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Abstract

Longitudinal data are commonly analyzed using linear mixed models, which, for math-
ematical convenience, usually assume that both random effect and error follow normal
distributions. However, these restrictive assumptions may result in a lack of robustness
against departures from the normal distribution and invalid statistical inferences. Schu-
macher, Lachos, and Matos (2021) developed a flexible extension of linear mixed models
considering the scale mixture of skew-normal class of distributions from a frequentist
point of view, accommodating skewness and heavy tails, and the robust model formula-
tion accounts for a possible within-subject serial dependence by considering some useful
dependence structures. This paper presents the R package skewlmm, which implements
the method proposed by Schumacher et al. (2021) and provides a user-friendly tool to fit
robust linear mixed models to longitudinal data, including model-fit tests, residual ana-
lyzes, and plot functions to support model selection and evaluation. Two data sets and a
synthetic example are analyzed to illustrate the methodology and software implementa-
tion.

Keywords: longitudinal data analysis, outliers, robust models, skewness.

1. Introduction

Longitudinal data often appear in several areas, such as medicine, public health, and psychol-
ogy, among others. Usually, a single measurement is collected repeatedly over time on each
subject in the study, and the temporal ordering is important because measurements closer in
time within a subject are more likely to be more similar than observations more distant in
time (Weiss 2005).

Currently, there are two main popular functions to fit normal LMMs in R: the function 1me ()
in the nlme package (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team 2021), which sup-
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ports several random effects and error level dependence structures, and the function lmer ()
in the lme4 package (Bates, Méchler, Bolker, and Walker 2015), which is more efficient for fit-
ting models with crossed random effects but does not support special dependence structures.
Both these functions rely on the asymptotic distributions of the ML and REML estimators.
Recently, a new package emerged with exact statistical results, the glme package (Cavus
and Yazici 2025), which bases its tests and interval estimates on the generalized inference
approach, as detailed in Weerahandi and Yu (2020). These inferences rely on the exact
distributions of underlying statistics when the covariance structure is compound symmetric.

These functions assume normal distributions for the random terms (although the function
glmer () in the lmed4 package fits generalized linear mixed-effect models), which is mathemat-
ically convenient but may result in a lack of robustness against departures from the normal
distribution and invalid statistical inferences, especially when the data simultaneously show
heavy tails and skewness (Drikvandi, Verbeke, and Molenberghs 2017).

Some proposals have been put forward in the literature to address this problem by replacing
the normality assumption with a more flexible class of distributions. For instance, Pinheiro,
Liu, and Wu (2001) proposed a multivariate t linear mixed model (T-LMM) and showed
that it performed well in the presence of outliers. Accounting for skewness, Arellano-Valle,
Bolfarine, and Lachos (2005) proposed a skew-normal linear mixed model (SN-LMM) based
on the skew-normal (SN) distribution introduced by Azzalini and Dalla Valle (1996), and
Ho and Lin (2010) proposed a skew-t linear mixed model (ST-LMM) based on the skew-t
(ST) distribution introduced by Azzalini and Capitanio (2003). We note that in the context
of Bayesian estimation, other proposals have been made in the literature (see, for example,
Bandyopadhyay, Lachos, Abanto-Valle, and Ghosh 2010; Gong, Mao, Zhang, Ren, and Zuo
2023).

Regarding currently available R packages, the lgmm package (Geraci 2014) estimates linear
quantile mixed-effect models, which allow for median-based estimation, considering Laplace
random effects, but only enabling non-diagonal covariance structures for random effects un-
der the normal assumption. Additionally, the function heavyLme() in the heavy package
(Osorio 2019) fits linear mixed models under t distributions using the formulation described
in Pinheiro et al. (2001), but it does not allow for within-subject correlation and simulation
studies from Geraci and Farcomeni (2020) resulted in some unexpected estimates, indicating
the possibility of bugs in the software.

Furthermore, the function rlmer () in the package robustlmm (Koller 2016) provides a robust
version of the function lmer (), based on the random effect contamination model and the
central contamination model, and allowing contamination to be detected at all levels of the
data, but not considering within-subject dependence. Recently, Geraci and Farcomeni (2020)
proposed a new family of linear mixed-effect models based on the generalized (symmetric)
Laplace distribution and developed a maximum likelihood estimation approach based on
Gaussian quadrature, which is implemented in the function nlmm() in the nlmm package
(Geraci 2023). The model formulation allows the distribution of random effects and error
to be different and for heteroscedasticity in the errors, but it also does not consider within-
subject serial correlation.

All the packages mentioned above are restricted to symmetric distributions. Some flexi-
ble frameworks that handle multilevel models and include a variety of possible distribu-
tions, including the skew-normal distribution, are worth mentioning. The packages gamlss
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(Stasinopoulos and Rigby 2007) and bamlss (Umlauf, Klein, Simon, and Zeileis 2021) fit com-
plex generalized additive regression models for location, scale, and shape. They allow for
modeling of all the parameters of the distribution as function of covariates and allowing for
Gaussian random effects incorporation, while multiple distributions are available for model-
ing the conditional distribution of the response variable. The package brms (Biirkner 2017)
fits Bayesian generalized linear and non-linear multilevel models using Stan and its syntax
is based on the lme4 package. These tools provide great flexibility and are useful for a wide
range of applications, but given their wider focus, they lack on devoted tools for longitudinal
data analysis and on flexible options for within-subject correlation.

Alternatively, the package tramME (Tamési and Hothorn 2021) allows for estimation and
inference of mixed effects transformation models, incorporating Gaussian random effects for
modeling a baseline transformation function of the response variable. Even though the avail-
ability of multiple error distributions and baseline transformations allows for a flexible model
formulation, the interpretation of covariate effects is not straightforward for such a formu-
lation. A recent proposal of Asar, Bolin, Diggle, and Wallin (2020), implemented in the
package ngme, accommodates simultaneously heavy tails, skewness, and within-subject serial
dependence considering three decoupled stochastic components following multivariate gener-
alized hyperbolic distributions. The proposal is quite flexible, but it depends on estimating
a more significant number of parameters. The R package is not yet available at CRAN, but
a development version is available at https://github.com/davidbolin/ngme2.

On the other hand, our skewlmm package implements the methods proposed by Lachos,
Ghosh, and Arellano-Valle (2010) and Schumacher et al. (2021), which considered robust
parametric modeling of LMM based on a skewed and heavy-tailed class of distributions,
called the scale mixture of skew-normal (SMSN), incorporating skewness at the random ef-
fects distribution and the latter allowing for within-subject serial dependence. This paper
introduces the skewlmm package, which provides an efficient EM-type algorithm to compute
maximum likelihood (ML) estimates of parameters of SMSN-LMMs, along with several tools
for model selection and evaluation.

