
JSS Journal of Statistical Software
December 2025, Volume 115, Issue 6. doi: 10.18637/jss.v115.i06

dbnR: Gaussian Dynamic Bayesian Network
Learning and Inference in R

David Quesada
Universidad Politécnica

de Madrid

Pedro Larrañaga
Universidad Politécnica

de Madrid

Concha Bielza
Universidad Politécnica

de Madrid

Abstract

Dynamic Bayesian networks are a type of multivariate time series forecasting model
capable of a level of interpretability thanks to their graphical representation. They have
been reported extensively in the literature in a variety of areas, but their application has
usually involved an ad hoc implementation or adaptation of existing Bayesian network
software to a dynamic case. In this paper, we present dbnR, an R package that encapsu-
lates the whole process of learning the model and parameters from data and performing
inference. The package provides three different structure learning algorithms, exact and
approximate inference and a visualization tool that allows inspection of the graphical
structure of the networks. The aim of dbnR is to provide a tool that enables fast deploy-
ment of dynamic Bayesian network models and to make them readily available as general
purpose forecasting models.

Keywords: dynamic Bayesian networks, multivariate time series, structure learning, forecast-
ing, R.

1. Introduction

In recent years, the use of dynamic Bayesian networks (DBNs) has gained popularity in sev-
eral fields. Their applications range from more scientific environments such as bioinformatics
(Wang, Berceli, Garbey, and Wu 2019) and neuroscience (Bielza and Larrañaga 2014) to more
industrial settings such as traffic management (Chaudhary, Indu, and Chaudhury 2017), fa-
tigue assessment of construction (Zhu, Zhang, and Li 2019) or estimation of the remaining
useful life of structures (Cai et al. 2019). These applications benefit from a white-box, inter-
pretable model capable of performing multivariate forecasting and inference.
However, none of these works present the option to apply their DBN code to other problems or
show the use of some public DBN library. Most of the time, authors resort to implementing the

https://doi.org/10.18637/jss.v115.i06
https://orcid.org/0000-0002-7280-904X
https://orcid.org/0000-0003-0652-9872
https://orcid.org/0000-0001-7109-2668

2 dbnR: Gaussian Dynamic Bayesian Networks in R

models themselves. Other times, researchers opt for adapting existing static Bayesian network
packages, such as bnlearn (Scutari 2010) in R or pgmpy (Ankan and Panda 2015) in Python.
Both of these options can be very time-consuming and result in ad hoc implementations that,
for the most part, are not extendable to new applications.

It is uncommon to find software packages specifically designed for DBNs. In R, we can find
dbnlearn (Fernandes 2020), a package that allows creating univariate DBNs and making
predictions of the next instant with them. These univariate DBNs only have a single variable
repeated in several instances of time and always have the same fixed structure, where nodes
are connected to the node in the next instant and to the objective variable. Underneath,
the package uses the parameter learning and inference offered by bnlearn. In Python, there
is the pyAgrum package (Ducamp, Gonzales, and Wuillemin 2020), which is a wrapper of
the C++ library aGruM. It offers learning, inference and visualization of Bayesian networks
(BNs) and supports DBNs, but it only allows the use of discrete variables and discretizes
continuous ones. If we opted for adapting existing BN software for a dynamic scenario, there
are several possibilities. The most versatile one is the use of bnlearn with certain restrictions
and pre-processing steps for learning DBN structures with BN methods. Afterwards, one can
use either gRain (Højsgaard 2012) for inference with discrete variables or rbmn (Denis and
Scutari 2021) for inference with continuous ones. In Python, one can use either pgmpy or
bnlearn (Taskesen 2020), which has the same name but a different author from the original
R package by Scutari, to potentially fit a DBN model. However, both packages only support
discrete variables, and only pgmpy has the skeleton of the classes for a potential extension
to DBNs. In the case of discrete DBNs, these options could offer a solution after the user
adapts them, but neither offers an option for continuous variables. More recently, the BiDAG
(Suter, Kuipers, Moffa, and Beerenwinkel 2023) package in R and the PyBNesian (Atienza,
Bielza, and Larrañaga 2022) package in Python have been released. These two packages
offer new alternatives in the form of DBN structure and parameter learning. In the case
of BiDAG, it presents a framework for learning DBN structures with Markov chain Monte
Carlo methods for both discrete and continuous variables. This offers a unique alternative
for learning DBN structures from data, and these methods scale well to bigger networks of
over 100 nodes. However, BiDAG has no inference motor of its own apart from sampling
methods. On the other hand, PyBNesian offers a very complete package that allows dealing
with discrete and continuous variables, and even allows creating hybrid DBNs. It also has the
unique feature of allowing the use of kernel density estimation for the nodes inside the DBNs,
which constitutes an alternative to the usual discrete and Gaussian distributions. However,
it does not have an inference motor either and to make predictions the user would need to
use a sampling procedure. To summarize the listed available software, we have compiled all
the cited packages in Table 1, where we point out all their capabilities and features.

The process of training a DBN model from data and forecasting has several intermediate steps
(Koller and Friedman 2009): adapting the dataset for time series (TS) learning, applying a
structure learning algorithm, visualising the network, using an exact or approximate inference
method and running a forecasting motor. With dbnR, our objective is to create a simple
pipeline where upon providing some data, we can obtain a model that we can visualize and
use to perform inference. All the intermediate steps are encapsulated and parametrized inside
the package to allow both a simple deployment and the possibility of tuning the learning and
inference process to the user’s needs. Compared with all the listed software packages, dbnR
offers its users a package specifically designed to work with TS of continuous variables that

Journal of Statistical Software 3

Package BNs DBNs HO Disc. Cont. Hybrid Exact Approx. Visual
R:
dbnR – ✓ ✓ – ✓ – ✓ ✓ ✓

bnlearn ✓ – – ✓ ✓ ✓ – ✓ ✓

dbnlearn – ✓ – – ✓ – – ✓ ✓

BiDAG ✓ ✓ – ✓ ✓ – – ✓* ✓

Python:
PyBNesian ✓ ✓ ✓ ✓ ✓ ✓ – ✓* –
pgmpy ✓ ✓ – ✓ – – ✓ ✓ ✓

bnlearn ✓ – – ✓ – – – ✓ ✓

pyAgrum ✓ ✓ – ✓ – – ✓ ✓ ✓

*: A sampling method for BNs is provided, but no proper approximate inference motor defined.

Table 1: Overview of various BN and DBN packages in R and Python. In order, each column
means package name, support for BNs, DBNs, high Markovian order, discrete variables, con-
tinuous variables, hybrid networks, exact inference, approximate inference and visualization
tools. Names where shortened to fit the table inside the page length.

allows high order DBN learning and exact inference readily applicable in real world datasets.
Its forecasting functions allow performing predictions of future values and plotting the results
in a comprehensive manner, and the DBN visualization tool provides an interactive graph
html widget that helps with interpreting network structures.
The stable dbnR (Quesada 2026) source code and binaries can be found in the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=dbnR, while active
development is underway in GitHub at https://github.com/dkesada/dbnR.
The rest of the paper is organized as follows. Section 2 covers some background of the
DBN model. Section 3 discusses the structure learning algorithms available in dbnR and
the visualization tool. Section 4 presents the inference and forecasting methods. Section
5 describes the main functions and classes of dbnR and its compatibility with the bnlearn
package. Section 6 showcases a complete example of applying DBNs for forecasting some
data. Finally, Section 7 offers some final remarks and conclusions.

2. Bayesian network background
In this section, we briefly introduce the concept of BNs, the different types of networks
depending on the data, and the extension to the dynamic scenario where time is taken into
consideration. For a more in-depth discussion of these models, we refer the readers to Koller
and Friedman (2009) for a general use text that covers most of the theory on BNs and to
Murphy (2002) for specific information regarding DBN models.

2.1. Joint probability distribution

Bayesian networks (Pearl 1988; Koller and Friedman 2009) are probabilistic graphical mod-
els that represent conditional independence relationships between variables using a directed
acyclic graph, where each node in the graph represents a random variable of our domain. We
say that an arc between two nodes Xi and Xj inside a graph is directed when it has either

https://CRAN.R-project.org/package=dbnR
https://github.com/dkesada/dbnR

4 dbnR: Gaussian Dynamic Bayesian Networks in R

the direction Xi → Xj or Xi ← Xj , as opposed to no direction at all Xi − Xj . When we
consider a path that traverses from one node Xi to some other node Xj , possibly passing
through other nodes in between, such path can only traverse arcs in the direction that they
point towards. In a directed graph, all arcs are directed and no undirected arc is present. A
cycle appears in a graph when we can find a path Xi → . . . → Xj where Xi = Xj , that is,
a path where we end up in the same node we started from. Inside an acyclic graph, no such
cycles can be found for any variable in the graph. In the case of BNs, their constraints require
graphs that are both directed and acyclic. In a BN, the model represents a joint probability
distribution p(X) of all the variables factorized as:

p(X) =
n∏

i=1
p(Xi|Pai), (1)

where X = {X1, . . . , Xn} is the set of all the nodes in the network and Pai = {X1(i), . . . , Xk(i)}
is the set of all the parent nodes of Xi in the graph. We say that a node Xi is the parent
of another node Xj when there is a directed arc Xi → Xj that connects them. This type
of relationship means that the values of Xi will directly affect the values that Xj will take,
creating a probabilistic dependence relationship between them. In cases where triplets of
variables are present, as in a structure like Xi → Xj → Xk, we say that Xi and Xk are
conditionally independent given Xj because knowing the value of Xj would make Xi and
Xk independent from one another. These conditional independences can also be present
among other ancestors and their descendants, making the graph structure a reflection of the
conditional dependence relationships between all variables in our BNs. This in turn is also
what makes BNs interpretable models, because we know for a fact the effect that each node
has on its descendants, and we can know exactly how likely some variable will take a specific
value given its parents. Depending on the type of variables we are handling, each node in the
network will have a different kind of conditional probability distribution (CPD).
There are three popular types of BN models depending on the type of data we have: discrete
BNs for categorical data, Gaussian BNs for continuous data and conditional linear Gaussian
BNs for mixed data. In the literature, the most well-known package that offers support
for all the aforementioned types of BNs is the R package bnlearn. It allows training and
inference with all of them, but it does not include DBNs. In our package, we opted to focus
on Gaussian DBNs for two reasons. First, real-world data recovered from sensors are usually
real valued. Second, exact inference with Gaussian BNs is much faster to compute than with
their discrete counterparts due to the CPD of their nodes. In Gaussian BNs, we assume that
all the variables in our system follow a normal distribution represented as a linear Gaussian
model:

p(xi|Pai) = N (β0i + β1ix1(i) + · · ·+ βkixk(i); σ2
i) = N (µP ai

i ; σ2
i), (2)

where β0i, . . . , βki are regression parameters associated with each parent node of Xi in Pai

and σ2
i is the (unconditional) variance of Xi. Given that all the nodes in the network have

this kind of CPD, we can write the joint density in Equation 1 using Equation 2 as:

p(X) =
n∏

i=1
p(xi|Pai) =

n∏
i=1
N (µP ai

i ; σ2
i). (3)

In Equation 3, we can see that the joint density has the same form as a multivariate Gaussian

Journal of Statistical Software 5

distribution:

N (µ; Σ) = N


µ1

...
µn

 ,

 σ2
1 · · · σ1n
...

