lack of evidence for spatial correlation after including a random field, suggesting
that residual spatial autocorrelation is alleviated by including the random field. The specific p-
value is dependent on the seed due to the randomization in the randomized quantile residuals.
We can also see that the marginal Akaike information criterion (AIC) (Akaike 1974) of the
model with spatial random fields is lower:

R> AIC(fit_bin_rf, fit_bin)

df AIC
fit_bin_rf 5 2079.487
fit_bin 3 2392.070

Caution is warranted in performing model selection via marginal AIC for models involving
penalized smoothing (spatial or otherwise) (e.g., Greven and Kneib 2010; Säfken et al. 2021).
In marginal AIC calculation, the degrees of freedom are based on the number of fixed ef-
fects and do not account for the degree of random effect penalization as conditional AIC
would. Methods to estimate effective degrees of freedom for similar models were recently
demonstrated in Thorson (2024) and are included in the function cAIC().

4.6. Comparing models with cross-validation

As an alternative to AIC, we can conduct model comparison with cross-validation. sdmTMB
includes the helper function sdmTMB_cv() to facilitate this. We will do 10-fold cross-validation
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with the folds constructed randomly. We will set the seed each time to ensure the folds
are consistent. Using the fold_ids argument, we could supply our own folds and conduct
spatially blocked cross-validation (Roberts et al. 2017). If we set a parallel plan with the
future package (Bengtsson 2021), our folds will be fit in parallel.

R> library("future")
R> plan(multisession)
R> set.seed(12928)
R> cv_bin_rf <- sdmTMB_cv(present ~ poly(log(depth), 2), data = pcod,
+ mesh = mesh_pcod, spatial = "on", family = binomial(), k_folds = 10)
R> set.seed(12928)
R> cv_bin <- sdmTMB_cv(present ~ poly(log(depth), 2), data = pcod,
+ mesh = mesh_pcod, spatial = "off", family = binomial(), k_folds = 10)

We can then calculate any performance metric of interest for comparison. A common metric
is the log score or log predictive density (lpd) of the left-out data (Geisser and Eddy 1979;
Vehtari et al. 2017),

lpd =
n∑

i=1
log L(yi|ŷi),

where n represents the number of left-out data points, log L denotes the log likelihood, yi

represents left-out data point i, and ŷi represents the prediction for left-out data point i with
the fixed effects at their MLEs and random effects at their empirical Bayes estimates.
Indeed, the log predictive density for the left-out data is considerably higher for the model
that includes random fields, indicating better out-of-sample predictions:

R> cv_bin_rf$sum_loglik

[1] -995.4446

R> cv_bin$sum_loglik

[1] -1196.493

In practice, we would repeat this procedure several times to ensure the rank order is insensitive
to the randomly chosen folds and, if it is sensitive, consider averaging across multiple folds or
increasing the number of folds.

4.7. Making predictions on new data

To visualize our model, we can make predictions with the predict() method
(?predict.sdmTMB) and optionally use the newdata argument to predict on a new data
frame containing locations and all predictor columns. Here, we will predict on a 2 × 2 km
grid (qcs_grid) that covers the entire region of interest so we can visualize the predictions
spatially. The grid contains spatial covariate columns and all predictors used in the model set
to values for which we want to predict. Some covariates might be fixed at a specified value
for all predictions, such that we are predicting the expected value for samples conditional on
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plogis(est_non_rf)
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(a) Fixed effects

omega_s
−4 −2 0 2

(b) Spatial random field

plogis(est)
0.25 0.50 0.75

(c) Combined prediction

Figure 5: Prediction components from the binomial species distribution model of Pacific Cod.
Shown are (a) the quadratic effect of bottom depth, (b) the spatial random field in link (logit)
space, and (c) the overall prediction, which here is the combination of panels a and b. The
spatial random field represents spatially correlated latent effects not accounted for by the
fixed effects. Note the difference between predictions from depth alone (a) and predictions
including a spatial random field (c).

those specified values. In the context of fish or animal surveys, these are sometimes called
detectability or catchability covariates, given the model is predicting the target variable while
controlling for the additional influence of these covariates (Thorson 2019a). The output of
predict() is a data frame containing overall estimates in link space (est), estimates from the
non-random-field components (est_non_rf; here, intercept and depth), and estimates from
the individual random field components (here, omega_s – the spatial field). We can plot these
with geom_raster() or geom_tile() from the ggplot2 (Wickham 2016) package (Figure 5).

R> p <- predict(fit_bin_rf, newdata = qcs_grid)
R> select(p, X, Y, depth, est, est_non_rf, omega_s) |>
+ as_tibble() |>
+ head(n = 2)

# A tibble: 2 x 6
X Y depth est est_non_rf omega_s

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 456 5636 347. -6.52 -6.23 -0.291
2 458 5636 223. -0.861 -0.600 -0.261

5. Example: Spatiotemporal species distribution modeling
As a second example, we will construct a spatiotemporal model of catch rates of Pacific
Spiny Dogfish (Squalus suckleyi) from a trawl survey off the west coast of Vancouver Island,
Canada. This example extends the spatial model described above by including (1) spatiotem-
poral fields, allowing unique spatially correlated latent effects each year; (2) a time-varying
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intercept as an AR(1) process, allowing year effects to vary but remain autocorrelated; (3)
a smooth effect of depth, allowing catch rates to vary non-linearly with depth; and (4) spa-
tial anisotropy, allowing spatial correlation to be directionally dependent. Since catch rates
are positive, continuous, and contain zeros, we begin by specifying the response family as
a Tweedie distribution (Tweedie 1984) with a log link. We then compare alternative fami-
lies, spatiotemporal random field structures, and the exclusion of anisotropy to illustrate the
flexibility of sdmTMB.

