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Abstract

The R package MixtureMissing performs model-based clustering on data sets with
values missing at random, aiming to identify homogeneous groups of observations. In
model-based clustering, the data within each cluster follow a specific distribution. In the
package, 13 distributions are available, including the contaminated normal distribution,
the generalized hyperbolic distribution (GHD), and 11 special or limiting cases of GHD.
Notably, eight out of these 11 cases have not been formulated at the time of writing. Given
a list of candidate distributions, the package can recommend the optimal distribution to
employ based on a specified information criterion. In this paper, the methodological foun-
dations and computational aspects of the package are discussed. Furthermore, important
features of model fitting, model summary, and available visualization tools are thoroughly
illustrated using real data sets.

Keywords: model-based clustering, EM algorithm, outliers, skewness, missing data, contami-
nated normal distribution, generalized hyperbolic distribution.

1. Introduction
In this paper, we focus on robust and flexible model-based approaches to cluster analysis,
as well as their software implementation in the presence of missing values. In real-world
applications, data sets are often heavy-tailed and asymmetric. Additionally, these data can
include partially observed records, which may limit the effectiveness of traditional statistical
methods. Therefore, the availability of computational tools that address these challenges will
significantly benefit researchers and practitioners across various fields.
Cluster analysis aims to partition a multivariate data set into smaller, distinct groups, known
as clusters. Although the definition of a cluster is highly dependent on research goals and
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subject areas (Hennig 2015), it is generally desirable for a cluster to consist of observations that
are as similar as possible to each other, but relatively different from those of other clusters.
The use of cluster analysis has proven to be a powerful tool for exploratory analysis and
heterogeneity discovery, finding applications in diverse fields such as marketing, economics,
bioinformatics, psychiatry, and geography. For a formal introduction to cluster analysis, one
can refer to Kaufman and Rousseeuw (1990) and Everitt, Landau, Leese, and Stahl (2011).
Recently, model-based clustering – the idea of performing cluster analysis by fitting a fi-
nite mixture model (McLachlan and Peel 2000) – has garnered significant attention from
researchers and statisticians. Key references in this area include Fraley and Raftery (2002)
and Stahl and Sallis (2012). In this framework, each observation is considered to arise from
a mixture of known probability distributions within the same parametric family. Therefore,
the clustering problem involves estimating the mixture parameters. There are two main ap-
proaches to estimating the parameters: the frequentist (or likelihood-based) approach and
the Bayesian approach (see Bishop and Nasrabadi 2006, for more details). The focus of
this paper is on the frequentist approach where maximum likelihood estimation for the pa-
rameters of the cluster is generally achieved through the expectation-maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977). The EM algorithm is an iterative parameter
estimation procedure designed for situations involving incomplete data or latent variables.
Upon convergence of the algorithm, cluster memberships can be determined by maximizing
the a posteriori probability. Model-based clustering offers an inferential advantage compared
to other heuristic cluster analysis methods such as k-means (Macqueen 1967) or hierarchi-
cal clustering (Ward 1963). This advantage comes from the fact that each cluster can be
characterized by its corresponding mixture component.
There are an extensive number of R packages that perform model-based clustering on vari-
ous data types. In particular, the mclust package (Scrucca, Fop, Murphy, and Raftery 2016)
stands out as one of the most widely used packages for continuous data. In a high-dimensional
setting, model-based clustering of continuous data can be used by exploring various parsimo-
nious models as in package pgmm (McNicholas, ElSherbiny, McDaid, and Murphy 2021) or
by assuming that the data can be represented in a lower dimension than the original space as
in package HDclassif (Bergé, Bouveyron, and Girard 2012). Regarding non-continuous data,
the package BayesBinMix (Papastamoulis and Rattray 2017) is tailored for binary data,
and the package ordinalclust (Selosse, Jacques, and Biernacki 2020) is designed for ordinal
data. Furthermore, the package funFEM (Bouveyron 2021) provides model-based clustering
of functional data, as well as time series. Most of these packages are based on the frequentist
approach to model-based clustering. However, there are also several packages based on the
Bayesian approach, such as REBayes (Koenker and Gu 2017), bayesmix (Grün and Plummer
2023), or BNPmix (Corradin, Canale, and Nipoti 2021). In Python, several clustering tech-
niques are implemented in sklearn.cluster (Pedregosa et al. 2011). MATLAB also includes
some commonly used clustering techniques (The MathWorks Inc. 2025).
In model-based clustering literature, the normal distribution is extensively utilized, often
serving as the primary choice for mixture distributions. Numerous R packages are built on
this distribution, including mclust (Scrucca et al. 2016), mixture (Pocuca, Browne, and Mc-
Nicholas 2021), pgmm (McNicholas et al. 2021), and mixtools (Benaglia, Chauveau, Hunter,
and Young 2009), to name a few. The general mixture modeling MIXMOD program fits mix-
ture models to a given data set using C++. It fits the multivariate Gaussian mixtures and
fourteen different variations based on constraints on the covariance matrix. MIXMOD has
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interfaces for many other programming languages, including R (Lebret, Iovleff, Langrognet,
Biernacki, Celeux, and Govaert 2015), Python (Singleton 2023), and MATLAB (Biernacki,
Celeux, Govaert, and Langrognet 2006). In Python, model-based clustering using the Gaus-
sian distribution is also implemented in sklearn.cluster (Pedregosa et al. 2011). In MATLAB,
model-based clustering can instead be obtained using the model-based clustering toolbox
(Martinez and Martinez 2003).
Despite its popularity, the use of the normal distribution in model-based clustering has some
limitations on the shape of the clusters. First, with its light tails, the normal distribution is
not robust against extreme observations – those that significantly deviate from the rest and
are commonly known as outliers (Hawkins 1980). Second, it is symmetric around the mean,
an assumption that may be not realistic in many clustering applications (see for example
Wallace, Buysse, Germain, Hall, and Iyengar 2018). Third, the majority of the packages
mentioned so far assume that the data are complete, i.e., without missing values. Solutions
have been proposed for all the mentioned issues.
Starting with data sets with outliers, this characteristic introduces the risk of unreliable
estimation of component means and covariance matrices. Generally speaking, outliers can be
categorized into two types: gross outliers and mild outliers (Ritter 2014, pp. 79–80). Gross
outliers are those that cannot be adequately modeled by a distribution. Dealing with this type
of outliers often involves recommended approaches, such as removing them using a trimming
approach (Cuesta-Albertos, Gordaliza, and Matran 1997; Fritz, Garcia-Escudero, and Mayo-
Iscar 2012) or maximizing the trimmed likelihood of a partition model (García-Escudero,
Gordaliza, Matrán, and Mayo-Iscar 2008). The R package tclust (Fritz et al. 2012) implements
several clustering techniques, all based on the trimming approach. Alternatively, gross outliers
can be considered as scatters – observations that do not resemble any others in the data. Byers
and Raftery (1998) proposed modeling scatters by adding a Poisson process component to
the mixture model, a procedure implemented in the R package mclust. Recent advances in
clustering in the presence of scatters can be found in Tseng and Wong (2005) and Maitra and
Ramler (2009). Mild outliers, on the other hand, are sampled from populations different from
or even far from the assumed model, such as the normal distribution, as discussed in detail
by Davies and Gather (1993). In this paper, the main focus is to address mild outliers for
model-based clustering, where a common approach is to employ a heavy-tailed distribution to
model each component of the mixture. In particular, the t distribution (Peel and McLachlan
2000) and the contaminated normal distribution (Punzo and McNicholas 2016) emerge as
two suitable candidates, given that their means and covariance matrices are less affected
by outliers. Furthermore, both distributions can be employed for outlier detection. The R
packages that implement t and contaminated normal mixtures are teigen (Andrews, Wickins,
Boers, and McNicholas 2018) and ContaminatedMixt (Punzo, Mazza, and McNicholas 2018),
respectively. In Python, only the Student-t mixture is implemented in student_pyt (Tomer
2020).
Moving to the issue of symmetry of the clusters, several other multivariate distributions have
also been employed within model-based clustering to improve flexibility in cluster shapes.
Notable examples include the skew-normal distribution (Lee and McLachlan 2013), skew-t
distribution (Murray, Browne, and McNicholas 2014), and generalized hyperbolic distribu-
tion (Browne and McNicholas 2015), all of which incorporate a skewness parameter. The
skew-t and generalized hyperbolic distributions are also known for their robustness. One ma-
jor advantage of the generalized hyperbolic distribution is that it encompasses many other
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distributions, including the normal, skew-t, and t, as special or limiting cases. In fact, in
a study by Bagnato, Farcomeni, and Punzo (2024), a hierarchy of 15 distributions can be
obtained from the generalized hyperbolic distribution. The R package that implements the
mixture of generalized hyperbolic distributions is MixGHD (Tortora, Browne, El Sherbiny,
Franczak, and McNicholas 2021). For a more comprehensive review of non-Gaussian distri-
butions in model-based clustering, refer to McNicholas (2016).
Finally, despite the high flexibility in cluster shape achieved by some of the mentioned models,
clustering may still be challenging due to the presence of missing values in the data. In the
literature on model-based clustering, some extensions have been made to incomplete data,
including Ghahramani and Jordan (1994) for the normal mixture, Wang, Zhang, Luo, and
Wei (2004) for the t mixture, Tong and Tortora (2022) for the contaminated normal mixture,
and Wei, Tang, and McNicholas (2019) for the mixtures of generalized hyperbolic and skew-t
mixtures. From this list of works, it is evident that only four distributions in the hierar-
chy shown by (Bagnato et al. 2024) – normal, t, skew-t, and generalized hyperbolic – have
been extended to handle missing values. This limitation is notable, especially considering the
various distributions that can be derived from the generalized hyperbolic distribution. There-
fore, in this paper, we extend the framework of fitting mixtures of eight more distributions
in this hierarchy to both complete and incomplete data. More importantly, we introduce
the R package MixtureMissing, which implements these new models as well as the normal,
t, contaminated normal, generalized hyperbolic, and skew-t mixtures. With a total of 13
distributions for model-based clustering, the package provides a robust and flexible tool for
modeling real data from various applications.
Generally, handling missing values in model-based clustering and cluster analysis at large is
not a novel concept. For example, just focusing on R, many packages already exist; see Josse,
Mayer, Tierney, and Vialaneix (2025) for an in-depth overview. However, much emphasis
has been placed on preprocessing the original data set with an imputation technique in which
incomplete entries are filled with some point estimates; for an overview of imputation, see Van
Buuren (2021) and Little and Rubin (2020). In particular, the package mixture attempts to
impute when performing the expectation step of the EM algorithm, while the package mclust
includes the function imputeData() for missing data imputation via the package mix (Schafer
2017) based on multiple imputations. Additionally, the package ClustImpute (Pfaffel 2020)
performs k-means clustering after random imputation, and the package miclust (Basagaña,
Barrera-Gómez, Benet, Antó, and Garcia-Aymerich 2013) integrates k-means with multiple
imputation. The package VarSelLCM (Marbac and Sedki 2019) can handle mixed-type data
model-based clustering without pre-processing, its framework primarily focuses on variable
selection rather than parameter estimation. Specific for model-based clusters in the pres-
ence of missing data is the packages MGMM (McCaw 2023), which implements a mixture of
Gaussian distributions, and RMixtComp (Kubicki et al. 2023), which includes models for dif-
ferent data types and uses mixtures of Gaussian distributions for continuous data. In Python,
missing data can only be handled before starting cluster analysis using SimpleImputer or
IterativeImputer (Pedregosa et al. 2011). Similarly, in MATLAB the imputation of the miss-
ing values can be obtained using fillmissing. Therefore, the new R package MixtureMissing
fills the gap by providing a model-based clustering implementation that directly accounts for
missing values in the EM algorithm using several distributions.
The outline of the paper is as follows. First, we characterize different missing data mech-
anisms. Next, after providing a mathematical definition of model-based clustering, we in-
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troduce the contaminated normal and generalized hyperbolic mixtures for data with values
missing at random. We then discuss some relevant computational aspects and guide readers
through the main functionalities of the package. Finally, we conclude with a summary of the
main key points.