The rest of this paper is organized as follows. Section 2 introduces the proposed model
and some important properties, along with the implemented dependence structure. Sec-
tion 3 presents the algorithms considered in the package for maximum likelihood estimation.
Section 4 shows the package’s main functions and introduces the available tools for model
evaluation, while Section 5 exemplifies the package’s use in two real data set applications and
a synthetic data setting. Finally, some final remarks are presented in Section 7.

2. Scale mixture of skew-normal linear mixed models

For completeness, we first briefly introduce the class of distributions considered throughout
this work. Let Y be a px 1 random vector, g a p x 1 location vector, 3 a p X p positive definite
scale matrix, A a px 1 shape parameter (which regulates the skewness), and let U be a positive
random variable with a cumulative distribution function (cdf) H(-;v), where v is a scalar or
parameter vector indexing the distribution of the mixing variable U. The multivariate SMSN
class of distributions, denoted by SMSN,(u, X, A; H), can be defined through the following
density function:

v =2 [ " (v 5 () D)D) VENTE Y (y — ) dH (u;v), y €R?, (1)
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for some positive weight function x(u). Depending on the distribution of U, different distri-
butions are attained. Letting x(u) = u~!, we consider explicitly the distributions described
next, along with the distribution of the Mahalanobis distance d = (y — )’ £~ (y — p).

o The multivariate skew-normal distribution, SNy(p, 3, X), is obtained when P(U =1) =

1. For this distribution, we have d ~ XI%'

o The multivariate skew-t distribution with v degrees of freedom, ST, (p, 33, A, v) (Branco
and Dey 2001; Azzalini and Genton 2008), which is derived from (1) by taking U ~
Gamma(v/2,v/2), with v > 0. It can be shown that d ~ pF(p,v), where F(a,b) denotes
the Snedecor’s F distribution with parameters a and b.

o The multivariate skew-slash distribution, SSL,(p, 3, X, v), arises by taking U ~ Beta(v, 1),
with v € (0,1) and v > 0. For this distribution, the cdf of the Mahalanobis distance is

distributed as P(d <r) =P (X;% < r) - %P <X123+2y < r) .

o The multivariate skew-contaminated normal distribution, SCNy(p, X, A, v1,v2), where
v1,v2 € (0,1) which arises when the mixing scale factor U is a discrete random variable
taking values v and 1 with probabilities 1y and 1 — vy, respectively. It can be clearly
observed that the cdf of the Mahalanobis distance, in this case, is given by P(d <r) =

n P (XZ < 1/27’) +(1—wv)P (X% < 7') .

An important special case of the SMSN class is obtained when A = 0, when it reduces to
the scale mixture of normal (SMN) class of distributions (denoted by Y ~ SMN,(u,X; H)),
discussed earlier by Lange and Sinsheimer (1993). In this sense, the symmetric version of all
the four distributions mentioned above can be attained by setting A = 0.

Now, suppose that a variable of interest is repeatedly measured for each of n subjects at
certain occasions over time, along with possible covariates. For the ith subject, i =1,...,n,
let Y; be a n; x 1 vector of observed continuous responses. A linear mixed-effects model can
be defined as

Y, =X;8+Zb;,+¢;, i=1,...,n, (2)

where X; of dimension n; x [ is the design matrix corresponding to the fixed effects, 8 of
dimension [ x 1 is a vector of population-averaged regression coefficients called fixed effects,
Z; of dimension n; x g is the design matrix corresponding to the ¢ x 1 random effects vector
b;, and €; of dimension n; x 1 is the vector of random errors.

The SMSN-LMM can then be defined by assuming that

()rome((2)(22) ()5

for i =1,...,n, where ¢ = c¢(v) = —\/gkrl, with k; = E{U'/2}, A = D%§, D = D(a)
is unstructured and depends on unknown and reduced parameter vector «, and we consider
3, = o’R;, with R; = Ry(4), ¢ = (¢1,...,¢)", being a structured matrix. As long as
k1 < oo, the chosen location parameter ensures that E{b} = E{¢;} = 0, so that E{Y;} = X,;3.

The model formulation implies that, marginally,

bi " SMSN,(cA, D, A H) and € ™ SMN,,,(0,02R;; H), i=1,...,n.
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Thus, the shape parameter A incorporates asymmetry only in the distribution of the ran-
dom effects (and consequently in the marginal distribution of Y). Even though b; and
€; are indexed by the same scale mixing factor U; (and hence they are not marginally in-
dependent), conditional on U;, we have that b; and €; are independent. Therefore, since
Cov{b;,€;} = E{b;e } = By, {E{bi€¢] |U;}} = 0, b; and ¢; are uncorrelated.

Finally, the model formulation given in (2) and (3) implies that, marginally,

Y % SMSN,,, (X + ZicA, @3, Ay; H), W

v, ?z,D¢

VI+¢TAC
z!x71'7,)7 "

In order to enable some flexibility when modeling the error scale matrix, we consider three
possible dependence structures for R;: uncorrelated, AR(p), and DEC, which will be briefly
introduced next.

where ¥; = X; + Z,DZ;, A\ = with ¢ = D™Y2X and A; = (D7! +

e Uncorrelated: The most common and simplest approach is to assume that the error
terms are uncorrelated (UNC). Under this assumption, we have R; = I,,;, for i =
1,...,n.

o Autoregressive dependence of order p: Consider at first the case where a variable of
interest is regularly observed over discrete time, n; times, for each subject. Then, we
propose to model R; as a structured AR(p) dependence matrix (Box and Jenkins 1976).
Specifically,

1

_1_¢1P1_---_¢ppp

R; = Ri(9) [o)r—s))s

where r,s = 1,...,n;, i« = 1,...,n, and p1,...,p, are the theoretical autocorrela-
tions of the process, and thereby they are functions of autoregressive parameters ¢ =
(¢1,...,¢p) ", and satisfy the Yule-Walker equations (Box and Jenkins 1976). To ac-
commodate situations in which measurements are taken irregularly over discrete time,
we modify R; by computing it for a regular range of time and then suppressing the line
and column regarding the position from the missing measurements.

e Damped exponential correlation: More generally, consider now that for each subject,
a variable of interest is observed at times t; = (ti1,t2,...,tin,). Following Mufoz,
Carey, Schouten, Segal, and Rosner (1992), we propose to structure R; as a damped
exponential correlation (DEC) matrix, as follows:

e
R; = Ri(¢,t;) = [¢|1t” tik| 2} , 0591 <1, ¢2 >0,

where j,k = 1,...,n;, fori = 1,...,n, and ¢ = (¢1,$2)". Note that for ¢ = 1, R;
reduces to the correlation matrix of a continuous-time autoregressive process of order 1
(CAR1). Hence, ¢2 enables attenuation or acceleration of the exponential decay from
a CARI autocorrelation function, depending on its value.
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Since the log-likelihood function for the proposed model involves complex expressions and is
challenging to be optimized, ML estimation of @ = (8,02, ¢ ,a’,A",vT)T is performed
using an EM-type algorithm (for details on parameter estimation, please see Schumacher et al.
2021), which takes advantage of a hierarchical representation of the model. Some options for
parameter estimation are available in the skewlmm package and are introduced in the next
section.

