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Abstract

dynamite is an R package for Bayesian inference of intensive panel (time series)
data comprising multiple measurements per multiple individuals measured in time. The
package supports joint modeling of multiple response variables, time-varying and time-
invariant effects, a wide range of discrete and continuous distributions, group-specific
random effects, latent factors, and customization of prior distributions of the model pa-
rameters. Models in the package are defined via a user-friendly formula interface, and
estimation of the posterior distribution of the model parameters takes advantage of state-
of-the-art Markov chain Monte Carlo methods. The package enables efficient computation
of both individual-level and aggregated predictions and offers a comprehensive suite of
tools for visualization and model diagnostics.
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1. Introduction
Panel data is common in various fields such as social sciences. These data consist of multiple
individuals followed over several time points, and there are often many observations per
individual at each time, for example, family status and income of each individual at each
time point of interest. Such data can be analyzed in various ways, depending on the research
questions and the characteristics of the data such as the number of individuals and time
points, and the assumed distribution of the response variables. In social sciences, popular,
somewhat overlapping modeling approaches include dynamic panel models, fixed effect models,
dynamic structural equation models (Asparouhov, Hamaker, and Muthén 2018), cross-lagged
panel models (CLPM), and their various extensions such as CLPM with fixed or random
effects (Arellano and Bond 1991; Allison 2009; Bollen and Brand 2010; Allison, Williams, and
Moral-Benito 2017; Hamaker, Kuiper, and Grasman 2015; Mulder and Hamaker 2021) and
general cross-lagged panel model (Zyphur et al. 2020).
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There are several R (R Core Team 2025) packages available from the Comprehensive R Archive
Network (CRAN) focusing on the analysis of panel data. The plm package (Croissant and
Millo 2008) provides various estimation methods and tests for linear panel data models, while
the fixest package (Bergé 2018) supports multiple fixed effects and different distributions of
response variables. The panelr package (Long 2020) contains tools for panel data manipulation
and estimation methods for so-called “within-between” models that combine fixed effect and
random effect models. This is done by using lme4, geepack, and brms packages as a backend
(Bates, Mächler, Bolker, and Walker 2015; Halekoh, Højsgaard, and Yan 2006; Bürkner 2018).
The lavaan package (Rosseel 2012) provides methods for general structural equation modeling
(SEM) and thus can be used to estimate various panel data models such as CLPMs with
fixed or random intercepts. Similarly, it is also possible to use general multilevel modeling
packages such as lme4 and brms directly for panel data modeling. Of these, only lavaan and
brms support joint modeling of multiple interdependent response variables, which is typically
necessary for multi-step predictions and long-term causal effect estimation (Helske and Tikka
2024).

In traditional panel data models such as the ones supported by the aforementioned packages,
the number of time points considered is often assumed to be relatively small, say less than 10,
while the number of individuals can be hundreds or thousands (Wooldridge 2010). This is
especially true for commonly used “wide format” SEM approaches that are unable to consider
a large number of time points (Asparouhov et al. 2018). Perhaps due to the small number of
time points, the effects of covariates are typically assumed to be time-invariant, although some
extensions to time-varying effects have emerged (e.g., Sun, Carroll, and Li 2009; Asparouhov
et al. 2018; Hayakawa and Hou 2019). On the other hand, when the number of time points is
moderate or large, say hundreds or thousands (sometimes referred to as intensive longitudinal
data), it can be reasonable to assume that the dynamics of the system change over time, for
example in the form of time-varying effects.

Modeling time-varying effects in (generalized) linear models can be based on state-space
models (SSMs, Harvey and Phillips 1982; Durbin and Koopman 2012; Helske 2022), for
which there are various R implementations such as walker (Helske 2022), shrinkTVP (Knaus,
Bitto-Nemling, Cadonna, and Frühwirth-Schnatter 2021), and CausalImpact (Brodersen,
Gallusser, Koehler, Remy, and Scott 2014). However, these implementations are restricted to
a non-panel setting of a single individual and a single response variable. Other approaches
include methods based on varying coefficients models (Hastie and Tibshirani 1993; Eubank,
Huang, Maldonado, Wang, Wang, and Buchanan 2004), implemented in tvReg and tvem
packages (Casas and Fernández-Casal 2022; Dziak, Coffman, Li, Litson, and Chakraborti 2021).
While tvem supports multiple individuals, it does not support multiple response variables
per individual. The tvReg package supports only univariate single-individual responses. Also
based on SSMs and differential equations, the dynr package (Ou, Hunter, and Chow 2019)
provides methods for modeling multivariate dynamic regime-switching models with linear or
non-linear latent dynamics and linear-Gaussian observations. Because both multilevel models
and SEMs can be defined as SSMs (see e.g., Sallas and Harville 1981; Helske 2017; Chow,
ho Ringo Ho, Hamaker, and Dolan 2010), other packages supporting general SSMs could
be suitable for panel data analysis in principle as well, such as KFAS (Helske 2017), bssm
(Helske and Vihola 2021), and pomp (King, Nguyen, and Ionides 2016). However, SSMs are
often computationally demanding especially for non-Gaussian observations where the marginal
likelihood is analytically intractable, and a large number of individuals can be problematic,
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particularly in the presence of additional group-level random effects which complicates the
construction of the corresponding state space model (Helske 2017).
The dynamite package (Tikka and Helske 2026) provides an alternative approach to panel
data inference which avoids some of the limitations and drawbacks of the aforementioned
methods. First, the dynamic multivariate panel data models (DMPMs), introduced by Helske
and Tikka (2024) and implemented in the dynamite package support estimation of effects
that vary smoothly over time according to Bayesian P-splines (Lang and Brezger 2004), with
penalization based on random walk priors. This allows modeling for example the effects of
interventions that increase or decrease over time. Second, dynamite supports a wide variety of
distributions for the response variables such as Gaussian, Poisson, binomial, and categorical
distributions. Third, with dynamite, we can model an arbitrary number of simultaneous
measurements per individual. Finally, the estimation is fully Bayesian using Markov chain
Monte Carlo (MCMC) simulation via Stan (Carpenter et al. 2017) leading to transparent
and interpretable quantification of parameter and predictive uncertainty. A comprehensive
comparison between DMPMs and other panel data modeling approaches can be found in
Helske and Tikka (2024).
One of the most defining features of dynamite is its high-performance prediction functionality,
which is fully automated, supports multi-step predictions over the entire observed time interval,
and can operate at the individual level or group level. This is in stark contrast to packages
such as brms where, in the presence of lagged response variables as covariates, obtaining
such predictions necessitates the computation of manual stepwise predictions and can pose
a challenge even for an experienced user. Furthermore, by jointly modeling all endogenous
variables simultaneously, dynamite allows us to consider the long-term effects of interventions
that take into account the interdependence of the variables in the model.
The paper is organized as follows. In Section 2 we introduce the dynamic multivariate panel
model which is the class of models considered in the dynamite package and describe the
assumptions made in the package with respect to these models. Section 3 introduces the
software package and its core features along with two illustrative examples using a real dataset
and a synthetic dataset. Sections 4 and 5 provide a more comprehensive and technical overview
of how to define and estimate models using the package. The use of the model fit objects
for prediction is discussed in Section 6. Finally, Section 7 summarizes our contributions and
provides some concluding remarks.

2. The dynamic multivariate panel model

Consider an individual i at time t with observations yt,i = (y1,t,i, . . . , yC,t,i), t = 1, . . . , T ,
i = 1, . . . , N . In other words, at each time point t we have C observations from N individuals,
where C is the number of different response variables that have been measured. The response
variables can be univariate or multivariate. We assume that each element of yt,i can depend
on the past observations yt−ℓ,i, ℓ = 1, . . . , t− 1 (where the set of past values can be different
for each response) and also on additional exogenous covariates xt,i. In addition, each response
variable yc,t,i can depend on other observations at the same time point t, i.e., the elements of
yt,i, with the following restriction. We assume that the response variables can be ordered so
that the distribution of yt,i factorizes according to an ordering π of the responses. We denote
the observations at the same time point before observation yc,t,i in this ordering by yπ(c),t,i.
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Thus, the conditional distribution of response c is completely defined by the observations at the
same time point before the response in the ordering π, past observations, exogenous covariates,
and the model parameters for all c = 1, . . . , C. For simplicity of the presentation, we now
assume that all response variables are univariate and that the responses only depend on the
previous time points, i.e., ℓ = 1 for all response variables. The set of all model parameters
is denoted by θ. We treat the first L time points as fixed data, where L is the highest order
of lag dependence in the model. Now, assuming that the elements of yt,i are conditionally
independent given yt−1,i, xt,i, and θ we have

yt,i ∼ pt(yt,i|y1:t−1,i, xt,i, θ) =
C∏
c=1

pc,t(yc,t,i|yπ(c),t,i, y1:t−1,i, xt,i, θ), (1)

where y1:t−1,i denotes the past values of all response variables (y1,i, . . . , yt−1,i). Importantly,
the parameters of the conditional distributions pc,t can be time-dependent, enabling us to
consider the evolution of the dynamics of our system over time.
Given a suitable link function depending on our distributional assumptions, we define a linear
predictor ηc,t,i for the conditional distribution pc,t of each response c with the following general
form:

ηc,t,i = αc,t + u⊤
c,t,iβc + w⊤

c,t,iδc,t + z⊤
c,t,iνc,i + λ⊤

c,iψc,t, (2)

where αc,t is the (possibly time-varying) common intercept term, u⊤
c,t,i defines the covariates

corresponding to the vector of time-invariant coefficients βc, and similarly w⊤
c,t,i defines the

covariates for the time-varying coefficients δc,t. The term z⊤
c,t,iνc,i corresponds to individual-

specific random effects, where ν1,i, . . . , νC,i are assumed to follow a zero-mean Gaussian
distribution, either with a diagonal or a full covariance matrix. Note that the covariates in
u⊤
c,t,i, w⊤

c,t,i, and z⊤
c,t,i may contain values of other response variables at the same time point

that appear before response c in the ordering π, past observations of the response variables
(or transformations of them), or exogenous covariates. Covariates in z⊤

c,t,i can overlap those in
u⊤
c,t,i and w⊤

c,t,i resulting in an interpretation for νc,i that corresponds to individual-specific
deviations from the population-level effects βc and δc,t, respectively. In contrast, the covariates
in u⊤

c,t,i and w⊤
c,t,i should in general not overlap to ensure the identifiability of their respective

model parameters. The final term λ⊤
c,iψc,t is a product of latent individual loadings λc,i and a

univariate latent dynamic factor ψc,t. The latent factors can be correlated between responses.
For the time-varying coefficients δc,t (and similarly for time-varying αc,t and the latent factor
ψc,t), we use Bayesian P-splines (penalized B-splines, Eilers and Marx 1996; Lang and Brezger
2004) such that