5.1. Adding UTM columns and creating a mesh

The dataset includes spatial coordinates, year, dogfish catch weight in kg, area swept in km2,
and bottom depth:

R> dat <- select(dogfish, lon = longitude, lat = latitude, year,
+ catch_weight, area_swept, depth)
R> dat

# A tibble: 1,458 x 6
lon lat year catch_weight area_swept depth

<dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 -125. 48.7 2004 22.7 0.103 73
2 -126. 48.2 2004 0 0.103 455
3 -126. 48.3 2004 0 0.116 171
# i 1,455 more rows

We add UTM zone 9 columns, create a log depth column for convenience, and create a basic
mesh:

R> dat <- add_utm_columns(dat, c("lon", "lat"),
+ units = "km", utm_crs = 32609)
R> dat$log_depth <- log(dat$depth)
R> mesh <- make_mesh(dat, xy_cols = c("X", "Y"), n_knots = 200)

5.2. Fitting the model

We can then specify our model. We include an offset (McCullagh and Nelder 1989, p. 206)
for the effort variable (log area swept) such that we are effectively modeling density and our
predictions will be for an area swept of 1 km2.
Our model can be written as

E[ys,t] = µs,t,

µs,t = exp
(
Xmain

s,t β + Os,t + Xtvc
s,t γt + ωs + ϵs,t

)
,

ω ∼ MVNormal (0, Σω) ,

ϵt ∼ MVNormal (0, Σϵ) ,

where β are coefficients associated with the main effects, Os,t represents the offset (here,
log area swept), γt represents the time-varying coefficients, ωs is a value from a spatial field
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(representing constant latent spatial effects), and ϵs,t is a value from a spatiotemporal field
(representing latent spatial effects that vary by year). The temporally varying intercepts γt

are modeled as a stationary AR(1) process,

γt=1 ∼ Normal
(
0, σ2

γ

)
,

γt>1 ∼ Normal
(
ργγt−1, (1 − ρ2

γ)σ2
γ

)
,

where ργ represents the correlation between intercepts γ at time t−1 and t, and σ2
γ represents

the marginal variance of this process. We include the argument extra_time, which represents
all time steps to include in the latent process (and all time steps for which we may wish to
predict), such that autoregressive processes are applied to equally spaced annual time steps.
We can fit this model as:

R> fit_tw <- sdmTMB(catch_weight ~ s(log_depth), data = dat, mesh = mesh,
+ family = tweedie(), offset = log(dat$area_swept), time = "year",
+ time_varying = ~ 1, time_varying_type = "ar1", spatial = "on",
+ spatiotemporal = "iid", anisotropy = TRUE,
+ extra_time = seq(min(dat$year), max(dat$year)), silent = FALSE)

5.3. Exploring delta model alternative families

We next explore four alternative families that may better represent the data. Each alternative
family uses a delta model formulation as described in Section 2.7.

R> fit_dg <- update(fit_tw, family = delta_gamma())
R> fit_dl <- update(fit_tw, family = delta_lognormal())
R> fit_dpg <- update(fit_tw, family = delta_gamma(type = "poisson-link"))
R> fit_dpl <- update(fit_tw, family = delta_lognormal(type = "poisson-link"))

We can then compare the models via AIC:

R> AIC(fit_tw, fit_dg, fit_dl, fit_dpg, fit_dpl) |>
+ mutate(delta_AIC = AIC - min(AIC)) |>
+ arrange(delta_AIC)

df AIC delta_AIC
fit_dpl 19 11043.63 0.00000
fit_dpg 19 11112.30 68.66264
fit_dl 19 11133.52 89.89018
fit_dg 19 11208.90 165.26222
fit_tw 12 11356.57 312.93803

We find that the Poisson-link delta-lognormal model (Thorson 2018) is favored by marginal
AIC. In an applied situation, we would inspect the distribution of the residuals and consider
comparing models with cross-validation.
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Figure 6: A visualization of anisotropy from the function plot_anisotropy(). Ellipses are
centered at coordinates of zero in the units that the X-Y coordinates are modeled. The
ellipses show the spatial and spatiotemporal range (distance at which correlation is nearly
independent) in any direction from the center (zero).

5.4. Adding AR(1) random fields and comparing isotropic correlation

We next test two additional model formulations: making the spatial correlation isotropic (the
default) instead of anisotropic, and structuring the spatiotemporal random fields as AR(1) to
allow spatiotemporal patterns to partially persist from year to year.
The AR(1) fields can be represented as

ϵt=1 ∼ MVNormal(0, Σϵ),

ϵt>1 = ρϵt−1 +
√

1 − ρ2δt, δt ∼ MVNormal (0, Σϵ) ,

where ρ represents the estimated autoregressive parameter allowing the spatial field at time
t to be correlated with the spatial field at time t − 1 with deviations created by δt, which are
themselves independent random fields each year. This is equivalent to a separable GMRF
model with precision arising from the Kronecker product of the spatial precision and an AR(1)
temporal precision.