3. Algorithms for parameter estimation

The required computation time to estimate EM algorithms (or to solve fixed-point problems in
general) is a frequent concern in applications, especially when dealing with complex models or
big data. There are several proposals in the literature to accelerate the often-slow convergence
of the EM algorithm. For example, Varadhan and Roland (2008) developed a class of iterative
schemes, called squared iterative methods, that uses the novel idea of “squaring” applied to
Steffensen-type methods for EM acceleration and can be implemented as an “off-the-shelf”
accelerator of any EM algorithm.

Other methods that are frequently used for EM acceleration are the Anderson acceleration
(AA, Anderson 1965) and further modifications to include, for example, restarts (e.g., Pratapa
and Suryanarayana 2015). These methods use information gained from previous iterations,
having the advantage of only using the current and past iterates of the sequence of parameter
values and the corresponding EM mappings of these parameter values and only requiring
modest additional storage and per-iteration computational costs (Henderson and Varadhan
2019).

Recently, Henderson and Varadhan (2019) described a new class of acceleration schemes
built on the AA technique and introduced periodic restarts, a damping factor, and “epsilon-
monotonicity” control, and is referred to as the DAAREM method. The introduction of a
damped or a regularized version of the least-squares problem used in the AA scheme enables
a compromise between the EM step and the AA step, connecting the robustness of EM to
initial values with the speed of local convergence of AA or restarted AA.

The DAAREM algorithm serves as a generic “off-the-shelf” accelerator and is implemented in
the R package daarem (Henderson and Varadhan 2020). It is used by default for estimation
in the skewlmm package since simulation studies showed an expressive gain in time until
convergence in comparison to the traditional EM algorithm (Schumacher 2021). Nevertheless,
the traditional implementation is also available, and its use can be specified via the argument
control.

Complementary, the use of parallel optimization can improve the computational time in some
situations, but its performance depends on the evaluation time of the objective function in
relation to the parallel overhead. An easy-to-use parallelization option is implemented in the R
package optimParallel (Gerber and Furrer 2019), whose function optimParallel() provides
a parallel version of the L-BFGS-B optimization method of optim() and is optionally used
for parameter estimation in the skewlmm package. The numerical optimization processes are
necessary to update ¢ and v in the maximization step of the EM algorithm, and the use of
parallel computation in the updates can be controlled using the argument control, whose
use is described in the next section.
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4. Implementation in R

Two main functions are available: smsn.lmm() and smn.lmm(), that fit SMSN-LMMs and
SMN-LMMs, respectively. Their syntax is as follows:

smn.lmm(data, formFixed, groupVar, formRandom = ~1, depStruct = "UNC",
timeVar = NULL, distr = "norm", covRandom = "pdSymm",
PAR = 1, control = lmmControl())

smsn.lmm(data, formFixed, groupVar, formRandom = ~1, depStruct = "UNC",

timeVar = NULL, distr = "sn", covRandom = "pdSymm",
skewind, pAR = 1, control = lmmControl())

where:

data is a data frame containing all variables to be used in the model.

formFixed is a two-sided linear formula object describing the fixed effects part of the
model.

groupVar is a character containing the name of the variable which represents the sub-
jects or groups in data.

formRandom is a one-sided linear formula object describing the random effects part of
the model (default is a random intercept model).

depStruct is a character indicating which dependence structure should be used for the
error: "UNC" for uncorrelated (default), "ARp" for autoregressive, "CS" for compound
symmetry, "DEC" for DEC, or "CAR1" for continuous-time AR(1).

timeVar is a character containing the name of the variable which represents the time in
data (meaningless if depStruct = "UNC" or depStruct = "CS"; otherwise, if
is.null(timeVar) the observations are considered equally spaced and ordered).

distr is a character indicating which distribution should be used (default is a skew-
normal distribution).

covRandom is a character indicating which structure should be used for the random
effects scale matrix: either "pdSymm" (default), for a general positive-definite matrix, or
"pdDiag", for a diagonal matrix.

skewind is a vector of length equal to the number of random effects (¢), containing 0’s
and 1’s, indicating which elements of A = (A1,..., ;) should be estimated (default is
an all-ones vector).

PAR is the order of the autoregressive process that should be used (default is 1 if
depStruct = "ARp", meaningless otherwise).

control is an object resulting from the function lmmControl (), containing additional
options for the estimation algorithm.
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4.1. Tools for model evaluation

An important step in data analysis is to evaluate the suitability of a fitted model to a real data
set, and several methods can be used for this purpose. The tools available in the skewlmm
for model evaluation are introduced next.

First, conditional and marginal residuals can be accessed via the method residuals(). Let
A be an identity matrix if type = "response", the variance of the response variable (for
details, see Schumacher et al. 2021) if type = "normalized", and A = ¥ (as given in (4))
if type = "modified". For the ith subject, marginal residuals are given by

~_1/9 ~
r;=A, / (yi - XZ,B)
and conditional residuals are given by

~—1/2 - =~
si= A, / (Yi - X8 - Zibi> ,
where b; = Bl(é) =E{b;|Y; =y, @} can be extracted using the function ranef (). Moreover,
plotting an object containing a fitted model will return a fitted versus residuals plot, with the
color indicating the estimated weight (u;) of the observations.

When dealing with heavy-tailed data, the Mahalanobis distance is a convenient measure that
can be used to identify potential outlying observations and to assess the validity of the un-
derlying distributional assumption of the response variable, because if the fitted model is ap-
propriate, the distribution of the Mahalanobis distance is known. The function mahalDist ()
returns the Mahalanobis distance from a fitted model, for which a plot () method is available
that additionally plots a theoretical quantile of the assumed distribution.

Following Ho and Lin (2010), to assess the goodness of fit of an SMSN-LMM, one can construct
a Healy-type plot (Healy 1968) by plotting the nominal probability values 1/n,2/n,...,n/n
against the theoretical cumulative probabilities of the ordered observed Mahalanobis dis-
tances. For a fitted model, this plot is generated by the function healy.plot (). If the fitted
model is appropriate, the plot should resemble a straight line through the origin with a unit
slope. It is important to note that Haley’s plot requires all subjects to have the same number
of observations, but in case of unbalanced data unmeasured observations can be predicted
using the method predict (), and an imputed data set can be provided through the argument
dataPlus.

Additionally, based on Zeller, Labra, Lachos, and Balakrishnan (2010), the observed Ma-

~ ~ ~ a1

halanobis distance can be decomposed as follows: d;(0) = (y; — X8 — EZiA)T\IIi (yi —
~ o~ ~_1 =N N\ a—1/_ o~ ~ ~
X8 —CZA) = e/%, e + (sz‘ — cA) D (ubi - cA) = de,(0) + dp,(0), where e; =
yi— Xiﬁ —Zipy; and py; = cA+ DZiT‘IJi_lgyi —X;B —cZ;A). This decomposition gives in-
sight into how the estimated random effects b; and the estimated residuals e; affect the overall
distance, and it is returned by the function mahalDist () with the argument decomposed =
TRUE.