2. Missing data mechanisms
A missing-data mechanism refers to the connection between the occurrence of missingness
and the underlying values of the variables. Suppose we have an n × d data matrix X =
{Xij} = (Xobs,Xmis), for i = 1, . . . , n and j = 1, . . . , d, that is partitioned into the observed
part Xobs and the missing part Xmis. Let M = {mij} be the n × d missing-data indicator
matrix, such that mij = 1 if Xij is missing and mij = 0 otherwise. Little and Rubin (2020)
defines the missing-data mechanism based on the conditional distribution of M given X,
that is f (M | X, ϕ), where ϕ denotes some unknown parameters. In particular, the data are
called missing completely at random (MCAR) if

f (M | X, ϕ) = f (M | ϕ) for all X, ϕ, (1)

which implies that missingness does not depend on the values of the data X, missing or
observed. When missingness depends only on the observed part Xobs of X, the data are
called missing at random (MAR). Specifically,

f (M | X, ϕ) = f (M | Xobs, ϕ) for all Xmis, ϕ. (2)

MAR is one of the most common assumptions in clustering with missing data and also includes
MCAR as a special case. In contrast, the data are called not missing at random (NMAR) if
the distribution of M depends on the missing values Xmis of X.
In this paper, we assume that the incomplete data are MAR. Additionally, the data have
a general missing data pattern where any two observations can have different numbers of
missing values on different variables.