σn1 · · · σ2
n


 , (4)

where σij is the covariance between variables Xi and Xj . This transformation into the
multivariate Gaussian form is why performing exact inference in these models is faster than
in the discrete case.
Given the popularity of bnlearn, we opted to extend some of the functionality of this package
to the case of Gaussian DBNs. As a result, all dbnR networks extend the S3 classes ‘bn’ for the
graph structure and ‘bn.fit’ for the fitted networks offered by bnlearn. The new resulting
‘dbn’ and ‘dbn.fit’ classes enable all the graph operations and the score functions coded
in bnlearn to work with the DBN models in dbnR. The network structure and parameter
learning in bnlearn requires a dataset as a ‘data.frame’ to be provided to these functions
in order to learn a BN from data. This ‘data.frame’ stores the information about the
relationships between variables in different instances of recorded values for each variable. To
allow compatibility with the use of ‘data.frame’ and improve efficiency in terms of making
queries, operating with the data and passing it down between functions, we switched the use of
‘data.frame’ to ‘data.table’ (Dowle and Srinivasan 2021). Additionally, to allow fast exact
inference, we switched to C++ using rcpp (Eddelbuettel and François 2011) to calculate the
mean vector µ and covariance matrix Σ seen in Equation 4, and we store them as attributes
of our S3 object so that they can be used in place of the graph structure when forecasting
with the network. We use C++ several times in our package, especially when we need to
perform heavy computations or matrix operations inside structure learning algorithms.

2.2. Dynamic Bayesian networks

When we are dealing with time series (TS) data, we need to extend the BN model to take
time into consideration. To do this, we discretize time into time slices to define DBNs. Each
time slice can have a local BN structure with intra-slice arcs between its nodes, and it can
be connected to previous and posterior time slices with inter-slice arcs, which must always
go from older time slices to more recent ones. The inter-slice arcs represent the effect that
the past state of the variables has on the present. An example of the graph structure of a
DBN can be seen in Figure 1. In this context, the dynamic part of the model refers only
to the ability of DBNs to model the time component, and the structure of the inter-slice
arcs remains unchanged through time. Models like time-varying dynamic Bayesian networks
(Song, Kolar, and Xing 2009), which allow this kind of behaviour, are outside the scope of
dbnR.
This new DBN structure can be represented in the ‘data.frame’ table that bnlearn uses by
simply adding the new nodes and arcs in and between each time slice. However, restric-
tions have to be implemented to new learning algorithms to avoid introducing invalid arcs
backwards in time.
The new joint probability distribution of the network has to consider all the T + 1 time slices
and the effect they have on the more recent ones:

p(X0, . . . , XT) = p(X0:T) = p(X0)
T −1∏
t=0

p(Xt+1|X0:t), (5)

6 dbnR: Gaussian Dynamic Bayesian Networks in R

Figure 1: Example of a DBN network with two time slices in red and blue, and three nodes
per time slice. There are several inter-slice arcs and no intra-slice arcs. The network was
plotted using the visualising tool included in the dbnR package.

where Xt = {Xt
1, . . . , Xt

n} is the set of nodes in time slice t and T is a time horizon. This
representation becomes increasingly unfeasible the more time slices we take into consideration.
To fix this issue, it is very common to introduce the Markovian order assumption, where we
assume the present to be independent of the past after a certain number of time slices. The
most common order in the literature is one, and it transforms the joint probability distribution
in Equation 5 into:

p(X0:T) = p(X0)
T −1∏
t=0

p(Xt+1|Xt), (6)

where only the last instant is used to calculate the probability of the variables in the next
instant. The Markovian order of the network should be chosen based on the autoregressive
order of our TS data, so setting this order to one is not always the best option. In dbnR, the
order of the network can be freely chosen by the user with a parameter when learning the
network structure from the data.
After extending the ‘bn’ class from bnlearn to the DBN scenario, we opted for taking a
different route in terms of the structure learning algorithms and the inference motor inside
dbnR.

3. Structure learning
To learn the effect that past values of the variables have on the present, the first step we need
to take is to adapt our datasets to the time discretization of DBNs. In TS data, instances are
arranged in chronological order, where the oldest instance is usually the first row. Depending
on the desired Markovian order, we need to shift the rows in our dataset to ensure that the
values of several rows are grouped into a single row. To illustrate this process, we show an
example in Figure 2. Unlike in Equation 5, we set t = 0 as the most recent time slice instead
of the oldest. This is merely a convention change motivated by an easier implementation
of the package architecture. Given that we allow an arbitrary Markovian order, it is more
convenient to have the most recent time slice always named t0 during inference regardless of

Journal of Statistical Software 7

3 -1 NA NA

6 -2 3 -1

4 -3 6 -2

9 -4 4 -3

3 -1 NA NA NA NA

6 -2 3 -1 NA NA

4 -3 6 -2 3 -1

9 -4 4 -3 6 -2

3 -1

6 -2

4 -3

9 -4

Markovian order 1

Markovian order 2

Figure 2: Example of transforming a dataset with two variables X1 and X2 into several
variables depending on the desired Markovian order. The rows in the original data are
ordered from the oldest recorded values, X1 = 3 and X2 = −1, to the newest. The grey rows
contain missing values and should be deleted.

the order. On a side note, please keep in mind that dbnR does not perform training, test and
validation splits of any kind, and so this falls under the responsibility of the user. If a dataset
is provided to a training function, the whole dataset will be used for training, and should
have been partitioned beforehand by the user. Similarly, forecasting functions will predict
the values in the datasets provided to them without doing any splitting. This behaviour is
reflected in the examples shown in this work.
In dbnR, the function fold_dt performs this dataset modification automatically. To begin
the learning process, we call this function to adapt our data to the desired format. The
example in Figure 2 can be replicated with the following code:

R> df <- data.frame(X1 = c(3, 6, 4, 9), X2 = c(-1, -2, -3, -4))
R> df

X1 X2
1 3 -1
2 6 -2
3 4 -3
4 9 -4

R> fold_dt(df, size = 2)

8 dbnR: Gaussian Dynamic Bayesian Networks in R

X1_t_0 X2_t_0 X1_t_1 X2_t_1
1: 6 -2 3 -1
2: 4 -3 6 -2
3: 9 -4 4 -3

R> fold_dt(df, size = 3)

X1_t_0 X2_t_0 X1_t_1 X2_t_1 X1_t_2 X2_t_2
1: 4 -3 6 -2 3 -1
2: 9 -4 4 -3 6 -2

Note that due to restrictions in variable names, the time slice that each variable corresponds
to is written as t_x. The size argument determines the total number of time slices in the
network, that is, the Markovian order plus one. Additionally, if one has a dataset with
several independent time series repetitions, there is a specific filtered_fold_dt() function
that allows us to create a folded dataset for learning a DBN without mixing instances from
different time series in the same row. We can see an example of this in the following code:

R> df <- data.frame(X1 = c(3, 6, 4, 9, 8, 2), X2 = c(-1, -2, -3, -4, -5, -6),
+ idx = c(1, 1, 1, 2, 2, 2))
R> df

X1 X2 idx
1 3 -1 1
2 6 -2 1
3 4 -3 1
4 9 -4 2
5 8 -5 2
6 2 -6 2

R> fold_dt(subset(df, select=-idx), size = 2)

X1_t_0 X2_t_0 X1_t_1 X2_t_1
1: 6 -2 3 -1
2: 4 -3 6 -2
3: 9 -4 4 -3
4: 8 -5 9 -4
5: 2 -6 8 -5

R> filtered_fold_dt(df, size = 2, id_var = 'idx')[]

X1_t_0 X2_t_0 X1_t_1 X2_t_1
1: 6 -2 3 -1
2: 4 -3 6 -2
3: 8 -5 9 -4
4: 2 -6 8 -5

Journal of Statistical Software 9

This example uses a similar dataset to the previous folding example, with the X1 and X2
variables, and an additional column idx that identifies two time series marked with 1 and
2 respectively. If we use the regular fold_dt() function, we can see that the third row
contains values from the first and second time series, which is wrong: values from independent
time series should not be mixed together. This is done properly in the following call to
filtered_fold_dt() where we specify that the index variable idx should be used to fold the
dataset taking care not to mix different time series together. The temporal window approach
of the dbnR package allows us to use different instances of time series generated from the
same process, which can also be of different lengths, to train our DBN models.
In the most recent dbnR version (version 0.8.0), three structure learning algorithms are avail-
able: a version of Trabelsi, Leray, Ayed, and Alimi (2013) dynamic max-min hill-climbing
(DMMHC), Santos and Maciel (2014) binary particle swarm optimization (PSO) algorithm
and Quesada, Bielza, and Larrañaga (2021) natural number order invariant encoding PSO
algorithm. There is only a single function that handles the calls to all the different algorithms:

learn_dbn_struc(dt, size, method, f_dt, ...)

The learn_dbn_struc function requires the training dataset and a desired size, and depend-
ing on the method argument ("dmmhc", "psoho" or "natPsoho", respectively, for the three
aforementioned methods), it will call the appropriate non-exported function of the specific
structure learning algorithm inside the package. The f_dt argument allows the user to pass
down a dataset shifted manually or with the fold_dt function in case it is needed, and the
ellipsis can be used to pass down further algorithm-specific arguments. This function will
learn both the static structure and the transition network. The static structure is the BN
structure of the first time slice, with only intra-slice arcs, and it represents the effect of the
variables in the same time instant. The transition network is the structure that represents
only the inter-slice arcs in the DBN and the effects that the past has on the present. After-
wards, it will return an S3 ‘dbn’ object that extends the ‘bn’ object from bnlearn. It is worth
noting that while the DMMHC algorithm returns networks with both intra and inter-slice
arcs, the particle swarm algorithms return networks with only inter-slice arcs. This is due to
the nature of the codification of a DBN structure inside the particles used during the search.
As such, these algorithms also enjoy faster execution times in part due to them moving in
smaller search spaces by not allowing intra-slice arcs to appear in the resulting networks.
This particular characteristic is not necessarily a reason for getting poorer forecasting accu-
racies with DBNs structures obtained from the PSO algorithms, but interpretation of these
structures can only rely on the temporal relationships that variables have from past instants
to the next ones, given that no interactions between variables can be found within the same
instant of time.