Another important assumption that should be investigated is the dependence structure as-
sumed to the within-subject errors. In the context of time series data, a commonly used tool
to analyze serial correlation is the empirical autocorrelation function (ACF, Box and Jenk-
ins 1976). In the context of mixed models, Pinheiro and Bates (2000) proposed to use the
empirical autocorrelation function for the residuals of a fitted LMM. Based on this approach
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and restricting to the case that data is observed at discrete times, let riT = (Pity,-- - ,mtni)
denote normalized marginal residuals. The empirical autocorrelation at lag [ is computed by
the function acfresid() and can be defined as

D201 Gkt —t =1y ity Tty /N (1)
i1 251 i, /N (0) ’

p(l) = ()

where N (-) is the number of pairs used in the respective numerator summation. If the within-
subject dependence structure is correct, p(l) is expected to be close to zero.

Since r;’s distribution is not symmetrical, the interval estimates of p(-) that are commonly
used in time series models are not appropriate. Alternatively, if calcCI = TRUE, a Monte
Carlo estimate for an uncorrelated model is computed by generating M samples from a UNC-
SMSN-LMM similar to the fitted model, calculating the standardized marginal residuals (with
respect to 0 estimated from the original data set) and p(l) for each sample, and using empirical
100(a/2)th and 100(1 — «/2)th percentiles as approximate interval estimates of level 1 — a.
If the considered dependence structure is appropriate, we expect approximately 100(1 — «)%
of the empirical autocorrelations to belong to the uncorrelated interval. The method plot ()
is available to facilitate the ACF visualization.

A similar approach is used to generate reference bounds for Healy-type plots, but in this case,
the samples are generated from the same SMSN-LMM that was fitted.

Finally, the function 1r.test() can be used to perform a likelihood-ratio test of two nested
SMSN-LMMs, which might be useful to test if A = 0, for example, and the function criteria()
extracts information criteria for several fitted models.

5. Data illustrations

To provide examples of the package usage in real applications, in this section we present two
real data scenarios. The first one consists of balanced data with measurements equally spaced
in time, for which all tools for model evaluation can be easily used. In this example, a model
considering an asymmetric distribution provides a better fit for the data.

On the other hand, for the second example, measurements were taken under different time
gaps for different subjects, and more care is needed in its analysis. Here, a model considering
a symmetric distribution, specifically the contaminated normal distribution, yields the best
results.

Additionally, aiming to illustrate the package’s feature of data generation and consider the
computational time for handling larger samples sizes, a third example involving synthetic data
sets is presented. Taking advantage of knowing the model’s generation process, we compare
different methods for obtaining confidence intervals and report computational cost for model
fitting.

5.1. Example with balanced data: Mice weight data

To illustrate the use of the skewlmm package, we now consider the miceweight data set,
which is available at the R package skewlmm. This data set was derived from results of a
clinical trial designed to test two diet treatments in comparison to a control group. The
weight (in grams) of 52 mice was measured weekly from baseline until week 10 of treatment.
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Figure 1: Mice weight data set. Trajectories of mice weight for different diets.

Minor location perturbations were performed in the publicly available version of the data set
for confidentiality concerns; however, original data features such as variance and skewness
were preserved.

The goal of the study was to test if either of the two special diets yield a faster weight gain.
Following four initial weeks of no intervention, 21 mice randomly assigned to treatment 1
(T1) and 20 to treatment 2 (T2) started receiving special diets for weight gain, while 11
mice assigned to the control (C) group continued receiving a standard diet. Figure 1 presents
individual weight trajectories over time, along with their mean profile.

After loading the skewlmm package and the data set,

R> library("skewlmm")
R> data("miceweight", package = "skewlmm")

we create the variables interWeek and interTreat, respectively measuring week since inter-
vention started and indicator of time that each mouse received an intervention, as follows:

R> miceweight <- miceweight 7>}
+ mutate(interWeek = week - 4) >/
+ mutate(interTreat = if_else(interWeek < 0, "C", treat))

We aim to fit the model

Yij = Bo + boi + (B1 + b1i)tij + Bolireat, =11 ;>0 + B3Lireat, =Ty ti;>0+
i=T1,t;;>008 i=12,t5> )
Baltreat; =Ty ti;>0ti5 + BsLireat; =Ty t;;>0tij + €ij
i=1,...,52, 7 =1,...,11, where Y}; is the weight for the ith mouse at the jth week, 14 is

an indicator function (1 if A is true, 0 otherwise), and t;; represents week since intervention
started (interWeek).

First, we consider the convenient normal assumption for both random effects and errors.
Figure 2 presents the estimated random effects from the fitted model, where we can see
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Figure 2: Mice weight data set. Histograms and quantile plots of the estimated random effects
obtained from fitting an N-LMM.

that the normal assumption does not seem appropriate due to indications of both skewness
and outliers. Therefore, the use of a more robust model seems advantageous and will be
investigated next.

We can fit a classic model N-LMM, and, for example, an SL-LMM, and an SSL-LMM using
the following code:

R> fit_norm <- smn.lmm(data = miceweight,

+ formFixed = weight ~ interWeek * interTreat,

+ formRandom = ~ interWeek, groupVar = "mouseID")

R> fit_sl <- update(object = fit_norm, distr = "sl1")

R> fit_ssl <- smsn.lmm(data = miceweight,

+ formFixed = weight ~ interWeek * interTreat,

+ formRandom = ~ interWeek, groupVar = "mouseID", distr = "ssl")

The function update () refits the model stored in object by changing the extra arguments
provided.

We can see some information regarding the estimated model by simply printing the fitted
object:

R> fit_ssl
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Linear mixed models with distribution ssl and dependence structure UNC
Log-likelihood value at convergence: -1468.949

Distribution ssl with nu = 1.157208

Fixed: weight ~ interWeek * interTreat

(Intercept) interWeek interTreatT1
39.8191240 2.0114239 -1.6367405
interTreatT2 interWeek:interTreatTl interWeek:interTreatT2
-0.2796527 -0.3325641 -0.5836130
Random effects:
Formula: ~ interWeek by mouseID

Structure: General positive-definite
Estimated variance (D):
(Intercept) interWeek
(Intercept) 9.012879 1.7687376
interWeek 1.768738 0.4020359
Skewness parameter: 27.51208 8.270156
Error dependence structure: UNC
Estimate(s):
sigma2
2.561305
Number of observations: 572
Number of groups: 52

To evaluate the necessity of using the skewed distribution, we can perform a likelihood ratio
test for testing Hg : A = 0 using the function 1r.test () and the two nested fitted models:

R> Ir.test(fit_sl, fit_ssl)

Model selection criteria:

logLik AIC BIC
fit_sl -1473.938 2969.876 3017.717
fit_ssl -1468.949 2963.899 3020.438

Likelihood-ratio Test

chi-square statistics = 9.977532
af = 2
p-value = 0.006814066

The null hypothesis that both models represent the
data equally well is rejected at level 0.05

Since the p-value is quite small, we reject the null hypothesis that both skewed and symmetric
models represent the data equally well. Hence, the skewed model provides a significantly
improved fit to the data.