R> fit_dpl_iso <- update(fit_dpl, anisotropy = FALSE)
R> fit_dpl_ar1 <- update(fit_dpl, spatiotemporal = "ar1")
R> AIC(fit_dpl_ar1, fit_dpl, fit_dpl_iso)

df AIC
fit_dpl_ar1 21 11038.88
fit_dpl 19 11043.63
fit_dpl_iso 17 11069.41

We find that the anisotropic AR(1) is favored. This makes sense given the elongated
shape of the continental shelf and the rapid transition to deeper water. We can use
plot_anisotropy() to visually inspect the anisotropy (Figure 6).



Journal of Statistical Software 21

As an example of estimation time for these complex spatiotemporal models, the Tweedie model
(fit_tw), Poisson-link delta-lognormal model (fit_dpl), and Poisson-link delta-lognormal
model with autoregressive random fields (fit_dpl_ar1) took approximately 10, 30, and 90
seconds to fit, respectively, on an Apple MacBook Pro with an M2 Pro processor and Apple’s
vecLib implementation of BLAS in R 4.4.0.

R> plot_anisotropy(fit_dpl_ar1)

5.5. Inspecting the model

We save our chosen model to the object fit to simplify subsequent code, run the sanity()
check (suppressed for brevity), and inspect summary():

R> fit <- fit_dpl_ar1
R> sanity(fit)
R> summary(fit)

Spatiotemporal model fit by ML ['sdmTMB']
Formula: catch_weight ~ s(log_depth)
Mesh: mesh (anisotropic covariance)
Time column: year
Data: dat
Family: delta_lognormal(link1 = 'log', link2 = 'log', type = 'poisson-link')

Delta/hurdle model 1: -----------------------------------
Family: binomial(link = 'log')
Conditional model:

coef.est coef.se
(Intercept) 2.35 0.53
slog_depth 0.20 0.67

Smooth terms:
Std. Dev.

sd__s(log_depth) 3.23

Time-varying parameters:
coef.est coef.se

(Intercept)-2004 0.34 0.61
(Intercept)-2005 0.39 0.65
(Intercept)-2006 0.45 0.68
(Intercept)-2007 0.35 0.61
(Intercept)-2008 0.26 0.55
(Intercept)-2009 0.25 0.54
(Intercept)-2010 0.25 0.52
(Intercept)-2011 0.08 0.47
(Intercept)-2012 -0.09 0.49
(Intercept)-2013 -0.10 0.47
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(Intercept)-2014 -0.10 0.45
(Intercept)-2015 -0.05 0.43
(Intercept)-2016 0.01 0.43
(Intercept)-2017 -0.01 0.45
(Intercept)-2018 -0.04 0.44
(Intercept)-2019 -0.15 0.47
(Intercept)-2020 -0.26 0.53
(Intercept)-2021 -0.38 0.60
(Intercept)-2022 -0.30 0.53
rho-(Intercept) 0.85 0.28

Spatiotemporal AR1 correlation (rho): 0.74
Matérn anisotropic range (spatial): 17.5 to 183.6 at 130 deg.
Spatial SD: 0.82
Spatiotemporal marginal AR1 SD: 1.34

Delta/hurdle model 2: -----------------------------------
Family: lognormal(link = 'log')
Conditional model:

coef.est coef.se
(Intercept) 2.20 0.20
slog_depth 0.11 0.24

Smooth terms:
Std. Dev.

sd__s(log_depth) 0.59

Time-varying parameters:
coef.est coef.se

(Intercept)-2004 0.43 0.27
(Intercept)-2005 0.25 0.31
(Intercept)-2006 0.13 0.24
(Intercept)-2007 0.03 0.30
(Intercept)-2008 -0.06 0.26
(Intercept)-2009 0.20 0.30
(Intercept)-2010 0.50 0.26
(Intercept)-2011 0.30 0.30
(Intercept)-2012 0.18 0.23
(Intercept)-2013 0.10 0.29
(Intercept)-2014 0.04 0.23
(Intercept)-2015 -0.10 0.29
(Intercept)-2016 -0.26 0.23
(Intercept)-2017 -0.24 0.30
(Intercept)-2018 -0.27 0.23
(Intercept)-2019 -0.26 0.35
(Intercept)-2020 -0.30 0.35
(Intercept)-2021 -0.41 0.24
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Figure 7: Simulation-based randomized quantile residuals from the DHARMa package.

(Intercept)-2022 -0.20 0.25
rho-(Intercept) 0.62 0.40

Dispersion parameter: 1.10
Spatiotemporal AR1 correlation (rho): 0.22
Matérn anisotropic range (spatial): 4.1 to 43.3 at 130 deg.
Spatial SD: 0.41
Spatiotemporal marginal AR1 SD: 0.82

ML criterion at convergence: 5498.439

See ?tidy.sdmTMB to extract these values as a data frame.
See ?plot_anisotropy to plot the anisotropic range.

The output is more complex than our binomial spatial model. We now have two model
components (linear predictors), which are shown one after the other. Starting with the
binomial component, we have output from the smoother, which includes a linear parameter
(slog_depth) and the standard deviation on the smoother weights (sds(log_depth)). The
smoother summary follows the format used in the brms package (Bürkner 2017). Next, we
have the time-varying intercepts and information on our anisotropic spatial correlation. We
then have the second model component (lognormal) with a similar summary structure and
the addition of a dispersion parameter, the AR(1) correlation of the spatiotemporal random
fields, and a spatiotemporal random field marginal standard deviation.
We can check simulation-based randomized quantile residuals from our chosen model
via the DHARMa package (Hartig 2024). To do that, we simulate from our model
with the simulate.sdmTMB() method and pass those simulations to a helper function
dharma_residuals().