3.1. Dynamic max-min hill-climbing

This was the first algorithm implemented in dbnR mainly as an extension of the offered meth-
ods in bnlearn for the case of DBNs. The basic max-min hill-climbing algorithm introduced
by Tsamardinos, Brown, and Aliferis (2006) is a hybrid algorithm that combines a constrained
local search of parent nodes to create an undirected skeleton graph and a score to orient the
edges and obtain a directed acyclic graph. It begins by defining this initial skeleton graph
through the use of conditional independence tests to find the possible parents of each node

10 dbnR: Gaussian Dynamic Bayesian Networks in R

in the network. Inside this initial skeleton graph, all edges remain undirected. Once a set
of undirected edges has been found for every node in the graph, a hill-climbing search is run
in order to select which edges present in the skeleton graph will be added to the network
structure. This search procedure starts from an initial network structure, usually an empty
graph, and it iterates by converting edges from the skeleton graph into arcs to add them to
the network, deleting arcs or reversing arcs in the structure until no operation can be found
that generates a graph improving the scoring function used for evaluating the network struc-
ture. This algorithm was extended to the dynamic case in Trabelsi et al. (2013) by building
the DBN structure in two steps: learning the static structure and learning the transition
network. The basic max-min hill-climbing algorithm is used to learn both of these structures
separately.
In our case, we used the max-min hill-climbing implementation available in bnlearn to learn
both of these networks, and then combined them into a single structure. To force the addi-
tional constraints on arcs imposed by DBNs, we make use of the blacklist argument that
allows the user to introduce a matrix of forbidden arcs that will not appear in the final net-
work. This blacklist argument will be used to ban inter-slice arcs backwards in time while
learning the transition network. The construction of the blacklist matrix is performed
automatically with regular expression operations based on the names of the variables. The
user will not have to worry about this process, and additional arcs might be added to the
blacklist if needed.
As an additional feature, we opted for using the rsmax2() function from bnlearn instead of
directly calling the mmmhc() function for the graph learning. This decision was motivated due
to the fact that the rsmax2() function encapsulates several other structure learning algorithms
and allows the user the flexibility of selecting from all of them to learn the initial skeleton
graph. It also allows the user to select a maximization procedure between a tabu search and
the usual hill-climbing. As a result, a user is able to change the usual structure learning of the
DMMHC algorithm for some other procedure if the need arises. This characteristic is defined
with the use of the restriction and maximize arguments of the rsmax2() function, which
in turn can be given to the learn_dbn_struc() function. If, for example, we wanted to use
the stable version of the well-known PC algorithm in bnlearn, we would use the following call:

learn_dbn_struc(dt, size, method = "dmmhc", f_dt,
restrict = "pc.stable", maximize = "hc")

For a list of all structure learning algorithms that can be used in the restrict parameter,
one can check the strings that identify each one of them in the corresponding help page of
the bnlearn package with ?bnlearn::‘structure-learning‘.
Once both networks are built, we combine all their arcs to generate the final network structure
that can be used in the fit_dbn_params function to fit its parameters. The original algorithm
in Trabelsi et al. (2013) is defined for Markovian order 1 DBNs, and extending it to higher
orders only implies learning a larger transition network with more than two time slices. It
performs well for Markovian order 1 or 2 networks, but due to the super-exponential nature
of the number of possible BN structures depending on the number of nodes (Robinson 1977),
it scales poorly to higher orders.

Journal of Statistical Software 11

3.2. Particle swarm optimization algorithms

The two PSO algorithms offered in dbnR are a non-deterministic alternative to the DMMHC
method. They are better suited at learning the structure of high Markovian order networks,
having far lower execution times as we increase the size parameter. Given that they are
non-deterministic in nature, they will very likely return different network structures each time
they are executed unless a seed is provided. They will both score DBN structures encoded as
particles until they reach the maximum number of allowed iterations set by the user with the
n_it parameter, by default set to 50 iterations. The best structure found is then returned
as the solution of the structure learning. In contrast with the DMMHC algorithm, both of
these algorithms only allow inter-slice arcs to appear in the final network structure in order to
facilitate the encoding of individuals and to reduce the search space. As a result, the networks
obtained from them will only show temporal relationships and will have no intra-slice arcs.
This will not be an issue when performing forecasting and inference with the networks, but
they will return less interpretable networks, as only the temporal effects can be seen.

Binary encoding particle swarm optimization

The first alternative to the DMMCH is the PSO algorithm presented by Santos and Maciel
(2014). In this case, the problem of finding an optimal DBN structure is transformed into
an optimization one, where the quality of each network is evaluated with a score. The graph
structure is encoded into a list of lists, where the parents of each node are defined in a binary
representation. An arc from one node to another is defined by a 1 in this list, and its absence
is defined by a 0. To drastically reduce the space of possible DBN structures, only inter-slice
arcs from older time slices to the most recent one are allowed.
This algorithm has been implemented from scratch in dbnR using R6 classes (Chang 2021)
and follows an object-oriented programming paradigm. The ‘Particle’ class in the framework
contains a ‘Position’, which encodes the binary list of lists, and a ‘Velocity’, which con-
tains arc additions or deletions with the same binary representation. The custom operations
defined for these positions and velocities can be found in Santos and Maciel (2014) and are
encapsulated inside the R6 classes. These operations also switch to C++ when needed. The
particles are evaluated by calculating the Bayesian information criterion (BIC) score (Schwarz
1978) or the Bayesian Gaussian equivalent (BGe) score (Geiger and Heckerman 1994) of the
graph encoded in each particle. We defined a ‘PsoCtrl’ class that initializes and contains
all the particles and controls the execution of the search by evaluating the positions of the
particles, obtaining the local and global optima, calculating new velocities and moving the
particles. The best position found at the end of the process is transformed into its equivalent
DBN form and is returned as the solution of the search.

Natural number invariant encoding particle swarm optimization

The implementation of this algorithm is in many ways similar to the binary PSO algorithm, as
they share the same pipeline. The main differences between them are the encoding of the DBN
structures and the operations between positions and velocities. In this case, the networks are
encoded in vectors of natural numbers of constant length regardless of the Markovian order
desired. Each particle consists only of a ‘numeric’ vector, where each number corresponds to
a single node of the network in t0. This number encodes the information about which arcs
from previous nodes point to that specific node. The binary bitwise representation of the nat-

12 dbnR: Gaussian Dynamic Bayesian Networks in R

Figure 3: Example of the visualization of the structure of both a BN (left) and a DBN
(right). The nodes on both networks can be clicked on to be highlighted and dragged to
reposition them.

ural number indicates which arcs are present in the DBN and which arcs are not. With this
encoding, a higher Markovian order only generates larger natural numbers, but it does not
increase the size of the ‘numeric’ vectors. The operations of additions and deletions of arcs
are now performed bitwise with custom operators on the natural numbers representing the
existing arcs, making this encoding scalable to high orders. Similar R6 classes ‘natParticle’,
‘natPosition’ and ‘natVelocity’ were generated for this algorithm to follow similar develop-
ing procedures. Thanks to this encoding and the custom operators, it has the fastest execution
times for high Markovian order and should be considered when learning DBN structures in
these scenarios. The details of the encoding and operators of this algorithm, as well as a
comparison of execution times and percentage of recovered arcs of learning DBNs with the
algorithms in dbnR can be found in Quesada et al. (2021).

3.3. Structure visualization tool

To offer the possibility of visualizing the graph structure of both the BNs learned with bnlearn
and the DBNs learned with dbnR, we implemented a tool using the visNetwork package
(Almende, Thieurmel, and Robert 2019). This tool is included in dbnR, but the visNetwork
package is listed as suggested and will only be downloaded in case the user needs to plot some
network. By using visNetwork, we plot the graph structures as HTML widgets that the user
can interact with by highlighting arcs and nodes and by clicking on and dragging the nodes.
The tool is intended only for visualization purposes, and any changes to the graph structure
have to be made programmatically.
Plotting a BN or a DBN structure can be done with a single function call:

plot(structure, ...)

The structure argument can be a ‘bn’, a ‘bn.fit’, a ‘dbn’ or a ‘dbn.fit’ object obtained
after learning a network structure with either bnlearn or dbnR. In the case of ‘bn’ and ‘bn.fit’
objects, if the user has loaded the bnlearn package then the generic plot function will call the
visualization tool of bnlearn. In this case, if the user wants to use the visualization tool from

Journal of Statistical Software 13

dbnR with bnlearn objects, then the plot_static_network(structure) function must be
called instead. The ellipsis argument is used to provide three additional parameters for the
DBN case: the offset argument, which modifies the size of the blank space between time
slices in the plot, the subset_nodes argument, which allows the user to plot only a certain
subgraph from the whole network by providing a vector with the names of the desired nodes,
and the Boolean reverse argument, which allows the user to reverse the naming convention
in dbnR plots to show the time slice t0 as the oldest time slice instead of the most recent,
as in Figure 1. An example of two network structures plotted with this tool can be seen in
Figure 3.

4. Inference and forecasting
After learning the structure of the DBN, we need to fit its parameters to our data with the
following function:

fit_dbn_params(net, f_dt, ...)