δc,t,k = b⊤
t ωc,k, k = 1, . . . ,K,

where K is the number of covariates, bt is a vector of B-spline basis function values at time t,
and ωc,k is a vector of corresponding spline coefficients. We assume a B-spline basis of equally
spaced knots on the time interval from L+ 1 to T with D degrees of freedom. In general, the
number of B-splines D used for constructing the splines for the study period 1, . . . , T can be
chosen freely, but the actual value is not too important (as long as D is larger than the degree
of the spline, e.g., three for cubic splines, Wood 2020). Therefore, we use the same D basis
functions for all time-varying effects. To mitigate overfitting due to too large a value of D, we
define a random walk prior (Lang and Brezger 2004) for ωc,k as

ωc,k,1 ∼ p(ωc,k,1), ωc,k,d ∼ N(ωc,k,d−1, τ
2
c,k), d = 2, . . . , D,
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with a user-defined prior p(ωc,k,1) on the first coefficient, which due to the structure of b1
corresponds to a prior on δc,k,1. Here, the parameter τc,k controls the smoothness of the spline
curves. While the different time-varying coefficients are modeled as independent a priori, the
latent factors ψc,t can be modeled as correlated via correlated spline coefficients ωc,k. See
Appendix A for the details of the parametrization of the latent factor term.
For categorical, multivariate, and other distributions with multiple dimensions or components,
we can extend the definition of the linear predictor in Equation 2 to account for each dimension
by simply replacing the index c with indices c, s where s denotes the index of the dimension,
s = 1, . . . , S(c), and S(c) is the number of dimensions of response c. This extension also
applies to the spline coefficients.

3. The dynamite package
The dynamite package provides an easy-to-use interface for fitting DMPMs in R. As the
package is part of rOpenSci (https://ropensci.org/), it complies with its rigorous software
standards and the development version of dynamite can be installed from the R-universe system
https://ropensci.org/r-universe/. The stable version of the package is available from
CRAN at https://CRAN.R-project.org/package=dynamite. The software is published
under the GNU general public license (GPL ≥ 3) and can be obtained in R by running the
following commands:

R> install.packages("dynamite")
R> library("dynamite")

The package takes advantage of several other well-established R packages. Estimation of the
models is carried out by Stan for which both rstan and cmdstanr interfaces are available
(Guo, Gabry, Goodrich, Johnson, Weber, and Badr 2024; Gabry and Češnovar 2023). More
specifically, the MCMC simulation uses the No-U-Turn sampler (NUTS, Hoffman and Gelman
2014) which is an extension of Hamiltonian Monte Carlo (HMC, Neal 2011). The data.table
package (Barrett, Dowle, Srinivasan, Gorecki, Chirico, and Hocking 2024) is used for efficient
computation and memory management of predictions and internal data manipulations. For
posterior inference and visualization, ggplot2 and posterior packages are leveraged (Wickham
2016; Bürkner, Gabry, Kay, and Vehtari 2023). Leave-one-out (LOO) and leave-future-out
(LFO) cross-validation methods are implemented with the help of the loo package (Vehtari
et al. 2022). All of the aforementioned dependencies are available on CRAN except for
cmdstanr whose installation is optional and needed only if the user wishes to use the CmdStan
backend for Stan. Although not required for dynamite, we also install the dplyr, pder,
and pryr packages (Wickham, François, Henry, Müller, and Vaughan 2023; Croissant and
Millo 2022; Wickham 2023), as we will use them in the subsequent sections. In addition
to the required R packages, dynamite also requires C++ compilation capabilities due to
Stan. Specifically for Windows users, this means that the R tools have to be installed
(https://CRAN.R-project.org/bin/windows/Rtools/).
Several example datasets and corresponding model fit objects are included in dynamite which
are used throughout this paper for illustrative purposes. The script files to generate these
datasets and the model fit objects can be found in the package GitHub repository (https://
https://github.com/ropensci/dynamite/) under the data-raw directory. Table 1 provides

https://ropensci.org/
https://ropensci.org/r-universe/
https://CRAN.R-project.org/package=dynamite
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Function Output Description

Model fitting
dynamite() ‘dynamitefit’ Estimate a dynamic multivariate panel model
dynamice() ‘dynamitefit’ Estimate a DMPM with multiple imputation

Model formula construction
dynamiteformula() ‘dynamiteformula’ Define a response variable
+.dynamiteformula() ‘dynamiteformula’ Add definitions to a model formula
obs() ‘dynamiteformula’ Define a response variable (alias)
aux() ‘dynamiteformula’ Define a deterministic variable
splines() ‘splines’ Define P-splines for time-varying coefficients
random_spec() ‘random_spec’ Define additional properties of random effects
lags() ‘lags’ Define lagged covariates for all responses
lfactor() ‘lfactor’ Define latent factors

S3 Methods for ‘dynamitefit’ objects
as.data.frame() ‘tbl_df’ Extract posterior samples or summaries
as.data.table() ‘data.table’ Extract posterior samples or summaries
as_draws() ‘draws_df’ Extract posterior samples or summaries
as_draws_df() ‘draws_df’ Extract posterior samples or summaries
coef() ‘tbl_df’ Extract posterior samples or summaries
confint() ‘matrix’ Extract credible intervals
fitted() ‘data.table’ Compute fitted values
formula() ‘language’ Extract the model formula
get_code() ‘data.frame’ Extract the Stan model code*
get_data() ‘list’ Extract the data used to fit the model*
get_parameter_dims() ‘list’ Extract parameter dimensions*
get_parameter_names() ‘character’ Extract parameter names
get_parameter_types() ‘character’ Extract parameter types
get_priors() ‘data.frame’ Extract the prior distribution definitions*
hmc_diagnostics() ‘dynamitefit’ Compute HMC diagnostics
lfo() ‘lfo’ Compute LFO cross-validation for the model
loo() ‘loo’ Compute LOO cross-validation for the model
mcmc_diagnostics() ‘dynamitefit’ Compute MCMC diagnostics
ndraws() ‘integer’ Extract the number of posterior draws
nobs() ‘integer’ Extract the number of observations
plot() ‘ggplot’ Visualize posterior distributions
predict() ‘data.frame’ Compute predictions
print() ‘dynamitefit’ Print information on the model fit*
summary() ‘data.frame’ Print a summary of the model fit
update() ‘dynamitefit’ Update the model fit

Table 1: The functionality of dynamite. Asterisks denote ‘dynamitefit’ methods that are
also available for ‘dynamiteformula’ objects.

an overview of the available functions and methods of the package. Before presenting the
technical details, we demonstrate the key features of the package and the general workflow by
performing an illustrative analysis on a real dataset and a synthetic dataset.
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3.1. Bayesian inference of seat belt usage and traffic fatalities

As the first illustration, we consider the effect of seat belt laws on traffic fatalities using data
from the pder package, originally analyzed by Cohen and Einav (2003). The data consists of
the number of traffic fatalities and other related variables in the United States from all 51
states for every year from 1983 to 1997. During this time, many states passed laws regarding
mandatory seat belt use. We distinguish two types of laws: secondary enforcement law and
primary enforcement law. Secondary enforcement means that the police can fine violators
only when they are stopped for other offenses, whereas in primary enforcement the police can
also stop and fine based on the seat belt use violation itself. This dataset is named SeatBelt
and it can be loaded into the current R session by running:

R> data("SeatBelt", package = "pder")

To begin, we rename some variables and compute additional transformations to make the
subsequent analyses straightforward.

R> library("dplyr")
R> seatbelt <- SeatBelt |>
+ mutate(
+ miles = (vmturban + vmtrural) / 10000,
+ log_miles = log(miles),
+ fatalities = farsocc,
+ income10000 = percapin / 10000,
+ law = factor(
+ case_when(
+ dp == 1 ~ "primary",
+ dsp == 1 ~ "primary",
+ ds == 1 & dsp == 0 ~ "secondary",
+ TRUE ~ "no_law"
+ ),
+ levels = c("no_law", "secondary", "primary")
+ )
+ )

We are interested in the effect of the seat belt law on traffic fatalities in terms of car occupants
via the changes in seat belt usage. For this purpose, we build a joint model for seat belt usage
and fatalities. We model the rate of seat belt usage with a beta distribution (with a logit
link) and assume that the usage depends on the level of the seat belt law, state-level effects
(modeled as random intercepts), and overall time-varying trend (modeled as a spline), which
captures potential changes in the general tendency to use a seat belt in the US. We model the
number of fatalities with a negative binomial distribution (with a log link) using the total
miles traveled as an offset. In addition to the seat belt usage and state-level random intercepts,
we also use several other variables related to traffic density, speed limit, alcohol usage, and
income (see ?pder::SeatBelt for details) as controls. First, we construct the model formula
that defines the distributions of the response variables, their covariates, and the splines used
for the time-varying effects:
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R> seatbelt_formula <-
+ obs(usage ~ -1 + law + random(~1) + varying(~1), family = "beta") +
+ obs(fatalities ~ usage + densurb + densrur +
+ bac08 + mlda21 + lim65 + lim70p + income10000 + unemp + fueltax +
+ random(~1) + offset(log_miles), family = "negbin") +
+ splines(df = 10)

In the code above, we used random(~1) to define group-specific random effects, varying(~1) to
define a time-varying intercept term, and splines(df = 10) to define the degrees of freedom
for the splines of the time-varying intercept. These components and other functionality of
dynamite related to defining models are described at length in Section 4. Next, we fit the
model