To evaluate the adequacy of the distributional assumption, we can produce Healy-type plots
as follows:
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Figure 3: Mice weight data set. Healy-type plots.

R> grid.arrange (healy.plot(fit_norm, calcCI = TRUE),
+ healy.plot(fit_ssl, calcCI = TRUE), nrow = 1)

The resulting plot is presented in Figure 3, where the dashed lines represent the 2.5%, 50%,
and 97.5% percentiles obtained from simulated samples, as described in the Section 4.1. The
gain in considering a heavy-tailed distribution for modeling this data set can be observed.

Furthermore, to check if the uncorrelation assumption (the function’s default) is appropriate,
a possible approach is to refit the model considering different dependence structures and then
compare AIC and BIC values to select the most suitable model. Since the data are equally
spaced and sorted by time, the use of timeVar, in this case, is optional (if not provided, it
will be automatically generated).

R> fit_ssl_arl <- update(fit_ssl, depStruct "ARp", pAR = 1)
R> fit_ssl_ar2 <- update(fit_ssl, depStruct = "ARp", pAR = 2)
R> fit_ssl_DEC <- update(fit_ssl, depStruct = "DEC", timeVar = "interWeek")

By default, the functions smsn.1lmm() and smsn.lmm() only use optimParallel to update a)
at each iteration if the data contain more than 30 subjects. However, we can control the use
of parallel computing by specifying parallelphi in the lmmControl () function passed to the
argument control:

R> fit_ssl_DEC_par <- update(fit_ssl_DEC,
+ control = ImmControl(parallelphi = TRUE))

The parallelized version was slightly more efficient in this case, as can be seen in the following
results:

R> fit_ssl_DEC$elapsedTime

[1] 58.79464
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Figure 4: Mice weight data set. ACF plots.

R> fit_ssl_DEC _par$elapsedTime
[1] 41.90837

Now, comparing the information criteria from the fitted models, we see that the smaller AIC
and BIC is provided by the model with AR(1) dependence.

R> criteria(list(UNC = fit_ssl, AR1 = fit_ssl_arl, AR2 = fit_ssl_ar2,
+  DEC = fit_ssl_DEC))

logLik npar AIC BIC
UNC -1468.949 13 2963.899 3020.438
AR1 -1438.826 14 2905.653 2966.541
AR2 -1438.907 15 2907.814 2973.051
DEC -1438.925 15 2907.849 2973.086

Additionally, we can compute empirical autocorrelations using the function acfresid() and
plot the results with the following code:

R> grid.arrange(plot(acfresid(fit_ssl, calcCI = TRUE, maxLag = 6)),
+ plot(acfresid(fit_ssl_arl, calcCI = TRUE, maxLag = 6)), nrow = 1)

From the resulting plot in Figure 4, where the dashed lines represent the 2.5% and 97.5% per-
centiles obtained from simulated samples, we can see some gain in considering the correlated
model since the empirical autocorrelations were generally smaller. Furthermore, the residuals’
ACF from the AR(1)-SL-LMM does not seem to indicate unmodeled serial dependence, and
therefore we will select it for further analysis.

We can extract information about the fit using the method summary:

R> summary(fit_ssl_arl)



Journal of Statistical Software 15

Linear mixed models with distribution ssl and dependence structure ARp

Call:

smsn.lmm(data = miceweight, formFixed = weight ~ interWeek *
interTreat, groupVar = "mouseID", formRandom = ~interWeek,
depStruct = "ARp", distr = "ssl", pAR = 1)

Distribution ssl with nu = 1.078377

Random effects:
Formula: ~interWeek
Structure:
Estimated variance (D):
(Intercept) interWeek
(Intercept) 6.616008 1.4409527
interWeek 1.440953 0.3154857

Fixed effects: weight ~ interWeek * interTreat
with approximate confidence intervals
Value Std.error CI 95% lower CI 95% upper

(Intercept) 39.8628406 0.7270794  38.4377910 41.28789011
interWeek 2.0349189 0.1844456 1.6734122 2.39642556
interTreatT1 -2.1714324 1.0441153 -4.2178607 -0.12500405
interTreatT2 -0.8536847 0.9025629 -2.6226754 0.91530598
interWeek:interTreatTl -0.1687789 0.2262999 -0.6123186 0.27476075
interWeek:interTreatT2 -0.4701132 0.2779825 -1.0149489 0.07472247

Dependence structure: ARp
Estimate(s):
sigma?2 phil
2.510868 0.464750

Skewness parameter estimate: 98.36299 18.61088

Model selection criteria:
logLik AIC BIC
-1438.826 2905.653 2966.541

Number of observations: 572
Number of groups: 52

We can analyze the observed Mahalanobis distance and its relation with the estimated weights
(u) using the following code:

R> grid.arrange(plot (mahalDist (fit_ssl_arl), nlabels = 0),
+ weight_plot(fit_ssl_arl), ncol = 2)

The resulting plot is shown in Figure 5, where the blue dashed line is the theoretical 99%
quantile. All distances were smaller than the given quantile, and it can be seen that the
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Figure 6: Mice weight data set. Plotting the fitted model object.

two subjects that presented larger Mahalanobis distance received quite small weights in the
estimation processes, as opposed to the estimation under Gaussian assumptions (that gives
the same weight to all subjects and all observations).

Moreover, plotting the fitted object (as follows) results in Figure 6, where it can be seen that
larger residuals are associated with smaller weights and therefore have less impact on the
estimation procedure, showing evidence of the model’s robustness.