3. Model-based clustering
In model-based clustering, the underlying population is assumed to be a convex combination
of components, each represented by a known probability distribution. Mathematically, a
random vector X with d variables follows a mixture distribution if its probability density
function (pdf) is

f(x; Ψ) =
G∑

g=1
πgf(x ; ϑg), (3)

where G denotes the number of components assumed to be known in advance; πg is the mixing
proportion for the g-th component such that πg > 0 and ∑G

g=1 πg = 1; f(x ; ϑg) is the pdf of
the g-th component identified by parameters ϑg; and Ψ = {π,ϑ} is the set of all the model
parameters.
Model-based clustering of an incomplete data set can be formulated as follows. Let X =
{Xi}n

i=1 be the given data that consists of n independent observations. Assuming some
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values missing at random, each observation Xi can be rewritten as (Xo
i ,X

m
i ) where the

do
i −dimensional vector Xo

i denotes its observed values and the dm
i −dimensional vector Xm

i

denotes its missing values. Herein, the notations o and m are used instead of oi and mi

for the sake of simplicity, and they do not imply that all observations have the same pat-
tern of missingness. Meanwhile, another source of missing values also arises from the la-
tent variable representing all observations’ unobserved cluster memberships Z = {Zi}n

i=1
where Zi = (Zi1, . . . , ZiG)⊤ is a 0-1 binary vector with one and only one element equal to
1. Then, the clustering task amounts to obtaining the maximum likelihood estimates for Ψ
from the complete-data {X,Z} = {Xo

i ,X
m
i ,Zi}n

i=1, which can be done using the expectation-
maximization (EM) algorithm developed by Dempster et al. (1977). The algorithm alternates
between one expectation (E) step and one maximization (M) step until convergence as follows

• E-step: Calculate the expected value

Q
(
Ψ ; Ψ(r)

)
= E

{
l (Ψ ; X,Z) | xo

1, . . . ,x
o
n,Ψ(r)

}
,

where l (Ψ ; X,Z) is the log-likelihood function based on the complete-data {X,Z}
and Ψ(r) is the estimate of Ψ at iteration r.

• M-step: Update the current parameters Ψ(r) with the new parameters Ψ(r+1) that
maximize the expectation Q

(
Ψ ; Ψ(r)

)
obtained in the E-step.

3.1. Contaminated normal mixtures

The contaminated normal mixture (CNM) introduced by Punzo and McNicholas (2016) is a
powerful robust model-based clustering method. The probability density function (pdf) of a
d−dimensional random vector X following an CNM with G components can be obtained by
setting f(x ; ϑg) in Equation 3 equal to

fCN (x; µg,Σg, αg, ηg) = αgfN (x; µg,Σg) + (1 − αg) fN (x; µg, ηgΣg) , (4)

which is the pdf of a contaminated normal (CN) distribution with mean µg, covariance matrix
Σg, proportion of good points αg ∈ (0.5, 1), and degree of contamination ηg > 1. fN (x ; µ,Σ)
is the pdf of a normal distribution. Thus, the CN distribution itself is a two-component
multivariate normal mixture in which one component, with covariance matrix Σg, represents
the good observations and the other component represents the bad observations (or outliers),
each weighted by probabilities αg and 1 − αg, respectively. The two components share the
same mean µg, but the bad observation component has a covariance matrix inflated by a
factor of ηg. All the distributions used within model-based clustering are multivariate, even
if it not always explicitly stated for the sake of simplicity.
Tong and Tortora (2022) developed a framework for fitting the contaminated normal mix-
ture (CNM) to incomplete data sets. The authors used the expectation-conditional maximiza-
tion either (ECME) algorithm (Liu and Rubin 1994) – a variant of the traditional EM algo-
rithm where the traditional maximization step is replaced by simpler conditional maximiza-
tion (CM) steps. Some of the CM steps will maximize the expected value Q

(
Ψ ; Ψ(r)

)
as

usual, while others will instead maximize the observed log-likelihood function. The framework
takes into account three sources of missing data:
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1. Component memberships for all observations: Z = {Zi}n
i=1, where Zi = (Zi1, . . . , ZiG)⊤

so that Zig = 1 if observation i belongs to component g, otherwise Zig = 0.

2. Whether an observation Xi is a good or bad point in each component, denoted as
V = {Vi}n

i=1, where Vi = (Vi1, . . . , ViG)⊤ so that Vig = 1 if observation xi is a good
point in component g, and Vig = 0 otherwise.

3. Missing values from each observation {Xm
i }n

i=1.

For details on the algorithm, see Tong and Tortora (2022).

3.2. Multivariate generalized hyperbolic mixtures

According to McNeil, Frey, and Embrechts (2015), a d−dimensional random vector X is said
to follow a generalized hyperbolic (GH) distribution with index parameter λ ∈ R, concentra-
tion parameters χ, ψ ∈ R+, location vector µ, dispersion matrix Σ, and skewness vector β if
its pdf is given by

h (x;λ, χ, ψ,µ,Σ,β)

=
[
χ+ δ(x,µ; Σ)
ψ + β⊤Σ−1β

] λ−d/2
2 (ψ/χ)λ/2Kλ−d/2

(√
(ψ + δ(x,µ; Σ))(ω + β⊤Σ−1β)

)
(2π)d/2|Σ|1/2Kλ(

√
χψ) exp [−(x − µ)⊤Σ−1β]

,

(5)

where δ(x,µ; Σ) = (x − µ)⊤Σ−1(x − µ) is the squared Mahalanobis distance between x and
µ, and Kλ(.) is the modified Bessel function of the third kind with index λ. In this formula, to
ensure identifiability, it is necessary to fix |Σ| = 1, which is restrictive in the context of model-
based clustering. Thus, Browne and McNicholas (2015) proposed another parameterization
of the GH distribution with index parameter λ ∈ R, concentration parameter ω > 0, location
vector µ, dispersion matrix Σ, and skewness vector β, under which the pdf of X now becomes

fMGH (x;λ, ω,µ,Σ,β)

=
[
ω + δ(x,µ; Σ)
ω + β⊤Σ−1β

] λ−d/2
2 Kλ−d/2

(√
(ω + δ(x,µ; Σ))(ω + β⊤Σ−1β)

)
(2π)d/2|Σ|1/2Kλ(ω) exp [−(x − µ)⊤Σ−1β]

.