R> fit <- dynamite(dformula = seatbelt_formula,
+ data = seatbelt, time = "year", group = "state",
+ chains = 4, cores = 4, seed = 0, refresh = 0)

We note that fitting the model takes several minutes, which is common when using MCMC
methods. Compiling the model also contributes to the total time taken, and sampling from
precompiled models is generally faster. Sampling time can be reduced by leveraging paral-
lelization, as we have done here by setting chains = 4 and cores = 4. Parallel capabilities
of dynamite are discussed at greater length in Section 5.
We can extract the estimated coefficients with the summary() method which shows clear
positive effects for both secondary enforcement and primary enforcement laws:

R> summary(fit, types = "beta", response = "usage") |>
+ select(parameter, mean, sd, q5, q95)

# A tibble: 2 x 5
parameter mean sd q5 q95
<chr> <dbl> <dbl> <dbl> <dbl>

1 beta_usage_lawsecondary 0.496 0.0475 0.417 0.574
2 beta_usage_lawprimary 1.05 0.0866 0.907 1.20

While these coefficients can be interpreted as changes in log-odds as usual, we also estimate
the marginal means using the fitted() method which returns the posterior samples of the
expected values of the responses at each time point given the covariates. For this purpose,
we create a new data frame for each level of the law factor and assign every state to uphold
this particular law. We then call fitted() using these data, compute the averages of over the
states and finally over the posterior samples:

R> seatbelt_new <- seatbelt
R> seatbelt_new$law[] <- "no_law"
R> pnl <- fitted(fit, newdata = seatbelt_new)
R> seatbelt_new$law[] <- "secondary"
R> psl <- fitted(fit, newdata = seatbelt_new)
R> seatbelt_new$law[] <- "primary"
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R> ppl <- fitted(fit, newdata = seatbelt_new)
R> bind_rows(no_law = pnl, secondary = psl, primary = ppl, .id = "law") |>
+ mutate(
+ law = factor(law, levels = c("no_law", "secondary", "primary"))
+ ) |>
+ group_by(law, .draw) |>
+ summarize(mm = mean(usage_fitted)) |>
+ group_by(law) |>
+ summarize(
+ mean = mean(mm),
+ q5 = quantile(mm, 0.05),
+ q95 = quantile(mm, 0.95)
+ )

# A tibble: 3 x 4
law mean q5 q95
<fct> <dbl> <dbl> <dbl>

1 no_law 0.359 0.346 0.372
2 secondary 0.468 0.458 0.477
3 primary 0.591 0.565 0.616

These estimates are in line with the results of Cohen and Einav (2003) who report the law
effects on seat belt usage as increases of 11 and 22 percentage points for secondary enforcement
and primary enforcement laws, respectively.
For the effect of seat belt laws on the number of traffic fatalities, we compare the number
of fatalities with 68% seat belt usage against 90% usage. These values, coinciding with the
national average in 1996 and the target of 2005, were also used by Cohen and Einav (2003)
who reported an increase in annual lives saved as 1500–3000. We do this by comparing the
differences in total fatalities across states for each year, and by averaging over the years, again
with the help of the fitted() method;

R> seatbelt_new <- seatbelt
R> seatbelt_new$usage[] <- 0.68
R> p68 <- fitted(fit, newdata = seatbelt_new)
R> seatbelt_new$usage[] <- 0.90
R> p90 <- fitted(fit, newdata = seatbelt_new)
R> bind_rows(low = p68, high = p90, .id = "usage") |>
+ group_by(year, .draw) |>
+ summarize(
+ s = sum(
+ fatalities_fitted[usage == "low"] -
+ fatalities_fitted[usage == "high"]
+ )
+ ) |>
+ group_by(.draw) |>
+ summarize(m = mean(s)) |>
+ summarize(
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+ mean = mean(m),
+ q5 = quantile(m, 0.05),
+ q95 = quantile(m, 0.95)
+ )

# A tibble: 1 x 3
mean q5 q95

<dbl> <dbl> <dbl>
1 1541. 731. 2332.

In this example, the model did not contain any lagged responses as covariates, so it was enough
to compute predictions for each time point essentially independently using the fitted()
method. However, when the responses depend on the past values of themselves or of other
responses, as is the case for example in cross-lagged panel models, estimating long-term causal
effects such as E(yt+k|do(yt)), k = 1, . . ., where do(yt) denotes an intervention on yt (Pearl
2009), is more complicated. We illustrate this in our next example.

3.2. Causal effects in a multivariate model

We consider the following simulated multivariate data available in the dynamite package and
the estimation of causal effects.

R> head(multichannel_example)

id time g p b
1 1 1 -0.6264538 5 1
2 1 2 -0.2660091 12 0
3 1 3 0.4634939 9 1
4 1 4 1.0451444 15 1
5 1 5 1.7131026 10 1
6 1 6 2.1382398 8 1

The data contains 50 unique groups (variable id), over 20 time points (time), a continuous
variable gt (g), a variable with non-negative integer values pt (p), and a binary variable bt (b).
We define the following model (which actually matches the data-generating process used to
generate the data):

R> multi_formula <- obs(g ~ lag(g) + lag(logp), family = "gaussian") +
+ obs(p ~ lag(g) + lag(logp) + lag(b), family = "poisson") +
+ obs(b ~ lag(b) * lag(logp) + lag(b) * lag(g), family = "bernoulli") +
+ aux(numeric(logp) ~ log(p + 1) | init(0))

Here, the aux() function creates a deterministic transformation of pt defined as log(pt + 1)
which can subsequently be used for other responses as a covariate and correctly computes
the transformation for predictions. Because the model also contains a lagged value of logp,
we define the initial value of logp to be 0 at the first time point via the past() declaration.
Without the initial value, we would receive a warning message when fitting the model, but in
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gt−1
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bt−1

gt
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bt

gt+1
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Figure 1: A directed acyclic graph for the multivariate model with arrows corresponding to
the assumed direct causal effects. A cross-section at times t− 1, t, and t+ 1 is shown. The
vertices and edges corresponding to the deterministic transformation log(pt + 1) are projected
out for clarity.

this case we could safely ignore the warning because the model contains lags of b and g as
well meaning that the first time point in the model is treated as fixed and does not enter the
model fitting process. This makes the past() declaration redundant in this instance, but it is
good practice to always define the initial values of deterministic variables when the model
contains their lagged values to avoid accidental NA values when the variable is evaluated. A
directed acyclic graph (DAG) that depicts the causal relationships of the variables in the
model is shown in Figure 1. We fit the model using the dynamite() function.

R> multichannel_fit <- dynamite(dformula = multi_formula,
+ data = multichannel_example, time = "time", group = "id",
+ chains = 4, cores = 4, seed = 0, refresh = 0)

We can obtain posterior samples or summary statistics of the model using the as.data.frame(),
coef(), and summary() methods, but here we opt for visualizing the results as depicted in
Figure 2 by using the plot() method:

R> library("ggplot2")
R> theme_set(theme_bw())
R> plot(multichannel_fit, types = "beta") +
+ labs(title = "")

Note the naming of the model parameters; for example, beta_b_g_lag1 corresponds to a
time-invariant coefficient beta for response b of the lagged covariate g.
Assume now that we are interested in the causal effect of b5 on gt at times t = 6, . . . , 20. There
is no direct effect from b5 to g6, but because gt affects bt+1 (and pt+1), which in turn affects
all variables at t+ 2, we should see an indirect effect of b5 to gt from time t = 7 onward. For
this task, we first create a new dataset where the values of our response variables after time
t = 5 are assigned to be missing.

R> multichannel_newdata <- multichannel_example |>
+ mutate(across(g:b, ~ ifelse(time > 5, NA, .x)))
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Figure 2: Posterior means and 90% posterior intervals of the time-invariant coefficients for the
multivariate model.

We then obtain predictions for time points t = 6, . . . , 20 when bt is assigned to be 0 or 1 for
every individual at time t = 5, corresponding to the interventions do(b5 = 0) and do(b5 = 1).

R> new0 <- multichannel_newdata |>
+ mutate(b = ifelse(time == 5, 0, b))
R> pred0 <- predict(multichannel_fit, newdata = new0, type = "mean")
R> new1 <- multichannel_newdata |>
+ mutate(b = ifelse(time == 5, 1, b))
R> pred1 <- predict(multichannel_fit, newdata = new1, type = "mean")

By default, the output from predict() is a single data frame containing the original new data
and the samples from the posterior predictive distribution of new observations. By defining
type = "mean", we specify that we are interested in the posterior distribution of the expected
values instead. In this case, the predicted values in the output are in the columns g_mean,
p_mean, and b_mean where the NA values of the newdata argument are replaced with the
posterior predictive samples from the model (the output also contains an additional column
corresponding to the auxiliary response logp and posterior draw index variable .draw).