R> plot(fit_ssl_arl, type = "normalized")

Finally, we can extract confidence intervals (CIs) using the function confint:

R> confint(fit_ssl_arl) 7>}, round(digits = 3)
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Estimate CI 95% lower CI 957 upper

(Intercept) 39.863 38.438 41.288
interWeek 2.035 1.673 2.396
interTreatT1 -2.171 -4.218 -0.125
interTreatT?2 -0.854 -2.623 0.915
interWeek:interTreatT1 -0.169 -0.612 0.275
interWeek:interTreatT2 -0.470 -1.015 0.075
sigma2 2.511 1.970 3.052
phiAR1 0.465 0.311 0.619
Dsqrtil 2.515 1.528 3.502
Dsqrti12 0.539 0.121 0.958
Dsqrt22 0.157 -0.903 1.217
lambdal 98.363 NA NA
lambda?2 18.611 NA NA
nul 1.078 NA NA

By default, CIs are computed based on the asymptotic normal distribution of maximum
likelihood estimators. When dealing with small samples, it may be helpful to compute para-
metric bootstrap confidence intervals (based on B simulated samples), which can be done by
specifying the method argument as "bootstrap":

R> boot_ssl_arl <- confint(fit_ssl_arl, method = "bootstrap", B = 100)
R> boot_ssl_arl 7>}, round(digits = 3)

Estimate 2.5% 97.5Y

(Intercept) 39.863 38.625 41.077
interWeek 2.035 1.741 2.294
interTreatTl -2.171 -3.195 -1.077
interTreatT2 -0.854 -1.858 0.141

interWeek:interTreatT1 -0.169 -0.551 0.206
interWeek:interTreatT2 -0.470 -0.847 -0.127

sigma?2 2.511 1.916 3.316
phiAR1 0.465 0.336 0.554
Dsqrtil 2.515 2.351 2.674
Dsqrti2 0.539 0.388 0.695
Dsqrt22 0.157 0.105 0.251
lambdal 98.363 97.546 99.420
lambda2 18.611 5.644 22.870
nul 1.078 0.818 1.805

We note that for this example, testing a hypothesis Hy : f5 = 0 (the parameter associated
with the interaction of treatment 2 and time) would yield different conclusions based on the
asymptotic intervals versus the bootstrapped intervals.

Some additional options are available, including some special cases of the models considered
thus far and some estimation controls. For example, a reduced model that can be useful
considers a diagonal matrix as the scale matrix of the random effects, which is obtained by
specifying covRandom = "pdDiag". Updating the fitted model (stored at fit_sl_ar1l),
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R> fit_ssl_arlD <- update(fit_ssl_arl, covRandom = "pdDiag")
and performing a likelihood ratio test to evaluate if the reduced model is appropriate,

R> Ir.test(fit_ssl_arl, fit_ssl_arilD)

Model selection criteria:

loglik AIC BIC
fit_ssl_arl -1438.826 2905.653 2966.541
fit_ssl_arlD -1468.381 2962.762 3019.301

Likelihood-ratio Test

chi-square statistics = 59.10911
af = 1
p-value = 1.491669e-14

The null hypothesis that both models represent the
data equally well is rejected at level 0.05

results in a p-value < 0.001, and therefore for these data, we can conclude that the more
general structure is necessary ("pdSymm").

For skewed models, it might be also interesting to test if a subset of the shape parameter X is
zero. This can be done by fitting a reduced model that forces some elements of A to be zero
using the argument skewind, that receives a vector of length ¢ containing 0’s for the elements
that should be forced to zero, and 1’s otherwise. Furthermore, if we would like to use an
EM-type algorithm instead of DAAREM, we can pass algorithm = "EM" to the argument
control using the function 1mmControl (), as illustrated next:

R> fit_ssll <- update(fit_ssl, skewind = c(1, 0),
+ control = ImmControl(algorithm = "EM"))

Moreover, by default, the package uses the following initial values.

« For 3,02, and D, they are obtained using the classical LMM through the 1me () function
from nlme package in R.

o For A (when using smsn.1lmm() ), they are chosen as 1 x sign(p), where p is the sample
skewness coefficient from the random effect estimated from the classical LMM.

o For v, 10 is used for t/ST distributions, 5 for SL/SSL distributions, and (0.05,0.8) for
CN/SCN distributions.

o For AR(p) and for CARI1 dependence, ¢ is initialized as its estimate from fitting an
AR(p)-LMM and a CAR1-LMM using 1me () function from nlme package in R, respec-
tively.

o For DEC dependence, ¢ is initialized by finding the maximum marginal log-likelihood
function as in (4) on a grid of ¢ and for other parameters fixed.
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Nevertheless, different initial values can be specified using the argument initialValues from
the ImmControl () function, as follows:

R> fit_ssl2 <- update(fit_ssl,
+ control = 1lmmControl(initialValues = list(nu = 1)))

The 1mmControl() function also allows control of some estimation, parallelization, and
DAAREM options. For more details regarding the control options, please see
help(lmmControl).

5.2. Example with data measured on continuous time: Six Cities study

Now, we analyze a subsample from the Six Cities Study of Air Pollution and Health (Dockery,
Berkey, Ware, Speizer, and Ferris Jr. 1983), focusing on pulmonary function (measured as
FEV1) and height for girls living in Topeka, Kansas. This subsample was previously discussed
in Fitzmaurice, Laird, and Ware (2012) and is available as supplementary material. The main
goal of the study was to analyze lung growth as measured by changes in pulmonary function
in children and adolescents, and the factors that influence lung function growth. In this
subsample, most girls were enrolled between the ages of six and eight, and were follow-up once
a year until graduation from high school or loss to follow-up. At each annual examination,
FEV1 was measured though a spirometry test, and a respiratory health questionnaire was
completed by a parent or guardian.

Since we are interesting in evaluating the pulmonary function over time, we removed from
the sample 48 girls who had no follow-ups. Figure 7 presents trajectories of FEV1 over both
age and height, in addition to smooth curves (blue line) obtained using generalized additive
model (GAM) with cubic splines. Note that both smooth curves seem to be roughly piecewise
linear, changing the slope around the age of 15 and height of 1.5.

Additionally, it is important to remark that for this data set, measures were obtained over
continuous time, and therefore there it is not appropriate to plot the average for each time
point, nor considering dependence structures based on discrete time, such as the AR(p).

We can read the data set and make some basic transformations using

R> ds <- read.dta("https://content.sph.harvard.edu/fitzmaur/ala2e/fevl.dta")
R> ds <- ds >} filter(!(id 7inJ, unique(id) [table(id) == 1]))

R> ds <- ds >}, transform(

+ agec = age - 12,

time = age - baseage,

fevl = exp(logfevl),

htp = case_when(ht> 1.5 ~ ht - 1.5, TRUE ~ 0),

agep = case_when(age > 15 ~ age - 15, TRUE ~ 0))

+ + + +

Fitzmaurice et al. (2012) analyzed this sample using a logarithmic transformation and under
normality assumption. We now revisit this problem proposing to model FEV1 directly, such
that the parameter’s interpretation is direct, using the R package skewlmm. Based on the
patterns observed in Figure 7, we propose to fit the model:

Yij = Bo + Prage;y + B2age;; + B3 age;lage, >15 +

(6)
+ Bahtio + Bs ht;; + B6 ht;; :H'htij>1-5 + B ageijhtij + boi + b1; htyj + €45,
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age | ht

Figure 7: Six Cities study. Trajectories of FEV1 by age and height.

for i = 1,...,252 and j = 1,...,n;, where 14 is an indicator function (1 if A is true,
0 otherwise), age,, and ht;y denote age and height at baseline, respectively. We consider
an interaction between age and height since, for the age range used in the study, it is not
reasonable to interpret a change in age without considering a change in height.