(6)

For data generation purpose, X can be represented as

X = µ +Wβ +
√
WU , (7)

where U⊥W , W follows a univariate generalized inverse Gaussian (GIG) distribution with
parameters ω/η, ωη, and λ, with η = 1, and U ∼ N(0,Σ) follows a multivariate normal
distribution with mean vector 0d and covariance matrix Σ. This stochastic representation
is also useful for parameter estimation. Since X | W = w follows a multivariate normal
distribution with mean vector µ + wβ and covariance matrix wΣ, W can be treated as
latent variable, and parameter estimation is simplified. It is worth pointing out that the
GH distribution encompasses a wide range of distributions as special or limiting cases such as
the multivariate skew-t, skew-normal, normal-inverse Gaussian, variance-gamma, asymmetric
Laplace, and normal distributions (see McNeil et al. 2015).
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Setting f(x ; ϑg) in Equation 3 equal to Equation 6 leads to a G-component generalized
hyperbolic mixture (GHM). To extend the proposed framework to incomplete data sets, Wei
et al. (2019) outlined an EM procedure to fit the GHM that involves three sources of missing
data:

1. Component memberships for all observations: Z = {Zi}n
i=1, where Zi = (Zi1, · · · , ZiG)⊤

so that Zig = 1 if observation i belongs to component g, otherwise Zig = 0.

2. The latent variables W = {Wig}, for i = 1, . . . , n and g = 1, . . . , G, in which Wig is
assumed to follow a GIG distribution.

3. Missing values from each observation {Xm
i }n

i=1.

For more details on the algorithm, see Wei et al. (2019). It should be noted that although the
GHM presents a flexible tool for modeling heterogeneous populations that exhibit skewness
and heavy tails, it does not come with automatic outlier detection.

3.3. Other mixture models and extensions

Wei et al. (2019) also developed a framework for mixtures of skew-t distributions with missing
data. The probability density function (pdf) of a d−dimensional random vector X that follows
a skew-t (St) distribution is

fSt (x; ν,µ,Σ,β)

=
[
ν + δ(x,µ; Σ)

β⊤Σ−1β

] −ν−d
4 νν/2K(−ν−d)/2

(√
(ν + δ(x,µ; Σ))(β⊤Σ−1β)

)
(2π)d/2|Σ|1/2Γ(ν/2)2ν/2−1(ω) exp [−(x − µ)⊤Σ−1β]

,

(8)

where Γ(.) is the gamma function, ν > 0 is the degree of freedom, and other parameters and
functions have been defined previously. One advantage of the generalized hyperbolic (GH)
distribution is that 15 distributions can be directly obtained as special or limiting cases;
refer to Bagnato et al. (2024) for the hierarchy to obtain them. However, when using the
parametrization in Equation 6, only six distributions can be obtained as special cases of the
GH. Specifically, setting λ = (d+1)/2 in (6), we obtain the hyperbolic (H) distribution. From
here, the additional constraint of β = 0 leads to the symmetric hyperbolic (SH) distribution.
On the other hand, setting λ = 1/2 in (6), we obtain the normal-inverse Gaussian (NIG)
distribution, which then leads to the symmetric normal-inverse Gaussian (SNIG) distribution
with the additional constraint of β = 0. If the only constraint is β = 0, the symmetric gener-
alized hyperbolic (SGH) distribution is obtained, which then gives the hyperbolic univariate
marginals (HUM) distribution if λ = 1.
Four more distributions can be obtained as special or limiting cases of the skew-t distribution
in Equation 8. Starting from the skew-t pdf, setting ν = 1, the skew-Cauchy (SC) distribution
is obtained. Additionally, by adding β = 0, we get a Cauchy (C) distribution. On the other
hand, setting just β = 0 instead, we obtain the t distribution. Furthermore, by adding
ν → ∞, we can obtain the normal (N) distribution. Figure 1 contains a visual representation
of the mentioned special and limiting cases.
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Figure 1: Visual representation of the special and limiting cases of the generalized hyperbolic
and skew-t distributions.

In the R package MixtureMissing, mixture models utilizing all the 12 distributions in the
GH hierarchy mentioned above for model-based clustering of data missing at random are
available. This entails incorporating GH and skew-t, as proposed in Wei et al. (2019), along
with the additional distributions – H, SH, NIG, SNIG, SGH, HUM, SC, C, t, and N – that
have been developed and integrated into the package.

Figure 2 shows an example of possible shapes that can be obtained using a normal distribution
(black solid line), contaminated normal (CN) distribution (red dashed line) and generalized
hyperbolic (GH) distribution (blue dotted line). In Figure 2(a) µ = (0, 0) and Σ = I. For
the CN η = 3, α = 0.7; for the GH ω = 1, λ = 0.5, β = (−1, 2). In the other figures,
one parameter per distribution changes. Specifically in Figure 2(b), we can see the effect of
correlation, the off-diagonal elements of Σ are 0.5. In Figure 2(c) we can see the effect of η
for the CN and ω for the GH, both impacting kurtosis. Similarly, in Figure 2(d) we see the
effect of α for the CN and λ for the GH, both impacting kurtosis generating longer tails.
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(a) (b) Σ off-diagonal 0.5.

(c) CN η = 6; GH ω = 3. (d) CN α = 0.6; GH λ = 0.7.

Figure 2: Contour plots of the density of normal (black solid line), contaminated normal (CN)
(red dashed line), and generalized hyperbolic (GH) (blue dotted line) distributions with µ =
(0, 0). Unless otherwise specified, Σ = I; for the CN η = 3, α = 0.7; for the GH ω = 1,
λ = 0.5, β = (−1, 2).

4. Computational aspects

4.1. Initialization

Biernacki, Celeux, and Govaert (2003) and Karlis and Xekalaki (2003) emphasized the im-
portance of initialization in the EM algorithm because its solution can be dependent on the
initial values. In the MixtureMissing package, the following initialization strategy is used:

1. If the data set is incomplete, apply mean imputation to the original data set to obtain
a complete one.

2. Set mixing proportions equal across G components, that is, π(0)
g = 1/G.

3. Perform a heuristic clustering method or user-defined labels as listed in Table 1 and
assign µ

(0)
g and Σ(0)

g according to the resulting solution.

4. Initialize other parameters depending on the used distribution as follows
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Method Label Description
K-medoids (default) "kmedoids" See Kaufman and Rousseeuw (1990)
K-means "kmeans" See Macqueen (1967)
Hierarchical clustering "hierarchical" See Ward (1963) for the implemented linkage
Gaussian mixture "mclust" See Scrucca et al. (2016)
User-defined "manual" Supplied by the user as a vector

Table 1: Implemented initialization criteria for component mean vectors and component
dispersion matrices in the package MixtureMissing.

• Contaminated normal

α
(0)
1 = · · · = α

(0)
G = 0.6 and η

(0)
1 = · · · = η

(0)
G = 1.4.

• Skew-t

β
(0)
1 = · · · = β

(0)
G =

0.01
...

0.01

 and ν
(0)
1 = · · · = ν

(0)
G = 10.

• t

ν
(0)
1 = · · · = ν

(0)
G = 10.

• Skew-Cauchy

β
(0)
1 = · · · = β

(0)
G =

0.01
...

0.01

 .

• Generalized hyperbolic and other distributions

λ
(0)
1 = · · · = λ

(0)
G = −0.5, ω

(0)
1 , . . . , ω

(0)
G = 1, and β

(0)
1 = · · · = β

(0)
G =

0
...
0

 .