R> head(pred0, n = 10) |>
+ round(3)

id time .draw g_mean p_mean b_mean logp g p b
1 1 1 1 NA NA NA 1.792 -0.626 5 1
2 1 2 1 NA NA NA 2.565 -0.266 12 0
3 1 3 1 NA NA NA 2.303 0.463 9 1
4 1 4 1 NA NA NA 2.773 1.045 15 1
5 1 5 1 NA NA NA 2.398 1.713 10 0
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6 1 6 1 1.858 3.716 0.723 1.946 NA NA NA
7 1 7 1 1.944 6.750 0.760 1.946 NA NA NA
8 1 8 1 1.787 2.696 0.720 0.693 NA NA NA
9 1 9 1 1.723 2.797 0.780 1.609 NA NA NA
10 1 10 1 1.660 5.784 0.730 2.079 NA NA NA

We can now compute summary statistics over the individuals and then over the posterior
samples to obtain the posterior distribution of the expected causal effects E(gt|do(b5)) as

R> sumr <- list(b0 = pred0, b1 = pred1) |>
+ bind_rows(.id = "case") |>
+ group_by(case, .draw, time) |>
+ summarize(mean_t = mean(g_mean)) |>
+ group_by(case, time) |>
+ summarize(
+ mean = mean(mean_t),
+ q5 = quantile(mean_t, 0.05, na.rm = TRUE),
+ q95 = quantile(mean_t, 0.95, na.rm = TRUE)
+ )

It is also possible to perform the marginalization over groups within predict() by using the
funs argument, which can be used to provide a named list of lists of functions to be applied
for the corresponding response. This approach can save a considerable amount of memory in
case of a large number of observations and groups. The names of the outermost list should be
names of response variables. The output is now returned as a ‘list’ with two components,
simulated and observed, with the new samples and the original newdata respectively. In
our case, we can write

R> pred0b <- predict(
+ multichannel_fit, newdata = new0, type = "mean",
+ funs = list(g = list(mean_t = mean))
+ )$simulated
R> pred1b <- predict(
+ multichannel_fit, newdata = new1, type = "mean",
+ funs = list(g = list(mean_t = mean))
+ )$simulated
R> sumrb <- list(b0 = pred0b, b1 = pred1b) |>
+ bind_rows(.id = "case") |>
+ group_by(case, time) |>
+ summarize(
+ mean = mean(mean_t_g),
+ q5 = quantile(mean_t_g, 0.05, na.rm = TRUE),
+ q95 = quantile(mean_t_g, 0.95, na.rm = TRUE)
+ )

The resulting data frame sumrb is equal to the previous sumr (apart from stochasticity due to
the simulation of new trajectories). We can then visualize our predictions as shown in Figure 3
by writing:
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Figure 3: Expected causal effects of interventions do(b5 = 0) and do(b5 = 1) on gt. The black
lines show the posterior means and the gray areas show 90% posterior intervals.

R> ggplot(sumr, aes(time, mean)) +
+ geom_ribbon(aes(ymin = q5, ymax = q95), alpha = 0.5) +
+ geom_line(na.rm = TRUE) +
+ scale_x_continuous(n.breaks = 10) +
+ facet_wrap(~ case)

Predictions for the first 5 time points in sumr are NA for all groups by design because our
new data supplied to the predict() method for both interventions contained observations
for those time points, which is why we set na.rm = TRUE to avoid a warning in the above
code. Note that these estimates do indeed coincide with the causal effects (assuming of course
that our model is correct), as we can apply the backdoor adjustment formula (Pearl 1995) to
obtain the expected causal effect:

E(gt|do(b5 = x)) =
∫

E(gt|b5 = x, g5, p5)P(g5, p5) dg5 dp5,

where the integral over p5 should be understood as a sum as p5 is discrete. In the code above,
mean_t is the estimate of this expected value. In addition, we compute an estimate of the
difference

E(gt|do(b5 = 1)) − E(gt|do(b5 = 0)),

to directly compare the effects of the interventions by writing:

R> sumr_diff <- list(b0 = pred0, b1 = pred1) |>
+ bind_rows(.id = "case") |>
+ group_by(.draw, time) |>
+ summarize(
+ mean_t = mean(g_mean[case == "b1"] - g_mean[case == "b0"])
+ ) |>
+ group_by(time) |>
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Figure 4: Difference between the expected causal effects E(gt|do(b5 = 1)) − E(gt|do(b5 = 0)).
The black line shows the posterior mean and the gray area shows a 90% posterior interval.

+ summarize(
+ mean = mean(mean_t),
+ q5 = quantile(mean_t, 0.05, na.rm = TRUE),
+ q95 = quantile(mean_t, 0.95, na.rm = TRUE)
+ )

We can also plot the difference between the expected causal effects as shown in Figure 4 by
running:

R> ggplot(sumr_diff, aes(time, mean)) +
+ geom_ribbon(aes(ymin = q5, ymax = q95), alpha = 0.5) +
+ geom_line(na.rm = TRUE) +
+ scale_x_continuous(n.breaks = 10)

This shows that there is a short-term effect of b5 on gt where the size of the effect diminishes
towards zero in time, although the posterior uncertainty is quite large.

4. Model construction

Here we describe the various model components that can be included in the model formulas of
the dynamite package. These components are modular and easily combined in any order via a
specialized + operator while ensuring that the model formula is well-defined and syntactically
valid before estimating the model. The model formula components define the response variables,
auxiliary response variables, the splines used for time-varying coefficients, correlated random
effects, and latent factors.
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4.1. Defining response variables

The response variables are defined by combining the response-specific formulas defined via
the function dynamiteformula() for which a shorthand alias obs() is also provided. We will
henceforth use this alias for brevity. The function obs() takes three arguments: formula,
family, and link which define how the response variable depends on the covariates in the
standard R formula syntax, the family of the response variable as a ‘character’ string, and
the link function to use as a ‘character’ string, respectively. The link function specification
is optional with each family having a default link. The response-specific definitions are
combined into a single model definition with the + operator of ‘dynamiteformula’ objects.
For example, the following formula

R> dform <- obs(y ~ lag(x), family = "gaussian") +
+ obs(x ~ z, family = "poisson")

defines a model with two responses. First, we declare that y is a Gaussian response variable
depending on the previous value of x (lag(x)). Next, we add a second response declaring x
as Poisson distributed depending on an exogenous variable z (for which we do not define any
distribution). Recalling the seat belt usage example from Section 3.1, we wrote

obs(usage ~ -1 + law + random(~1) + varying(~1), family = "beta") +
obs(fatalities ~ usage + densurb + densrur +

bac08 + mlda21 + lim65 + lim70p + income10000 + unemp + fueltax +
random(~1) + offset(log_miles), family = "negbin")

which defines the seat belt usage (usage) as Beta-distributed and the traffic fatalities
(fatalities) as negative binomial distributed. Note that the model formula can be de-
fined without referencing any external data, just like an R formula can. The model formula is
an object of class ‘dynamiteformula’ for which the print() method provides a summary of
the defined response variables, including the response variable names, families and formulas,
and other model components:

R> print(dform)

Family Formula
y gaussian y ~ lag(x)
x poisson x ~ z

Currently, the package supports the following distributions for the observations:

Bernoulli ("bernoulli") with logit link.

Beta ("beta") with logit link, using mean and precision parametrization.

Binomial ("binomial") with logit link.

Categorical ("categorical") with a softmax link using the first category as the reference.
It is recommended to use Stan version 2.23 or higher which enables the use of the
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categorical_logit_glm function in the generated Stan code for improved computa-
tional performance. See the documentation of categorical_logit_glm in the Stan
function reference manual https://mc-stan.org/users/documentation/ for further
information.

Exponential ("exponential") with log link.

Gamma ("gamma") with log link, using mean and shape parametrization.

Gaussian ("gaussian") with identity link, parameterized using mean and standard deviation.

Multinomial ("multinomial") with a softmax link using the first category as the reference.

Multivariate Gaussian ("mvgaussian") with identity link for each dimension, parameter-
ized using the mean vector, the standard deviation vector, and the Cholesky decomposi-
tion of the correlation matrix.

Negative binomial ("negbin") with log link, using mean and dispersion parametrization,
with an optional known offset variable. See the documentation of the NegBinomial2()
function in the Stan function reference manual.

Ordered ("cumulative") with logit or probit link for ordinal regression using cumulative
parametrization for the class probabilities.

Poisson ("poisson") with log link, with an optional known offset variable.

Student t ("student") with identity link, parameterized using location, scale, and degrees
of freedom.

There is also a special response variable type "deterministic" which can be used to define
deterministic transformations of other variables in the model. This special type is explained
in greater detail in Section 4.8.

4.2. Lagged responses and covariates

Models in the dynamite package have limited support for contemporaneous dependencies to
avoid complex cyclic dependencies that would render the processing of missing data, subsequent
predictions, and causal inference challenging or impossible. In other words, the model structure
must be acyclic in a sense that there is an order of the response variables such that each
response at time t can be unambiguously defined in this order in terms of responses that have
already been defined at time t or in terms of other variables in the model at time t − 1 as
formulated in Equation 1. The acyclicity of the model implied by the model formula defined
by the user is checked automatically upon construction. To demonstrate, the following formula
is valid:

obs(y ~ x, family = "gaussian") +
obs(x ~ z, family = "poisson")

However, if we were to add another model component obs(z ~ y, family = "gaussian"),
then the formula would no longer be valid as y is defined in terms of x, x is defined in terms of

https://mc-stan.org/users/documentation/
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z, and z is defined in terms of y, creating a cycle from y to y. This type of model formulation
would produce an error due to the cyclic definition of the responses. On the other hand, there
are no limitations concerning the dependence of response variables and their previous values
or previous values of exogenous covariates, i.e., lags. In the first example of Section 4.1, we
used the syntax lag(x), a shorthand for lag(x, k = 1), which defines a first-order lag of
the variable x to be used as a covariate. Higher-order lags can also be defined by adjusting
the argument k. The argument x of lag() can either be a response variable or an exogenous
covariate.
The model component lags() can also be used to quickly add lagged responses as covariates
across multiple responses. This component adds a lagged value of each response in the model
as a covariate for every response. For example, calling

obs(y ~ z, family = "gaussian") +
obs(x ~ z, family = "poisson") +
lags(k = 1)

would add lag(y, k = 1) and lag(x, k = 1) as covariates of x and y. Therefore, the
previous code would produce the same model as writing

obs(y ~ z + lag(y, k = 1) + lag(x, k = 1), family = "gaussian") +
obs(x ~ z + lag(y, k = 1) + lag(x, k = 1), family = "poisson")

The function lags() can help to simplify the individual model formulas, especially when the
model consists of many responses each having a large number of lags. Just as with the function
lag(), the argument k in lags() can be adjusted to add higher-order lags of each response
for each response, but for lags() it can also be a vector so that multiple lags can be added at
once. The inclusion of lagged response variables in the model implies that some time points
must be considered fixed in the estimation. The number of fixed time points in the model is
equal to the highest order lag k of any observed response variable in the model (defined either
via lag() terms or the model component lags()). Lags of exogenous covariates do not affect
the number of fixed time points, as such covariates are not modeled.