The fit_db_params function takes a ‘dbn’ object and a dataset shifted with the fold_dt
function to learn the parameters of the DBN and return a ‘dbn.fit’ object. The function
allows us to use the maximum likelihood estimation implemented in bnlearn to learn the
parameters of the provided network from the shifted dataset. The µ vector and the Σ matrix
are estimated from the fitted DBN and added along with the size of the network as attributes
of the ‘dbn.fit’ object automatically in the fit_dbn_params function for future inference
and forecasting. It is important to note that, while the concept of the µ vector and the Σ
matrix in DBNs is the same as that defined in Equation 4 for static Gaussian networks, in
the case of DBNs the dimensions of this data structures are significantly larger. When we
fold our datasets, we will find each variable replicated through time once per time slice. That
means that our µ vector and Σ matrix will depend on which size parameter we fix when
folding our dataset and learning our structure, and so the length of µ and the number of rows
and columns of Σ will be size times the number of variables in our original dataset.
Once we have the structure and the parameters of a DBN, we can use the model to perform
inference over some data. We call inference to the process of, given some evidence of the
values of some nodes, calculating the most likely values for the rest of the variables. In dbnR,
we offer an approximate inference method and an exact one. The approximate inference is
performed via the likelihood weighting (Korb and Nicholson 2010) based on Monte Carlo
sampling offered in bnlearn. This method performs several forward sampling runs, starting
from the root nodes with no parents and ending with the leaf nodes with no children in
a topological order, where the values of each node are either fixed as evidence or sampled
randomly weighted by the probability of each value occurring using the sampled values of their
parent nodes as evidence. When all nodes are sampled we finish a run, and when we finish
several runs we can average the expected values for each node from all the results. The exact
inference algorithm has been implemented in dbnR specifically for Gaussian BNs by using
the equivalent multivariate joint distribution shown in Equation 4. In the case of Gaussian
networks, exact inference is preferable to approximate inference because the execution time
is greatly reduced by using the equivalent joint Gaussian distribution and it is usually faster
than running several simulations to estimate the averaged results. As such, we will only focus
on exact inference in this work.

14 dbnR: Gaussian Dynamic Bayesian Networks in R

4.1. Exact inference

One way to perform exact inference in a Gaussian BN is to use the equivalent multivariate
joint distribution of the network. To do this, we can use the mean vector µ and the covariance
matrix Σ that we calculated when learning the network structure. When we perform inference,
the values of some of the variables are known beforehand and used to predict the most likely
values for the rest of the variables in the system. Note that in the degenerated case where
no evidence whatsoever is provided, the values predicted for the variables are the marginal
means in µ. In the dynamic scenario, usually the variables in the past are observed and will
be used to perform inference over the variables in the present.
In the inference process, we start by dividing the parameters into those corresponding to the
set of target variables X1 and to the set of observed variables X2:

µ =
[
µ1
µ2

]
, Σ =

[
Σ11 Σ12
Σ21 Σ22

]
, (7)

where µ1 and µ2 are the mean vectors of the variables in X1 and X2, respectively; Σ11 is the
covariance submatrix of X1; Σ12 and Σ21 are the covariance matrices between X1 and X2;
and Σ22 is the covariance submatrix of X2. After this process, we can perform inference to
obtain the expected mean µ1|2 and covariance matrix Σ1|2 of the variables in X1 given X2
(Murphy 2012):

µ1|2 = µ1 + Σ12Σ−1
22 (x2 − µ2), (8)

Σ1|2 = Σ11 −Σ12Σ−1
22 Σ21. (9)

Multivariate Gaussian inference can be performed in dbnR with the function

mvn_inference(mu, sigma, evidence)

The mu and sigma arguments, which correspond to µ and Σ, respectively, in Equation 7 are
stored in the ‘dbn.fit’ as attributes, and the evidence argument is a named vector with the
values of the observed variables in X2. This returns a list with both the calculated µ1|2 from
Equation 8 and Σ1|2 from Equation 9. Typically, the mvn_inference function is not used
outside of dbnR because it is already encapsulated in other exported methods for prediction
and forecasting with DBN models, but we exported it too in case the user needs to perform
inference over only a specific subset of nodes or wants to perform inference over a multivariate
Gaussian distribution outside of the scope of the package.

4.2. Forecasting time series

When using DBNs to deal with TS data, one of the most common operations that we can per-
form is forecasting up to some horizon T . In dbnR, we perform forecasting with DBN models
using a sliding window. First, given the initial state vector s0 = ((x0

1, . . . , x0
n), . . . , (xt

1, . . . , xt
n))

with values of the variables in our system observed at instant t and at many previous instances
as defined by the Markovian order of the network, we perform inference to obtain the values,
x̂t+1 = (x̂t+1

1 , . . . , x̂t+1
n), that the variables are predicted to take at the next instant. After

this, we move all the previous evidence forward in time. We forget the oldest evidence x0

from the system and introduce x̂t+1 as the new evidence of the last instant to create the new

Journal of Statistical Software 15

...

DBN

...

...

Figure 4: Schematic representation of the sliding window mechanism in an inference step.
The new x̂t+1 is predicted with the DBN model and is introduced into the state vector,
removing the oldest x0.

state vector s′ = ((x1
1, . . . , x1

n), . . . , (x̂t+1
1 , . . . , x̂t+1

n)). This completes the current inference
step, while s′ is used as the initial state vector of the next inference step, predicting the next
state of the system. This process is illustrated in Figure 4. We perform as many inference
steps as needed to reach the desired horizon T . Finally, when the forecasting is completed,
the values of the target variables at each instant are returned, and the mean absolute error
(MAE) is calculated with the original TS if some test data are provided. If the user is making
predictions without knowing the future values of the TS, as in a real-world application, no
metrics will be calculated.
The whole process of forecasting up to some horizon T is encapsulated in the function

forecast_ts(dt, fit, obj_vars, ini, len, rep, num_p,
print_res, plot_res, mode, prov_ev)

By providing a ‘data.frame’ and a ‘dbn.fit’ with the dt and the fit arguments, the dbnR
package handles the moving window procedure underneath. The forecasting can be tuned
by defining the target variables with obj_vars, setting the initial instance of the forecasting
in the ‘data.frame’ with ini, defining the horizon T regarding how long the forecasting
should be with len and if either exact or approximate inference should be used with the
mode parameter. If approximate inference is selected, the number of times that the inference
is repeated before returning a mean value is defined by the num_p parameter. If test data
are provided in dt and the print_res argument is set to True, the MAE of the forecasting
compared to the original TS will be printed. The plot_res argument shows a plot of both
the original and the predicted TS. An example of forecasting a TS and plotting the results can
be seen in Figure 5. It is worth noting that, as shown in Equation 9, the conditional variance
of the predictions is not affected by how many instants into the future we predict and will
remain constant throughout the forecasting. This means that if we were to plot the pointwise
prediction intervals of our forecasting, it would show a constant range of values around the

16 dbnR: Gaussian Dynamic Bayesian Networks in R

Time

pm
_t

_0

5 10 15 20

−
0.

11
65

−
0.

11
55

−
0.

11
45

−
0.

11
35

Figure 5: Plot returned by the forecast_ts function after forecasting 20 instances of a TS.
The pm variable represents the magnet temperature inside an electric motor. The black line
represents the original values of the TS, and the red line represents the forecasting. Only the
values of the variables at the initial instant 0 are known as evidence to the DBN.

predicted mean. One should be careful with this characteristic, because the uncertainty of
the predictions is expected to increase as we predict further into the future, we should not
expect it to remain constant.
An additional argument prov_ev can be provided to the forecast_ts function, which allows
the user to give specific future evidence to the DBN in each forecasting step. This can be
useful when employing a DBN as a simulator to make interventions in the forecasting and see
the effects that they have in the prediction profiles.

4.3. Smoothing

Additionally, DBN models can perform smoothing operations over TS (Koller and Friedman
2009). In this context, smoothing refers to, given some initial evidence from instants 1 to t,
performing inference over p(X0|X1:t). Essentially, we predict the past given the current value
of the variables in our system. Afterwards, we move all evidence backwards in the same
manner as the sliding window from the forecasting case, but in the opposite direction in time.
If we repeat this process up to horizon T in the past, we will obtain a TS that reflects the
predicted state of the system along several instants in the past. Typically, this operation is
performed when we do not know the past state of the system, for example, due to missing
data or when we want to check how much our past data differ from the smoothed values to
check for faulty sensor recordings.
Smoothing is called in a similar way to forecasting by using the function

smooth_ts(dt, fit, obj_vars, ini, len, mode, print_res, plot_res)

Journal of Statistical Software 17

5. Package functions and compatibility
The dbnR package is focused on making DBN models readily available for application. As
such, the main pipeline from some dataset to a fitted DBN model is kept as simple as possible.
A diagram of this pipeline can be seen in Figure 6, where with four function calls, we can
obtain a fully functional DBN model and perform inference with it.
Apart from the essential functionality, dbnR offers other utilities. In Table 2, we show all
the exported functions of the package. For the learning task, all three structure learning
algorithms are encapsulated and parametrized inside the learn_dbn_struc() function. Then,
the user will always call the fit_dbn_params() function to fit the parameters of the network.
As such, these two functions are pivotal in order to learn both the structure and the parameters
of a DBN. On the other hand, the calc_mu() and the calc_sigma() functions are more
situational. The user would only need to call these functions if they need to calculate the
mean vector µ and the covariance matrix Σ. The most likely scenario for this would be
either to perform some specific inference with the mvn_inference() function or to perform
some operation outside the scope of dbnR with the multivariate Gaussian equivalent of the
network.
For visualization purposes, all networks can be plotted simply with a call to plot(), but the
specific plot functions used underneath that call are the plot_dynamic_network() for DBNs
and the plot_static_network() for BNs, which can also be used if the user prefers to do
so.
On the inference task, the two functions that a user will most likely use are forecast_ts() to
forecast a time series up to some horizon, and predict_dt() to forecast each row in a dataset
a single step into the future. The smooth_ts() function allows the uncommon smoothing
operation described in Section 4.3, and the mvn_inference() function allows the user a less
restricted option for inference with the multivariate Gaussian equivalent of the network at
the expense of more work on their end to create a forecasting pipeline. The predict_bn()
function is similar to predict_dt(), but it is coded in a way that can be applied to several
rows inside a ‘data.table’.
Additionally, the dbnR package offers some utility functions that can be of use. The ones
needed for dataset transformation are the fold_dt() and filtered_fold_dt() functions.
The time_rename() function is a subcomponent of the folding process that renames the
columns inside a dataset to the t_x format used by dbnR, and the filter_same_cycle()
function is a subcomponent of the filtered folding of a dataset that removes rows where
different time series are mixed together. Unless the user is doing some specific operations

f_dt_trainDataset

f_dt_test

learn_dbn_struct() dbn fit_dbn_params() dbn.fit forecast_ts()

plot_network()

fold_dt()

Figure 6: Diagram with the main workflow of the dbnR package. We start by preparing
a dataset; then, we learn the DBN structure, learn its parameters and typically perform
forecasting. Optionally, the network structure can also be plotted.