After loading the package skewlmm, a normal model can be fitted using

R> mod_norm <- smn.Ilmm(

+ fevl ~ baseage + age + agep + baseht + ht + htp + age * ht,

+ data = ds, groupVar = "id", formRandom = ~ht, distr = "norm")
R> mod_norm

Linear mixed models with distribution norm and dependence structure UNC
Log-likelihood value at convergence: 761.1776

Distribution norm

Fixed: fevl ~ baseage + age + agep + baseht + ht + htp + age * ht

(Intercept) baseage age agep baseht ht
-0.72482490 -0.06374243 -0.11073866 -0.08937323 1.07280577 0.66645149
htp age:ht

1.62601051 0.13427577
Random effects:
Formula: ~ ht by id
Structure: General positive-definite
Estimated variance (D):

(Intercept) ht
(Intercept) 0.5118849 -0.4382644
ht -0.4382644 0.3809793
Error dependence structure: UNC
Estimate(s):

sigma?2
0.01713089
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Number of observations: 1946
Number of groups: 252

On the other hand, we can fit a more flexible model that accounts for outliers, serial correla-
tion, and a possible skewness by considering

R> mod_scn <- smsn.Ilmm(

+ fevl ~ baseage + age + agep + baseht + ht + htp + age * ht,

+ data = ds, groupVar = "id", formRandom = ~ ht, distr = "scn",
+ timeVar = "time", depStruct = "DEC")

R> mod_scn

Linear mixed models with distribution scn and dependence structure DEC
Log-likelihood value at convergence: 849.777

Distribution scn with nu = 0.1795557 0.3312515

Fixed: fevl ~ baseage + age + agep + baseht + ht + htp + age * ht

(Intercept) baseage age agep baseht ht
-0.84331885 -0.07358645 -0.10396804 -0.10018997 1.30824441 0.52561350
htp age:ht

1.51464279 0.13597547
Random effects:
Formula: ~ ht by id
Structure: General positive-definite
Estimated variance (D):

(Intercept) ht
(Intercept)  0.3303920 -0.3003916
ht -0.3003916 0.2736832

Skewness parameter: -0.11204 0.3416233
Error dependence structure: DEC
Estimate(s):
sigma?2 phil phi2
0.01490199 0.33186733 0.75590999
Number of observations: 1946
Number of groups: 252

Comparing both models using an LR test, we can see that the DEC-SCN-LMM seems to
provide a significantly improved fit:

R> 1r.test(mod_norm, mod_scn)

Model selection criteria:

loglik AIC BIC
mod_norm 761.178 -1498.355 -1431.473
mod_scn 849.777 -1663.554 -1563.230

Likelihood-ratio Test
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chi-square statistics = 177.1989
df = 6
p-value = 1.334695e-35

The null hypothesis that both models represent the
data equally well is rejected at level 0.05

To evaluate if a skewed model is necessary, we can consider its symmetric version by fitting

R> mod_cn <- update(mod_norm, distr = "cn", timeVar = "time",
+ depStruct = "DEC")
R> Ir.test(mod_cn, mod_scn)

Model selection criteria:

loglik AIC BIC
mod_cn 849.412 -1666.824 -1577.648
mod_scn 849.777 -1663.554 -1563.230

Likelihood-ratio Test

chi-square statistics = 0.7297971
daf = 2
p-value = 0.6942671

The null hypothesis that both models represent the
data equally well is not rejected at level 0.05

Since the gain in considering the skewed model is not substantial, for parsimony we continue
the analysis using the symmetric model.

To verify if a simpler model would be enough, we consider and compare the following possi-
bilities:

R> mod_normCAR1 <- update(mod_cn, distr = "norm", depStruct = "CAR1")
R> mod_normDEC <- update(mod_cn, distr = "norm")

R> mod_cnCAR1 <- update(mod_cn, depStruct = "CAR1")

R> mod_cnUNC <- update(mod_cn, depStruct = "UNC")

R> criteria(list(

+ “UNC-N-LMM®~ = mod_norm,

+ “CAR-N-LMM®~ = mod_normCAR1,
+ "DEC-N-LMM~ = mod_normDEC,
+ “UNC-CN-LMM"~ = mod_cnUNC,

+ “CAR-CN-LMM® = mod_cnCAR1,

+ "DEC-CN-LMM™ = mod_cn))

logLik npar AIC BIC
UNC-N-LMM 761.1776 12 -1498.355 -1431.473
CAR-N-LMM 797.1737 13 -1568.347 -1495.892
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Figure 8: Six Cities study. Plotting the fitted object.

DEC-N-LMM 800.0750 14 -1572.150 -1494.120
UNC-CN-LMM 806.9553 14 -1585.911 -1507.881
CAR-CN-LMM 848.0047 15 -1666.009 -1582.407
DEC-CN-LMM 849.4121 16 -1666.824 -1577.648

From the criteria comparison, we can see that the CAR-CN-LMM provides a good trade-
off between goodness of fit and the number of parameters. Therefore, we proceed with the
analysis based on this model.

We can plot the model fit using

R> mod_cnCAR1 >}, plot()

And the associated Mahalanobis distance can be analyzed by running
R> mahalDist (mod_cnCAR1) 7>} plot(nlabels = 0)

Finally, results can be extracted using

R> summary (mod_cnCAR1)

Linear mixed models with distribution cn and dependence structure CAR1
Call:
smn.lmm(data = ds, formFixed = fevl ~ baseage + age + agep +
baseht + ht + htp + age * ht, groupVar = "id", formRandom = ~ht,
depStruct = "CAR1", timeVar = "time", distr = "cn"

Distribution cn with nu = 0.1744197 0.3265998

Random effects:
Formula: ~ht
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Figure 9: Six Cities study. Mahalanobis distance per number of repeated measures.

Structure:
Estimated variance (D):
(Intercept) ht
(Intercept)  0.3128866 -0.2850375
ht -0.2850375 0.2600707

Fixed effects: fevl ~ baseage + age + agep + baseht + ht + htp + age * ht
with approximate confidence intervals
Value Std.error CI 95% lower CI 95% upper

(Intercept) -0.84975405 0.36661933 -1.56831474 -0.13119336
baseage -0.07380252 0.01894638 -0.11093675 -0.03666829
age -0.10438378 0.04216784 -0.18703124 -0.02173633
agep -0.09893130 0.01050317 -0.11951714 -0.07834546
baseht 1.30213643 0.25894685  0.79460993 1.80966294
ht 0.54151620 0.23804335 0.07495981 1.00807258
htp 1.50424996 0.25846691 0.99766412  2.01083580
age:ht 0.13567868 0.02695395  0.08284991 0.18850746

Dependence structure: CAR1
Estimate(s):
sigma?2 phil
0.01451772 0.31110577

Model selection criteria:
loglik AIC BIC
848.005 -1666.009 -1582.407

Number of observations: 1946
Number of groups: 252
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Figure 10: Synthetic data for n = 50 subjects. Trajectories plot with superimposed mean
curve.