4.3. Time-varying and time-invariant effects

The formula argument of obs() can also contain a special term varying(), which defines
the time-varying part of the model equation. For example, we could write

obs(x ~ z + varying(~ -1 + w), family = "poisson")

to define a model equation with a time-invariant intercept, a time-invariant effect of z, and a
time-varying effect of w. We also avoid defining a duplicate intercept by writing -1 within
varying() in order to avoid identifiability issues in the model estimation. Alternatively, we
could define a time-varying intercept, in which case we would write:

obs(x ~ -1 + z + varying(~ w), family = "poisson")

The part of the formula not wrapped with varying() is assumed to correspond to the time-
invariant part of the model, which can alternatively be defined with the special syntax fixed().
This means that the following lines would all produce the same model:
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obs(x ~ z + varying(~ -1 + w), family = "poisson")
obs(x ~ -1 + fixed(~ z) + varying(~ -1 + w), family = "poisson")
obs(x ~ fixed(~ z) + varying(~ -1 + w), family = "poisson")

The use of fixed() is therefore optional in the formula. If both time-varying and time-
invariant intercepts are defined, the model will default to using a time-varying intercept and
an appropriate warning is provided for the user:

R> obs(y ~ 1 + varying(~1), family = "gaussian")

Warning: Both time-constant and time-varying intercept specified:
i Defaulting to time-varying intercept.

When defining time-varying effects, we also need to define how their respective regression
coefficients depend on time. For this purpose, a splines() component should be added to
the model formula, as we did in the seat belt usage example, where the term splines(df =
10) defines a cubic B-spline with 10 degrees of freedom for the time-varying coefficients, which
corresponds to the time-varying intercept in this instance. If the model contains multiple
time-varying coefficients, the same spline basis is used for all coefficients, with unique spline
coefficients and their corresponding random-walk standard deviations for each coefficient. The
splines() component constructs the matrix of cardinal B-splines Bt using the bs() function
of the splines package based on the degrees of freedom (df) and the degree of the polynomials
used to construct the splines (degree, the default being 3 corresponding to cubic B-splines).
It is also possible to switch between centered (the default) and non-centered parametrization
(Papaspiliopoulos, Roberts, and Sköld 2007) for the spline coefficients using the noncentered
argument of the splines() component. This can affect the sampling efficiency of Stan,
depending on the model and the informativeness of the data (Betancourt and Girolami 2013).

4.4. Group-level random effects

Random effect terms of a response variable for each group can be defined using the special term
random() within the formula argument of obs(), analogously to varying() and fixed(). By
default, all random effects within a group and across all responses are modeled as zero-mean
multivariate Gaussian. The optional model component random_spec() can be used to define
non-correlated random effects as random_spec(correlated = FALSE). In addition, as with
the spline coefficients, it is possible to switch between centered and non-centered (the default)
parametrization of the random effects using the noncentered argument of random_spec().
For example, the following code defines a Gaussian response variable x with a time-invariant
common effect of z as well as a group-specific intercept and group-specific effect of z.

obs(x ~ z + random(~1 + z), family = "gaussian")

The variable that defines the groups in the data is provided in the call to the model fitting
function dynamite() via the group argument as shown in Section 5. Recalling again the seat
belt usage example, we wrote

obs(usage ~ -1 + law + random(~1) + varying(~1), family = "beta")
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which defines a group-specific intercept term for the usage, which in this case corresponds to
state-level intercepts.

4.5. Latent factors

Instead of common time-varying intercept terms, it is possible to define response-specific
univariate latent factors using the lfactor() model component. Each latent factor is modeled
as a spline, with degrees of freedom and spline degree defined via the splines() component
(in the case that the model also contains time-varying effects, the same spline basis definition
is currently used for both latent factors and time-varying effects). The argument responses
of lfactor() defines which responses should have a latent factor, while argument correlated
determines whether the latent factors should be modeled as correlated. Again, users can switch
between centered and non-centered parametrizations using the argument noncentered_psi.
In general, dynamic latent factors are not identifiable without imposing some constraints on
the factor loadings λ or the latent factor ψ (see, e.g., Bai and Wang 2015), especially in the
context of DMPMs and dynamite. In dynamite, these identifiability problems are addressed
via internal reparametrization and an additional argument nonzero_lambda which determines
whether we assume that the expected value of the factor loadings is zero or not. The theory
and thorough experiments regarding the robustness of these identifiability constraints is a work
in progress, so some caution should be used regarding the use of the lfactor() component.

4.6. Multivariate responses

While models with more than one response variable are multivariate by definition, it is also
possible to define responses that follow multivariate distributions. In obs(), a multivariate
response should be given by specifying the data variables that define its dimensions and
combining them with c(). For instance, suppose that we wish to define a multivariate Gaussian
response whose dimensions are given by variables y1, y2, and y3 with a time-invariant effect
of x for each dimension. Then we would write:

obs(c(y1, y2, y3) ~ x, family = "mvgaussian")

It is also possible to define a distinct formula for each dimension by separating the dimension-
specific definitions with a vertical bar |, for example

obs(c(y1, y2, y3) ~ 1 | x | lag(y1), family = "mvgaussian")

would define no covariates for the first dimension, x as a covariates for the second dimension,
and the lagged value of the first dimension as a covariate for the third dimension. The
dimension-specific formulas can contain time-invariant and time-varying effects, group-specific
random effects, and latent factors, just like univariate response formulas can.

4.7. Number of trials and offset variables

The special terms trials() and offset() define the number of trials for binomial and
multinomial responses, and an offset variable for negative binomial and Poisson responses,
respectively. The arguments to these special terms can be exogenous covariates or other
response variables of the model, as long as the possible contemporaneous dependencies do



Journal of Statistical Software 21

not violate the acyclicity of the model as described in Section 4.2. For example, the size of a
population could be used as an offset when modeling the prevalence of a disease. Modeling
the population size in addition to the prevalence enables future predictions for the prevalence
when the future population size is unknown.
Both trials() and offset() terms are added to the formula similar to varying() or
random() terms:

obs(y ~ z + trials(n), family = "binomial") +
obs(x ~ z + offset(w), family = "poisson")

The code above would define a model with a binomial response y with a time-invariant effect
of z and the number of trials given by the variable n, and a Poisson response x with a
time-invariant effect of z and the variable w as the offset. In the seat belt model, we used
log-miles as an offset for the fatalities as follows

obs(fatalities ~ usage + densurb + densrur +
bac08 + mlda21 + lim65 + lim70p + income10000 + unemp + fueltax +
random(~1) + offset(log_miles), family = "negbin")

4.8. Auxiliary response variables

In addition to declaring response variables via obs(), we can also use the function aux() to
define auxiliary responses which are deterministic transformations of other variables in the
model. Defining these auxiliary variables explicitly instead of defining them implicitly on the
right-hand side of the formulas, i.e., by using the “as is” function I(), makes the subsequent
prediction steps clearer and allows easier checks of the model validity. Because of this, we
do not allow the use of I() in the formula argument of dynamiteformula(). The values
of auxiliary variables are computed automatically when fitting the model, and dynamically
during prediction, making the use of lagged values and other transformations possible and
automatic in prediction as well. An example of a model formula using an auxiliary response
could be
obs(y ~ lag(log1x), family = "gaussian") +

obs(x ~ z, family = "poisson") +
aux(numeric(log1x) ~ log(1 + x) | init(0))

For auxiliary responses, the formula declaration via ~ should be understood as mathematical
equality or assignment, where the right-hand side provides the defining expression of the
variable on the left-hand side. Thus, the example above defines an auxiliary response log1x as
the logarithm of 1 + x, and assigns it to be of type ‘numeric’. The type declaration is required,
because it might not be possible to unambiguously determine the type of the response variable
based on its expression alone from the data, especially if the expression contains ‘factor’ type
variables. Supported types include ‘factor’, ‘numeric’, ‘integer’, and ‘logical’. A warning
is issued to the user if the type declaration is missing from the auxiliary variable definition,
and the variable will default to the ‘numeric’ type:

R> aux(log1x ~ log(1 + x) | init(0))

Warning: No type specified for deterministic channel `log1x`:
i Assuming type is <numeric>.
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Auxiliary variables can be used directly in the formulas of other responses, just like any
other variable. The function aux() does not use the family argument, as the family is
automatically set to "deterministic" which is a special family type of the obs() function.
Note that lagged values of deterministic auxiliary variables do not imply fixed time points.
Instead, they must be given starting values using one of the two special syntax variants, init()
or past() after the main formula separated by the | symbol.
In the example above, because the formula for y contains a lagged value of log1x as a covariate,
we also need to supply log1x with a single initial value that determines the value of the lag at
the first time point. Here, init(0) defines the initial value of lag(log1x) to be zero for all
individuals. In general, if the model contains higher-order lags of an auxiliary variable, then
init() can be supplied with a vector initializing each lag.
While init() defines the same starting value to be used for all individuals, an alternative,
special syntax past() can be used, which takes an R expression as its argument and computes
the starting value for each individual based on that expression. The expression is evaluated
in the context of the data supplied to the model fitting function dynamite(). For example,
instead of init(0) in the example above, we could write:

obs(y ~ lag(log1x), family = "gaussian") +
obs(x ~ z, family = "poisson") +
aux(numeric(log1x) ~ log(1 + x) | past(log(z)))

which defines that the value of lag(log1x) at the first time point is log(z) for each individual,
using the value of z in the data to be supplied to compute the actual value of the expression.
The special syntax past() can also be used if the model contains higher-order lags of auxiliary
responses. In this case, additional observations from the variables bound by the expression
given as the argument will simply be used to define the initial values.

4.9. Visualizing the model structure
A plot() method is available for ‘dynamiteformula’ objects that can be used to easily
visualize the overall model structure as a DAG. This method can produce either a ‘ggplot’
object of the model plot or a ‘character’ string describing a TikZ (Tantau 2024) code to
render the figure in a report, for example. As an illustration, we produce an analogous ‘ggplot’
version of the DAG depicting the multivariate model that was considered in Section 3.2.
Figure 5 shows the plots obtained by running the following.