R> set.seed(123)
R> s <- simulate(fit, nsim = 500, type = "mle-mvn")
R> dharma_residuals(s, fit)
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The quantile-quantile plot suggests that under the model assumptions, the (transformed)
residuals are reasonably consistent with an independent uniform(0, 1) distribution.

5.6. Visualizing model predictions

Similarly to the first example, we can visualize model predictions on a grid covering the area
of interest. Because this is a spatiotemporal model, we first need to replicate our grid for
each year we will predict on. Since this is a common operation, we include the function
replicate_df() to replicate a data frame. We then ensure our data frame contains all the
predictors used in the model (here log_depth).

R> grid <- replicate_df(wcvi_grid, "year", time_values = unique(dat$year))
R> grid$log_depth <- log(grid$depth)
R> head(grid, n = 2)

X Y depth year log_depth
1 733.9852 5346.334 447 2004 6.102559
2 735.9852 5346.334 442 2004 6.091310

R> pred <- predict(fit, newdata = grid, type = "response")
R> names(pred)

[1] "X" "Y" "depth" "year" "log_depth"
[6] "est1" "est2" "est_non_rf1" "est_non_rf2" "est_rf1"

[11] "est_rf2" "omega_s1" "omega_s2" "epsilon_st1" "epsilon_st2"
[16] "est"

Our prediction data frame is similar to the binomial spatial model, but includes columns for
the two delta model linear predictors (labelled with suffixes 1 and 2) and adds an epsilon_st
column for spatiotemporal random effects. We can easily generate plots from this data frame
using ggplot2 code with geom_raster() similarly to our spatial example with Pacific Cod
(Figure 8). We suppress that code for brevity.
We can visualize the conditional effect of the bottom depth smoother by predicting across a
sequence of depths and holding other variables at reference values (Figure 9). Here, we pick
the last year, specify to include both delta model components (model = NA), omit the random
fields (re_form = NA), and return standard errors (se_fit = TRUE). Alternatively, we could
produce a similar plot using ggeffects (Lüdecke 2018) with ggeffects::ggpredict().

R> nd <- data.frame(log_depth =
+ seq(min(dat$log_depth), max(dat$log_depth), length.out = 100),
+ year = max(dat$year))
R> pred_depth <- predict(fit, newdata = nd,
+ model = NA, re_form = NA, se_fit = TRUE)

5.7. Calculating an area-weighted index

We can generate an area-weighted population index (e.g., a relative or absolute index of
abundance or biomass) that is independent of sampling locations by predicting from the
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2004 2022

est_non_rf1
0.3 1.0 3.0

(a) Non−random−field components; 1st linear predictor

2004 2022

omega_s1
−0.5 0.0 0.5 1.0

(b) Spatial random field; 1st linear predictor

2004 2022

epsilon_st2
−0.5 0.0 0.5

(c) Spatiotemporal random field; 2nd linear predictor

2004 2022

est
10 100 1000

(d) Overall prediction

Figure 8: Example prediction elements from the spatiotemporal model of Pacific Spiny Dog-
fish biomass density. Throughout, two example years are shown. (a) est_non_rf1 refers to
the prediction from all non-random-field elements (here, a smoother for bottom depth and
the time-varying year effect) from the first linear predictor, (b) omega_s1 refers to the spatial
random field from the first linear predictor, (c) epsilon_st2 refers to spatiotemporal random
fields from the second linear predictor, and (d) est refers to the overall prediction estimate
combining all effects. The spatial random field is constant through time (i.e., the two panels
in b are identical) and represents static biotic or abiotic features not included as covariates
(e.g., habitat). The spatiotemporal random fields are different at each time step and here are
constrained to follow an AR(1) process. They represent temporal variability in the spatial
patterning of Pacific Spiny Dogfish (e.g., resulting from movement or local changes in popu-
lation density).

model on a grid covering the area of interest and summing the predicted biomass with the
get_index() function (Figure 10). We supply the grid cell area (4 km2) to the area argument
and specify bias_correct = TRUE to enable a bias correction needed due to the non-linear
transformation of the random effects (Thorson and Kristensen 2016).

R> grid$area <- 4
R> pred2 <- predict(fit, newdata = grid, return_tmb_object = TRUE)
R> ind <- get_index(pred2, bias_correct = TRUE, area = grid$area)
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Figure 9: The conditional effect of ocean bottom depth on Pacific Spiny Dogfish population
density. The line and shaded ribbon represent the mean and 95% confidence interval, respec-
tively. Other fixed effects are held at constant values and the random fields are set to their
expected value (zero).
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Figure 10: Area-weighted index of relative biomass over time for Pacific Spiny Dogfish. Dots
and line segments represent means and 95% confidence intervals.

6. Example: Spatially varying coefficients
In our final example, we demonstrate a model with spatially varying coefficient (SVC) effects
and illustrate combining uncertainty from parameters by working with draws from the joint
parameter precision matrix. SVC models are a class of models in which coefficients are allowed
to vary spatially constrained by some smooth function (Hastie and Tibshirani 1993; Thorson
et al. 2023).
Snowy Owls (Bubo scandiacus) breed on the Arctic tundra and are irruptive migrants, mean-
ing that they appear across the mid-latitudes of North America in much greater numbers in
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some winters than others. The reasons for this interannual variation in the number of indi-
viduals migrating south are not well understood but seem to be related to high abundances of
food during the breeding season and therefore sharp increases in breeding ground population
densities (Robillard et al. 2016). The North Atlantic Oscillation Index (NAO) has been linked
to the productivity of both owls and their prey in Europe (Millon et al. 2014). Because both
productivity and the choice of wintering location could be influenced by climate, we model
an SVC effect of the annual mean NAO index on early winter abundance across the southern
boundary of their winter distribution. Annual mean NAO captures the preceding winter’s
conditions, combined with breeding season and early winter climate.
To do this, we use counts of Snowy Owls observed by the annual Christmas Bird Counts
(National Audubon Society 2021) from all locations where they have been recorded and for
which there were at least three counts conducted from 1979 to 2020. Our data are provided
in the supplementary materials and contain columns for spatial coordinates (in an Albers
projection for North America and divided by 100000 to give units of 100 km), year, year as
a factor, the annual NAO value, and owl count:

R> select(snow, X, Y, year, year_f, nao, count) |>
+ head()

# A tibble: 6 x 6
X Y year year_f nao count

<dbl> <dbl> <int> <fct> <dbl> <dbl>
1 -12.0 14.2 1979 1979 0.19 1
2 -11.1 16.9 1979 1979 0.19 3
3 -11.7 17.1 1979 1979 0.19 0
# i 3 more rows

6.1. Fitting the model

We will fit counts using a negative binomial (NB2, Hilbe 2011) distribution, random intercepts
for year, spatial and spatiotemporal random fields, and an SVC associated with the NAO.
Centering and scaling variables (e.g., by their mean and standard deviation) can be helpful
to reduce the correlation between the SVC and other random fields that are included in the
model when estimating SVCs. Here, NAO is an index with a mean near zero and an SD not
too far from 1, so we will leave it as is. However, we also include NAO as a main effect since
the SVC random field is drawn from a multivariate normal distribution with mean zero.
We can write the model as

ys,t ∼ NB2 (µs,t, ϕ) ,

µs,t = exp
(
Xmain

s,t β + αt + Xsvc
s,t ζs + ωs + ϵs,t

)
,

αt ∼ Normal(0, σ2
α),

ζ ∼ MVNormal (0, Σζ) ,

ω ∼ MVNormal (0, Σω) ,

ϵt ∼ MVNormal (0, Σϵ) ,
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where three types of random fields are now included: spatially varying NAO coefficients (ζs),
a spatial intercept (ωs), and spatiotemporal variation (ϵs,t). The NB2 distribution is specified
with a mean µs,t and size parameter ϕ. The observation variance scales quadratically with
the mean: Var[y] = µ + µ2/ϕ (Hilbe 2011). The αt represent IID random intercepts by year.
We can then fit this model:

R> mesh_snow <- make_mesh(snow, xy_cols = c("X", "Y"), cutoff = 1.5)
R> fit_owl <- sdmTMB(count ~ 1 + nao + (1 | year_f),
+ spatial_varying = ~ 0 + nao, time = "year", data = snow,
+ mesh = mesh_snow, family = nbinom2(link = "log"),
+ spatial = "on", spatiotemporal = "iid", silent = FALSE)

6.2. Inspecting the model

summary() prints standard model information:

R> summary(fit_owl)

Spatiotemporal model fit by ML ['sdmTMB']
Formula: count ~ 1 + nao + (1 | year_f)
Mesh: mesh_snow (isotropic covariance)
Time column: year
Data: snow
Family: nbinom2(link = 'log')

Random intercepts and/or slopes:

Conditional model:
Groups Name Variance Std.Dev.
year_f (Intercept) 0.09 0.30

Conditional model:
coef.est coef.se

(Intercept) -3.23 5.44
nao 0.36 0.22

Dispersion parameter: 0.46
Matérn range: 25.21
Spatial SD: 6.97
Spatially varying coefficient SD (nao): 0.17
Spatiotemporal IID SD: 0.79
ML criterion at convergence: 17512.366

See ?tidy.sdmTMB to extract these values as a data frame.

In addition to the output seen for other models, we now have a section for random intercepts
and a standard deviation for the SVC random field. Given our model specification, all random
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fields are sharing a single Matérn range. We can also check the confidence intervals (CIs) on
the main effect of NAO and see that they overlap zero.

R> tidy(fit_owl, conf.int = TRUE)

# A tibble: 2 x 5
term estimate std.error conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -3.23 5.44 -13.9 7.42
2 nao 0.356 0.224 -0.0828 0.795

However, given that this is only part of the effect of NAO that we include in our model, we
next assess whether this variable has a meaningful effect in some locations, even if not overall.

6.3. Extracting the spatially varying effects with uncertainty

The spatially varying effect at any point in space is the combination of the main effect and SVC
random effect for nao. Mean estimates of the SVC random effect are available in the output
of predict.sdmTMB() in a column starting with zeta_s (in this case, zeta_s_nao). However,
we might wish to combine the fixed and random components of a spatially varying effect and
assess the uncertainty of these combined predictions. We illustrate a way of accomplishing this
by simulating from the fixed and random effects while assuming that parametric uncertainty is
well approximated using a multivariate normal distribution and the joint precision matrix. We
do this by specifying a non-null number of simulation draws to nsim in predict.sdmTMB(). By
default, nsim > 0 will return a matrix of draws for the overall prediction. Here, we instead
specify that we want to return draws for the zeta_s (ζs) random field, which is the SVC
random field (sims_var = "zeta_s"). This returns a matrix where each row matches a row
of newdata and each column is a simulation draw. We then use the function spread_sims()
to draw 300 simulations for the parameters themselves. Because the simulations are stored
in different dimensions, the random field draws must be transposed t() before combining
the vector of main effect draws (sims$nao) with the random field values zeta_s. Next, we
can calculate the median, and upper and lower quantiles for each column of data, which
correspond to the rows in the data provided. For this example, we use thresholds of 0.025
and 0.975 representing a 95% CI.