18 dbnR: Gaussian Dynamic Bayesian Networks in R

Task Function Output
Learning
Learn DBN structure learn_dbn_struc ‘dbn’
Fit DBN parameters fit_dbn_params ‘dbn.fit’
Calculate µ from ‘dbn.fit’ calc_mu ‘numeric’
Calculate Σ from ‘dbn.fit’ calc_sigma ‘matrix’
Visualization
Plot DBN plot_dynamic_network HTML
Plot BN plot_static_network HTML
Inference
Forecast a TS forecast_ts ‘list’
Smooth a TS smooth_ts ‘list’
Multivariate Gaussian inference mvn_inference ‘list’
Inference over ‘data.table’ predict_dt ‘data.table’
Inference over ‘data.table’ predict_bn ‘data.table’
Utilities
Rename variables into t_x time_rename ‘data.table’
Fold dataset fold_dt ‘data.table’
Fold dataset based on index filtered_fold_dt ‘data.table’
Dataset folding utility filter_same_cycle ‘data.table’
Create a random DBN generate_random_network_exp ‘list’
Reduce frequency of TS reduce_freq ‘data.table’

Table 2: Overview of all the exported functions in the dbnR package ordered by the type of
task they perform.

during the folding of the data, these two functions will rarely be used. For testing purposes,
the generate_random_network_exp() function creates a randomly generated dataset and a
‘dbn’ object that reflects the relationships present in the dataset. Finally, the reduce_freq()
function allows the user to reduce the frequency in their time series by averaging batches of
subsequent values to some desired new frequency.
Regarding the compatibility with bnlearn, all the functions for the addition or deletion of
arcs and nodes offered by bnlearn also work for ‘dbn’ objects. To show this compatibility,
we use the code below to obtain a random DBN structure and a simulated dataset with the
generate_random_network_exp function, and then apply some graph modification functions.

R> dbn_ex <- generate_random_network_exp(n_vars = 3, size = 2,
+ min_mu = -5, max_mu = 5, min_sd = 0.5, max_sd = 2, min_coef = -1,
+ max_coef = 1, seed = 42)
R> names(dbn_exnetnodes)

[1] "X0_t_0" "X1_t_0" "X2_t_0" "X0_t_1" "X1_t_1" "X2_t_1"

R> dbn_exnetarcs

from to
[1,] "X0_t_1" "X0_t_0"

Journal of Statistical Software 19

[2,] "X1_t_1" "X0_t_0"
[3,] "X0_t_1" "X1_t_0"
[4,] "X1_t_1" "X1_t_0"
[5,] "X2_t_1" "X1_t_0"
[6,] "X0_t_1" "X2_t_0"
[7,] "X2_t_1" "X2_t_0"

We generated a random DBN with two time slices and three variables per time slice. In total,
the network structure has six nodes and seven arcs. If we want to delete the first arc, we can
do so with the drop.arc function from bnlearn, and if we want to delete a node entirely, we
can use the remove.node function.

R> dbn_ex$net <- drop.arc(dbn_ex$net, "X0_t_1", "X0_t_0")
R> dbn_exnetarcs

from to
[1,] "X1_t_1" "X0_t_0"
[2,] "X0_t_1" "X1_t_0"
[3,] "X1_t_1" "X1_t_0"
[4,] "X2_t_1" "X1_t_0"
[5,] "X0_t_1" "X2_t_0"
[6,] "X2_t_1" "X2_t_0"

R> dbn_ex$net <- remove.node(dbn_ex$net, "X0_t_0")
R> names(dbn_exnetnodes)

[1] "X1_t_0" "X2_t_0" "X0_t_1" "X1_t_1" "X2_t_1"

Several other auxiliary functions from bnlearn, such as obtaining the node ordering of a
network with the node.ordering function or getting the Markov blanket of a node by calling
mb can be used in a similar manner.

6. Usage example: sample motor dataset
To show a practical full example of using the dbnR package, we use a dataset to learn
the structure of three different DBNs, fit their parameters and perform forecasting with
them. We use the sample dataset included in the package. The data come from the electric
motor temperature dataset in Kaggle (Kirchgässner, Wallscheid, and Böcker 2021), from which
we selected a sample of the first 3000 instances intended only for testing purposes of the
package utilities. For the complete dataset, we refer the readers to the original source (https:
//www.kaggle.com/wkirgsn/electric-motor-temperature).

R> dt <- dbnR::motor
R> summary(dt)

ambient coolant u_d
Min. :-0.79598 Min. :-0.07434 Min. :-1.6415

https://www.kaggle.com/wkirgsn/electric-motor-temperature
https://www.kaggle.com/wkirgsn/electric-motor-temperature

20 dbnR: Gaussian Dynamic Bayesian Networks in R

1st Qu.: 0.01516 1st Qu.: 0.05816 1st Qu.: 0.3122
Median : 0.05754 Median : 0.09546 Median : 0.3137
Mean : 0.05927 Mean : 0.89587 Mean : 0.3006
3rd Qu.: 0.10300 3rd Qu.: 2.15739 3rd Qu.: 0.3157
Max. : 0.20956 Max. : 2.27659 Max. : 2.2359

u_q motor_speed i_d
Min. :-1.332770 Min. :-1.22243 Min. :-2.4526
1st Qu.:-1.328685 1st Qu.:-1.22243 1st Qu.: 0.2333
Median :-1.326736 Median :-1.22243 Median : 1.0291
Mean :-0.601467 Mean :-0.58853 Mean : 0.4785
3rd Qu.: 0.008286 3rd Qu.: 0.02407 3rd Qu.: 1.0291
Max. : 1.729171 Max. : 1.87129 Max. : 1.0292

i_q pm stator_yoke
Min. :-2.9470 Min. :-0.14291 Min. :-0.0564
1st Qu.:-0.2524 1st Qu.:-0.11738 1st Qu.: 0.1337
Median :-0.2457 Median : 0.04524 Median : 0.2650
Mean :-0.2941 Mean : 0.01934 Mean : 0.5307
3rd Qu.:-0.2457 3rd Qu.: 0.12920 3rd Qu.: 0.9512
Max. : 2.2931 Max. : 0.25813 Max. : 1.5442
stator_tooth stator_winding

Min. :-0.31658 Min. :-0.53658
1st Qu.: 0.01911 1st Qu.:-0.22645
Median : 0.31257 Median : 0.13088
Mean : 0.27072 Mean : 0.08419
3rd Qu.: 0.46184 3rd Qu.: 0.39245
Max. : 0.92338 Max. : 0.71988

The sample dataset consists of 11 continuous variables that correspond to different temper-
atures, voltages and currents inside an electrical motor. Our aim is to use the data to fit
the DBN models and showcase the whole process of training a DBN with some dataset and
perform forecasting.
Initially, we split our data into training and test sets, and then use the fold_dt function to
generate the necessary temporal variables in each row.

R> dt_train <- dt[1:2800]
R> dt_test <- dt[2801:3000]
R> size <- 2
R> f_dt_train <- fold_dt(dt_train, size)
R> f_dt_test <- fold_dt(dt_test, size)
R> print(names(f_dt_train))

[1] "ambient_t_0" "coolant_t_0" "u_d_t_0"
[4] "u_q_t_0" "motor_speed_t_0" "i_d_t_0"
[7] "i_q_t_0" "pm_t_0" "stator_yoke_t_0"

[10] "stator_tooth_t_0" "stator_winding_t_0" "ambient_t_1"
[13] "coolant_t_1" "u_d_t_1" "u_q_t_1"
[16] "motor_speed_t_1" "i_d_t_1" "i_q_t_1"

Journal of Statistical Software 21

[19] "pm_t_1" "stator_yoke_t_1" "stator_tooth_t_1"
[22] "stator_winding_t_1"

For the sake of simplicity, we fix the size of the folding to 2 so that we learn Markovian
order 1 DBNs. In a real world scenario, this size parameter is very important due to its
relationship with the autoregressive order of time series, and as such it defines how many
previous instants of time are needed to forecast the next instant. Given that there is no
automatic way of determining the appropriate Markovian order of a network for a given
dataset, it is better to start by fixing size = 2 and obtaining the fastest baseline results for
Markovian order 1 that can be empirically compared with slower higher orders later on. In
practice, accuracies can improve considerably up to size = 5 depending on the problem at
hand, but not all structure learning algorithms are able to learn such high order networks. On
datasets with 20 variables and 10.000 instances, the DMMHC algorithm can take more than
24 hours to learn networks of size > 3, and the particle swarm algorithms with 50 iterations
and 300 particles can take between 1 and 2 hours for learning networks of size > 7. For
a more in-depth comparison of execution time and performance of the three algorithms, we
refer the readers to Quesada et al. (2021).
After splitting and folding, we create the necessary variables for the desired size and obtain
a dataset that can be used for learning the structure and the parameters of the DBN models.

R> t <- Sys.time()
R> net_dmmhc <- learn_dbn_struc(dt_train, size, method = "dmmhc",
+ f_dt = f_dt_train)
R> Sys.time() - t

Time difference of 0.3007278 secs

R> set.seed(42)
R> t <- Sys.time()
R> net_psoho <- learn_dbn_struc(dt_train, size, method = "psoho",
+ f_dt = f_dt_train, n_it = 10)

|===
===
===| 100%

R> Sys.time() - t

Time difference of 3.022008 secs

R> t <- Sys.time()
R> net_nat <- learn_dbn_struc(dt_train, size, method = "natPsoho",
+ f_dt = f_dt_train, n_it = 10)

|===
===
===| 100%

22 dbnR: Gaussian Dynamic Bayesian Networks in R

R> Sys.time() - t

Time difference of 2.784051 secs

We used the three available structure learning algorithms and printed the execution time spent
by each one. For small DBNs, the execution time of the DMMHC algorithm is unrivalled by
the particle swarm algorithms, but it scales poorly to a greater number of nodes and higher
Markovian orders. Note that the particle swarm algorithms are not deterministic, and we
had to set a seed number to obtain reproducible results. They also print a progress bar that
shows how much of the process is done in terms of the number of iterations finished from the
total number of iterations allowed with the n_it parameter.
In terms of parameters, the DMMHC algorithm offers the option to add blacklist and
whitelist parameters, which avoid or force arcs in the resulting structure respectively. This
is a useful feature in the case that the user wants to obtain networks that adhere to some
previous knowledge of the variables relationships. An additional parameter blacklist_tr is
also provided to avoid specific inter-slice arcs. Underneath the DMMHC implementation, the
algorithm calls the rsmax2 function from the bnlearn package in order to apply the max-min
hill-climbing algorithm. As a result, the user can provide further parameters to this function
if they want to adjust the behaviour of this function.
In terms of the parameters of the particle swarm algorithms, the number of particles can be
defined with the n_inds parameter and the number of iterations with the n_it parameter.
By default they are set to 50, and increasing any of them will result in slower execution time
but more exhaustive searches. Increasing the number of particles up to 100 or the number of
iterations up to 200 can be a good, simple approach in case the user wants to see if better
DBN structures can be found in terms of accuracy. Additionally, if the user is proficient
with particle swarm optimization then they can modify the values of the inertia factor, the
global best factor and the local best factor with the in_cte, gb_cte and lb_cte parameters
respectively. This parameters determine how the particles move through the solution space.
An extra parameter cte determines whether or not as the search progresses, the inertia and
local best factor decrease while the global best factor increases to favour exploration at first
and exploitation at the end. This behaviour is not enabled by default, but it can improve the
results obtained in some cases.
With regards to the network structures obtained, the one from the DMMHC algorithm is
more interpretable than the ones obtained from the particle swarm algorithms due to the
presence of intra-slice arcs, as shown in Figure 7. While the particle swarm algorithms only
show temporal relationships, in the Markov blanket of the DMMHC network we can see the
effects of previous variables in red, current variables in blue and in grey we see variables
that are not directly related to pm_t_0 but affect its value. However, the networks obtained
from the particle swarms algorithms tend to be simpler and more accurate for pure forecasting
problems. In this example case, we will guide the final network selection by accuracy results, as
the DBN structure interpretation is more relevant when working with experts in the problem
that can extract information from the relationships shown in the network. As a result, the
user should prioritize the PSOHO and natPSOHO algorithms over the DMMHC in cases
where learning a high order network is required and where the objective is more focused on
forecasting accuracy rather than interpretability.
After obtaining the network structures, we can now learn their parameters from the folded