From v = (0.1744,0.3266), we can interpret that the model identified about 17% of outliers,
which are highlighted as lighter blue dots in Figure 8. Since the data are in their original
scale, the estimated parameters can be straightforward interpreted.

5.3. Example with synthetic data

Here, we illustrate two functionalities of the package: its ability to simulate data using the
function rsmsn.lmm, and the model performance for larger data sets. To generate data for 50
subjects with 5 time points each from a AR(1)-ST-LMM, we can use the following syntax:

R> nj1 <- 5

R> m <- 50

R> gendatList <- map(.x = rep(njl, m), .f = function(nj)

+ rsmsn.lmm(timel = 1:nj, x1 = cbind(1, 1:nj), z1 = rep(1, nj),

+ beta = c(1, 2), sigma2 = 0.25, D1 = 0.5 * diag(1), lambda = 2,
+ depStruct = "ARp", phi = 0.5, distr = "st", nu = 5))

R> gendat_50 <- bind_rows(gendatList, .id = "ind")

The simulated data behavior is illustrated in Figure 10.

Fitting the correct model to this synthetic data set,

R> fm1 <- smsn.Imm(y ~ x, data = gendat_50, groupVar = "ind",
+ depStruct = "ARp", pAR = 1, distr = "st")

is completed in fm1$elapsedTime = 39.446 seconds using a Windows 11 environment on a
laptop with an 12th generation Intel Core i7 processor with 16 GB of RAM.

As a comparison, we can compute Cls using both the available methods as follows:

R> confint (fm1, method = "asymptotic") 7>) round(digits = 3)
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Estimate CI 95% lower CI 95} upper

(Intercept) 1.028 0.672 1.384
X 2.016 1.956 2.075
sigma?2 0.220 0.152 0.287
phiAR1 0.421 0.185 0.656
Dsqrtil 0.944 0.554 1.334
lambdal 12.625 NA NA
nul 4.001 NA NA

R> confint(fm1, method = "bootstrap") >} round(digits = 3)

Estimate 2.5% 97.5%

(Intercept) 1.028 0.776 1.311
X 2.016 1.968 2.076
sigma2 0.220 0.158 0.285
phiAR1 0.421 0.184 0.596
Dsqrtil 0.944 0.631 1.289
lambdal 12.625 2.008 22.468
nul 4.001 2.728 9.044

Now, to illustrate the model usability for larger samples sizes, we will consider a setting with
1,000 subjects and 10 time points each (10,000 observations total):

R> nj1 <- 10

R> m <- 1000

R> gendatList <- map(.x = rep(njl, m), .f = function(nj)

+ rsmsn.lmm(timel = 1:nj, x1 = cbind(1, 1:nj), z1 = rep(1, nj),

+ beta = c(1, 2), sigma2 = 0.25, D1 = 0.5 * diag(1), lambda = 2,
+ depStruct = "ARp", phi = 0.5, distr = "st", nu = 5))

R> gendat_1000 <- bind_rows(gendatList, .id = "ind")

Fitting the correct AR(1)-ST-LMM to this synthetic data set, using

R> fm2 <- smsn.lmm(y ~ x, data=gendat_1000, groupVar = "ind",
+ depStruct = "ARp", pAR = 1, distr = "st")

takes fm2$elapsedTime = 217.929 seconds using a Windows 11 environment on a laptop
with an 12th generation Intel Core i7 processor with 16 GB of RAM. For this example, the
asymptotic Cls are expected to provide reasonable estimates:

R> confint (fm2) %>} round(digits = 3)

Estimate CI 95Y, lower CI 95%, upper

(Intercept) 0.973 0.922 1.025
X 2.001 1.996 2.007
sigma2 0.243 0.230 0.256
phiAR1 0.492 0.465 0.518
Dsqrtil 0.648 0.583 0.714
lambdal 2.030 NA NA
nul 4.639 NA NA



Journal of Statistical Software 27

6. Extensions for censored data

Extending the model to accommodate censored data is crucial for dealing with studies where
the outcome is subjected to limits of detection. The package skewlmm is being extended to
allow data fit with such characteristics. Currently, implementation considering both the mul-
tivariate normal and ¢ distribution, as proposed in Matos, Prates, Chen, and Lachos (2013),
are available. In the future, we expect to extend the censored methods to accommodate other
distributions from the SMN class, and further to account for skewed distributions.

In this context, the function smn.clmm() fits left, right, or interval-censored linear mixed mod-
els with possible within-subject dependence structures using the EM algorithm. It provides
estimates and standard errors of parameters for these models.

The syntax is as follows:

smn.clmm(data, formFixed, groupVar, formRandom = ~1, depStruct = "UNC",
ci, 1lcl, ucl, timeVar = NULL, distr = "norm", nufix = FALSE, pAR = 1,
control = lmmControl())

where, in addition to the notation introduced earlier, we have:

e ci is a character containing the name of the censoring indicator variable in data, which
should be 1 if the respective observation is censored or missing, and 0 otherwise. If
missing, it is assumed that none of the observations is censored.

e 1cl is a character containing the name of the lower censoring limit in data. If missing,
it is assumed 1cl = -Inf, i.e., no left limit.

e ucl is a character containing the name of the upper censoring limit in data. If missing,
it is assumed ucl = Inf, i.e., no right limit.

e nufix is TRUE or FALSE, indicating if v should be estimated for t distribution. If nufix
= TRUE, v must be specified through lmmControl ().

7. Concluding remarks

This paper discussed the estimation and evaluation of SMSN-LMM using the R package
skewlmm, specifying the model definition, enlightening its distributional and structural op-
tions, and providing an examples of usage for real data sets, illustrating the theoretical de-
velopment from Schumacher et al. (2021).

The skewlmm package aims to provide a user-friendly tool to fit robust LMM to longitu-
dinal data, complementing standard tools as the nlme and lme4 R packages by the use of
a more flexible distributional assumption. Moreover, the availability of several optimization
functions, such as the DAAREM algorithm and parallel optimization, is clearly an appealing
strength of our new package. The implemented functions are simple to use and in accordance
with traditional R packages. We hope that this package can be helpful for practitioners in
several areas where LMMs are applicable.

It is worth noting that the current implementation does not support more than one clustering
level — see Maullin-Sapey and Nichols (2021), and therefore, the package is not suitable for
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crossed-factors LMM. Additionally, direct estimation of non-linear models or non-parametric
estimation of smooth regression, such as the generalized additive models (Hastie and Tibshi-
rani 1990),is not yet supported.

Recently, Lachos, Galea, Zeller, and Prates (2023) have proposed an interesting EM algo-
rithm for LMM considering the family of generalized hyperbolic (GH) distributions, which is
defined as the normal variance-mean mixture where the mixing distribution is the generalized
inverse Gaussian (GIG) distribution and it has a convenient stochastic representation for im-
plementation of the EM algorithm, leading to efficient ML estimation of the parameters. In
the future, we plan to include the GH distribution.
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