R> set.seed(42)
R> zeta_s <- predict(fit_owl, newdata = snow,
+ nsim = 300, sims_var = "zeta_s")
R> dim(zeta_s)

[1] 30392 300

R> sims <- spread_sims(fit_owl, nsim = 300)
R> dim(sims)

[1] 300 9
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Figure 11: Spatially varying effect of mean annual NAO (North Atlantic Oscillation) on
counts of Snowy Owls observed on annual Christmas Bird Counts from 1979–2020 in Canada
and the US. The effect is multiplicative on owl count per NAO unit. In the west, the lower
bound of values overlaps 1, implying no effect, whereas in the southeast the effect becomes
positive. Point size is scaled to the mean counts in each location.

R> combined <- sims$nao + t(zeta_s)
R> snow$nao_effect <- exp(apply(combined, 2, median))
R> snow$nao_effect_lwr <- exp(apply(combined, 2, quantile, probs = 0.025))
R> snow$nao_effect_upr <- exp(apply(combined, 2, quantile, probs = 0.975))

We can make a basic plot using the following code. A more elaborate version including
separate panels for each of the CIs is shown in Figure 11.

R> ggplot(snow, aes(X, Y)) + geom_point(aes(colour = nao_effect))

Overall, we find a weak average positive effect of annual mean NAO on overall counts with a
southeast to northwest gradient in the intensity of the effect (Figure 11). At some locations,
the lower CI on the exponentiated effect is above 1. This result is consistent with owls closest
to the Atlantic coast and those migrating the furthest south being the most affected by the
NAO.
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7. Package comparisons
There are many R packages capable of fitting geostatistical spatial or spatiotemporal mod-
els (e.g., Heaton et al. 2019). sdmTMB, VAST, tinyVAST, R-INLA/inlabru, and spaMM
(Rousset and Ferdy 2014) are the most closely related, as they all provide a user interface to
SPDE-based GMRF models. In our software comparison (Table 1), we also include mgcv as
it can be adapted to use the SPDE (Miller et al. 2020) and spBayes (Finley et al. 2007, 2015)
since it is a prominent package that can fit related predictive-process models without the
SPDE. sdmTMB, VAST, tinyVAST, and mgcv can estimate anisotropic covariance whereas
R-INLA/inlabru and spBayes are currently limited to isotropic covariance. To our knowledge,
VAST and tinyVAST are the only packages to implement spatial (Thorson et al. 2015a) and
spatial dynamic factor analysis (Thorson et al. 2016) and spatial empirical orthogonal func-
tion (EOF) regression (Thorson et al. 2020). Of these packages, only sdmTMB and inlabru
can currently fit threshold (e.g., hockey-stick) covariate relationships. To our understanding,
spaMM is limited to a spatial random field (i.e., does not fit spatiotemporal fields) and sp-
Bayes implements spatiotemporal fields, but only as a random walk. There is considerable
variability in the available observation likelihoods across packages (Table 1).
We ran a simple speed comparison between sdmTMB, R-INLA/inlabru, spaMM, and mgcv
for fitting an SPDE spatial random field model to 1,000, 10,000, or 100,000 data points with
Gaussian error across a range of mesh resolutions (Figure 12, Appendix A). Our test was
restricted to one core and default R algebra libraries using R 4.4.0 and Matrix version 1.7.0.
With up to 10,000 rows of data, sdmTMB was fastest at approximately a three- to 13-fold
speed increase over R-INLA/inlabru (Figure 12a–b). At larger sample sizes, inlabru was more
affected by mesh resolution than sdmTMB (Figure 12c). mgcv was most affected by mesh
resolution (Figure 12) – timing was on par or faster than the other packages at low (≈ 200)
mesh resolutions but much slower as mesh complexity grew into commonly used ranges. The
mgcv model was fit with the bam() function instead of the standard gam(). The bam()
function here uses numerical methods optimized for large datasets, including a discretization
of covariate values (Wood et al. 2015, 2017; Li and Wood 2020). The standard gam() func-
tion was approximately 60 times slower than bam() for the largest dataset with the most
complex mesh (not shown). spaMM scaled well to large datasets with high mesh resolutions
(Figure 12c), but to our knowledge can only fit spatial GMRFs. At low mesh resolutions,
a large portion of the differences in timing is likely a result of initial model processing and
not estimation itself. Speed increases can allow for more rapid and thorough model explo-
ration and experimentation with this class of computationally intensive models. For users
ultimately interested in Bayesian inference, the approximate Bayesian inference offered by
R-INLA/inlabru is likely to be faster than passing the same model from sdmTMB/VAST to
tmbstan for full MCMC-based Bayesian inference.