Journal of Statistical Software 23

Figure 7: The plotted Markov blanket of the pm_t_0 variable from the DBNs learned with
the natPSOHO, PSOHO and DMMHC algorithms respectively. While the particle swarm
algorithms offer much simpler networks where we only see the temporal effect of previous
variables, the DMMHC network shows more complex relationships.

dataset with the fit_dbn_params function. This returns a ‘dbn.fit’ object that can be used
to perform inference.

R> fit_dmmhc <- fit_dbn_params(net_dmmhc, f_dt_train)
R> fit_psoho <- fit_dbn_params(net_psoho, f_dt_train)
R> fit_nat <- fit_dbn_params(net_nat, f_dt_train)
R> fit_dmmhc$pm_t_0

Parameters of node pm_t_0 (Gaussian distribution)

Conditional density: pm_t_0 | coolant_t_0 + stator_winding_t_0 +
motor_speed_t_1 + pm_t_1

Coefficients:
(Intercept) coolant_t_0 stator_winding_t_0

0.0017474119 -0.0014122266 0.0011111532
motor_speed_t_1 pm_t_1

0.0005594395 0.9849412445
Standard deviation of the residuals: 0.004961973

We can inspect a fitted model by checking specific nodes. In the previous code chunk, we
printed the parameters of the pm_t_0 node. This variable represents the temperature of the
permanent magnet in the rotor of the motor and can be used to predict overheating. By
checking its parameters, we can see all its parent nodes, as well as the effects that each one
has on it. Note that all variables are normalized, so the scales of the parameters are similar
and can be compared. We can see that the values of the last instant pm_t_1 have a parameter

24 dbnR: Gaussian Dynamic Bayesian Networks in R

of approximately 0.985, which hints at the fact that the previous value in the TS is a very
good prediction of the next one and has high correlation. If the variables were not normalized,
the parameters would need to account for the difference in magnitude of the variables, and
they would be much harder to interpret.
In our DBN models, the DMMHC algorithm allows intra-slice arcs, as shown by the pm_t_0
variable having as parents other variables in t0. The PSO algorithms, however, do not allow
this kind of arc and only learn inter-slice arcs directed to t0.

R> fit_nat$pm_t_1

Parameters of node pm_t_1 (Gaussian distribution)

Conditional density: pm_t_1
Coefficients:
(Intercept)
0.02872801

Standard deviation of the residuals: 0.123039

R> summary(f_dt_train[, pm_t_1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.14291 -0.11971 0.06236 0.02873 0.13503 0.25813

In the case of variables with no parents, it can be seen that their intercept is equal to the
mean of the TS in the original training dataset. This can be seen in the case of the PSO
algorithms in each variable outside t0, given that only variables in t0 are allowed to have
parent nodes in those algorithms.
With the fitted models, we can now perform inference over the test dataset. First, we use the
mvn_inference function directly to perform a single inference step. We use the values from
previous time slices as evidence and perform inference over the variables at t0.

R> ev_vars <- names(f_dt_test)[grepl("t_1$", names(f_dt_test))]
R> ev <- f_dt_test[1, .SD, .SDcols = ev_vars]
R> ev

ambient_t_1 coolant_t_1 u_d_t_1 u_q_t_1 motor_speed_t_1
1: 0.1377959 2.177947 0.3127252 -1.329747 -1.222431

i_d_t_1 i_q_t_1 pm_t_1 stator_yoke_t_1 stator_tooth_t_1
1: 1.029135 -0.2457216 -0.1207832 1.471376 0.8375071

stator_winding_t_1
1: 0.3224269

First, we extract the values of all the variables whose name finishes with "t_1", that is, all
the variables that are at the t1 time slice from the first row of the folded test dataset. We
can now feed the data to any of the ‘dbn.fit’ objects that we trained earlier.

Journal of Statistical Software 25

R> res <- mvn_inference(attr(fit_dmmhc, "mu"),
+ attr(fit_dmmhc, "sigma"), evidence = ev)
R> res

$mu_p
[,1]

coolant_t_0 2.1771681
stator_tooth_t_0 0.8386566
stator_yoke_t_0 1.4720731
stator_winding_t_0 0.3229435
u_d_t_0 0.3156188
pm_t_0 -0.1206166
ambient_t_0 0.1371033
u_q_t_0 -1.3303784
i_d_t_0 1.0286580
motor_speed_t_0 -1.2240255
i_q_t_0 -0.2442530

$sigma_p
coolant_t_0 stator_tooth_t_0 stator_yoke_t_0

coolant_t_0 3.730297e-03 -9.341215e-05 -6.949001e-05
stator_tooth_t_0 -9.341215e-05 2.389378e-03 1.943209e-05
stator_yoke_t_0 -6.949001e-05 1.943209e-05 -4.629102e-03
stator_winding_t_0 2.617418e-07 -1.718153e-05 -2.775256e-05
u_d_t_0 6.505213e-18 -1.870926e-17 -6.396793e-18
pm_t_0 -5.267734e-06 1.128278e-07 6.729829e-08
ambient_t_0 -7.032338e-07 1.722317e-07 -4.054521e-05
u_q_t_0 -1.899465e-07 4.068401e-09 2.426676e-09
i_d_t_0 5.745827e-07 -1.480856e-05 -4.137123e-07
motor_speed_t_0 -8.185877e-09 1.694358e-07 4.753232e-09
i_q_t_0 -3.539884e-08 8.669667e-09 -2.040933e-06

stator_winding_t_0 u_d_t_0 pm_t_0
coolant_t_0 2.617418e-07 -8.673617e-18 -5.267734e-06
stator_tooth_t_0 -1.718153e-05 4.370690e-18 1.128278e-07
stator_yoke_t_0 -2.775256e-05 1.864828e-17 6.729829e-08
stator_winding_t_0 -2.205694e-03 -1.019150e-17 -2.451233e-06
u_d_t_0 -4.835542e-17 2.375250e-03 -3.361027e-18
pm_t_0 -2.451233e-06 6.505213e-19 -4.675682e-04
ambient_t_0 -2.870911e-07 -1.169272e-06 -8.393435e-06
u_q_t_0 -8.838777e-08 1.821460e-17 -1.685981e-05
i_d_t_0 -2.332173e-05 1.573537e-05 -2.672546e-08
motor_speed_t_0 2.660363e-07 -1.800034e-07 -1.428645e-07
i_q_t_0 -1.445137e-08 -2.165141e-05 -4.225023e-07

ambient_t_0 u_q_t_0 i_d_t_0
coolant_t_0 -7.032338e-07 -1.899465e-07 5.745827e-07
stator_tooth_t_0 1.722317e-07 4.068400e-09 -1.480856e-05
stator_yoke_t_0 -4.054521e-05 2.426675e-09 -4.137123e-07

26 dbnR: Gaussian Dynamic Bayesian Networks in R

stator_winding_t_0 -2.870911e-07 -8.838777e-08 -2.332173e-05
u_d_t_0 -1.169272e-06 -2.645453e-17 1.573537e-05
pm_t_0 -8.393435e-06 -1.685981e-05 -2.672546e-08
ambient_t_0 2.150180e-04 -3.026546e-07 -1.184961e-08
u_q_t_0 -3.026546e-07 -4.193088e-04 -9.636789e-10
i_d_t_0 -1.184961e-08 -9.636806e-10 1.887835e-02
motor_speed_t_0 -2.434532e-09 -3.560678e-06 -2.159572e-04
i_q_t_0 1.083404e-05 -1.523479e-08 -1.436411e-07

motor_speed_t_0 i_q_t_0
coolant_t_0 -8.185875e-09 -3.539884e-08
stator_tooth_t_0 1.694358e-07 8.669667e-09
stator_yoke_t_0 4.753232e-09 -2.040933e-06
stator_winding_t_0 2.660363e-07 -1.445137e-08
u_d_t_0 -1.800034e-07 -2.165141e-05
pm_t_0 -1.428645e-07 -4.225023e-07
ambient_t_0 -2.434532e-09 1.083404e-05
u_q_t_0 -3.560678e-06 -1.523479e-08
i_d_t_0 -2.159572e-04 -1.436411e-07
motor_speed_t_0 -5.066376e-02 1.513799e-09
i_q_t_0 1.513799e-09 -9.822611e-03

This returns both the µ1|2 vector and Σ1|2 matrix calculated in Equation 8 and Equation 9,
respectively. The µ1|2 vector is used as the resulting value from the exact inference, that
is, the most likely value for our predicted variables given the provided evidence. The Σ1|2
matrix is also returned, but it is less interesting in the case of Gaussian DBNs given that it
remains constant no matter the evidence we provide, as shown by Equation 9, where only the
constant values of the covariance matrix are used in its calculation.
The mean vector obtained only corresponds to a single instant prediction. We can automate
this process for all the rows in a dataset with the predict_dt function in case our objective
is to predict only the next time instant.