R> plot(multi_formula)
R> plot(multi_formula, show_auxiliary = FALSE)

Above, we used the argument show_auxiliary to project out the deterministic auxiliary
variable logp from the DAG shown in the right panel of Figure 5, which produces the same
DAG as shown in Figure 1. In addition, the argument show_covariates can be used to
control whether exogenous covariates should be included in the plot (the default is FALSE
hiding covariates). Vertical, horizontal, and diagonal edges that would otherwise pass through
vertices are automatically curved in the resulting figure to avoid overlapping with the vertices,
but this can still occur with more complicated models.
To generate publication-quality figures with vector graphics, the argument tikz is provided.
By setting tikz = TRUE, we can obtain the corresponding TikZ code for the figure as follows:
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Figure 5: DAGs for the multivariate model created using the plot() method for ‘dynamitefit’
objects. The left panel shows the model structure including the auxiliary response variable
logp while the right panel shows the model structure where the auxiliary variable is not
included. The latter DAG is obtained via a functional projection where the parents of logp
become the parents of the children of logp and logp is removed from the graph at each time
point.

R> cat(plot(multi_formula, show_auxiliary = FALSE, tikz = TRUE))

% Preamble
\usepackage{tikz}
\usetikzlibrary{positioning, arrows.meta, shapes.geometric}
\tikzset{%

semithick,
>={Stealth[width=1.5mm,length=2mm]},
obs/.style 2 args = {

name = #1, circle, draw, inner sep = 8pt, label = center:$#2$
}

}
% DAG
\begin{tikzpicture}

\node [obs = {v1}{g_{t - 1}}] at (-1, 3) {\vphantom{0}};
\node [obs = {v2}{p_{t - 1}}] at (-1, 2) {\vphantom{0}};
\node [obs = {v3}{b_{t - 1}}] at (-1, 1) {\vphantom{0}};
\node [obs = {v4}{g_{t + 1}}] at (1, 3) {\vphantom{0}};
\node [obs = {v5}{p_{t + 1}}] at (1, 2) {\vphantom{0}};
\node [obs = {v6}{b_{t + 1}}] at (1, 1) {\vphantom{0}};
\node [obs = {v7}{g_{t}}] at (0, 3) {\vphantom{0}};
\node [obs = {v8}{p_{t}}] at (0, 2) {\vphantom{0}};
\node [obs = {v9}{b_{t}}] at (0, 1) {\vphantom{0}};
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\draw [->] (v1) -- (v7);
\draw [->] (v1) -- (v8);
\draw [->] (v3) -- (v8);
\draw [->] (v3) -- (v9);
\draw [->] (v1) -- (v9);
\draw [->] (v2) -- (v7);
\draw [->] (v2) -- (v8);
\draw [->] (v2) -- (v9);
\draw [->] (v7) -- (v4);
\draw [->] (v7) -- (v5);
\draw [->] (v9) -- (v5);
\draw [->] (v9) -- (v6);
\draw [->] (v7) -- (v6);
\draw [->] (v8) -- (v4);
\draw [->] (v8) -- (v5);
\draw [->] (v8) -- (v6);

\end{tikzpicture}

The default style used in the generated TikZ code mimics the style used in Figure 1.

5. Model fitting and posterior inference
To estimate the model, the declared model formula is supplied to the dynamite() function,
which has the following arguments:

dynamite(
dformula, data, time, group = NULL, priors = NULL, backend = "rstan",
verbose = TRUE, verbose_stan = FALSE, stanc_options = list("O0"),
threads_per_chain = 1L, grainsize = NULL, custom_stan_model = NULL,
debug = NULL, ...

)

This function parses the model formula and the data to generate a custom Stan model, which
is then compiled and used to simulate the posterior distribution of the model parameters.
The first three arguments of the function are mandatory. The first argument dformula is
a ‘dynamiteformula’ object that defines the model using the model components described
in Section 4. The second argument data is a ‘data.frame’ or a ‘data.table’ object that
contains the variables used in the model formula. The third argument time is a column name
of data that specifies the unique time points.
The remaining arguments of the function are optional. The group argument is a column
name of data that specifies the unique groups (individuals), and when group is NULL we
assume that there is only a single group (or individual). The argument priors supplies
user-defined priors for the model parameters. The Stan backend can be selected using the
backend argument, which accepts either "rstan" (the default) or "cmdstanr". These options
correspond to using the rstan and cmdstanr packages for the estimation, respectively. The
verbose and verbose_stan arguments control the verbosity of the output from dynamite()
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and Stan, respectively. Additional C++ compiler options such as the optimization level can
be specified with stanc_options when using the "cmdstanr" backend.
While Stan supports between-chain parallelization via the cores and parallel_chains argu-
ments for the "rstan" and "cmdstanr" backends, respectively, it also supports within-chain
parallelization. In between-chain parallelization, the computations are split such that a single
process is assigned one or more Markov-chains whereas in within-chain parallelization, the
computations related to a single Markov chain are split, such as conditionally independent likeli-
hood function evaluations. Both forms of parallelization can be leveraged via dynamite(). For
between-chain parallelization, the cores and parallel_chains arguments can be passed di-
rectly to the backend sampling function via ... (either rstan::sampling() or the sample()
method of the ‘CmdStanModel’ model object). For within-chain parallelization, threaded
variants of all likelihood functions have been implemented in dynamite for the reduce-sum
functionality of Stan, and the following two arguments are provided: threads_per_chain
controls the number of threads to use per chain, and grainsize defines the suggested size of
the partial sums (see the Stan manual for further information).
A custom Stan model code can be provided via custom_stan_model, which can be either
a ‘character’ string containing the model code or a path to a .stan file that contains the
model code. Using this argument will override the automatically generated model code and
it is intended for expert users only. Model customization is discussed at greater length in
the related package vignette that can be accessed by writing vignette("dynamite_custom",
package = "dynamite"). The debug argument can be used for various debugging options
(see ?dynamite for further information on these options and other arguments of the function).
The data argument should be supplied in long format, i.e., with N×T rows in case of balanced
panel data. Acceptable column types of data are ‘integer’, ‘logical’, ‘double’, ‘character’,
objects of class ‘factor’, and objects of class ‘ordered factor’. Columns of the ‘character’
type will be converted to ‘factor’ columns. Beyond these standard types, any special classes
such as ‘Date’ whose internal storage type is one of the aforementioned types can be used, but
these classes will be dropped, and the columns will be converted to their respective storage
types. List columns are not supported. The time argument should be a ‘numeric’ or a
‘factor’ column of data. If time is a ‘factor’ column, it will be converted to an ‘integer’
column. Missing values in both response and predictor columns are supported but non-finite
values are not. Observations with missing covariate or response values are omitted from the
data when the model is fitted.
As an example, the following function call would estimate the model using data in the data frame
d, which contains the variables year and id (defining the time-index and group-index variables
of the data, respectively). Arguments chains and cores are passed to rstan::sampling()
which then uses two parallel Markov chains in the MCMC sampling of the model parameters
(as defined by chains = 2 and cores = 2).

dynamite(
dformula = obs(x ~ varying(~ -1 + w), family = "poisson") +

splines(df = 10),
data = d, time = "year", group = "id",
chains = 2, cores = 2

)

The output of dynamite() is a ‘dynamitefit’ object for which the standard S3 methods such
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as summary(), plot(), print(), fitted(), and predict() are provided along with various
other methods and utility functions which we will describe in the following sections in more
detail.

5.1. User-defined priors

The function get_priors() can be used to determine the parameters of the model whose
prior distribution can be customized. The function can be applied to an existing model fit
object (‘dynamitefit’) or a model formula object (‘dynamiteformula’). The function returns
a ‘data.frame’ object, which the user can then manipulate to include their desired priors
and subsequently supply to the model fitting function dynamite(). The rationale behind the
default prior specifications is discussed in detail in the related package vignette which can be
viewed by writing vignette("dynamite_priors", package = "dynamite").
For instance, using the model fit object gaussian_example_fit available in the dynamite
package, we have the following priors:

R> get_priors(gaussian_example_fit)

parameter response prior type category
1 sigma_nu_y_alpha y normal(0, 3.1) sigma_nu
2 alpha_y y normal(1.5, 3.1) alpha
3 tau_alpha_y y normal(0, 3.1) tau_alpha
4 beta_y_z y normal(0, 3.1) beta
5 delta_y_x y normal(0, 3.1) delta
6 delta_y_y_lag1 y normal(0, 1.8) delta
7 tau_y_x y normal(0, 3.1) tau
8 tau_y_y_lag1 y normal(0, 1.8) tau
9 sigma_y y exponential(0.65) sigma

To customize a prior distribution, the user only needs to manipulate the prior column of the
desired parameters in this ‘data.frame’ using the appropriate Stan syntax and parametrization.
For a categorical response variable, the column category describes which category the
parameter is related to. For model parameters of the same type and response, a vectorized
form of the corresponding distribution is automatically used in the generated Stan code if
applicable. The definitions of the prior distributions are checked for validity before the model
fitting process.

5.2. Extracting model fit information

We can obtain a simple model summary with the print() method of objects of class
‘dynamitefit’. For instance, the model fit object gaussian_example_fit gives the following
output:

R> print(gaussian_example_fit)

Model:
Family Formula
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y gaussian y ~ -1 + z + varying(~x + lag(y)) + random(~1)

Correlated random effects added for response(s): y

Data: gaussian_example (Number of observations: 1450)
Grouping variable: id (Number of groups: 50)
Time index variable: time (Number of time points: 30)

NUTS sampler diagnostics:

No divergences, saturated max treedepths or low E-BFMIs.