8. Discussion
How does one choose among the related packages mentioned in this paper to fit SPDE-based
geostatistical GLMMs? Assuming a given package can fit the model of interest (Table 1),
we suggest the primary differences are the user interface and speed. We think users famil-
iar with stats::glm(), lme4, mgcv, or glmmTMB will find sdmTMB most approachable.
Users familiar with R-INLA will find inlabru approachable. Users familiar with mgcv can
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Figure 12: Comparison of time to fit an SPDE spatial random field model with an inter-
cept, one fixed-effect predictor, Gaussian error, and a sequence of SPDE resolutions to three
dataset sizes. Lines represent means and ribbons represent 90% quantiles across 50 random
iterations. VAST and tinyVAST should be similar to sdmTMB and so are not shown. inlabru
(version 2.10.1) used the empirical Bayes integration strategy and Gaussian approximation
with bru_max_iter = 1, and the like() formulation. mgcv (version 1.9.1) used bam(),
method = "fREML", and discretized covariates (Miller et al. 2020). Note that spaMM (ver-
sion 4.4.16) only fits spatial, not spatiotemporal, models. All platforms were restricted to
one core and could be faster with parallel computation or optimized algebra libraries. See
Figure 13 for a version with log-log axes.
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Figure 13: Same as Figure 12 but with both axes on a log scale.
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sdmTMB VAST R-INLA/inlabru mgcv spBayes spaMM

Time-varying coefficients ✓ –1 ✓ ✓ ✓ –
Spatially varying coefficients (SVC) ✓ ✓ ✓ ✓ ✓ –
GAMs2 ✓ – ✓ ✓ – –
Threshold covariates ✓ – ✓3 – – –
Offsets ✓ ✓ ✓ ✓ ✓ ✓

Spatiotemporal fields ✓ ✓ ✓ ✓ ✓4 –
Spatial + spatiotemporal fields ✓ ✓ ✓ ✓ – –
Anisotropy ✓ ✓ – ✓ – –
Correlation barriers ✓ ✓ ✓ ✓ – –
Separate range parameters for fields ✓ – ✓ ✓ – –
Share range parameters across fields ✓ ✓ ✓ – – –
SPDE-based ✓ ✓ ✓ ✓5 –6 ✓

NB1 distribution ✓ – ✓ ✓ – ✓
NB2 distribution ✓ ✓7 ✓ ✓ – ✓
Zero-truncated distributions ✓ – ✓ – – ✓
Zero-inflated distributions ✓ ✓ ✓ – – ✓
Tweedie distribution ✓ ✓ ✓ ✓8 – –
Student-t distribution ✓ – ✓ ✓ – –
Censored Poisson distribution ✓ – ✓ – – –
Log Gaussian Cox processes –9 –9 ✓ –9 –9 –9

Multivariate responses – ✓ ✓ ✓ ✓ ✓
Built-in delta/hurdle models ✓ ✓ ✓ –10 – ✓
Poisson-link delta models ✓ ✓ ✓ – – –
Likelihood weights ✓ – ✓ ✓ ✓ ✓
Maximum/marginal likelihood ✓ ✓ – ✓ – –

Bayesian/optionally Bayesian ✓ ✓ ✓ ✓ ✓ –
Priors/penalties ✓ – ✓ – ✓ –
Matérn PC priors ✓ – ✓ – – –

Spatial (or spatial dynamic) factor analysis – ✓ – – – –
Empirical Orthogonal Function (EOF) analysis – ✓ – – – –
Built-in area-weighted index standardization ✓ ✓ – – – –
Built-in cross-validation ✓ – – – – –

Table 1: Comparison of functionality between several R packages that can fit geostatistical
GLMMs. At the time of writing, the feature set of tinyVAST is rapidly evolving and so is
not shown here. Notes: 1Technically possible but non-trivial. 2Penalized smoother GAMs
that determine “wiggliness”. 3inlabru but not R-INLA. 4Spatiotemporal fields as random
walk only. 5SPDE approach as in Miller et al. (2020). 6Does have predictive process knots.
7Zero-inflated NB2 only. 8Tweedie power parameter fixed for mgcv::gamm(). 9Possible as log-
linked Poisson GLMM with aggregated data. 10Hurdle models possible by fitting components
separately.