4.2. Predicted cluster memberships, outlier detection, and imputation

The convergence in the EM algorithm is based on the Aitken acceleration (Aitken 1926); see
McNicholas (2020) for more details. For all the used distributions, at the convergence of the
EM algorithm, we can determine cluster memberships for all observations via the maximum
a posteriori (MAP) probabilities.
The contaminated normal and t mixtures also have an outlier detection procedure. For the
multivariate contaminated normal mixture, outlier detection is performed as follows. For each
observation Xi, let v̂ig denote the value P (Vig = 1 | xi, Zig = 1,Ψ(r)) at the convergence
of the ECME algorithm. Then Xi is considered good with respect to the group g if Xi
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Code Information criteria Reference
AIC Akaike information criterion Akaike (1998)
BIC Bayesian information criterion Schwarz (1978)
KIC Kullback information criterion Cavanaugh (1999)
KICc Corrected KIC Seghouane and Bekara (2004)
AIC3 Modified AIC Bozdogan (1993)
CAIC Consistent AIC Bozdogan (1987)
AICc Corrected AIC Hurvich and Tsai (1989)
ICL Integrated completed likelihood Biernacki, Celeux, and Govaert (2000)
AWE Approximate weight of evidence Banfield and Raftery (1993)
CLC Classification likelihood criterion Biernacki and Govaert (1997)

Table 2: String code of information criteria calculated in model-based clustering functions of
the package MixtureMissing.

belongs to the component g and v̂ig > 0.5; otherwise, it is bad. It is important to note that
outlier detection for a generic Xi can only be performed for the component g corresponding
to the maximum ẑig, that is, only for the cluster to which the point belongs. Herein, the
threshold of 0.5 is based on the fact that v̂ig is a probability. This procedure is said to be
automatic because v̂ig is obtained as a product of the ECME algorithm. For the t mixtures,
Peel and McLachlan (2000) proposed an a posteriori procedure that requires a threshold to
be specified in advance. Although Peel and McLachlan (2000) suggested the 95th percentile,
a good choice for such percentile varies according to the application. Therefore, the procedure
is rather subjective and not automatic.

4.3. Information criteria for model selection

The study of information criteria in model-based clustering aims to address situations where
the number of clusters G is not given a priori; this scenario is also known as model selec-
tion. The idea is to run the assumed mixture model multiple times with different values of
G, obtain the corresponding values of an information criterion, and select the G that opti-
mizes such criterion. Table 2 lists all information criteria that can be obtained by running
the model-based clustering functions in the package MixtureMissing. They can also be dis-
played in a tabular format by passing an object of class MixtureMissing into the function
summary(). Readers can consult Brochado and Martins (2005), Akogul and Erisoglu (2016),
or the references provided in Table 2 for their formulas.

5. The R package MixtureMissing

5.1. Overview

The R package MixtureMissing contains three functions to carry out model-based clustering of
complete and incomplete data: MCNM() for multivariate contaminated normal mixture, MGHM()
for multivariate generalized hyperbolic mixture, including its special or limiting cases, and
select_mixture() for mixture model selection. They share arguments detailed in Table 3.
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In addition, the specific argument for MCNM() is as follows.

• eta_min: A numeric value close to 1 to the right specifying the minimum value of
η1, . . . , ηG; 1.001 by default.

Whereas, MGHM() takes the following specific arguments

• model: A string indicating the mixture model to be fitted; "GH" for generalized hy-
perbolic by default. The model can be any distribution in Table 4, except for the
contaminated normal distribution.

• outlier_cutoff: A number between 0 and 1 indicating the percentile cut-off used for
outlier detection. This is only relevant for t mixture.

• deriv_ctrl: A list containing arguments to control the numerical procedures for calcu-
lating the first and second derivatives. Some values are suggested by default. Refer to
functions grad() and hessian() under the package numDeriv (Gilbert and Varadhan
2019) for more information.

The general function select_mixture() also takes eta_min, outlier_cutoff, and
deriv_ctrl as described above, as well as

• model: A vector of character strings indicating the mixture model(s) to be fitted. Avail-
able distributions are given in Table 4. If not specified, all distributions will be consid-
ered by default.

MCNM() and MGHM() return an object of class MixtureMissing including the values described
in Table 5. On top of these values, MCNM() has the following

• alpha: Component proportions of good observations.

• eta: Component degrees of contamination.

• v_tilde: An n by G matrix where each row indicates the expected probabilities that
the corresponding observation is good with respect to each cluster.

MGHM() has the following

• beta: Component skewness vectors. Only available if model is GH, NIG, SNIG, SC, SGH,
HUM, H, or SH; NULL otherwise.

• lambda: Component index parameters. Only available if model is GH, NIG, SNIG, SGH,
HUM, H, or SH; NULL otherwise.

• omega: Component concentration parameters. Only available if model is GH, NIG, SNIG,
SGH, HUM, H, or SH; NULL otherwise.

• df: Component degrees of freedom. Only available if model is St or t; NULL otherwise.

On the other hand, the output of select_mixture() is a list with three slots
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Argument Description
X Matrix or data frame of dimensions n× d.
G An integer vector specifying the numbers of clusters, which must be

at least 1.
criterion A character string indicating the information criterion for model se-

lection. BIC is used by default.
max_iter A numeric value giving the maximum number of iterations each EM al-

gorithm is allowed to use; 20 by default.
epsilon A number specifying the epsilon value for the Aitken-based stopping

criterion used in the EM algorithm: 0.01 by default.
init_method A string specifying the method to initialize the EM algorithm.

"kmedoids" clustering is used by default. Alternative methods in-
clude "kmeans", "hierarchical", "mclust", and "manual". When
"manual" is chosen, a vector clusters of length n must be specified.
If the data set is incomplete, missing values will be first filled based
on the mean imputation method.

clusters A numeric vector of length n that specifies the initial cluster mem-
berships of the user when init_method is set to "manual". This ar-
gument is NULL by default, so that it is ignored whenever other given
initialization methods are chosen.

progress A logical value indicating whether the fit progress should be displayed;
TRUE by default.

Table 3: Common arguments used by three functions to carry out model-based clustering in
the package MixtureMissing.

• best_mod: An object of class MixtureMissing corresponding to the best model.

• all_mod: A list of objects of class MixtureMissing corresponding to all models of
consideration. The list is in the order of model.

• criterion: A numeric vector containing the chosen information criterion values of all
models of consideration. The vector is in the order of the best-to-worst models.