Smallest bulk-ESS: 137 (tau_alpha_y)
Smallest tail-ESS: 91 (sigma_y)
Largest Rhat: 1.007 (tau_alpha_y)

Elapsed time (seconds):
warmup sample

chain:1 10.255 5.763
chain:2 18.894 10.197

Summary statistics of the time- and group-invariant parameters:
# A tibble: 6 x 10

variable mean median sd mad q5 q95 rhat ess_bulk
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 beta_y_z 1.97 1.97 0.0122 0.0120 1.95 1.99 0.998 214.
2 sigma_nu_~ 0.0946 0.0940 0.0106 0.0107 0.0791 0.113 1.00 199.
3 sigma_y 0.198 0.198 0.00397 0.00349 0.192 0.205 0.998 148.
4 tau_alpha~ 0.203 0.195 0.0482 0.0434 0.139 0.292 1.01 137.
5 tau_y_x 0.368 0.355 0.0746 0.0671 0.257 0.508 1.00 195.
6 tau_y_y_l~ 0.104 0.101 0.0202 0.0215 0.0767 0.139 1.00 196.
# i 1 more variable: ess_tail <dbl>

By default, the argument full_diagnostics of the print() method is set to FALSE which
means that the model diagnostics are computed only for the time-invariant and non-group-
specific parameters. Setting this argument to TRUE will compute the diagnostics for all
model parameters which can be time-consuming for complex models. Convergence of the
MCMC chains and the smallest effective sample sizes of the model parameters can be as-
sessed using the mcmc_diagnostics() method of ‘dynamitefit’ object whose arguments
are the model fit object and n, the number of potentially problematic variables to re-
port (default is 3). We refer the reader to Vehtari, Gelman, Simpson, Carpenter, and
Bürkner (2021) and to the documentation of the rstan::check_hmc_diagnostics() and
posterior::default_convergence_measures() functions for detailed information on the
diagnostics reported by the mcmc_diagnostics() function.

R> mcmc_diagnostics(gaussian_example_fit)

NUTS sampler diagnostics:
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No divergences, saturated max treedepths or low E-BFMIs.

Smallest bulk-ESS values:

alpha_y[28] 72
alpha_y[10] 126
delta_y_x[7] 126

Smallest tail-ESS values:

nu_y_alpha_id6 83
sigma_y 91
alpha_y[28] 94

Largest Rhat values:

delta_y_y_lag1[28] 1.03
alpha_y[29] 1.03
alpha_y[28] 1.03

We note that due to CRAN file size restrictions, the number of stored posterior samples
in this example ‘dynamitefit’ object is very small, leading to small effective sample sizes.
Diagnostics specific to HMC can be extracted with the hmc_diagnostics() method.
A table of posterior draws or summaries of each parameter of the model can be obtained
with the methods as.data.frame() and as.data.table() which differ only by their output
type (‘data.frame’ and ‘data.table’). More specifically, the output of as.data.frame() is
a tibble; a tidyverse variant of data frames of class ‘tbl_df’ as defined in the tibble package
(Müller and Wickham 2023). These two methods have the following arguments:

as.data.frame.dynamitefit(
x, keep.rownames, row.names = NULL, optional = FALSE, types = NULL,
parameters = NULL, responses = NULL, times = NULL, groups = NULL,
summary = FALSE, probs = c(0.05, 0.95), include_fixed = TRUE, ...

)

Here, x is the ‘dynamitefit’ object and types is a ‘character’ vector that determines the
types parameters that will be included in the output. If types is not used, a ‘character’
vector argument parameters can be used to specify exactly which parameters of the model
should be included. The argument responses can be used select parameters that are related
to specific response variables. For determining suitable options for the arguments types and
parameters, methods get_parameter_types() and get_parameter_names() can be used.
The arguments times and groups can be used to further restrict the parameters in the
output to only include specific time points or groups, respectively. The argument summary
determines whether to provide summary statistics (mean, standard deviation, and quantiles
selected by the argument probs) of each parameter, or the full posterior draws. The argument
include_fixed determines whether to include parameters related to fixed time points in the
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Parameter type Description

"alpha" Intercept terms (time-invariant αc or time-varying αc,t)
"beta" Time-invariant regression coefficients βc
"corr" Pairwise correlations of multivariate Gaussian responses
"corr_nu" Pairwise within-group correlations of random effects νc,i
"corr_psi" Pairwise correlations of the latent factors ψc,t
"cutpoint" Cutpoints for ordinal regression (time-invariant or time-varying)
"delta" Time-varying regression coefficients δc,t
"kappa" The contribution of latent factor loadings in the total variation
"lambda" Latent factor loadings λc,i of the latent factors ψc,t
"nu" Group-level random effects νc,i
"omega" Spline coefficients ωc,k of the regression coefficients δc,t
"omega_alpha" Spline coefficients of the time-varying intercepts αc,t
"omega_psi" Spline coefficients of the latent factors ψc,t
"phi" Describes various distributional parameters, such as:

the dispersion parameter of the negative binomial distribution,
the shape parameter of the gamma distribution,
the precision parameter of the beta distribution,
the degrees of freedom of the Student t distribution.

"psi" Latent factors ψc,t
"sigma" Standard deviations of (multivariate) Gaussian responses
"sigma_lambda" Standard deviations of the latent factor loadings λc,i
"sigma_nu" Standard deviations of the random effects νc,i
"tau" Standard deviations τc,k of ωc,k,d
"tau_alpha" Standard deviations of the spline coefficients of αc,t
"tau_psi" Standard deviations of the spline coefficients of ψc,t
"zeta" Total variation of latent factors, i.e., σλ + τψ

Table 2: The parameter types used in dynamite.

output (see Section 4.2 for details on fixed time points). The default arguments of the methods
keep.rownames, row.names, optional, and ... are ignored for ‘dynamitefit’ objects. All
parameter types used in dynamite are described in Table 2.
For instance, we can extract the posterior summary of the time-invariant regression coefficients
(types = "beta") for the response variable y in the gaussian_example_fit object by writing:

R> as.data.frame(gaussian_example_fit, responses = "y", types = "beta",
+ summary = TRUE)

# A tibble: 1 x 10
parameter mean sd q5 q95 time group category response
<chr> <dbl> <dbl> <dbl> <dbl> <int> <int> <chr> <chr>

1 beta_y_z 1.97 0.0122 1.95 1.99 NA NA <NA> y
# i 1 more variable: type <chr>

For ‘dynamitefit’ objects, the summary() method is a shortcut for as.data.frame(summary
= TRUE).
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The generated Stan code of the model can be extracted with the method get_code() as a
‘character’ string. This feature is geared towards advanced users who may for example need
to make slight modifications to the generated code in order to adapt the model to a specific
scenario that cannot be accomplished with the dynamite model syntax. The generated code
also contains helpful annotations describing the model blocks, parameters, and complicated
code sections. Using the argument blocks, we can extract only specific blocks of the full
model code. To illustrate, we extract the parameters block of the gaussian_example_fit
model code as the full model code is too large to display.

R> cat(get_code(gaussian_example_fit, blocks = "parameters"))

parameters {
// Random group-level effects
vector<lower=0>[M] sigma_nu; // standard deviations of random effects
matrix[N, M] nu_raw;
vector[K_fixed_y] beta_y; // Fixed coefficients
matrix[K_varying_y, D] omega_y; // Spline coefficients
vector<lower=0>[K_varying_y] tau_y; // SDs for the random walks
real a_y; // Mean of the first time point
row_vector[D - 1] omega_raw_alpha_y; // Coefficients for alpha
real<lower=0> tau_alpha_y; // SD for the random walk
real<lower=0> sigma_y; // SD of the normal distribution

}

Conversely, a customized Stan model code can be supplied to dynamite() using the
custom_stan_model argument.

5.3. Visualizing the posterior distributions

The plot() method for ‘dynamitefit’ objects can be used to obtain plots of various types of
the model fit using the ggplot2 package to produce the plots. This method has the following
arguments:

plot.dynamitefit(
x, plot_type = c("default", "trace", "dag"), types = NULL,
parameters = NULL, responses = NULL, groups = NULL, times = NULL,
level = 0.05, alpha = 0.5, facet = TRUE, scales = c("fixed", "free"),
n_params = NULL, ...

)

The arguments type, parameters, responses, groups and times are analogous to those
of the as.data.frame() method for selecting which parameters should be plotted. Argu-
ments level, alpha, facet and scales control the visual aspects of the plot: level defines
the plotted posterior intervals as 100 * (1 - 2 * level) % intervals, alpha is the opac-
ity level for ggplot2::geom_ribbon() for plotting posterior intervals, facet determines
whether time-invariant parameters should be plotted together (FALSE) or separately using
ggplot2::facet_wrap() (TRUE), and scales selects whether the vertical axis of different
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Figure 6: Posterior means (black lines) and 90% posterior intervals (gray areas) for the
time-varying coefficients for the response variable y in the gaussian_example_fit model.
The panels from left to right show the time-varying intercept for y, the time-varying effect of
x on y, and the time-varying effect of lag(y) (the previous time-point) on y.
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Figure 7: Marginal posterior density and traceplot of the MCMC chains of the time-invariant
regression coefficient beta_y_z of z for the response variable y in the gaussian_example_fit
model.

parameters should be the same ("fixed") or allowed to vary between parameters ("free").
Finally, n_params controls the maximum number of parameters of each type to plot. By
default, the number of parameters is limited to prevent accidental plots with a large number
of parameters that may take an excessively long time to render. Next, we showcase some
example plots and the different plot types that are available via the plot_type argument.
For instance, Figure 6 shows the posterior means and posterior intervals of the time-varying
intercept (type "alpha") and time-varying regression coefficients (type "delta") in the
gaussian_example_fit model (using the "default" option of the plot_type argument by
default).
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R> plot(gaussian_example_fit, types = c("alpha", "delta"), scales = "free") +
+ labs(title = "")

While plot_type = "default" produces plots such as Figure 6, using plot_type = "trace"
instead provides the marginal posterior densities and traceplots of the MCMC chains, as
shown in Figure 7 where we also select the time-invariant regression coefficients of the model
to be plotted.

R> plot(gaussian_example_fit, plot_type = "trace", types = "beta")

The third option plot_type = "dag" can be used to visualize the structure of the model as a
DAG as shown in Figure 5 and described in Section 4.9.