adapt mgcv to fit similar models with custom code (Miller et al. 2020). R-INLA/inlabru
and mgcv are also general-purpose modeling packages. VAST and tinyVAST are the sole
options for fitting some multivariate models; alternatively, because these packages focus on
multivariate delta models and fisheries applications, users fitting “simple” univariate spa-
tial/spatiotemporal GLMMs will likely find sdmTMB more straightforward. Users looking
for calculations of derived variables with uncertainty, such as area-weighted population in-
dices, may favor sdmTMB or VAST (although such quantities can be calculated using other
packages post hoc). Overall, sdmTMB unites functionality useful in many applied settings
into a single package.
While our examples focused on applications to ecological data, the SPDE approach and the
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functionality of sdmTMB have applications in many other fields. Examples include spatial
models of disease spread (Moraga et al. 2021), spatial econometric models of quantities such as
housing prices (Bivand et al. 2014), analyzing medical imaging data such as MRI scans (Parisa
Naseri and Tabatabaei 2022), and geophysical models of seismic waves following earthquakes
(Zhang et al. 2015). The sdmTMB model is also relevant to spatial (Elhorst 2010; Lee and
Yu 2010) and dynamic spatial panel data models (Elhorst 2012) in econometrics. These
examples underscore the versatile nature of the SPDE approach and the potential uses of
sdmTMB across various scientific and industrial sectors.
The GLMMs underpinning sdmTMB models are spatially explicit and derived from a mecha-
nistic diffusion process – they estimate interpretable parameters of a spatial covariance func-
tion: parameters defining the magnitude of spatial variation and the rate of correlation decay
with distance. In contrast, non-parametric approaches (e.g., randomForest, Liaw and Wiener
2002; MaxEnt, Phillips et al. 2006) and most smooths in mgcv (Wood 2017) do not estimate
spatial covariance functions. Approaches such as conditional autoregressive models (CAR)
are applicable to areal data, where the spatial domain is discretized into a set of vertices
or polygons. Data aggregated to polygon or grid level may be analyzed using other spatial
models, including CAR models (e.g., Ver Hoef et al. 2018); sdmTMB can also fit models with
areal data if each polygon has an associated centroid. A benefit of the geostatistical approach
over CAR or similar models is that the parameters describing spatial covariance can be more
easily interpreted (Wall 2004).
Additional functionality in sdmTMB not already mentioned includes interpolating across
missing time slices and forecasting, the barrier SPDE model (Bakka et al. 2019), and time-
varying spatiotemporal covariance parameters (Ward et al. 2022). There are several planned
future additions to the sdmTMB model structure. A subset of features to be added includes
(1) the ability to specify observation-specific likelihoods to integrate different data types
(e.g., Grüss and Thorson 2019), (2) inclusion of a dispersion formula similar to glmmTMB,
(3) covariate diffusion to model non-local covariate effects (Lindmark et al. 2025), and (4) in-
tegration with the RTMB (Kristensen 2025) package so that the model code base is written
in R rather than C++.
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A. Speed testing related packages
Here, we describe the methods underlying the speed testing in Figure 12. We generated a
mesh that was consistent across simulated data sets for a given mesh resolution (Figure 14).
We did this by setting the max.edge argument, which controls the largest allowed triangle
edge length. We tested values of max.edge of 0.06, 0.075, 0.1, 0.15, and 0.2. In Figure 12,
we report on the x-axis the number of mesh nodes (“vertices”) that result from each of these
meshes.
We simulated 1,000, 10,000, or 100,000 spatial observations with both x and y coordinates
from uniform(0, 1) distributions (Figure 15). Each iteration generated unique coordinates,
predictor data, GMRF values, and observation error. The GMRF was parameterized with
a range of 0.5 and marginal standard deviation of 0.2. The model included an intercept
with a value of 0.2 and a normal(0, 1) predictor with an associated coefficient of -0.4. The
observation error was Gaussian with a standard deviation of 0.3.
We conducted 50 simulation iterations per model and mesh resolution and show timing results
for the mean, 10%, and 90% quantile values. The models were fit on a 2023 16-inch M2
MacBook Pro with an Apple M2 Pro 10-core CPU and 32 GB of RAM in R 4.4.0 and the
default BLAS library packaged with R (R Core Team 2025).

A.1. Illustration of generating the INLA mesh
We will illustrate with a max.edge of 0.06:

R> max_edge <- 0.06
R> loc_bnd <- matrix(c(0, 0, 1, 0, 1, 1, 0, 1), 4, 2, byrow = TRUE)
R> segm_bnd <- INLA::inla.mesh.segment(loc_bnd)
R> mesh <- INLA::inla.mesh.2d(boundary = segm_bnd,
+ max.edge = c(max_edge, 0.2), offset = c(0.1, 0.05))

This mesh has 1165 (mesh$n) vertices.

A.2. Illustration of simulating data

R> set.seed(123)
R> n_obs <- 1000
R> predictor_dat <- data.frame(X = runif(n_obs), Y = runif(n_obs),
+ a1 = rnorm(n_obs))
R> mesh_sdmTMB <- make_mesh(predictor_dat, xy_cols = c("X", "Y"),
+ mesh = mesh)
R> sim_dat <- simulate_new(formula = ~ 1 + a1, data = predictor_dat,
+ mesh = mesh_sdmTMB, family = gaussian(),
+ range = 0.5, phi = 0.3, sigma_O = 0.2, B = c(0.2, -0.4))

A.3. Example sdmTMB model fit

R> fit_sdmTMB <- sdmTMB(observed ~ a1, data = sim_dat, mesh = mesh_sdmTMB,
+ family = gaussian(), priors =
+ sdmTMBpriors(matern_s = pc_matern(range_gt = 0.05, sigma_lt = 2)))
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A.4. Example spaMM model fit

R> spde <- INLA::inla.spde2.pcmatern(mesh = mesh, prior.range = c(0.05, 0.05),
+ prior.sigma = c(2, 0.05))
R> fit_spaMM <- fitme(observed ~ a1 + IMRF(1 | X + Y, model = spde),
+ family = gaussian(), data = sim_dat)

A.5. Example inlabru model fit

R> dat_sp <- sp::SpatialPointsDataFrame(cbind(sim_dat$X, sim_dat$Y),
+ proj4string = sp::CRS(
+ "+proj=aea +lat_0=45 +lon_0=-126 +lat_1=50 +lat_2=58.5 +x_0=1000000
+ +y_0=0 +datum=NAD83 +units=km +no_defs"
+ ), data = sim_dat)
R> components <- observed ~ -1 + Intercept(1) + a1 +
+ spatrf(main = coordinates, model = spde)
R> like <- like(observed ~ Intercept + a1 + spatrf,
+ family = "gaussian", data = dat_sp)
R> fit_bru <- bru(like, components = components,
+ options = bru_options(
+ control.inla = list(int.strategy = "eb", strategy = "gaussian"),
+ bru_max_iter = 1, num.threads = "1:1"
+ ))

A.6. Example mgcv model fit

First define smooth.construct.spde.smooth.spec() and Predict.matrix.spde.smooth()
from the supplement of Miller et al. (2020), then:

R> fit_bam <- bam(observed ~ a1 +
+ s(X, Y, bs = "spde", k = mesh$n, xt = list(mesh = mesh)),
+ data = sim_dat, family = gaussian(), method = "fREML",
+ control = gam.control(scalePenalty = FALSE), discrete = TRUE)
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