The package also includes an extractor function, extract(), the user can specify the desired
output using the argument what. When applied to the output of select_model(), it con-
siders the best model by default. However, the user can specify a different model among
all those fitted using the argument m_code. The package also includes some methods for
MixtureMissing class objects: plot(), to display results in terms of scatter plots, parallel
coordinate plots, and pairwise contour plots; summary(), to summarize the estimated param-
eters and further details; and print(), to provide a short description of the fitted model.
Further details can be found in the functions’ help pages.
For reproducibility, we fix the random number generator version in R.

R> suppressWarnings(RNGversion("3.5.0"))
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Code Distribution
CN Contaminated normal
GH Generalized hyperbolic
NIG Normal-inverse Gaussian
SNIG Symmetric normal-inverse Gaussian
SC Skew-Cauchy
C Cauchy
St Skew-t
t Student’s t
N Normal or Gaussian
SGH Symmetric generalized hyperbolic
HUM Hyperbolic univariate marginals
H Hyperbolic
SH Symmetric hyperbolic

Table 4: String codes for multivariate distributions implemented in the package Mixture-
Missing.

5.2. Simulating incomplete data sets
The package provides a convenient function hide_values() to introduce missing values to a
multivariate data set under the MCAR mechanism. The function allows the user to specify
either the proportion or the number of observations that contain missing values. It is impor-
tant to note that, depending on the size of the data, the resulting data with missing values
may not precisely match the specified proportion. Here is an example using the famous Iris
data set (Fisher 1936).

R> library("MixtureMissing")
R> set.seed(123)
R> iris_80_cases <- hide_values(iris[1:4], n_cases = 80)
R> sum(!complete.cases(iris_80_cases))

[1] 80

R> head(iris_80_cases)

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.1 3.5 1.4 NA
2 4.9 3.0 1.4 0.2
3 NA NA NA 0.2
4 4.6 3.1 1.5 0.2
5 5.0 NA NA NA
6 5.4 NA NA NA

5.3. Multivariate contaminated normal mixture
In this section, we demonstrate the use of the function MCNM() to fit a multivariate contami-
nated normal mixture to the UScost data set available in the MixtureMissing package. The
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Argument Description
model Matrix or data frame of dimensions n× d.
pi Mixing proportions.
mu Component location vectors.
Sigma Component dispersion matrices.
z_tilde An n by G matrix where each row indicates the expected probabilities

that the corresponding observation belongs to each cluster.
clusters A numeric vector of length n indicating cluster memberships deter-

mined by the model.
outliers A logical vector of length n indicating observations that are outliers.
data The original data set if it is complete; otherwise, this is the data set

with missing values imputed by appropriate expectations.
complete An n by d logical matrix indicating which cells have no missing values.
npar The breakdown of the number of parameters to estimate.
max_iter Maximum number of iterations allowed in the EM algorithm.
iter_stop The actual number of iterations needed when fitting the data set.
final_loglik The final value of log-likelihood.
loglik All the values of log-likelihood.
AIC Akaike information criterion.
BIC Bayesian information criterion.
KIC Kullback information criterion.
KICc Corrected Kullback information criterion.
AIC3 Modified AIC.
CAIC Bozdogan’s consistent AIC.
AICc Small-sample version of AIC.
ent Entropy.
ICL Integrated Completed Likelihood criterion.
AWE Approximate weight of evidence.
CLC Classification likelihood criterion.
init_method The initialization method used in model fitting.

Table 5: Common output values in the package MixtureMissing.

data set can also be retrieved from https://worldpopulationreview.com/ in the year 2019.
It contains cost of living indices for five different categories: grocery, housing, transportation,
utilities, and miscellaneous. These indices are calculated by first determining the average cost
of living in the United States to be used as a baseline set at 100. The States, not including
Washington, D.C., are then measured against this baseline. For example, a state with a cost
of living index of 200 is twice as expensive as the national average. The data set is complete,
so, for our purposes, we randomly introduce missing values to ten states. Moreover, to sim-
plify the illustration, we consider costs under Grocery, Housing, and Utilities, which are
variables 3 to 5 in the data and fix G = 3. The model is fitted as follows. As indicated in
Table 3, we have progress = TRUE by default, so there are messages about different stages
of model fitting. Moreover, the fitted mixture model’s BIC is shown since BIC is the default
information criterion.

https://worldpopulationreview.com/
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R> data("UScost", package = "MixtureMissing")
R> set.seed(123)
R> X <- hide_values(UScost[3:5], n_cases = 10)
R> mod_CN3 <- MCNM(X, G = 3, init_method = "kmedoids", max_iter = 200)

Mixture: Contaminated Normal (CN)
Data Set: Incomplete
Initialization: kmedoids

Fitting G = 3 was successful with 21/200 iterations

The fitted mixture model with G = 3 has BIC = 1146.959

The package MixtureMissing includes the plot() function that allows the user to generate
four model-based clustering plots interactively. Calling plot(mod_CN3) will open a menu of
choices given below. The plot options include a pairwise scatter plot showing cluster mem-
berships and highlighting outliers denoted by triangles, a pairwise scatter plot highlighting in
red observations whose missing values are replaced by expectations obtained in the EM al-
gorithm, a parallel plot of up to the first ten variables of the original data set, and a plot
of estimated density in the form of contours. Figure 3 shows plots produced by calling the
plot() function with the object mod_CN3 and arguments to adjust point size, axis size, and
line width.

R> plot(mod_CN3, cex.point = 1.8, cex.axis = 1.5, lwd = 2)

Model-based clustering plots:

1: classification
2: missing
3: parallel
4: density

Selection:

Another package capability is to summarize the results of each model-based clustering through
the function summary(). Basic information regarding the observations with missing values,
number of EM iterations, initialization method used, component frequency table, mixing
proportions, component location vectors, component dispersion matrices, final log-likelihood
value, total parameters, and information criteria will be displayed. For mixture models with
a built-in outlier detection procedure like the contaminated normal and t mixtures, the total
number of outliers as well as a breakdown of outliers per component will be included. If the
model was fitted to an incomplete data set, the function will inform the number of observations
with missing values. In particular, for the model fitted to the UScost data set above, we have

R> summary(mod_CN3)

Model: 3-Component Contaminated Normal Mixture with Incomplete Data
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Figure 3: Plots produced by fitting the multivariate contaminated normal mixture to UScost
data set. The first plot is a pairwise scatter plot showing cluster memberships and highlighting
outliers denoted by triangles. The second plot is a pairwise scatter plot highlighting in red
observations whose missing values are replaced by expectations obtained in the EM algorithm.
The third plot is a parallel coordinate plot where each color represents a cluster. The last
plot shows the estimated density in the form of contours.