R> res <- predict_dt(fit_dmmhc, f_dt_test, obj_nodes = "pm_t_0")

MAE:
0.0004112805
SD:
0.0005886638

Along with the predictions, the predict_dt function prints the average MAE and the stan-
dard deviation of the residuals and plots the predictions, as shown in Figure 8. Although
the inference to horizon 1 obtains a seemingly low MAE and the plot seems to be a good
result, single-step predictions can be misleading. As shown earlier by the parameters, a good
prediction of the next instant of a TS is the previous one. Sometimes, a TS model can just be
passing forward the values of the variables, incurring good predictions for T = 1 but obtains
worse results when forecasting.
For forecasting, we use the forecast_ts function, which allows us to forecast up to an
arbitrary time horizon. We use the pm_t_0 variable as our target variable, but more than one
variable can be selected simultaneously as target variables.

Journal of Statistical Software 27

Time

pm
_t

_0

0 50 100 150 200

−
0.

12
0

−
0.

11
5

−
0.

11
0

−
0.

10
5

Figure 8: Plot of the predictions (red) returned by the predict_dt function and the real
values of the time series (black). All the predictions are performed to horizon 1 using the last
instant as evidence. They are deceivingly accurate because the last instant is always used
as evidence for the next prediction. If looking closely, it can be seen that large changes in
the profile of the curve are not properly predicted by the DBN until one instant later when
evidence of these changes is provided to the model.

R> res <- forecast_ts(f_dt_test, fit_dmmhc, obj_vars = "pm_t_0",
+ ini = 40, len = 30, mode = "exact")

Time difference of -0.045842 secs
The average MAE per execution is:
pm_t_0: 4e-04

The obtained forecast shown in Figure 9 follows the tendency of the TS, but it is much
smoother than the real values. This is because the exact inference in DBN models returns
the most likely value in each instant, which is the mean value of the conditional multivariate
Gaussian distribution. As such, the variance shown in Σ1|2 is expected to take place, but it
remains constant throughout the forecast. We can show this issue in more detail by plotting
the prediction intervals of the forecasting.

R> plot_pred_int_95 <- function(orig, pred, sigma, col) {
+ u_bound = pred + sigma_p*1.96
+ l_bound = pred - sigma_p*1.96
+ max_val = max(c(u_bound, l_bound))
+ min_val = min(c(u_bound, l_bound))
+ x = seq(length(pred))
+ plot(ts(orig), ylim = c(min_val, max_val), ylab = col)
+ polygon(c(x, rev(x)), c(u_bound, rev(l_bound)),

28 dbnR: Gaussian Dynamic Bayesian Networks in R

Time

pm
_t

_0

0 5 10 15 20 25 30

−
0.

11
70

−
0.

11
65

−
0.

11
60

−
0.

11
55

−
0.

11
50

−
0.

11
45

−
0.

11
40

−
0.

11
35

Figure 9: Plot obtained from forecasting 30 instances with a DBN model using only the
evidence from the initial point at t = 0. The black line represents the original values of the
TS, and the red line represents the forecasting.

+ col = adjustcolor("purple", alpha.f = 0.1), lty = 0)
+ lines(pred, col = "red")
+ lines(u_bound, col = "purple")
+ lines(l_bound, col = "purple")
+ }

The previous function will plot the real values as a black line, the forecasting as a red line
and the prediction interval will be shown as two pruple lines and the violet area in between
them. This pointwise prediction interval is calculated like that of a Gaussian distribution
[µX − zσX , µX + zσX].

R> cols <- names(f_dt_test)[-8]
R> sigma_p <- mvn_inference(attr(fit, 'mu'), attr(fit, 'sigma'),
+ f_dt_test[1, .SD, .SDcols = cols])$sigma_p[1]
R> plot_pred_int_95(res$orig$pm_t_0, res$pred$pm_t_0, sigma_p, "pm_t_0")

The resulting plot can be seen in Figure 10. In this case, the pointwise prediction interval
helps us see the implications of the expected variance of the predictions, but we can also see
how this interval remains the same in the first instant of the predictions, when we have real
evidence values, up to the last instant. It is also important to note that the model only sees
the evidence at the first instant of time, which means that any future intervention in the TS
will not be seen by the DBN.
If we are applying a DBN model in real time, we do not have the values of the full TS when
performing forecasting. In this case, we can provide the model with the evidence of the initial
time point, and it will return the forecast without performing MAE calculations.

Journal of Statistical Software 29

Time

pm
_t

_0

0 5 10 15 20 25 30

−
0.

11
8

−
0.

11
7

−
0.

11
6

−
0.

11
5

−
0.

11
4

−
0.

11
3

Figure 10: Plot and prediction interval obtained from forecasting 30 instances with a DBN
model. The black line represents the original values of the TS, the red line represents the
forecasting and the violet area represents the 95% pointwise prediction interval.

R> res <- forecast_ts(f_dt_test[40], fit_dmmhc, obj_vars = "pm_t_0",
+ ini = 1, len = 5, mode = "exact", plot_res = FALSE, print_res = FALSE)
R> res$pred$pm_t_0

[1] -0.1169029 -0.1167780 -0.1166541 -0.1165312 -0.1164092

We can also use the DBN model as a simulator by providing specific evidence over time during
forecasting. Thus, we can test the effects of specific values on some key variables or see how
certain interventions affect the system. In our example data, we may want to test how the
increasing or decreasing revolutions per minute of the motor represented by the motor_speed
variable affects our objective temperature. Our first scenario is to fix this value at a very
low rate, lower than the real values of the TS. In the second scenario that we propose, we
progressively increase the revolutions per minute over time from a very low starting point to
see the effects that accelerating a car would have on the permanent magnet temperature.

f_dt_i <- f_dt_test[40:70]
summary(f_dt_i$motor_speed_t_0)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.222 -1.222 -1.222 -1.222 -1.222 -1.222

f_dt_i[1:5, motor_speed_t_0]

[1] -1.222428 -1.222428 -1.222430 -1.222432 -1.222431

30 dbnR: Gaussian Dynamic Bayesian Networks in R

We first extract the 30 instances of our previous forecasting to test both interventions because
we already know how the model behaves for that period of time. The motor_speed variable
is fairly constant at -1.22 on this interval. Note that the variables are normalized, and it
does not mean negative revolutions per minute. We will modify this subset of data by fixing
the values of motor_speed_t_0 to a lower value of -1.4, and then to a sequence of values
increasing from -1.4 to -1.1 to simulate motor acceleration.

R> f_dt_i[, motor_speed_t_0 := -1.4]
R> res <- forecast_ts(f_dt_i, fit_dmmhc, obj_vars = "pm_t_0",
+ ini = 1, len = 30, mode = "exact", prov_ev = "motor_speed_t_0")

Time difference of -0.104531 secs
The average MAE per execution is:
pm_t_0: 9e-04

R> f_dt_i[, motor_speed_t_0 := seq(from = -1.4, to = -1.1, by = 0.3 / 30)]
R> res <- forecast_ts(f_dt_i, fit_dmmhc, obj_vars = "pm_t_0",
+ ini = 1, len = 30, mode = "exact", prov_ev = "motor_speed_t_0")

Time difference of -0.100183 secs
The average MAE per execution is:
pm_t_0: 4e-04

The plots resulting from both scenarios can be seen in Figure 11. If we set a low motor_speed,
the temperature of the magnet increases much more slowly than in the real case. However, we
can see the effect that accelerating the motor would have on the temperature, which ramps
up when we start increasing the revolutions per minute. This behaviour as simulators of the
real world is a powerful tool that can turn DBNs into generative models that offer insight
into industrial processes before making an intervention in a system.
As a final example and to evaluate the performance of the different DBN models, we have
prepared a pipeline that will perform inference over a span of 20 instants for every row in our
test dataset and then calculate the final MAE of the models.

R> mae <- function(orig, pred) {
+ res <- 0
+ for(i in 1:(dim(f_dt_test)[1]-len))
+ res_fore <- forecast_ts(f_dt_test, fit, obj_vars = obj_var,
+ ini = i, len = len, plot_res = FALSE,print_res = FALSE)
+ res <- res + mae(res_fore$orig[, get(obj_var)],
+ res_fore$pred[, get(obj_var)])
+ res <- res / (dim(f_dt_test)[1] - len)
+ cat(paste0("The final MAE of the model is: ", res, "\n"))
+ return(res)
+ }

Given that the forecast_ts function returns both the original values and the predicted ones,
we can use any metric to evaluate the results. In our case, we define the MAE in an auxiliary
function and then define a function that will perform this testing over the test dataset with
any fit provided to it.

Journal of Statistical Software 31

Figure 11: A comparison between the plotted forecasts of fixing the motor_speed variable
to -1.4 (left) and progressively increasing it from -1.4 to -1.1 (right). The real values of the
TS are represented by black lines, and the red lines represent the forecasts. The effects of
both actions can be clearly seen in the profile of the predictions.

R> res_dmmhc <- eval_fit(f_dt_test, fit_dmmhc)

The final MAE of the model is: 1.29892071902173e-05

R> res_psoho <- eval_fit(f_dt_test, fit_psoho)

The final MAE of the model is: 1.40902160021131e-05

R> res_nat <- eval_fit(f_dt_test, fit_nat)

The final MAE of the model is: 1.29356816394937e-05

From this comparison, we can see that the best results by a small margin in terms of MAE are
obtained with the DBN learned with the natPSOHO algorithm for this particular example.

7. Conclusions
In this paper, we have presented the dbnR package for Gaussian DBN learning, inference
and visualization. The package covers the whole process from learning both the structure
and parameters of a DBN model to performing inference and forecasting with it. It also
extends the functionality of the most popular BN package in R, bnlearn, to the case of
DBNs. The intermediate steps of the learning and inference process, including the structure
learning algorithms, are presented and discussed regarding both their definitions and their
implementations.

32 dbnR: Gaussian Dynamic Bayesian Networks in R

For future work, we would like to add an option to show an automatically generated user
interface with shiny (Chang et al. 2021). This would give the simulator of DBN models more
capacity to interact with the user, as well as generating tools readily available for a data
scientist to present prototypes to an expert on a specific problem. This can be especially
useful in the case of BNs and DBNs due to their capacity to incorporate expert knowledge
into the model itself and to show the results of inference clearly and directly to the model’s end
users. On the subject of discrete or hybrid networks, dbnR is not envisioned to be extended
to either of those cases on the foreseeable future. We would like to refer the readers to either
the R package bnlearn that can be adapted to the case of dicrete or hybrid DBNs with some
work on the users end or the Python package PyBNesian for their applications that require
either discrete nodes, hybrid networks or nodes learned via kernel density estimation.

Computational details
The results in this paper were obtained using R 4.4.1 with the dbnR 0.8.0 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/. The dbnR package is licensed under GPL-3 or later license.
All the examples were run on a 64 bits Windows 10 machine with an Intel i5-6200U CPU at
2.30GHz and 8GB of RAM.