5.4. Missing data and multiple imputation

Panel data often contains missing observations for various reasons. A common approach in a
Bayesian setting is to treat missing observations as additional unknown parameters, and to
sample them along with the model parameters during MCMC. However, the MCMC sampling
in dynamite is based on Stan’s variant of the gradient-based NUTS algorithm (Hoffman and
Gelman 2014; Betancourt 2018), which cannot be used to sample discrete variables such as
missing count data. Therefore, the default behavior in dynamite is to use a complete-case
approach which is unbiased when data are missing completely at random as well as in certain
other specific settings (Van Buuren 2018). As an alternative to complete-case analysis with
dynamite(), the function dynamice() first performs multiple imputation using the imputation
algorithms of the mice package (Van Buuren and Groothuis-Oudshoorn 2011), runs MCMC
on each imputed sample, and combines the posterior samples of each run, as suggested for
example in Gelman, Carlin, Stern, and Rubin (2013).
The dynamice() function has all of the arguments of dynamite() with some additions. The
argument mice_args is a ‘list’ that can be used to provide arguments to the underlying
imputation function mice() of the mice package. Format of the data during imputation can
be selected with the impute_format argument that accepts either "wide" or "long". Data in
wide format will have one group per row (with observations at different time points in different
columns) while data in long format corresponds to the standard data format of dynamite()
described in Section 5. Argument keep_imputed is a ‘logical’ value can be used to select
whether the imputed data sets should be included in the return object of dynamice(). If TRUE,
the imputed data sets will be found in the imputed field of the returned ‘dynamitefit’ object.
All of the methods for ‘dynamitefit’ objects are available also for model fits obtained from
dynamice(), but it should be noted that convergence measures and effective samples sizes
such as those reported by mcmc_diagnostics() may be unreliable for such model fits.

6. Prediction
The dynamite package provides a comprehensive set of features for obtaining predictions based
on the posterior distribution of the model parameters. The package supports the imputation
of missing exogenous covariate values (via last observation carried forward or next observation
carried backward), aggregated and individual-level predictions, and various methods to account
for new levels of the group variable for random effects. Counterfactual predictions can also
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be obtained which enables the study of causal effects and other intricate causal quantities.
It should be noted that the predictions do not directly support forecasting as there is no
unambiguous way to define how the splines for the time-varying regression coefficients should
behave outside of the observed time points. However, such predictions can be obtained by
augmenting the original data with missing values for future time points. Furthermore, the
package can be used to generate data from a DMPM without an existing model fit by first
specifying the values of the model parameters and the fixed covariates (see the package vignette
on data simulation for further information: vignette("dynamite_simulation", package =
"dynamite")).
The predict() method for ‘dynamitefit’ objects can be used to obtain predictions from the
posterior predictive distribution. This function has the following arguments:

predict.dynamitefit(
object, newdata = NULL, type = c("response", "mean", "link"),
funs = list(), impute = c("none", "locf", "nocb"),
new_levels = c("none", "bootstrap", "gaussian", "original"),
global_fixed = FALSE, n_draws = NULL, thin = 1,
expand = TRUE, df = TRUE, ...

)

We will only explain the most important arguments of this method and refer the reader to the
package documentation for more information. The first argument object is the ‘dynamitefit’
object that the predictions will be based on. The argument newdata can be used to define
the groups, time points, and covariate values that the predictions should be computed for. If
newdata is NULL, predictions will be computed for the original data supplied to the dynamite()
function when the model was fitted from the first non-fixed time point onward. The type
argument selects the type of computed predictions. By default, type = "response" returns
the individual-level simulated predictions for the response variables of the model. Options
"link" and "mean" return the linear predictor values and the expected values of the posterior
predictive distribution, respectively. The argument n_draws controls the number of posterior
draws to be used for prediction. By default, all draws are used. Alternatively, the argument
thin can be used to select every thinth posterior draw to be used for the prediction task.
For example, we can obtain posterior predictive samples for the first 4 groups in the
gaussian_example dataset using the corresponding model fit object gaussian_example_fit
with the first 50 posterior draws. The predictions are shown in Figure 8 and can be obtained
as follows:

R> pred <- predict(gaussian_example_fit, n_draws = 50)
R> pred |>
+ dplyr::filter(id < 5) |>
+ ggplot(aes(time, y_new, group = .draw)) +
+ geom_line(alpha = 0.5) +
+ geom_line(aes(y = y), colour = "tomato") +
+ facet_wrap(~ id)

The fitted() method is also provided for ‘dynamitefit’ objects. In contrast to multi-step
predictions of predict(), this function computes expected values of the posterior predictive
distributions at each time point conditional on the original observations.
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Figure 8: Posterior predictive samples for the first 4 groups of the gaussian_example data.
Lines in red represent the observed values.

We note that the multi-step predictions contain not only the parameter uncertainty but also
the inherent aleatoric (stochastic) uncertainty of the trajectories. The Monte Carlo variation
due to the finite number of posterior samples can be reduced by increasing the number of
iterations or chains of the MCMC run (as with any posterior summaries) or by combining
samples from multiple predict() calls in case the Monte Carlo error is mostly due to the
trajectory simulation.

6.1. Aggregated predictions and memory conservation

For large datasets and complicated models, obtaining individual-level predictions can be
memory-intensive. For example, data with 100 groups, 100 time points, a categorical response
with 4 categories, and 1000 posterior draws would result in 40 million elements. A simple way
to reduce memory usage is to set the argument expand of predict() to FALSE (the default
is TRUE). Disabling this argument separates the simulated values from the fixed covariates
in the model into two ‘data.table’ objects in the output, called simulated and observed,
which are then returned as a ‘list’ object. This optimization is always carried out internally,
meaning that the value of the expand argument only affects the returned output.
To further reduce memory usage, the argument funs can be used to obtain aggregated
predictions instead of the full individual-level predictions for each time point. This argument
accepts a named list of lists of named functions for each response variable of the model, where
the supplied functions are then applied over the individuals. The resulting columns in the
output are named based on the function names and the response variables. The expand
argument is automatically set to FALSE when using the funs argument. For example, we could
compute the mean and standard deviation of the predictions for the response variable y in the
gaussian_example dataset at each time point as follows:
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R> pred_funs <- predict(gaussian_example_fit,
+ funs = list(y = list(mean = mean, sd = sd)))
R> head(pred_funs$simulated)

mean_y sd_y time .draw
1 NA NA 1 1
2 1.515636 0.8815666 2 1
3 1.667627 1.3117554 3 1
4 1.743166 1.2392450 4 1
5 2.151360 1.2395050 5 1
6 2.218212 1.3884278 6 1

The reduction in memory usage compared to the full individual-level predictions is rather
substantial even in this simple scenario:

R> library("pryr")
R> pred_full <- predict(gaussian_example_fit)
R> object_size(pred_full)

12.00 MB

R> object_size(pred_funs)

188.34 kB

The funs argument can also be used to aggregate the expected values of the posterior predictive
distribution with type = "mean":

R> pred_funs_mean <- predict(gaussian_example_fit, type = "mean",
+ funs = list(y = list(mean = mean, sd = sd)))
R> head(pred_funs_mean$simulated)

mean_y sd_y time .draw
1 NA NA 1 1
2 1.498594 0.8395451 2 1
3 1.667819 1.3096773 3 1
4 1.746313 1.2035324 4 1
5 2.138912 1.2168148 5 1
6 2.208098 1.3451194 6 1

7. Summary
In this paper, we presented the dynamite package for Bayesian inference of DMPMs. The
package provides a user-friendly interface for model construction, estimation, prediction,
posterior inference, and visualization with extensive and detailed documentation of its features.
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The package has been designed to be as general as possible by supporting multivariate models,
many response variable distributions, custom prior distributions, and common model features
such as time-varying effects and group-specific random effects. The package design also aims
for high performance in model estimation by employing Stan and in general-purpose data
manipulation by using data.table which is especially reflected in prediction. For advanced
users, the Stan code generated by dynamite can be extracted and adapted to user-specific
scenarios.
In the future, we plan to extend the capabilities of dynamite by adding support for more
distributions. Some distributions in Stan also lack efficient likelihood function variants, such
as the Bernoulli distribution, which will likely become available in the future and will be
subsequently implemented in dynamite as well.
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A. Details on latent factors
Latent factor models with product terms λiψt are known to suffer from identifiability issues. For
example, it is possible to multiply each λi by some constant c while simultaneously multiplying
ψi, t = 1, . . . , T with the reciprocal of the same constant, leading to the same likelihood value
as the original model. In case of multiple latent factors and (vector) autoregressive process on
ψt, Bai and Wang (2015) discuss two alternative identifiability constraints, which in our single
factor model translate to fixing λi = 1 for some i, or constraining λi > 0 for some i, with an
additional constraint that the standard deviation of the noise term of ψt is 1. In both cases,
we need to decide which individual is used as a reference for the constrained λi. This choice
can lead to computational issues if the true value of λi is not compatible with these constrains
(e.g., the true value is zero). Instead, we define the constraints via the mean of λ.
Denote the expected value of the factor loadings as λ̄. Now write λi = λ̄ + σ∗

λλ
∗
i where

λ∗
i ∼ N(0, 1). While dynamite models ψt as spline, for the ease of exposition here we assume
ψt is a simple random walk ψt = ψt−1 + σψξt.
Assume first that λ̄ ̸= 0. In this case, we can write

(λ̄+ σ∗
λλ

∗
i )ψt, ψt = ψt−1 + σψξt

as
λiψt, ψt = ψt−1 + τψξt,

where λi = 1 + σλλ
∗
i , σλ = σ∗

λ/λ̄, and τψ = λ̄σψ. Sampling σλ and τψ can be inefficient due
to the strong negative correlation between these parameters, so instead we sample (and set
priors for) ζ = σλ + τψ and 0 < κ < 1 so that σλ = κζ and τψ = (1 − κ)ζ.
If instead λ̄ = 0, then λiψt = σ∗

λλ
∗
iψt is not uniquely identifiable, so we fix τψ = 1 and sample

σλ directly. However, it is still possible to encounter multimodality due to sign-switching,
which does not affect the predictions obtained from the model, but the automatic diagnostics of
MCMC samples can be misleading. By default, dynamite tries to fix this by adjusting the signs
of the λ and ψ terms based on the mean of the spline coefficients corresponding to ψ. However,
this only works if the mean of the spline coefficients is not close to zero, and it is possible to
turn this option off so that the user can try to fix the sign-switching in the post-processing
steps, e.g., by using the algorithms of the label.switching package (Papastamoulis 2016).
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