Observations with missing values: 10 / 50

Missing values per variable:
Grocery Housing Utilities

3 7 6

Iterations: 21 / 200

Initialization: kmedoids

Component frequency table:
comp1 comp2 comp3

30 13 7

Total outliers: 1

Outliers per component:
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comp1 comp2 comp3
0 1 0

Mixing proportions:
comp1 comp2 comp3

0.5768903 0.2721738 0.1509359

Component location vectors:
Grocery Housing Utilities

comp1 97.54573 81.27751 95.70827
comp2 107.32023 114.65967 106.90707
comp3 119.99895 205.75265 114.26036

Component location vectors:
Grocery Housing Utilities

comp1 96.65776 80.23405 95.42366
comp2 109.15298 116.37169 106.17192
comp3 121.80816 206.66333 114.89822

Component dispersion matrices:
, , comp1

Grocery Housing Utilities
Grocery 22.87359540 14.88862 -0.04339625
Housing 14.88861638 48.28071 5.01427967
Utilities -0.04339625 5.01428 35.89938258

, , comp2

Grocery Housing Utilities
Grocery 69.01612 60.66522 118.0932
Housing 60.66522 190.24648 151.7993
Utilities 118.09318 151.79934 388.3211

, , comp3

Grocery Housing Utilities
Grocery 374.4364 910.3327 461.8503
Housing 910.3327 2398.3366 1122.6205
Utilities 461.8503 1122.6205 601.5073

Final log-likelihood: -505.0193

Total parameters: 35

Information Criteria:
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AIC BIC KIC KICc ICL AWE CLC
1080.039 1146.959 1118.039 1350.568 ... 1148.76 1392.481 1006.438

Note that we omitted some information criteria in the output due to the space constraint.
The code below allows us to see which state(s) are considered outliers by the model. In this
case, the model indicates Alaska, which is not surprising given Alaska’s different geographical
position compared to the other states.

R> UScost[which(mod_CN3$outliers), 1:5]

Abbr State Grocery Housing Utilities
2 AK Alaska 134.2 133.9 154.2

All the information displayed by the function summary() can also be accessed directly using
mod_CN3$ followed by the desired output’s name; a list of outputs is available in Table 5. For
more interesting insights, we can visualize the clustering solution on the map of the United
States without Washington DC using the function plot_usmap() in the package usmap (Di
Lorenzo 2023). Note that since plot_usmap() is based on the grammar of the package ggplot2
(Wickham 2011), we also need to load ggplot2 as well. To generate the map, consider the
following code.

R> library("usmap")
R> library("ggplot2")
R> c_labs <- paste("Cluster", 1:3)
R> c_facs <- factor(mod_CN3$clusters, levels = 1:3, labels = c_labs)
R> dataplot <- data.frame(state = UScost$Abbr, cluster = c_facs)
R> plot_usmap(regions = "state", data = dataplot , values = "cluster",
+ labels = TRUE, exclude = "DC") +
+ theme(legend.position = "right", legend.title = element_blank()) +
+ scale_fill_manual(values = c("#377eb8", "#e41a1c", "#4daf4a"))

An integrated analysis of Figures 3 and 4 with the parameters of the fitted model provides
valuable insights into the geographic distribution and characteristics of the identified clusters.
Cluster 1 comprises economically affordable states; the blue lines in the parallel plot are in
the bottom of the figure. From the map, we can see that the states in this cluster are
predominantly in the center of the country. In contrast, cluster 2, characterized by the red
lines in the middle top part of the parallel plot, is made up of more costly states, spanning
the coasts and presenting Alaska, although as an outlier. In particular, Alaska is renowned
for having an elevated utility index compared to other Cluster 2 states, coupled with a higher
grocery index. Cluster 3 consists of states that are considered very expensive, notably Hawaii,
New York, and California, in fact the green lines are on the top of the parallel plot. This
cluster stands out because it exhibits the highest variability among the identified clusters,
visible on both the parallel coordinate and the pairwise scatter plot,underscoring the diverse
economic conditions within this category of states.
In the above example, we used K-medoids clustering for the EM initialization by specifying
init_method = "kmedoids". However, the other initialization methods listed in Table 1 are
also available for the three main functions MCNM(), MGHM(), and select_mixture(). For
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Figure 4: USA map with states colored based on the clustering partition.

example, initializing using a Gaussian mixture implemented in the package mclust (Scrucca
et al. 2016) can be done as follows

R> mod_CN3_mc <- MCNM(X, G = 3, init_method = "mclust", max_iter = 200)

The user has the option to utilize predefined initialization methods by specifying init_method
= "manual". By selecting this option, the user can provide the initial cluster memberships
by entering them as a numeric vector of length n into the clusters argument. For example,
suppose the user believes that clusters 1, 2, and 3 consist of the first 20 states, the second 20
states, and the last 10 states, respectively. Then, manual initialization can be done as follows

R> cls0 <- c(rep(1, 20), rep(2, 20), rep(3, 10))

R> mod_CN3_user <- MCNM(X, G = 3, init_method = "manual", clusters = cls0,
+ max_iter = 200)

5.4. Multivariate generalized hyperbolic mixture

Herein, we demonstrate the use of the function MGHM() to fit a multivariate generalized hyper-
bolic mixture, as well as its special and limiting cases, to the data set bankruptcy (Altman
1968). The data set is also available in the MixtureMissing package. It contains the ra-
tio of retained earnings (RE) to total assets, and the ratio of earnings before interests and
taxes (EBIT) to total assets of 66 American firms recorded in the form of ratios. Half of the
selected firms had filed for bankruptcy. There are no missing values in the data set, so we
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Figure 5: Plots produced by fitting the multivariate generalized hyperbolic mixture to
bankruptcy data set. The first plot is a pairwise scatter plot showing cluster memberships
and highlighting outliers denoted by triangles. The second plot is a pairwise scatter plot
highlighting in red observations whose missing values are replaced by expectations obtained
in the EM algorithm. The third plot is a parallel coordinate plot where each color represents
a cluster. The last plot is a plot of estimated density in the form of contours.

randomly select 20% observations and hide some of their values. For ease of presentation,
we do not show fitting progress by setting progress = FALSE and as well as the resulting
summary. The following code fits the model and generates the plots shown in Figure 5.

R> set.seed(12345)
R> X <- hide_values(bankruptcy[, 2:3], prop_cases = 0.2)
R> mod_GH <- MGHM(X, G = 2, model = "GH", init_method = "kmedoids",
+ max_iter = 200, progress = FALSE)
R> plot(mod_GH, cex.point = 1.8, lwd = 2)

The estimated parameters πg, µg, and βg are displayed below. For simplicity, we do not
display Σg, λg, and ωg that can be obtained with an analogous syntax. A joint analysis of the
parameters and Figure 5 shows that the two clusters have a similar proportion of observations
and a similar µg. Both clusters are negatively skewed in both dimensions. They differ in the
direction of the tails, with cluster one including firms with proportional values in the two
ratios. The difference in the tails is evident from the scatter plots. In the parallel coordinate
plot, we see that the majority of the points overlap at the top of the figure. Some of the blue
lines have lower RE, while some of the red lines are lower for both ratios.
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R> mod_GH$pi

comp1 comp2
0.4001022 0.5998978

R> mod_GH$mu

RE EBIT
comp1 61.90255 23.14936
comp2 53.69775 34.83119

R> mod_GH$beta

RE EBIT
comp1 -480.62946 -124.33229
comp2 -40.00375 -40.63468

To fit mixture models in which component distributions are special or limiting cases of the
generalized hyperbolic distribution, we can simply specify the desired distribution in the
argument model of MGHM(). Note that MGHM() can fit any distribution given in Table 4 except
for the contaminated normal distribution, i.e., model = "CN" is not possible. For example,
we can fit mixture models via the skew-t, symmetric normal-inverse Gaussian, and normal
distributions as follows.