Acknowledgments
This work has been partially supported by the Spanish Ministry of Science and Innovation
through the PID2022-139977NB-I00 and TED2021-131310B-I00 projects, and by the grant
to the ELLIS Unit Madrid by the Autonomous Region of Madrid.

References

Almende BV, Thieurmel B, Robert T (2019). visNetwork: Network Visualization Using vis.js
Library. doi:10.32614/CRAN.package.visNetwork. R package version 2.0.9.

Ankan A, Panda A (2015). “pgmpy: Probabilistic Graphical Models Using Python.” In
Proceedings of the 14th Python in Science Conference, volume 10. Citeseer.

Atienza D, Bielza C, Larrañaga P (2022). “PyBNesian: An Extensible Python Package for
Bayesian Networks.” Neurocomputing, 504, 204–209. ISSN 0925-2312. doi:10.1016/j.
neucom.2022.06.112.

Bielza C, Larrañaga P (2014). “Bayesian Networks in Neuroscience: A Survey.” Frontiers in
Computational Neuroscience, 8, 131. doi:10.3389/fncom.2014.00131.

Cai B, Shao X, Liu Y, Kong X, Wang H, Xu H, Ge W (2019). “Remaining Useful Life
Estimation of Structure Systems under the Influence of Multiple Causes: Subsea Pipelines
as a Case Study.” IEEE Transactions on Industrial Electronics, 67(7), 5737–5747. doi:
10.1109/tie.2019.2931491.

https://CRAN.R-project.org/
https://doi.org/10.32614/CRAN.package.visNetwork
https://doi.org/10.1016/j.neucom.2022.06.112
https://doi.org/10.1016/j.neucom.2022.06.112
https://doi.org/10.3389/fncom.2014.00131
https://doi.org/10.1109/tie.2019.2931491
https://doi.org/10.1109/tie.2019.2931491

Journal of Statistical Software 33

Chang W (2021). R6: Encapsulated Classes with Reference Semantics. doi:10.32614/CRAN.
package.R6. R package version 2.5.1.

Chang W, Cheng J, Allaire J, Sievert C, Schloerke B, Xie Y, Allen J, McPherson J, Dipert A,
Borges B (2021). shiny: Web Application Framework for R. doi:10.32614/CRAN.package.
shiny. R package version 1.7.1.

Chaudhary S, Indu S, Chaudhury S (2017). “Video-Based Road Traffic Monitoring and
Prediction Using Dynamic Bayesian Networks.” IET Intelligent Transport Systems, 12(3),
169–176. doi:10.1049/iet-its.2016.0336.

Denis JB, Scutari M (2021). rbmn: Handling Linear Gaussian Bayesian Networks. doi:
10.32614/CRAN.package.rbmn. R package version 0.9-4.

Dowle M, Srinivasan A (2021). data.table: Extension of ‘data.frame’. doi:10.32614/CRAN.
package.data.table. R package version 1.14.2.

Ducamp G, Gonzales C, Wuillemin PH (2020). “aGrUM/pyAgrum: A Toolbox to Build
Models and Algorithms for Probabilistic Graphical Models in Python.” In 10th International
Conference on Probabilistic Graphical Models, pp. 609–612.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Fernandes R (2020). dbnlearn: Dynamic Bayesian Network Structure Learning, Parameter
Learning and Forecasting. doi:10.32614/CRAN.package.dbnlearn. R package version
0.1.0.

Geiger D, Heckerman D (1994). “Learning Gaussian Networks.” In Uncertainty in Artificial
Intelligence Proceedings 1994, pp. 235–243. Elsevier.

Højsgaard S (2012). “Graphical Independence Networks with the gRain Package for R.”
Journal of Statistical Software, 46(10), 1–26. doi:10.18637/jss.v046.i10.

Kirchgässner W, Wallscheid O, Böcker J (2021). “Estimating Electric Motor Temperatures
with Deep Residual Machine Learning.” IEEE Transactions on Power Electronics, 36(7),
7480–7488. doi:10.1109/tpel.2020.3045596.

Koller D, Friedman N (2009). Probabilistic Graphical Models: Principles and Techniques. The
MIT Press.

Korb KB, Nicholson AE (2010). Bayesian Artificial Intelligence. CRC press. doi:10.1201/
b10391.

Murphy KP (2002). Dynamic Bayesian Networks: Representation, Inference and Learning.
University of California, Berkeley.

Murphy KP (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Pearl J (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann.

https://doi.org/10.32614/CRAN.package.R6
https://doi.org/10.32614/CRAN.package.R6
https://doi.org/10.32614/CRAN.package.shiny
https://doi.org/10.32614/CRAN.package.shiny
https://doi.org/10.1049/iet-its.2016.0336
https://doi.org/10.32614/CRAN.package.rbmn
https://doi.org/10.32614/CRAN.package.rbmn
https://doi.org/10.32614/CRAN.package.data.table
https://doi.org/10.32614/CRAN.package.data.table
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.32614/CRAN.package.dbnlearn
https://doi.org/10.18637/jss.v046.i10
https://doi.org/10.1109/tpel.2020.3045596
https://doi.org/10.1201/b10391
https://doi.org/10.1201/b10391

34 dbnR: Gaussian Dynamic Bayesian Networks in R

Quesada D (2026). dbnR: Dynamic Bayesian Network Learning and Inference. doi:10.
32614/CRAN.package.dbnR. R package version 0.8.0.

Quesada D, Bielza C, Larrañaga P (2021). “Structure Learning of High-Order Dynamic
Bayesian Networks via Particle Swarm Optimization with Order Invariant Encoding.” In
International Conference on Hybrid Artificial Intelligence Systems, pp. 158–171. Springer-
Verlag. doi:10.1007/978-3-030-86271-8_14.

Robinson RW (1977). “Counting Unlabeled Acyclic Digraphs.” In Combinatorial Mathematics
V, pp. 28–43. Springer-Verlag.

Santos FP, Maciel CD (2014). “A PSO Approach for Learning Transition Structures of Higher-
Order Dynamic Bayesian Networks.” In 5th ISSNIP-IEEE Biosignals and Biorobotics Con-
ference (2014): Biosignals and Robotics for Better and Safer Living, pp. 1–6. IEEE. doi:
10.1109/brc.2014.6880957.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464. doi:10.1214/aos/1176344136.

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of
Statistical Software, 35(3), 1–22. doi:10.18637/jss.v035.i03.

Song L, Kolar M, Xing E (2009). “Time-Varying Dynamic Bayesian Networks.” Advances in
Neural Information Processing Systems, 22. doi:10.1093/bioinformatics/btp192.

Suter P, Kuipers J, Moffa G, Beerenwinkel N (2023). “Bayesian Structure Learning and
Sampling of Bayesian Networks with the R Package BiDAG.” Journal of Statistical Software,
105(9), 1–31. doi:10.18637/jss.v105.i09.

Taskesen E (2020). bnlearn: Library for Bayesian Network Learning and Inference. URL
https://erdogant.github.io/bnlearn.

Trabelsi G, Leray P, Ayed MB, Alimi AM (2013). “Dynamic MMHC: A Local Search
Algorithm for Dynamic Bayesian Network Structure Learning.” In International Sym-
posium on Intelligent Data Analysis, pp. 392–403. Springer-Verlag. doi:10.1007/
978-3-642-41398-8_34.

Tsamardinos I, Brown LE, Aliferis CF (2006). “The Max-Min Hill-Climbing Bayesian Net-
work Structure Learning Algorithm.” Machine Learning, 65(1), 31–78. doi:10.1007/
s10994-006-6889-7.

Wang Y, Berceli SA, Garbey M, Wu R (2019). “Inference of Gene Regulatory Network
through Adaptive Dynamic Bayesian Network Modeling.” In Contemporary Biostatis-
tics with Biopharmaceutical Applications, pp. 91–113. Springer-Verlag. doi:10.1007/
978-3-030-15310-6_5.

Zhu J, Zhang W, Li X (2019). “Fatigue Damage Assessment of Orthotropic Steel Deck
Using Dynamic Bayesian Networks.” International Journal of Fatigue, 118, 44–53. doi:
10.1016/j.ijfatigue.2018.08.037.

https://doi.org/10.32614/CRAN.package.dbnR
https://doi.org/10.32614/CRAN.package.dbnR
https://doi.org/10.1007/978-3-030-86271-8_14
https://doi.org/10.1109/brc.2014.6880957
https://doi.org/10.1109/brc.2014.6880957
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.1093/bioinformatics/btp192
https://doi.org/10.18637/jss.v105.i09
https://erdogant.github.io/bnlearn
https://doi.org/10.1007/978-3-642-41398-8_34
https://doi.org/10.1007/978-3-642-41398-8_34
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1007/978-3-030-15310-6_5
https://doi.org/10.1007/978-3-030-15310-6_5
https://doi.org/10.1016/j.ijfatigue.2018.08.037
https://doi.org/10.1016/j.ijfatigue.2018.08.037

Journal of Statistical Software 35

Affiliation:
David Quesada, Pedro Larrañaga, Concha Bielza
Departamento de Inteligencia Artificial
Escuela Técnica Superior de Ingenieros Informáticos
Universidad Politécnica de Madrid
Campus de Montegacedo, SN
Madrid, Spain
E-mail: dquesada@fi.upm.es, pedro.larranaga@fi.upm.es, mcbielza@fi.upm.es
URL: https://www.github.com/dkesada,

https://cig.fi.upm.es/CIGmembers/pedro-larranaga,
https://cig.fi.upm.es/CIGmembers/concha_bielza

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

December 2025, Volume 115, Issue 6 Submitted: 2023-08-29
doi:10.18637/jss.v115.i06 Accepted: 2024-09-26

mailto:dquesada@fi.upm.es
mailto:pedro.larranaga@fi.upm.es
mailto:mcbielza@fi.upm.es
https://www.github.com/dkesada
https://cig.fi.upm.es/CIGmembers/pedro-larranaga
https://cig.fi.upm.es/CIGmembers/concha_bielza
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v115.i06

	Introduction
	Bayesian networks
	Joint probability distribution
	Dynamic Bayesian networks

	Structure learning
	Dynamic max-min hill-climbing
	Particle swarm optimization algorithms
	Binary encoding particle swarm optimization
	Natural number invariant encoding particle swarm optimization

	Structure visualization tool

	Inference and forecasting
	Exact inference
	Forecasting time series
	Smoothing

	Package functions and compatibility
	Usage example: sample motor dataset
	Conclusions