R> mod_St <- MGHM(X, G = 2, model = "St", init_method = "kmedoids",
+ max_iter = 200, progress = FALSE)
R> mod_SNIG <- MGHM(X, G = 2, model = "SNIG", init_method = "kmedoids",
+ max_iter = 200, progress = FALSE)
R> mod_N <- MGHM(X, G = 2, model = "N", init_method = "kmedoids",
+ max_iter = 200, progress = FALSE)

5.5. Mixture model selection

Although some researchers may have a distribution in mind for a specific data set, in many
cases, the choice is not straightforward. For example, if the interest is in outlier detec-
tion using a symmetric distribution, the contaminated normal and t distributions would
be good choices. In general, the best-fit distribution can be determined using one of the
information criteria listed in Table 2. The package MixtureMissing provides the function
select_mixture() to determine which distribution is the best fit for the given data ac-
cording to an information criterion. To demonstrate, we consider the Automobile data
set, contributed by Jeffrey C. Schlimmer, from the UCI Machine Learning data repository
(https://archive.ics.uci.edu/ml/datasets/automobile). This real data set consisting
of specifications of 205 autos with some missing values is included in the MixtureMissing and
was previously analyzed by Tong and Tortora (2022) using the multivariate contaminated
normal mixture. The first 15 variables are continuous, and among these, only 6 variables con-
tain missing values: normalized_losses, bore, stroke, horsepower, peak_rpm, and price.
The following code gives the number of missing values per continuous variable.

https://archive.ics.uci.edu/ml/datasets/automobile
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R> data("auto", package = "MixtureMissing")
R> sapply(auto[, 1:15], function(a) sum(is.na(a)))

normalized_losses wheel_base length
41 0 0

width height curb_weight
0 0 0

engine_size bore stroke
0 4 4

compression_ratio horsepower peak_rpm
0 2 2

city_mpg highway_mpg price
0 0 4

Herein, for our discussion, we consider these 6 variables only. There are 45 autos with
partially-observed records, as shown below.

R> vars_miss <- c("normalized_losses", "bore", "stroke", "horsepower",
+ "peak_rpm", "price")
R> X <- auto[, vars_miss]
R> sum(!complete.cases(X))

45

Since Tong and Tortora (2022) found two clusters of autos, we also fix G = 2 in this case.
The arguments of select_mixture() are similar to those of MCNM() and MGHM(). However, to
run select_mixture(), we need to specify one information criterion among those shown in
Table 2. By default, all 13 distributions in Table 4 are fitted. For example, using the Bayesian
information criterion (BIC) and fitting the models to the above data set, the function shows
the information criterion value associated with each model and recommends the optimal
distribution to be the contaminated normal.

R> mod_auto1 <- select_mixture(X, G = 2, criterion = "BIC",
+ init_method = "kmedoids", max_iter = 200)

Data Set: Incomplete

Information Criterion: BIC

Initialization: kmedoids

Model Fitting:
CN GH NIG SNIG SC C St t N SGH HUM H SH

According to BIC, the best mixture model is based on the Contaminated
Normal distribution
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Model rank according to BIC:
1. Contaminated Normal: 10489.11
2. t: 10492.61
3. Symmetric Hyperbolic: 10504.03
4. Normal-Inverse Gaussian: 10512.29
5. Hyperbolic: 10516.73
6. Generalized Hyperbolic: 10521.75
7. Skew-t: 10522.31
8. Hyperbolic Univariate Marginals: 10529.66
9. Symmetric Normal-Inverse Gaussian: 10529.81
10. Symmetric Generalized Hyperbolic: 10540.45
11. Skew-Cauchy: 10604.35
12. Normal: 10619.21
13. Cauchy: 10697.46

Note that a different criterion can be used by changing the argument criterion. In addition,
we can also consider only a subset of distributions in any order by providing a vector of string
codes to the argument model. If there are duplicate string codes, the corresponding model will
not be fitted again. Below, we use the criterion to be integrated completed likelihood (ICL)
and the distributions to be t, skew-Cauchy (SC), symmetric generalized hyperbolic (SGH),
and normal-inverse Gaussian (NIG). In this case, the t mixture turns out to be the best.

R> mod_auto2 <- select_mixture(X, G = 2, criterion = "ICL",
+ model = c("t", "SC", "SGH", "NIG"),
+ init_method = "kmedoids", max_iter = 200)

Data Set: Incomplete

Information Criterion: ICL

Initialization: kmedoids

Model Fitting:
t SC SGH NIG

According to ICL, the best mixture model is based on the t distribution

Model rank according to ICL:
1. t: 10493.85
2. Normal-Inverse Gaussian: 10515.03
3. Symmetric Generalized Hyperbolic: 10545.58
4. Skew-Cauchy: 10606.54

The function print() can be used to provide short descriptions of the fitted models. The
extractor function by default would extract values from the best model, but the argument
m_code can be used to select a different model. For example, one could see the information
criteria obtained with the skew-Cauchy mixture (model code to be "SC") using the following
code.
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R> extract(mod_auto2, what = "information", m_code = "SC")

G Loglik Parameters AIC BIC KIC KICc AIC3 CAIC
2 -5123.856 67 10381.71 10604.35 10451.71 10535.33 10448.71 10671.35

AICc ICL AWE CLC
10448.22 10606.54 11166.38 10243.33

6. Conclusion
This paper guides readers through the main functionalities of the R package MixtureMissing
and extends model-based clustering with missing values to eight new distributions in the
generalized hyperbolic family. Overall, the package offers a wide range of distributions for
model-based clustering of continuous data, with the two main ones being contaminated normal
and generalized hyperbolic. Additionally, the package includes 11 special or limiting cases
of the generalized hyperbolic distribution; some well-known distributions in this category are
the normal, t, and skew-t. When conducting cluster analysis with MixtureMissing, users
have the flexibility to choose a specific distribution or determine the best-fitting one using
different information criteria. The functions apply to both complete and incomplete data
sets. Furthermore, they are all equipped with informative summaries and visualization tools
to facilitate investigations of the data. While the package currently implements an extensive
number of models, future extensions can be achieved by incorporating recently developed
models such as the multiple scaled contaminated normal mixture (Tong and Tortora 2024).
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